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We have found many programming problems for which neither procedural nor object-oriented
programming techniques are sufficient to clearly capture some of the important design deci-
sions the program must implement.  This causes the implementation of those design decisions
to be  scattered throughout the code, resulting in “tangled” code that is excessively difficult to
develop and maintain.  We present an analysis of why it is that such design decisions have been
so difficult to clearly capture in actual code.  We call the issues these decisions address AS-
PECTS, and say that the reason they have been hard to capture is that they CROSS-CUT the sys-
tem’s basic functionality.  We present the basis for a new programming technique, called as-
pect-oriented programming, that makes it possible to clearly express programs involving such
aspects, including appropriate isolation, composition and reuse of the aspect code.  The discus-
sion is rooted in systems we have built using aspect-oriented programming.

1.  INTRODUCTION

  Object-oriented programming has been presented as a technology that can fundamentally aid soft-
ware engineering, because the underlying object model provides a better fit with real domain problems.
But we have found many programming problems where OOP techniques are not sufficient to clearly
capture all the important design decisions the program must implement.  Instead, it seems that there are
some programming problems that fit neither the OOP approach nor the procedural approach it replaces.

This paper reports on our work developing programming techniques that make it possible to clearly
express those programs that OOP fails to support.  We present an analysis of why some design deci-
sions have been so difficult to cleanly capture in actual code.  We call the issues these decisions address
ASPECTS, and say that the reason they have been hard to capture is that they CROSS-CUT the system’s ba-
sic functionality.  We present the basis for a new programming technique, called aspect-oriented pro-
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gramming (AOP), that makes it possible to clearly express programs involving such aspects, including
appropriate isolation, composition and reuse of the aspect code.

We think of the current state of AOP research as analogous to that of OOP 20 years ago.  The basic
concepts are beginning to take form, and an expanding group of researchers are using them in their
work [1, 2, 3].  Furthermore, while AOP qua AOP is a new idea, there are existing systems that have
AOP-like properties.  The contribution of this paper is an analysis of the problems AOP is intended to
solve, as well as an initial set of terms and concepts that support explicit AOP-based system design.

The paper presents AOP in an example-driven way— the generalizations and definitions are all de-
rived from examples, rather than presented in advance.  Section 3 use a medium-scale example to pres-
ent the aspect-tangling problem AOP solves; the section culminates with a definition of the term aspect.
Section 4 presents several more small examples of aspects.  Sections 5 and 6 each provide an example
of a complete AOP system.  The remaining sections present future work, related work and conclusions.

2.  BACKGROUND ASSUMPTIONS

This section outlines important assumptions about the relationship between programming languages
and software design processes that underlie the rest of the paper.

Software design processes and programming languages exist in a mutually supporting relationship.
Design processes break a system down into smaller and smaller units.  Programming languages provide
mechanisms that allow the programmer to define abstractions of sub-units of their systems, and then
compose those abstractions in different ways to produce the overall system.  A design process and a
programming language work well together when the programming language provides abstraction and
composition mechanisms that cleanly support the units the design process breaks the system into.

From this perspective, many existing programming languages, including object-oriented languages,
procedural languages and functional languages, can be seen as having a common root in that their key
abstraction and composition mechanisms are all rooted in some form of generalized procedure.  For the
purpose of this paper we will refer to these as generalized-procedure (GP) languages.  (This is not to
say that we are ignorant of the many important advantages of OOP languages!  It is only to say that for
the purposes of the discussion in this paper, it is simpler to focus on what is common across all GP lan-
guages.)

The design methods that have evolved to work with GP languages tend to break systems down into
units of behavior or function.  This style has been called functional decomposition [4,5,6].1  The exact
nature of the decomposition differs between the language paradigms of course, but each unit is encap-
sulated in a procedure/function/object, and in each case, it feels comfortable to talk about what is en-
capsulated as a functional unit of the overall system.  This last point may be so familiar that it feels
somewhat redundant.  But it is important that we give it explicit attention now, because in the course of
this paper will be considering units of system decomposition that are not functional.

                                               
1 In some parts of the computing community this term connotes the use of functional programming languages (i.e.  side-effect free
functions),  but in this paper we do not use the term in that sense.
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3.  WHAT ARE ASPECTS?

To better understand the origins of tangling problems, and how AOP works to solve them, this sec-
tion is organized around a detailed example program.  This program represents a simplified version of a
real application we have been working with [7,8]— the tangling we discuss is real (but simplified); the
AOP solution presented in Section 5 is real (but simplified).

Consider the implementation of a black-and-white image processing system, in which the desired
domain model is one of images passing through a series of filters to produce some desired output.  As-
sume that important goals for the system are that it be easy to develop and maintain, and that it make
efficient use of memory.  The former because of the need to quickly develop bug-free enhancements to
the system. The latter because the images are large, so that in order for the system to be efficient, it
must minimize both memory references and overall storage requirements.

3.1. BASIC FUNCTIONALITY

Achieving the first goal is relatively easy.  Good old-fashioned procedural programming can be used
to implement the system, concisely, and in good alignment with the domain model.  In such an approach
the filters can be defined as procedures that take several input images and produce a single output im-
age.  A set of primitive procedures would implement the basic filters, and higher level filters would be
defined in terms of the primitive ones.  For example, a primitive or! filter,  which takes two images and
returns their pixelwise logical or, might be implemented as:2

(defun or! (a b)
  (let ((result (new-image)))
    (loop for i from 1 to width do
      (loop for j from 1 to height do
        (set-pixel result i j
          (or (get-pixel a i j)
              (get-pixel b i j)))))
    result))

loop over all the pixels
in the input images

storing pixels in the
result imagethe operation to

perform on the pixels

 Starting from or! and other primitive filters, the programmer could work up to the definition of a
filter that selects just those black pixels on a horizontal edge, returning a new image consisting of just
those boundary pixels.

                                               
2 We have chosen Common Lisp syntax for this presentation, but this could be written fairly easily in any other Algol-like language.



4

functionality implementation
pixelwise logical operations written using loop primitive as above
shift image up, down written using loop primitive; slightly different loop structure
difference of two images (defun remove! (a b) (and! a (not! b)))
pixels at top edge of a region (defun top-edge! (a) (remove! a (down! a)))
pixels at bottom edge of a region (defun bottom-edge! (a) (remove! a (up! a)))
horizontal edge pixels (defun horizontal-edge! (a)

  (or! (top-edge! a) (bottom-edge! a)))

Note that only the primitive filters deal explicitly with looping over the pixels in the images.  The
higher level filters, such as horizontal-edge!, are expressed cleanly in terms of primitive ones.
The resulting code is easy to read, reason about, debug and extend— in short, it meets the first goal.

3.2. OPTIMIZING MEMORY USAGE

But this code doesn't address the second goal of optimizing memory usage.  When each procedure is
called, it loops over a number of input images and produces a new output image.  Output images are
created frequently, often existing only briefly before they are consumed by some other loop.  This re-
sults in excessively frequent memory references and storage allocation, which in turn leads to cache
misses, page faults, and terrible performance.

The familiar solution to the problem is to take a more global perspective of the program, map out
what intermediate results end up being inputs to what other filters, and then code up a version of the
program that fuses loops appropriately to implement the original functionality while creating as few in-
termediate images as possible.  The revised code for horizontal-edge! would look something
like:

(defun horizontal-edge! (a)
  (let ((result (new-image))
        (a-up (up! a))
        (a-down (down! a)))
    (loop for i from 1 to width do
      (loop for j from 1 to height do
        (set-pixel result i j
          (or (and (get-pixel a i j)
                   (not (get-pixel a-up i j)))
              (and (get-pixel a i j)
                   (not (get-pixel a-down i j)))))))
    result))

only three result
images are created

one loop structure
shared by many
component filters

operations from many
component filters

Compared to the original, this code is all tangled up.  It incorporates all the different filters that
horizontal-edge! is defined in terms of, and fuses many, but not all, of their loops together.



5

(The loops for up! and down! are not fused because those operations have a different looping
structure.)3  In short, revising the code to make more efficient use of memory has destroyed its original
clear functional structure.

Of course, this is a very simple example, and it is not so difficult to deal with such a small amount of
tangled code.  But in real programs the complexity due to such tangling quickly expands to become a
major obstacle to ease of code development and maintenance.  The real system this example was drawn
from is an important sub-component of an optical character recognition system.  For that real system,
coding the basic functionality in the simple style requires only  768 lines of code;  but the optimized ver-
sion, which does the fusion optimization as well as memoization of intermediate results, compile-time
memory allocation and specialized intermediate datastructures, requires 35213 lines.  The tangled code
is extremely difficult to maintain, since small changes to the functionality require mentally untangling
and then re-tangling it.

3.3. CROSS-CUTTING

Returning to the example code, Figure 1 provides a different basis for understanding the tangling in
it.  On the left there is the hierarchical structure of the filtering functionality.  On the right there is a data
flow diagram for the original, un-optimized version of horizontal-edge!.   In this diagram, the
boxes and lines show the primitive filters and data flow between them.  The dashed oval shows the
boundary of what is fused into a single loop in the optimized version of horizontal-edge!.

                                               
3 Fusing these other loops as well is not so difficult.  We chose not to show that code because it is so tangled that it is distractingly
difficult to understand.
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a

Figure 1:  Two different diagrams of the un-optimized horizontal-edge! filter.  On the left is the hi-
erarchical procedure calling structure, which aligns so directly with the domain model. On the

right is a data flow diagram, in which the  boxes are the primitive filters and the edges are the data
flows between them at runtime.  The box labeled a at the bottom is the input image. The red dashed
oval indicates the primitives that are fused together in the optimized version. To help understand

the relation between the diagrams, the blue solid oval indicates the functional boundary of one in-
vocation of remove! during the execution.
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Notice that the fusion oval does not incorporate all of horizontal-edge! In fact, it doesn’t
align with any of the hierarchical units on the left.  While the two properties being implemented— the
functionality and the loop fusion— both originate in the same primitive filters, they must compose differ-
ently as filters are composed.  The functionality composes hierarchically in the traditional way.  But the
loop fusion composes by fusing the loops of those primitive filters that have the same loop structure and
that end up in producer/consumer relationships at runtime.  This fusion relationship cuts across the
functionality hierarchy so fundamentally that the only way to make it appear local is to look at the da-
taflow graph.

This cross-cutting phenomena is directly responsible for the tangling in the code.  The single compo-
sition mechanism the language provides us— procedure calling— is very well suited to building up the
un-optimized functional units.  But it can’t help us compose the functional units and the loop fusion si-
multaneously, because they follow such different composition rules and yet must co-compose.  Unfor-
tunately, this breakdown forces us to combine the properties entirely by hand— that’s what happening in
the tangled code above.

In general, whenever two properties being programmed must compose differently yet be coordi-
nated, we say that they CROSS-CUT each other.  Because GP languages provide only one composition
mechanism, the programmer must do the co-composition manually, leading to complexity and tangling
in the code.

We can now define two important terms more precisely:

With respect to a system and its implementation using a GP-based language, a property
that must be implemented is:

A COMPONENT, if it can be cleanly encapsulated in a generalized procedure (i.e.
object, method, procedure, API).  By cleanly, we mean well-localized, and easily
accessed and composed as necessary.  Components tend to be units of the system’s
functional decomposition, such as image filters, bank accounts and GUI widgets.

An ASPECT, if it can not be cleanly encapsulated in a generalized procedure.
Aspects tend not to be units of the system’s functional decomposition, but rather to be
properties that affect the performance or semantics of the components in systemic ways.
Examples of aspects include memory access patterns and synchronization of concurrent
objects.  (Section 4 provides more examples of aspects.)

Using these terms it is now possible to clearly state the goal of AOP:  To support the programmer in
cleanly separating components and aspects from each other,4 by providing mechanisms that make it pos-
sible to abstract and compose them to produce the overall system.  This is in contrast to GP-based pro-
gramming, which supports programmers in separating only components from each other by providing
mechanisms that make it possible to abstract and compose them to produce the overall system.

                                               
4 Components from each other, aspects from each other, and components from aspects.
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4.  OTHER EXAMPLES OF HOW ASPECTS CROSS-CUT COMPONENTS

Before going on to the presentation of AOP, and how it solves the problem of aspect tangling in
code, this section briefly presents several more examples of aspects and components.  For each example
in the table below we list an application, a kind of GP language that would do a good job of capturing
the component structure of the application, a likely component structure for the application if pro-
grammed using that kind of language, and the aspects that would cross-cut that component structure.

application GP language components aspects
image
processing

procedural programming filters loop fusion

result sharing

compile-time memory allocation

digital
library

object-oriented program-
ming

catalogs,
printers,
services

communication strategy

synchronization constraints

failure handling

matrix
algorithms

procedural programming linear algebra
operations

matrix representation

permutation

floating point error

Some aspects are so common that they can easily be thought about without reference to any par-
ticular domain.  One of the best examples is error and failure handling.  We are all familiar with the phe-
nomenon that adding good support for failure handling to a simple system prototype ends up requiring
many little additions and changes throughout the system.  This is because the different dynamic contexts
that can lead to a failure, or  that bear upon how a failure should be handled, cross-cut the functionality
of systems.

Many performance-related issues are aspects, because performance optimizations often exploit in-
formation about the execution context that spans components.
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5.  FIRST EXAMPLE OF AOP

In this section we return to the image processing example, and use it to sketch an AOP-based im-
plementation of that application.  The presentation is based on a system we have developed, but is sim-
plified somewhat.  The complete system is discussed in [7].  The goal of this section is to quickly get the
complete structure of an AOP-based implementation on the table, not to fully explain that structure.
Section 6  will provide that explanation.

The structure of the AOP-based implementation of an application is analogous to the structure of a
GP-based implementation of an application.  Whereas a GP-based implementation of an application
consists of: (i) a language, (ii) a compiler (or interpreter) for that language, and (iii) a program written
in the language that implements the application; the AOP-based implementation of an application con-
sists of: (i.a) a COMPONENT LANGUAGE with which to program the components, (i.b) one or more ASPECT
LANGUAGES with which to program the aspects, (ii) an ASPECT WEAVER™  for the combined languages,
(iii.a) A COMPONENT PROGRAM, that implements the components using the component language, and
(iii.b) one or more ASPECT PROGRAMS that implement the aspects using the aspect languages.  Just as
with GP-based languages, AOP languages and weavers can be designed so that weaving work is de-
layed until runtime (RT weaving), or done at compile-time (CT weaving).

5.1. THE COMPONENT LANGUAGE & PROGRAM

In the current example we use one component language and one aspect language.  The component
language is similar to the procedural language used above, with only minor changes.  First, filters are no
longer explicitly procedures.  Second, the primitive loops are written in a way that makes their loop
structure as explicit as possible.  Using the new component language the or! filter is written as follows:

(define-filter or! (a a)
  (pixelwise (a b) (aa bb) (or aa bb)))

The pixelwise construct is an iterator, which in this case walks through images a and b in lock-
step, binding aa and bb to the pixel values, and returning a image comprised of the results.  Four simi-
lar constructs provide the different cases of aggregation, distribution, shifting and combining of pixel
values that are needed in this system.  Introducing these high-level looping constructs is a critical
change that will enable the aspect languages to be able to detect, analyze and fuse loops much more
easily.

5.2. THE ASPECT LANGUAGE & PROGRAM

The design of the aspect language used for this application is based on the observation that the da-
taflow graph in Figure 1 makes it easy to understand the loop fusion required.  The aspect language is a
simple procedural language that provides simple operations on nodes in the dataflow graph.  The aspect
program can then straightforwardly look for loops that should be fused, and carry out the fusion re-
quired. The following code fragment is the core of the code that handles the fusion shown above.  It
checks whether two nodes, that are connected by a data flow edge, both have a pixelwise loop struc-
ture, and if so it fuses them into a single loop that also has a pixelwise structure, and that has the appro-
priate merging of the inputs, loop variables and body of the two original loops.
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  (cond ((and (eq (loop-shape node) ’pointwise)
              (eq (loop-shape input) ’pointwise))
         (fuse loop input ’pointwise :inputs (splice …)
                                     :loop-vars (splice …)
                                     :body (subst  …))))

Describing the composition rules and fusion structure for the five kinds of loops in the real system
requires about a dozen similar clauses about when and how to fuse.5  This is part of why this system
could not be handled by counting on an optimizing compiler to do the appropriate fusion— the program
analysis and understanding involved is so significant that compilers cannot be counted upon to handle
this reliably.  (Although many compilers might be able to optimize this particular simple example.)  An-
other complication is the other aspects the real system handles, including sharing of intermediate results
and keeping total runtime memory allocation to a fixed limit.

5.3. WEAVING

The aspect weaver accepts the component and aspect programs as input, and emits a C program as
output.  This work proceeds in three distinct phases, as illustrated in the following figure and explained
below it.

(define-filter or! (a b)
  (pixelwise (a b) (aa bb)  (or a b)))

(define-filter and! … )     .     .     .

(cond ((and (eq (loop-shape node)  … )
                   (eq (loop-shape input)  … ))
           (fuse loop input ’pointwise … )))     .     .     .

void main (int* i1)
  {… };
void loop1(int* i1)
  {… };

Aspect Weaver
A

B

1 2 3

In phase 1 the weaver uses unfolding as a technique for generating a data flow graph from the com-
ponent program.  In this graph, the nodes represent primitive filters, and the edges represent an image
flowing from one primitive filter to another.  Each node contains a single loop construct.  So, for exam-
ple, the node labeled A contains the following loop construct, where the #<… > refer to the edges com-
ing into the node:

  (pointwise (#<edge1> #<edge2>) (i1 i2) (or i1 i2))

In phase 2 the aspect program is run, with access to the graph.  The effect of this is to edit the graph
by collapsing nodes together and adjusting their bodies accordingly.   The result is a graph in which
some of the loop structures have more primitive pixel operations in them than before phase 2.  For ex-

                                               
5 Different development versions of the real system have handled different amounts of the total possible fusion.  As described in [7],
the most recent version does not handle this additional fusion, we are adding that in current development.
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ample, the node labeled B, which corresponds to the fusion of 5 loops from the original graph, has the
following as its body:

  (pointwise (#<edge1> #<edge2> #<edge3>) (i1 i2 i3)
    (or (and (not i1) i2) (and (not i3) i2))))

Finally, in phase 3, a simple code generator walks over the fused graph, generating one C function
for each loop node, and generating a main function that calls the loop functions in the appropriate order,
passing them the appropriate results from prior loops.  The code generation is simple because each node
contains a single loop construct with a body composed entirely of primitive operations on pixels.

 A crucial feature of this system is that the weaver is not a “smart” compiler, which can be so diffi-
cult to design and build.  By using AOP, we have arranged for all the significant implementation strat-
egy decisions— all the actual smarts— to be provided by the programmer, using the appropriate aspect
languages.  The weaver’s job is integration, rather than inspiration.6

5.4. RESULTS

The real system is somewhat more complex of course.  For one thing, there are two additional as-
pect programs, one of which handles sharing of common sub-computations, and one of which ensures
that the minimum possible number of images are allocated at any one time.  All three of the aspect pro-
grams are written in the same aspect language.

In this example, the AOP approach has met the design goals— the target application code is easy to
reason about, develop and maintain, while at the same time being highly efficient.  It is easy for the pro-
grammer to understand the components and how they compose.   It is easy for the programmer to un-
derstand the aspects, and how they compose.  It is easy for the programmer to understand the effect of
the aspect programs on the total output code.  Changes in either the filter components or the fusion as-
pect are easily propagated to the whole system by simply re-weaving.  What isn’t easy is for the pro-
grammer to generate the details of the output code.  The power of the AOP approach is that the weaver
handles these details, instead of the programmer having to do the tangling manually.

Our AOP based re-implementation of the application is 1039 lines of code, including the component
program and all three aspect programs.  The aspect weaver itself, including a reusable code generation
component is 3520 lines (the true kernel of the weaver is 1959 lines).  Its performance is comparable to
a 35213 lines manually tangled version produced by a separate project (the time efficiency is comparable
and the space efficiency is better).

As with many other software engineering projects, it is extremely difficult to quantify the benefits of
using AOP without a large experimental study, involving multiple programmers using both AOP and
traditional techniques to develop and maintain different applications [13, 14, 15].  Such a study has been

                                               
6 While asking the programmer to explicitly address implementation aspects sounds like it might be a step backwards, our experience
with work on open implementation suggests that in fact it isn’t [9, 10,11, 12]  While the programmer is addressing implementation in
the memory aspect, proper use of AOP means that they are expressing implementation strategy at an appropriately abstract level,
through an appropriate aspect language, with appropriate locality.  They are not addressing implementation details, and they are not
working directly with the tangled implementation.
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beyond the scope of our work to date, although we hope to do one in the future.  In the meantime, we
have developed one initial measure of the degree to which applying AOP techniques can simplify an ap-
plication.  This measure compares a GP-based implementation of an application to an AOP-based im-
plementation of the same application.  It measures the degree to which the aspects are more concisely
coded in the AOP-based implementation than in the non AOP-based implementation.  The general
equation for this measure, as well as the numbers for this particular application are as follows:

                                    tangled code size  -  component program size              35213 -  756

                                               sum of aspect program sizes                                      352

reduction in
bloat due to

tangling
98

In this measure, any number greater than 1 indicates a positive outcome of applying AOP.  Note
that as a single number, this measure has somewhat limited utility— it is useful in this case because on
the other important grounds, namely performance, the AOP-based implementation of the application is
comparable to the non-AOP based implementation.  Section 7 presents some of the requirements we
have identified for quantitative measures of AOP utility.

6.  SECOND EXAMPLE OF AOP

This section uses a second example of an AOP-based system to elaborate on component language
design, aspect language design and weaving.  Once again, the example is a simplified version of a real
system we are developing, which is described in [16].  The example comes from the document process-
ing domain where we wanted to implement a distributed digital library that stores documents in many
forms and provides a wide range of operations on those documents.  The AOP system developed in this
section is more general-purpose in nature than the highly domain-specific example in the previous sec-
tion.

The functionality of this system is well captured using an object-oriented model.  In such an ap-
proach the objects are things like documents, catalogs, different printable forms for the documents (pdf,
ps, rip… ), printers, servers etc. There are several aspects of concern, including:

n Communication, by which we mean controlling the amount of network bandwith the ap-
plication uses by being careful about which objects and sub-objects get copied in remote
method calls.  For example, we want to be sure that when a book object is included in a
remote method invocation, the different printed representations of the book aren’t sent
across the wire unless they will be needed by the receiving method.

n Coordination constraints, by which we mean the  synchronization rules required to en-
sure that the component program behaves correctly in the face of multiple threads of
control.

n Failure handling, by which we mean handling the many different forms of failure that can
arise in a distributed system in an appropriately context-sensitive way.
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For now, we will continue with just the communication aspect.  Handling both communication and
coordination using AOP is discussed in [16].  Failure handling using AOP is a future research goal.

6.1. THE COMPONENT LANGUAGE & PROGRAM

Designing an AOP system involves understanding what must go into the component language, what
must go into the aspect languages, and what must be shared among the languages.  The component lan-
guage must allow the programmer to write component programs that implement the system’s function-
ality, while at the same time ensuring that those programs don’t pre-empt anything the aspect programs
need to control.  The aspect languages must support implementation of the desired aspects, in a natural
and concise way.  The component and aspect languages will have different abstraction and composition
mechanisms, but they must also have some common terms, these are what makes it possible for the
weaver to co-compose the different kinds of programs.

In the image processing system,  replacing low-level loops with the higher-level looping primitives is
an example of a change that ensures that component programs don’t pre-empt aspect programs.  This
change makes it easier for the aspect programs to detect and implement opportunities for loop fusion.

In this example, component programs must implement elements such as books, catalogs, and print-
ers.  In order to allow the communication aspect program to handle communication, component pro-
grams must avoid doing so.  In this case Java™  serves quite well as the component language.  It pro-
vides an object model that implements the appropriate components, and avoids addressing the commu-
nication aspect.7  So, using Java as our component language, the definition of two simple classes, books
and catalogs of books, look like:

                                               
7 [16] explains that in order to support the coordination aspect language, some lower-level synchronization features must be removed
from Java before it can be used as the component language.  These are the keyword synchronized, and the methods wait, no-
tify and notifyAll.
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public class Book
{
  String title, author;
  int isbn;
  OCR ocr;
  PDF pdf;
  Postscript ps;
  RIP rip;

  public String get_title() {
    return title; }
  public String get_author() {
    return author; }
  public int get_isbn() {
    return isbn; }
}

public class Catalog
{
  private Book     books[];
  private int      nbooks = 0;

  public Catalog (int dbsize) {
    books = new Book[dbsize];
  }
  public void register (Book b) {
    books[nbooks++] = b;
  }
  public void unregister (Book b) {
    …
  }
  public Book lookup (String str) {
    …
  }
}

6.2. THE ASPECT LANGUAGE & PROGRAM

Communication aspect programs would like to be able to control the amount of copying of argu-
ments that takes place when there is a remote method invocation.  To do this, the aspect language must
effectively allow them to step into the implementation of method invocation, to detect whether it is local
or remote, and to implement the appropriate amount of copying in each case.

One way to do this is to provide runtime reflective access to method invocation.  As has been shown
in [17,18,19,20] such reflective access can be used to control the communication aspect of a distributed
object system.  But this kind of reflective access is so powerful that it can be dangerous or difficult to
use.  So in this case we have chosen to provide a higher-level aspect language, that is more tailored to
the specific aspect of controlling copying in remote method invocations.  This aspect language can be
seen as being built on top of the lower level one, in the same way as it is common to build higher-level
GP-based languages on top of lower-level ones.

The communication aspect language we have designed allows the programmer to explicitly describe
how much of an object should be copied when it is passed as an argument in a remote method invoca-
tion.  Using that language, the following fragment of the communication aspect program says that when
books are registered with a catalog, only the ISBN number and title should be copied in the call, when
they are de-registered, only the ISBN number is copied.  The rest of the book, including large sub-
objects such as the printable representations, is not copied unless it is needed at some later time.

remote Catalog {
  void register (Book: copy isbn, copy title);
  void unregister (Book: copy isbn);
  Book: copy isbn lookup(String);
}
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6.3.  ASPECT WEAVER

Aspect weavers must process the component and aspect languages, co-composing them properly to
produce the desired total system operation.  Essential to the function of the aspect weaver is the con-
cept of JOIN POINTS, which are those elements of the component language semantics that the aspect pro-
grams coordinate with.

In the image processing example, the join points are the nodes and edges in the data flow graph of
the component program.  In this distributed objects example, the join points are the runtime method in-
vocations in the component program.  These two examples serve to illustrate an important point about
join points— they are not necessarily explicit constructs in the component language.  Rather, like nodes
in the dataflow graph and runtime method invocations they are clear, but perhaps implicit in the source
code, elements of the component program’s semantics.

Aspect weavers work by generating a JOIN POINT REPRESENTATION of the component program, and
then executing (or compiling) the aspect programs with respect to it.  In the digital library example, the
join-point representation includes information about dynamic method invocations such as the concrete
classes of the arguments and their location.  The communication aspect language is implemented as an
interpreter, called at each method invocation, which uses the join point information to appropriately
marshal the arguments.8  Thus the higher-level aspect language we have designed is implemented on top
of a lower level one, as often happens in GP languages.

In the image processing application, the join point representation is quite simple.  It is just the data
flow graph, operations to access the body of nodes, and operations to edit the graph.

7.  OPEN ISSUES

As an explicit approach to programming, AOP is a young idea.  Our work to date has been primarily
focused on designing and implementing aspect-oriented programming languages, and using those lan-
guages to develop prototype applications.  This programming-centric initial focus has been natural, and
it parallels the early development of OOP.  But there is a great deal of work still to be done to assess the
overall utility of AOP, to better understand its relation to existing ideas, and to further develop it so that
it can be useful for a wide range of users.

One important goal is quantitative assessment of the utility of AOP.  How much does it help in the
development of real-world applications?  How much does it help with maintenance?  Can we develop
measures of which applications it will be more or less useful for?  This is a difficult problem, for all the
same reasons that quantitative assessment of the value of OOP has been difficult, but we believe that it
is important to begin work on this, given that it will take time to get solid results.

We also believe it is important to begin a systematic study to find existing systems that have AOP-
like elements in their design.   We see this as a way to quickly accelerate development of the AOP ideas,

                                               
8 In the actual system the weaver is split into compile-time and runtime parts, so that much of the work is done at compile time.
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by providing a way to get rough empirical evidence without having to build large new systems from the
ground up.

Another important area for exploration is the space of different kinds of component and aspect lan-
guage designs.  Can we develop a collection of component and aspect languages that can be plugged
together in different ways for different applications?  Can we use meta-level frameworks [21,22, 23, 24]
to build such a collection?

What theoretical support can be developed for AOP?  What kinds of theories can best describe the
interaction between aspects and components and how they must be woven?  Can such theories support
development of a practical weaving toolkit?

What about the analysis and design process?  What are good design principle for aspectual decom-
position?  What are good “module” structures for aspect programs?  How can we train people to iden-
tify aspects?  Clearly separate them?  Write aspect programs?  Debug AOP systems?  Document AOP
systems?

Another important area of exploration is the integration of AOP with existing approaches, methods,
tools and development processes.  As the examples in this paper show, AOP can be used as an im-
provement to existing techniques.  To fulfill this promise it must developed it a way that integrates well
with those techniques.

8.  RELATED WORK

In this section we give a brief survey of work related to ours.  We start with work that is more
closely related and proceed out to work that is less closely related.

8.1. WORK EXPLICITLY CONNECTED TO AOP

Several other groups have begun to explicitly consider their work in AOP terms.  These include:

n Calton Pu et. al. at the Oregon Graduate Institute, in their work on Synthetix, are devel-
oping high performance, high portability and high adaptiveness OS kernels [3, 25].   In
their work, the components are familiar functional elements of OS kernels.  The aspects
are primarily optimizations based on invariants that relate to how a service is being used.
Their weaver technology uses partial evaluation to effectively specialize the kernel code
for particular use cases.  Their code is structured to expose as join points those places
where an invariant becomes or ceases to be true.

n Karl Lieberherr et. al., at Northeastern University are developing techniques that make
object-oriented programs more reusable and less brittle in the face of common program
evolution tasks [2, 26, 27].  In their work, the component languages are existing OOPs
like C++ and Java.  Succinct traversal specifications [2] and context objects [27] provide
aspect languages that can be used to address a variety of cross-cutting issues.  Weaving
of aspect programs that use succinct traversal specification is compile-time oriented, the
join point representation is, roughly speaking, the class graph.  Weaving of aspect pro-
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grams that use context objects is more runtime oriented, the join points are the dynamic
method and function calls.

n Mehmet Aksit et. al., at the University of Twente, have developed the composition filters
object model, which provides control over messages received and sent by an object [1].
In their work, the component language is a traditional OOP, the composition filters
mechanism provides an aspect language that can be used to control a number of aspects
including synchronization and communication.  Most of the weaving happens at runtime;
the join points are the dynamic message sends and receives arriving at an object.

8.2. REFLECTION AND METAOBJECT PROTOCOLS

Aspect-oriented programming has a deep connection with work in computational reflection and
metaobject protocols [28, 29, 30, 23, 31, 22].  A reflective system provides a base language and (one or
more) meta-languages that provide control over the base language’s semantics and implementation.
The meta languages provide views of the computation that no one base language component could ever
see, such as the entire execution stack, or all calls to objects of a given class.  Thus, they cross-cut the
base level computation.  In AOP terms they are lower-level aspect languages whose join points are the
“hooks” that the reflective system provides.

We have exploited this connection to great advantage in our work on AOP.  When prototyping
AOP systems we often start by developing simple metaobject protocols for the component language,
and then prototype imperative aspect programs using them.  Later, once we have a good sense of what
the aspect programs need to do, we develop more explicit aspect language support for them.

  The connection is particularly evident in section 6.1, where the aspect languages we provided
could have been layered on top of a reflective architecture.  Similarly, the loop fusion aspect described
in Section5.2 can be implemented, with some degree of efficiency, using the method combination facility
in the CLOS metaobject protocol [30, 32].  This connection is also evident in the work mentioned in
Section 8.1; both the Demeter work and the composition filters work have been described as being re-
flective facilities [33].

8.3. PROGRAM TRANSFORMATION

The goal of work in program transformation is similar to that of AOP.  They want to be able to
write correct programs in a higher-level language, and then mechanically transform those program into
ones with identical behavior, but more efficient performance.  In this style of programming, some of the
properties the programmer wants to implement are written in an initial program.  Other properties are
added by passing that initial program through various transformation programs.  This separation is
similar in spirit to the component/aspect program separation.

But we believe that the precise notion of component and aspect are new to our AOP work, and pro-
vide us with additional value in designing the systems we have.  It also appears that some transforma-
tions are aspectual in nature, but others are not.  Transformation programs tend to operate in terms of
the syntax of the program being transformed.  If other join points are desired, it is the responsibility of
the transformation program to somehow manifest them.  Thus, while it is possible to layer some kinds
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of aspect programs on top of a program transformation substrate, that is a separate piece of implemen-
tation work.

We would like to do a systematic analysis of the transformations developed by this community, to
see which of them can be used for providing different kinds of aspect languages.

8.4. SUBJECTIVE PROGRAMMING

A natural question to ask is whether subjective programming is AOP or vice versa.  We believe that
AOP and subjective programming are different in important ways.  Analogously to the way object ori-
ented programming supports automatic selection among methods for the same message from different
classes, subjective programming supports automatic combination of methods for a given message from
different subjects.  In both cases, the methods involved are components in the AOP sense, since they
can be well localized in a generalized procedure.  It is even possible to program in either an object-
oriented style or a subjective style on top of an ordinary procedural language, without significant tan-
gling.  The same is not true of AOP.  Thus, while the aspects of AOP tend to be about properties that
affect the performance or semantics of components, the subjects of subjective programming tend to be
additional features added onto other subjects.  We believe that subjective programming is complemen-
tary to, and compatible with, AOP.

8.5. OTHER ENGINEERING DISCIPLINES

Many other engineering disciplines are based on well-established aspectual decompositions.  For ex-
ample, mechanical engineers use static, dynamic and thermal models of the same system as part of de-
signing it.  The differing models cross-cut each other in that the different properties of a system com-
pose differently.  Similarly, some software development tools explicitly support aspectual decomposi-
tion: tools for OMT [34, 35] methods let programmers draw different pictures of how objects should
work.

9.  CONCLUSIONS

We have traced the complexity in some existing code to a fundamental difference in the kinds of
properties of a system that are being implemented.  Components are units of a system’s functional de-
composition that can be cleanly captured in a generalized procedure.  Aspects are properties that cannot
be cleanly captured in a generalized procecure.  We say that aspects cross-cut components.

 Based on our analysis we have been able to develop programming language technology that sup-
ports clean abstraction and composition of both components and aspects.  The key difference between
AOP and other approaches is that AOP provides component and aspect languages with different ab-
straction and composition mechanisms.  A special language processor called an aspect weaver is used to
coordinate the co-composition of the two kinds of program.

We have had good success working with AOP in several testbed applications.  The conceptual
framework has helped us to design the systems, and the AOP-based implementations have proven to be
easier to develop and maintain, while being comparably efficient to much more complex code written
using traditional techniques.
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