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Abstract

We survey results from distributed computing that show tasks to be impossible, either outright or
within given resource bounds, in various models. The parameters of the models considered include
synchrony, fault-tolerance, different communication media, and randomization. The resource bounds
refer to time, space and message complexity. These results are useful in understanding the inherent
difficulty of individual problems and in studying the power of different models of distributed computing.
There is a strong emphasis in our presentation on explaining the wide variety of techniques that are used
to obtain the results described.
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1 Introduction

What can be computed in a distributed system? This is a very broad question. There are many different
models of distributed systems that reflect different system architectures and different levels of fault-tolerance.
Unlike the situation in sequential models of computation, small changes in the model of a distributed system
can radically alter the class of problems that can be solved. Another important goal in the theory of
distributed computing is to understand how efficiently a distributed system can solve those problems that
are solvable. There are a variety of resources to consider, including time, contention, and the number and
sizes of messages and shared data structures.

This paper discusses unsolvability results, which show that problems are unsolvable in certain environ-
ments, and lower bound results, which show that problems cannot be solved when insufficient resources are
available. We refer to these two types of theorems collectively as impossibility results. A comprehensive
survey of impossibility results in distributed computing would require an entire book; consequently, we have
focused on the models and problems that we feel are most central to distributed computing. Our aim is
to give you the flavour of this research area and an outline of the most important techniques that have
been used. There are, however, some important topics that we decided lie outside the scope of this survey,



including self-stabilization [121], failure detectors [89], and uses of cryptography in distributed computing
[150].

Why are impossibility results important for distributed computing? They help us understand the nature
of distributed computing: what makes certain problems hard, what makes a model powerful, and how
different models compare. They tell us when to stop looking for better solutions or, at least, which approaches
will not work. If we have a problem that we need to solve, despite an impossibility result, the impossibility
proof may indicate ways to adjust the problem specification or the modelling of the environment to allow
reasonable solutions. Impossibility results have also influenced real systems, for example, the design of
network file systems [84], the architecture of fault tolerant systems for safety-critical applications [275], the
design of programming languages [59], the specifications of group membership services [97], and the definition
and study of failure detectors and systems based on them [88]. Finally, trying to prove impossibility results
can suggest new and different algorithms, especially when attempts to prove impossibility fail. As John Cage
wrote, “If someone says ‘can’t’; that shows you what to do” [82].

We begin in Sections 2 and 3 with brief descriptions of the models, terminology, and problems that are
discussed throughout the paper. Section 4 discusses how to approach impossibility results and gives an
overview of the major proof techniques for impossibility results in distributed computing. The rest of the
paper presents a wide variety of results. Section 5 describes unsolvability results for the consensus problem
and some similar process-coordination tasks. The use of impossibility results to study relationships between
different models is addressed in Section 6. A systematic approach to studying computability for distributed
systems is to characterize the models that can solve a particular problem. Alternatively, one can characterize
the set of problems solvable in a given model. Results of both these types are described in Section 7. Further
characterizations of problems solvable in specific models appear in Section 8, which discusses applications
of topology to proving impossibility results in distributed computing. Section 9 examines the question of
whether weak shared object types can become more powerful when they are used in combination with other
weak types. The next three sections consider complexity results. Each focuses on a different complexity
measure: space, time, and the number of messages. Section 13 discusses impossibility results for randomized
algorithms. An index of problems and proof techniques appears at the end of the paper.

This survey builds on Lynch’s excellent survey paper, “A Hundred Impossibility Proofs for Distributed
Computing” [233], which covers results up to 1989. A shorter, preliminary version of our survey, emphasizing
results from 1990 onwards, appeared in [137].

2 Models

There are a number of very good descriptions of distributed models of computation, including motivation
and formal definitions [47, 224, 234]. Here, we shall only briefly mention some aspects of these models which
are necessary for the results we present.

A distributed system consists of a collection of n processes that run concurrently. Each process executes
a sequential algorithm and can communicate with other processes.

There are different ways processes can communicate. In message-passing models, processes send mes-
sages to one another via communication channels. This is modelled by a graph, with processes represented
by nodes, bidirectional channels represented by undirected edges, and unidirectional channels represented
by directed edges. A correct channel behaves as a (FIFO) queue, with the sender enqueuing its messages
and the receiver dequeueing them. If the queue is empty, the receiver gets a special empty queue message.
If message delivery is not instantaneous, the messages in the queue will not be immediately available to the
receiver.

In shared-memory models, processes communicate by performing operations on shared data structures,
called objects, of various types. The typewriter font is used to denote object types. Each type describes
the set of possible states of an object of that type, the set of operations that can be performed on the object,
and the responses the object can return. At any time, an object has a state and, when a process performs
an operation on the object, the object can change into a new state and return a response to the process. For
example, a stack object stores a sequence of values in its state and supports the operations push and pop.
A basic type of object is the register, which stores a value that can be read or written by all processes. A
single-writer register is a restricted type of register to which only a single, fixed process can write.



Similarly, only one fixed process can read from a single-reader register. A snapshot object stores an
array of values. Processes can scan the entire array to learn the value of every element in a single, atomic
operation and can update the value of individual elements. For each element in a single-writer snapshot
object, there is only one fixed process that can update it. An important class of object types are the read-
modify-write (RMW) types [213]. A RMW operation updates the state of the object by applying some
function, and returns the old value of the state. For example, the test&set operation is a RMW operation
that applies the function f(z) = 1, and fetch&add applies the function f(z) = 2+ 1. Other RMW operations
include read and compare&swap. A RMW type is one where all permitted operations have this form.

Consistency conditions describe how objects behave when accessed by several concurrent operations.
One example is linearizability [181], which requires that operations appear to happen instantaneously at
distinct points in time, although they may actually run concurrently. Furthermore, the order in which the
operations appear to happen must be consistent with real time: if an operation terminates before another
operation begins, then it will occur earlier in the order. Many other consistency conditions have been studied
[13, 16, 39, 149, 183, 186, 221, 255].

A linearizable object type is deterministic if the outcome (i.e. the response and new state) of each
operation with specified input parameters is uniquely determined by the object’s current state. Non-
deterministic types may have more than one possible outcome for an operation in some states. Algorithms
that use non-deterministic objects must work correctly for all possible outcomes.

In randomized algorithms, a process may have many choices for its next step, but the choice is made
according to some probability distribution. Generally, for randomized algorithms, termination is required
only with high probability and one considers worst-case expected time, rather than worst-case time. Non-
determinism in the shared objects (or other parts of the computing environment) makes problems harder to
solve, while allowing randomization in the algorithm can make problems easier to solve.

Ordinarily, it is assumed that each process has a unique name, called its identifier. Comparison-based
algorithms only use identifiers by comparing their values. Other algorithms may use process identifiers to
index shared arrays or control which pieces of code are executed. An anonymous system is one in which
processes have identical code and do not have identifiers.

When a system is synchronous, all processes take steps at exactly the same speed. If the speed of each
process may vary arbitrarily during an execution, the system is asynchronous. Synchronous computation
proceeds in synchronous rounds. In each round, every process takes exactly one step. Synchronous shared-
memory systems have been studied extensively using the parallel random-access machine model (see [269])
and mostly lie outside the scope of this survey. In synchronous message-passing models, messages sent in one
round are available to be received in the next round. Typically, in one step, a process dequeues one message
from each of its incoming channels and enqueues at most one message on each of its outgoing channels.
Asynchronous computation is generally modelled by an adversarial scheduler that chooses the order in which
processes take steps. In one step, a process can either send a single message, receive a single message, or
access a single shared object. Asynchronous algorithms must work correctly for every legal schedule. In
partially synchronous or semi-synchronous models, processes may also run at different speeds, but
there are bounds on the relative speeds of processes (and on message-delivery times for message-passing
systems).

In synchronous systems, time i1s measured by the number of rounds. In asynchronous and partially
synchronous systems, there are several ways to measure time [47, 234, 257]. The step complexity counts
the maximum number of steps taken by a single process. Work counts the total number of steps taken by all
processes. Asynchronous computation can also be divided into asynchronous rounds, where a round ends
as soon as every process has taken at least one step since the beginning of the round. The round complexity
can be less than step complexity, because some processes may take multiple steps per round.

In message-passing systems, the total number of messages transmitted during an execution of an algorithm
is an important measure of the algorithm’s complexity. This is called its message complexity. The
bit complexity counts the total number of bits in these messages. Some algorithms with small message
complexity are, in fact, very inefficient, because they send very long messages.

Many different kinds of faults are considered in distributed systems. Processes may fail and perhaps
recover, their states can become corrupted, or they can behave arbitrarily. The latter kind of fault is called
an arbitrary process fault or a Byzantine fault. An algorithm in a model with arbitrary process faults
must work correctly no matter how faulty processes behave. This type of fault is useful for modelling



malicious attacks or situations in which the faults that can occur are difficult to characterize. Arbitrary
process faults are not usually considered for shared-memory systems, since a faulty process can corrupt the
entire shared memory. A crash failure is when a process fails by halting permanently.

In an f-faulty system, there are at most f faulty processes, so an f-faulty system is f’-faulty, for all
/"> f. An algorithm that works correctly in an f-faulty system, i.e. can tolerate up to f process faults,
is called f-resilient. Thus an f-resilient algorithm is f’-resilient, for all f/ < f. A wait-free algorithm
ensures that every non-faulty process will correctly complete its task, taking only a finite number of steps,
even if any number of other processes crash. Thus, in a system of n processes that are subject only to crash
failures, wait-freedom is the same as (n — 1)-resilience. For randomized algorithms, wait-freedom means that
the expected number of steps needed by a process to complete its task is finite, regardless of the number of
failures.

Communication channels can also fail in many different ways: They can crash or they can lose, delay,
or duplicate messages, or deliver them out of order. One way to model a communication channel that can
lose messages 1s to consider that the process at one endpoint fails to send or receive certain messages that
it is supposed to. Such a process is said to have an omission fault. Another way to model message losses
in synchronous message-passing systems is allow at most a certain number messages to be lost each round,
but the communication channels on which these losses occurs may change from round to round. These are
called dynamic omission faults. Finally, shared objects can fail to respond (i.e. crash), have their states
corrupted, or behave contrary to their type specifications.

Throughout this paper, unless we state otherwise, we assume that all objects deterministic, linearizable,
and non-faulty, all communication channels are non-faulty, all algorithms are deterministic, and processes
only have crash failures.

Processes in a shared-memory distributed system are provided with some basic primitive objects that
they can use to communicate with one another. Any other types of shared objects that a programmer
wishes to use must be implemented from those primitives. Thus, one of the fundamental issues in the study
of distributed computing is determining the circumstances under which such implementations are possible.
An implementation provides, for each process, a programme that it can execute to perform each possible
operation on an object of the type being implemented. Before an execution of this programme terminates, it
should produce a response to the operation. In any legal execution where processes concurrently execute the
programmes for various operations, the responses provided should satisfy the desired consistency conditions.
For example, consider a linearizable implementation of an object. Then, for any execution, there exists a
linear order of the simulated operations so that the correct responses for these operations are the same as in
the execution. Furthermore, if the programme for one operation has finished executing before the execution
of the programme for another operation begins, the latter operation comes later in the linear order. (See
[234] for more formal definitions of implementations.) Examples of implementations can also be found in
[47], including a series of wait-free implementations to construct snapshot objects from single-writer,
single-reader registers. This means that the different types of registers and snapshot objects are
equivalent in terms of the wait-free solvability of problems using these objects.

A related notion is that of a simulation of model A by model B. Intuitively, such a simulation describes
how any algorithm designed for a collection of processes in model A can be adapted so that a collection
of processes can execute it in model B. To distinguish the simulating processes from the simulated ones,
we refer to the processes of model A as threads and the processes of model B as simulators whenever
we describe simulations. The two models may be quite different. For example, they might use different
communication media, have different synchrony assumptions or permit different numbers of faults. Usually,
each simulator simulates the actions of one thread, but this is not always the case. The simulation should
specify the programme a simulator must execute to simulate a step of a thread, and also how the simulator
can determine the outcome of the simulated step. In cases where a simulator simulates several threads, the
simulation should also describe how a simulator chooses which thread’s step it should simulate next. Suppose
the simulation is used to simulate an algorithm IT designed for model A. For any execution of the simulation
that is legal in model B, there must exist a corresponding execution of II that is legal in model A such that
the response to each step of each thread is identical to the response computed by the simulation.



3 Distributed Problems

In this section, we define a number of important and well-studied problems in the theory of distributed
computing. Impossibility results concerning these problems will be presented in subsequent sections.

3.1 Consensus

The consensus problem is the most thoroughly investigated problem in distributed computing and it is
used as a primitive building block for solutions to many distributed problems. Consensus is an example
of a decision task, in which each process gets a private input value from some set and must eventually
terminate after having produced an output value. The task specification describes which output values are
legal for given input values. For consensus, there are two correctness properties that must be satisfied:

Agreement. the output values of all processes are identical, and
Validity: the output value of each process is the input value of some process.

In models where arbitrary faults may occur, these properties are weakened and apply only to correct pro-
cesses, since one cannot guarantee anything about the behaviour of faulty processes. The definition of the
consensus problem was carefully designed so that it is extremely simple to state, yet captures much of
the difficulty of designing algorithms that allow processes to solve problems cooperatively. In the binary
consensus problem, all input values come from the set {0, 1}.

Consensus is an excellent problem to use for a systematic study of solvability, since Herlihy [169] showed
that it is universal: a shared-memory system equipped with registers and objects that can solve wait-free
consensus can implement any other object type in a wait-free manner.

Object types can be classified according to the ability of an asynchronous shared-memory distributed
system to solve consensus using them. Specifically, the consensus number cons(7) of a set of object
types 7T is the maximum number of processes for which wait-free consensus can be solved using any number
of objects in 7 and registers [169, 192]. The consensus number cons(T) of an object type T is
cons({T}). Suppose cons(T) < cons(T'). Tt follows from the definition of consensus numbers that T cannot
be implemented in a wait-free manner from objects of type T and registers (in a system of more than
cons(T) processes). On the other hand, T has a wait-free implementation from objects of type T’ and
registers, for up to cons(T’) processes, by Herlihy’s universality result. Thus, this classification, called the
consensus hierarchy, gives a great deal of information about the relationships between different models
of asynchronous, shared-memory systems. However, the consensus number of an object type does not
completely describe the power of a shared-memory model that provides objects of that type and registers.
For example, there are object types T and T’ with consensus numbers 1 and n, respectively, such that 2-set
consensus (defined in Section 3.3) has a wait-free solution for 2n 4 1 processes using objects of type T and
registers, but not using only objects of type T and registers [267]. Thus the power of two types T and
T’ can be incomparable in a system of more than max(cons(T), cons(T')) processes.

In randomized consensus, both the agreement and validity properties must be satisfied, but the
termination condition is weaker: for any schedule, the expected number of steps taken by each non-faulty
process must be finite. This version of consensus can be solved in a wait-free manner by a randomized
algorithm using only registers in an asynchronous system [98, 1]. Thus, for randomized computation, the
consensus hierarchy collapses into a single level.

3.2 Approximate Agreement

Allowing processes to disagree by a small amount results in a significantly easier problem. In the approx-
imate agreement problem, input and output values are real numbers. There is a tolerance parameter, ¢,
known by all processes. The agreement and validity conditions of consensus are replaced by

e-Agreement: the output values of all processes are within ¢ of one another, and
Validity: the output value of each process must lie between the minimum and maximum input
values.



In the case of arbitrary faults, the conditions constrain only the non-faulty processes and the validity condition
is strengthened to require all outputs to be within the range of inputs of correct processes, to ensure that
malicious processes cannot cause arbitrary outputs. The convergence ratio p of an approximate agreement
algorithm is the worst-case ratio of the size of the range of the output values (of correct processes) to the
size of the range of the input values. If the size of the range of the input values is R, then p < ¢/R.
Approximate agreement arises in algorithms for clock synchronization, where processes are assumed
to have separate physical clocks that can start at different times or can run at different rates. The object of
clock synchronization is for processes to compute adjustments to their physical clocks so that the adjusted
clocks of non-faulty processes remain close to one another and within the range of the physical clocks.

3.3 Other Agreement Problems

The terminating reliable broadcast problem is a version of consensus where only one process, the sender,
has an input which it must communicate to all other processes in the system. The agreement condition
i1s the same as for consensus, but the validity condition only requires that the output values of non-faulty
processes must be the sender’s input value, if the sender is non-faulty. This problem is also called Byzantine
agreement. It is typically studied in synchronous systems when processes can have arbitrary faults, instead
of just crash failures. Relationships between consensus and terminating reliable broadcast in various message-
passing models are discussed by Hadzilacos and Toueg [163]. For example, in synchronous models, the
terminating reliable broadcast problem can be reduced to consensus by having the sender send its input to
all other processes in the first round.

Restricted versions of the terminating reliable broadcast and consensus problems in which all processes
must produce their output values in the same round are called simultaneous terminating reliable broad-
cast and simultaneous consensus, respectively. Simultaneous consensus is also called coordinated at-
tack. These problems are well-defined only for models in which processes run synchronously.

A common assumption when solving problems in synchronous systems is that all processes start at the
same time. One problem that addresses this assumption is wakeup [142], where some number of processes
must detect when sufficiently many processes have begun taking steps. Another is the distributed firing
squad problem, which requires that all processes execute a special “fire” command in the same round, even
though they may start at different rounds.

There are close connections between consensus and other problems. One such problem is leader election,
where there are no inputs, exactly one process (called the leader) must output 1, and all other processes
must output 0. If a system can solve consensus, then it can also solve leader election: each process uses its
own unique identifier as an input to consensus, and processes agree on the identity of the leader. Conversely,
if one requires that a process inform all others of its identity before proclaiming itself a leader, one can solve
consensus by using the leader’s input value as the common output value. Thus, impossibility results for the
two problems are closely related.

The k-set consensus problem, introduced by Chaudhuri [92], is similar to the consensus problem, but
relaxes the agreement property. Instead of requiring that all output values are identical, it requires that
the set of output values produced has cardinality at most k. Thus, consensus is the special case of k-set
consensus where k£ = 1.

Many variants of the consensus and set consensus problems, with slightly different agreement and validity
properties, have been studied [109, 138, 140, 163, 216, 234, 254]. One example is the commit problem. It
is a version of binary consensus, where the validity condition requires that, if any input value is 0, the output
value of each process must be 0 and, if all input values are 1 and there are no faults, the output value of each
process must be 1. This problem arises when maintaining consistency among several copies of a database
as updates occur. In this case, the output value 1 denotes the commit to an update and the output value 0
denotes that the update 1s to be aborted. The specifications of this problem allow any process to abort an
update unilaterally.

In the choice coordination problem [265], each process must choose the same shared option from
among k alternatives. Each alternative has an associated shared object, but there are no global names for
the alternatives (or objects): each process has its own local names for them. In the group membership
problem [97], processes must maintain a consistent view of a set containing process identifiers as processes
make requests to add or remove their own identifiers.



3.4 Resource Allocation

An extremely well-studied distributed computing problem is mutual exclusion, introduced by Dijkstra
[111]. Tt is an abstraction of the problem of sharing a resource, for example, a printer, to which processes
need temporary exclusive access. A process which has this access is said to be in the critical section of
its code. Processes may repeatedly compete for permission to access the resource. A correct algorithm
ensures that two or more processes are never simultaneously in their critical sections. There 1s also a liveness

property,

Deadlock Freedom: if some process wants the resource and no process has permission to access
it, then, eventually, some process will be given permission.

Various fairness conditions have also been considered, for example,
Lockout Freedom: if some process wants the resource, then, eventually, it will be given permission.

The k-assignment problem [80] is a generalization of mutual exclusion in which there are k¥ < n identical,
named resources that may be requested by the n processes. Requesters must determine the name of one of
the resources in such a way that no two processes choose the same resource at the same time.

The dining philosophers problem [112] is another related resource allocation problem: the processes
are arranged in a ring, each pair of adjacent processes share a resource, and each process sometimes requires
simultaneous exclusive access to both the resources it shares. Variants of this problem where a resource
can be shared by more than two processes and processes may have different sets of required resources have
also been considered [55, 91, 203].

In the renaming problem, each participating process is initially given a unique identifier from a large
name space. They must all select unique identifiers from a smaller name space. In order-preserving
renaming, the two name spaces are ordered and the identifiers of the processes must have the same relative
order in each. The renaming problem has applications in improving the efficiency of algorithms: If an
algorithm’s complexity depends on the size of the name space, one can use renaming to reduce this size
before the algorithm is executed.

Sometimes, the processes, themselves, are the resources that must be allocated. In the task assignment
problem, each of the tasks in some set must be chosen by at least one process, with each process choosing at
most one task. A related problem is write-all, where a set of registers, each initially 0, must each have
value 1 written to it by one or more of the n processes. This is a representative instance of the more general
problem of ensuring that a set of idempotent tasks are all performed.

4 Proving Impossibility Results

This section discusses issues that arise when proving impossibility results and a variety of proof techniques.
In subsequent sections, we give many examples of results proved using these techniques and, in some cases,
explain them more fully in the context of particular examples.

To prove that no algorithm can solve a particular problem or solve it efficiently, it is necessary to define
the model of computation and the class of allowable algorithms. These definitions will be used repeatedly
in proofs of impossibility. It will be apparent from many of the results in this survey that the difficulty of
many problems depends on precisely which model is being used.

Without a clear and precise definition of the model, ambiguities and subtle errors can arise. The use
of formal models forces people to make their assumptions explicit. This helps to expose subtle differences
in assumptions, which often lead to many variations of models, with corresponding, different results. In
turn, such results help us to understand our models better and to converge on good sets of assumptions
[97]. In fact, some of the early papers containing impossibility results for distributed computing included the
formulation of correctness conditions and directly led to the development of formal models for distributed
computing [4, 79, 108, 235]. There is another benefit to carefully stating the assumptions about the model
that are necessary for the impossibility proof to work: once the assumptions are identified, one can look for
algorithms that beat the impossibility result by operating in a model where one or more of the assumptions

do not hold.



Models should be simple so as to be feasible to work with, interesting to work on, and applicable to a
variety of real implementations. In choosing models, one should follow the dictum of Ludwig Mies van der
Rohe: “Less is more” [244]. When trying to establish an impossibility result, it is often helpful to simplify the
model as much as possible, while ensuring that the simplifications have not weakened the model, and then
prove impossibility in the streamlined model. Showing that the simplified model can simulate the original
one 18 a good way to show that the model has not been weakened. Furthermore, impossibility results proved
for strong models are better than the same results proved for weak models. This is because an algorithm
designed for one model automatically works in a stronger model, so an impossibility result for a stronger
model automatically applies to a weaker model.

Impossibility results are always proved for a class of algorithms. A lower bound or unsolvability result for a
class trivially applies to any subclass. Sometimes, the proofs are easier for a restricted class of algorithms, for
example, comparison-based algorithms. Such proofs can help our understanding of the problem and provide
insight for more general results. If algorithms in a restricted class can simulate more general algorithms, then
impossibility results proved for this restricted class also imply impossibility results for the more general class.
For example, it is sometimes helpful to assume that each process remembers its entire history and sends this
information whenever it communicates with another process or writes to a register. Such algorithms are
called full-information algorithms. A full-information algorithm can simulate an algorithm that is not
of this form by having processes ignore some of the information they receive. Showing that a problem has
no full-information algorithm also automatically implies that it has no algorithm that uses more realistic
resources, such as bounded message lengths or bounded size registers, and a limited amount of local
computation in each step.

Precise problem statements are just as important as precise descriptions of the model. Elegant, simple
problem statements are much easier to use in impossibility proofs. Complex, specialized problems, even when
they arise from real systems, are unlikely to be good choices. Instead, one needs to extract simple prototype
problems, prove impossibility results about them, and then use (often simple) reductions from them to obtain
corresponding impossibility results for the original complex problem. Results about well-chosen problems
are more likely to be fundamental.

Arriving at a good statement of a problem can be an iterative process. It is easy to make the problem
statement too strong, in which case impossibility results might hold for trivial reasons. (For example, consider
a problem that requires that every process requesting exclusive access to a shared resource eventually gets it,
but does not say that, whenever a process has a resource, it must eventually release the resource.) Tt is also
easy to make the problem statement too weak, in which case, trivial counter-example algorithms can arise.
(For example, requiring all processes to output the same value is easy if no other constraints are imposed:
they can always simply output 0.) This iterative process may eventually lead to an interesting problem
statement and a corresponding impossibility result or algorithm. Assumptions that are not needed can be
eliminated, so that the proof is based on the weakest possible set of requirements.

Papers will often present algorithms for a difficult version of a problem using a weak model of computation,
and then prove matching complexity lower bounds for an easier version of the problem in a stronger model
of computation. Results stated in this way show that the complexity of the problem is insensitive to small
changes in the model or problem statement. They can also point out aspects of the problems that are not
important and features of the models that do not affect the solution.

When faced with the question of whether or not a problem is solvable or efficiently solvable in a particular
model, one usually begins by trying to devise an algorithm. If this fails, one might start to look for an
impossibility proof by trying to find a reduction from some other problem that is already known to be hard.
This paper gives you many candidates. Another simple approach to proving impossibility is to show that
the model of computation being considered is weaker than some model in which the problem is known to
be hard. These approaches usually provide some intuition about what makes the problem difficult. One can
then alternate between working on an algorithm and trying to prove impossibility. If there are difficulties
that arise persistently, causing candidate algorithms to fail or perform inefficiently, it might be possible
to produce an impossibility result by showing that these difficulties cannot be avoided by any algorithm.
Similarly, if the same obstacle foils all attempts at an impossibility proof, it may suggest an algorithm that
can exploit this loophole.



4.1 Proof Techniques

There is one fundamental idea underlying all of the proofs of impossibility results for distributed computing:
“the limitations imposed by local knowledge” [233]. In order to solve distributed computing problems,
processes have to learn about the rest of the system. We get unsolvability results and lower bounds by
showing this is impossible, either outright or with a limitation on resources.

A process may have incomplete knowledge of the system because it does not initially know the inputs of
other processes or because of asynchrony or faults. The process may not be able to learn about other parts
of the system quickly because of the distance information must travel or limitations on the communication
medium, such as the size of the shared memory.

Indistinguishability is one way of formalizing this lack of knowledge. An important observation is
that, if processes see the same thing in two executions, they will behave the same way in both. A configu-
ration describes a distributed system at some point during the execution of an algorithm: it consists of the
states of all processes and the state of the environment (i.e. the messages in transit for a message-passing
system, or the states of all shared objects for a shared-memory system). Two configurations are said to be
indistinguishable to a process if its local state is the same both configurations and the information that it
can access from the communication medium is the same in both configurations. When a sequence of steps
can be performed by a set S of processes starting from a particular configuration, the sequence can also be
performed starting from any other configuration that is indistinguishable to each process in S. Moreover,
the two resulting configurations are indistinguishable to every process in S. If we can use indistinguishability
to show that, for any algorithm, some process cannot distinguish two executions for which it must produce
different outputs, then we can conclude that no correct algorithm exists.

One way to construct two indistinguishable executions in an asynchronous message-passing system is
by stretching. Starting with a carefully chosen execution, the idea is to speed up some processes, slow
down others, and adjust message delivery times so that each process performs the same steps in the same
order. In message-passing systems where all processes run at the same rate, shifting can be used instead:
The operations of some processes are moved earlier, the operations of other processes are moved later, and
message delivery times are adjusted appropriately.

In a distributed system, there are often many executions that can arise and one algorithm must work
correctly for all of them. Thus, for an unsolvability result, it suffices to construct one incorrect execution.
Similarly, for worst-case lower bounds, it suffices to construct one execution which uses a lot of resources. We
think of these executions as being constructed by an adversary. For example, in an asynchronous system,
we use an adversarial scheduler to choose the order in which processes take steps. An adversary can also
choose input values and decide when and where faults occur. The power of the adversary may be limited by
the definition of the model. For example, in an asynchronous system, a fairness condition might be imposed
on the adversary requiring it to allocate an infinite number of steps to every non-faulty process in every
non-terminating execution. In a partially synchronous system, the adversary must adhere to the bounds on
the speeds of the processes.

An impossibility result obtained using a restricted adversary (i.e. one that can construct only a limited
set of executions) automatically implies the same result for more powerful adversaries. For this reason, it is
better to prove a result using a restricted adversary. Furthermore, an appropriately chosen weak adversary
can clarify which aspects of the problem or model make the problem difficult. The lower bound proofs for
simultaneous consensus discussed in Section 11.1 are good examples. Impossibility results with restricted
adversaries may also be easier to understand and have more elegant proofs (because there are fewer cases to
consider). The key to such proofs is coming up with the right adversary. One must discard any unnecessary
complications while ensuring that the adversary is still strong enough to prove the desired result. For
example, see the unified unsolvability results for consensus in different models in Section 5.2.

In situations where there is a bound on the number of possible states of the shared memory, a bad
execution can sometimes be found by considering a large number of different reachable configurations. The
pigeonhole principle can be used to show that two of these configurations are indistinguishable to some
group of processes. Then, an adversary can construct a sequence of steps of these processes starting at one
of these configurations, but which violates a correctness condition when started at the other. More general
combinatorial arguments can also be used to prove the existence of bad executions. For example, one
might count the number of possible executions to show that two of them are indistinguishable if the space
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or time used is too small.

Sometimes an adversary can construct executions in which a sequence of steps by a set of processes can
be hidden from the other processes, i.e. removing these steps from the execution yields a final configuration
that is indistinguishable to the other processes. For example, consider an execution in an asynchronous
system where processes communicate through shared registers, such that, from some configuration C, all
steps are performed by processes from a set P. If, immediately after C'| the execution performs a write to
each register, then steps performed immediately before C' by processes not in P will be hidden from the
processes in P. More generally, a process covers an object in a configuration if the process will write to
the object (or perform an operation that will obliterate any information previously stored in the object)
whenever it is next allocated a step by the scheduler. In covering arguments, introduced by Burns and
Lynch [77], an adversary carefully constructs an execution ending in a configuration where all the shared
objects are covered. The adversary extends this execution with steps by certain processes. Then one
process covering each object performs its next step. These operations hide the extension of the execution
from other processes. Specifically, the resulting configuration and the configuration obtained by performing
these operations immediately after the execution (without the extension) are indistinguishable to the other
processes. The adversary can then use this fact to construct a bad execution from one of these configurations.

In anonymous shared-memory systems where processes communicate using registers, an adversary can
treat a group of processes with the same input values as clones, running them together in lock step. These
processes always read the same values from the same registers and write the same values to the same
registers so they remain in the same state as one another. No process in such a group can detect the
presence of any of its clones, so it has no knowledge of the size of the group and will behave as if the group
consisted of it alone. Clones are useful in covering arguments, since an adversary can delay one process of
the group just before it is about to write and use it to cover a register.

Another way to find a bad execution for an algorithm is to paste together information from several execu-
tions, started from different, carefully selected initial configurations. An adversary chooses these executions
so that each process finds certain pairs of the executions indistinguishable. Such proofs are called scenario
arguments. Sometimes, for reasons of clarity, these executions are described implicitly, by giving a simple
way of generating them in a (possibly different) system.

A chain argument is a particularly useful approach for agreement problems such as consensus. Consider
a chain (i.e. a sequence) of executions such that, for any two adjacent executions in the chain, the resulting
configurations are indistinguishable to some processes. If processes output different values in the first and
last executions, then there must also be two adjacent executions in this chain where processes output different
values. This leads to a contradiction, since processes that cannot distinguish between these two executions
must produce the same output values in both. Sometimes these chains are constructed inductively, and may
be quite long and complicated.

Formal notions of knowledge can be used to show that, in a precise sense, common knowledge cannot be
gained in some asynchronous systems [166]. The structure of the proofs is similar to some chain arguments.
Knowledge-based arguments are also used to show lower bounds on how fast common knowledge of certain
facts can be achieved in synchronous systems.

The valency argument has become the most widely-used technique for proving that consensus and
related problems are impossible in various models of distributed computing. It was introduced by Fischer,
Lynch and Paterson [141] to prove that consensus is unsolvable in an asynchronous message-passing sys-
tem, even when message delivery is reliable, if there is the possibility of even a single process failing (see
Section 5.1). Chor, Israeli and Li [98], Loui and Abu-Amara [230] and Herlihy [169] adapted the valency
argument to show impossibility results for several asynchronous shared-memory models (see Section 5.2).
The proofs classify each configuration of the system as either univalent, if all executions starting from the
configuration produce the same output, or multivalent, if there are at least two executions starting from the
configuration that produce different outputs. There are two parts to a valency argument. The first part is
to show that every algorithm has a multivalent initial configuration. This typically follows from the problem
specifications, often via a chain argument. The second part is to show that from every multivalent config-
uration there is a non-empty execution that results in a multivalent configuration. This is usually proved
by contradiction. Attention is focused on the point in an execution where the outcome of the algorithm is
determined. One assumes the existence of a critical configuration, a multivalent configuration such that
all configurations that can be reached from it are univalent. Then one argues, usually case by case, that
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any possible steps by processes after the critical configuration will result in a contradiction of the definition
of the critical configuration. These two parts imply the existence of an infinite execution containing only
multivalent configurations, which contradicts termination conditions of the problem. One must also ensure
the infinite execution satisfies all fairness constraints of the model. Valency arguments have been adapted
to prove unsolvability results for shared-memory systems with non-deterministic objects and lower bounds
in synchronous systems and for randomized algorithms.

Symmetry arguments prove impossibility results by showing that several processes must perform

similar actions. Lewis Carroll gave a succinct example in 1872: “ ‘But if everybody obeyed that rule,” said
Alice, who was always ready for a little argument, ‘and if you only spoke when you were spoken to, and
the other person always waited for YOU to begin, you see nobody would ever say anything” [83]. A

century later, Rosenstiehl, Fiksel and Holliger [272] used symmetry arguments in the context of distributed
computing. These arguments are particularly useful for models with anonymous processes or for comparison-
based algorithms. They can often be applied even when there are no faults in the system and when processes
behave synchronously. The proofs focus attention on processes that are in the same state (or, more generally,
in states in which they behave the same way). The processes retain this property, provided they continue
to receive the same (or sufficiently similar) information. For example, in a ring of anonymous processes,
deterministic leader election is impossible, because there is no way to break initial symmetry [26]. Similar
arguments can be used to show the impossibility of solving resource-sharing problems, such as the dining
philosophers problem [266]. Lower bounds on time complexity can be obtained by starting with a highly
symmetric configuration and bounding the rate at which the symmetry decreases. Each time one process
must send a message, an adversary can force all similar processes to send messages too, yielding good lower
bounds for message complexity. Some symmetry arguments designed for comparison-based algorithms can
be extended to more general algorithms using Ramsey theory techniques, provided process identifiers or
input values can be chosen from a very large set.

In networks, some lower bounds on message complexity rely on the observation that it takes many
messages to get information from one process to distant processes. These are called distance arguments.
Similarly, it takes a long time to collect information from many different processes in both message-passing
and shared-memory systems. An information-theoretic approach begins by carefully defining a measure
of information (e.g., the number of input values that influence the state of the process at a given point in
time). Then a recurrence is used to describe how much the information can increase in a process or shared
object as a result of a single step. In synchronous models, information-theoretic arguments are complicated
by the unexpected ways such information can be acquired. For example, information can be conveyed from
one process to another by the fact that a message was not sent in a particular round. Cook, Dwork and
Reischuk [106] dealt with similar issues in the context of lower bounds for synchronous parallel computation.

A systematic approach to understanding the computational power of different models is to obtain simu-
lations of some models by others. This allows results derived in one model to be extended to other models.
For example, suppose that one system A can simulate another system A’. This means that any algorithm
designed for system A’ can be converted into an algorithm that solves the same problem in A. Thus, a
problem that has been proved unsolvable in A, is also unsolvable in A’. Similarly, lower bounds in A4 imply
lower bounds in A’, although the bounds obtained for A’ may be smaller, depending on the efficiency of the
simulation. As is the case for sequential computation, reductions from problems that are known to be hard
or unsolvable are useful for obtaining additional impossibility results.

The topology of geometric objects called simplicial complexes has been applied very effectively to obtain
impossibility results for distributed tasks. One can represent the computation of an algorithm by a complex
called the protocol complex. It can be shown that all protocol complexes for a particular model of
computation have certain topological properties. One can also represent a distributed task by a map from
a complex representing the possible inputs to a complex representing the possible outputs. When there
exists an algorithm to solve a given task in a given model, there is a decision map from the corresponding
protocol complex to the output complex, satisfying certain properties. Topological arguments can then be
used to show that such decision maps cannot exist. This technique is described in greater detail in Section
8.

Giving a characterization of the set of solvable problems for a particular model is a good way to show
unsolvability for many problems in a systematic way. Some important characterizations have been given
using topological arguments. Others describe algebraic properties of functions that can be computed or
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objects that can be implemented. Some characterizations describe how the solvability of a problem depends
on the set of allowable inputs: if the inputs are sufficiently restricted, an unsolvable problem may become
solvable.  One can also characterize the types of shared objects that can be used to solve a particular
problem.

When proving one model is more powerful than another, constructive arguments are often effective.
The idea is to construct a carefully tailored problem that is easy to solve in the first, but difficult or impossible
to solve in the second. To prove impossibility results about a class of objects, it suffices to construct an
object in the class that demonstrates the difficulty. Some lower bounds show there is no algorithm solving
a problem that works well on all networks. One way to do this is to construct a network, specially designed
to have bad properties, which can be exploited by an adversary to force algorithms working on the network
to be inefficient.

A final important technique for the study of impossibility results is the construction of counter-example
algorithms [233]. These are algorithms that are not necessarily practical, but they point out the limitations
of existing impossibility results, by finding ways of circumventing them. They can also be counter-examples
to impossibility conjectures. In the same way that lower bounds tell us we should stop looking for better
algorithms, counter-example algorithms tell us we should stop looking for better lower bounds.

5 TUnsolvability of Consensus and Other Problems

One of the earliest impossibility results in distributed computing concerns the two generals problem: a
version of consensus for two processes in a message-passing system where messages can be lost. Ordinary
consensus 1s clearly unsolvable if all messages can be lost. So, in the two generals problem, the problem
specification is weakened so that validity must hold for fault-free executions, but need not hold for executions
where messages are lost. (Agreement and termination must still hold for all executions.) In 1978, Gray proved
that the two generals problem is unsolvable [154, 233]. The proof can be formalized as a chain argument
that establishes the result even for synchronous systems. Suppose there is an algorithm for solving the two
generals problem. Consider an execution with reliable message delivery in which both processes have initial
value 0 and, hence, output 0. A chain of executions is constructed: each execution is obtained from the
previous one by removing the last message-receipt event (i.e. the message is lost). Each execution cannot be
distinguished from the previous one by the sender of the lost message. For the last execution in the chain,
both processes have value 0, but no messages are received. Then add one additional execution to the chain:
the first process has initial value 0, the second process has initial value 1 and no messages are received. In
each execution, the two processes must output the same value. Since each pair of consecutive executions
in this chain is indistinguishable to one of the two processes, it follows that both processes must output 0
in all executions in this chain. Similarly, there is a chain of executions that starts with an execution with
reliable message delivery in which both processes have initial value 1 and ends with an execution in which
the first process has initial value 0, the second process has initial value 1, and no messages are received.
Both processes must output 1 in all executions in this chain. This is a contradiction, since the last execution
in both chains is the same.

5.1 Asynchronous Message-Passing Models

There 1s no 1-resilient solution to terminating reliable broadcast in asynchronous message-passing systems,
even if only crash failures may occur: If the sender is very slow, the other processes must output their
values before any of them have received a message from the sender. An adversary can then ensure that the
sender’s input is a different value. A similar adversary argument is used to prove that the commit problem
1s unsolvable in an asynchronous system, even if process crashes may only occur before the first step of any
execution [291].

Halpern and Moses [166] introduce formal notions of knowledge for the study of distributed systems.
Using essentially the same chain argument as for the two generals problem, they show that, in a precise
sense, common knowledge cannot be attained when message delivery is unreliable or there is no upper
bound on the time for messages to be delivered. Then they prove that common knowledge is necessary for
simultaneous consensus. Hence, this problem is unsolvable unless message delivery is guaranteed within a
bounded amount of time.
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A similar chain argument is used by Koo and Toueg [209] for studying asynchronous systems with
transient message losses (i.e. there is no infinite execution where the same message is sent repeatedly along
a communication channel, but is never received). They show that, in this model, common knowledge can be
achieved, but any algorithm that satisfies even a weak form of termination cannot guarantee any transfer of
knowledge. In particular, consensus is not solvable in this model.

Fischer, Lynch and Paterson [141] developed the valency argument to give the first proof that 1-resilient
(and, hence, wait-free) binary consensus is impossible in an asynchronous message-passing system with
reliable message delivery. They considered a strong model where, in one atomic step, a process can receive
a message (or find out that no messages are available for delivery), perform local computation, and send an
arbitrary finite set of messages to other processes. A lower bound in this model automatically applies to
the standard message-passing model. Here, we demonstrate the technique by proving the unsolvability of
wait-free binary consensus in a standard message-passing model with send steps and receive steps.

Suppose a consensus algorithm has a critical configuration C'. (See Section 4.1 for the definitions of terms
used in valency arguments.) Then, from C, there is a step sy that leads to a univalent configuration Cy from
which all executions output only 0 and a step s; that leads to a univalent configuration C; from which all
executions output only 1. Two different possible cases for sy and s; are illustrated in Figure 1. The outputs
labelled by 7 cause contradictions no matter what value they have.

So S1 S0 Yi
© () DI

S1 S0 + crashes
output output  output output
0 1 0 1
output output output
? 0 ?
(a) sg and s; are steps by different processes (b) sp and sy are steps by the same process P

Figure 1: Two possibilities for a (multivalent) critical configuration C' (where Cyy and € are univalent).

If these steps are by different processes, then the same configuration C” can result if s1 is performed from
configuration Cy or sq is performed from €. (For example, suppose sq is a send step and s; is a receive
event, for the same channel, in which no message is available to be received. The step s; can follow sy,
provided the adversary delays delivery of the message sent by sg.) By termination, there is an execution
from configuration C” that outputs a value. This is a contradiction, since this value cannot be both 0 and 1.

Now suppose steps sg and ss are by the same process P. The only instruction P can perform whose
outcome 1s not uniquely determined is to check an incoming channel for messages: In one step, P receives
a message from the channel, but, in the other step, this message is not yet available. Let C} and €] be
the configurations obtained from Cy and C7 when P crashes. By termination, there is an execution starting
from C{ in which 0 is the output value. However, C{, and €] are indistinguishable to all processes except P,
so the same sequence of steps can be performed from C]. But this sequence of steps outputs 0, contradicting
the fact that all executions from C7 must output 1.

The existence of a multivalent initial configuration is established by a chain argument that considers
executions from initial configurations with successively more processes having input value 1. Since the
algorithm has no critical configuration, there must be a non-terminating execution and, hence, the algorithm
does not solve consensus. The proof for the impossibility of 1-resilient consensus is slightly more difficult,
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because the adversary must ensure that this non-terminating execution has at most one failure and all other
processes take an infinite number of steps. By examining a well-chosen problem, Fischer, Lynch and Paterson
obtained an elegant impossibility result which was later adapted to prove results in many other models of
distributed systems.

In contrast to their impossibility result, Fischer, Lynch and Paterson also present an f-resilient consensus
algorithm, for f < n/2, provided faulty processes take no steps (i.e. crashes occur only before the first step
of any execution). This shows that it is not the occurrence of faults that makes consensus unsolvable in an
asynchronous message-passing system, but, rather, it is the uncertainty of when these faults might occur.

Dolev, Dwork and Stockmeyer [117] extended the work of Fischer, Lynch and Paterson by considering
how the solvability of consensus is affected by five properties of a message-passing system: whether there
is a bound on relative process speed, whether there is an upper bound on message delivery time, whether
messages to each process are received in the order in which they were sent, whether a process can send more
than one message in a single step, and whether a process can receive and send in a single step. Using valency
arguments, they proved that certain combinations of these properties make 1-resilient or 2-resilient consensus
unsolvable. They also provided wait-free consensus algorithms in models with the remaining combinations
of properties, and 1-resilient consensus algorithms for those models where they had proved the impossibility
only of 2-resilient consensus. For example, wait-free consensus is solvable is an asynchronous system in which
a process can send and receive multiple messages in a single step and there is an upper bound on the message
delivery time known to all processes. However, if this model is changed to allow arbitrary process faults,
then Attiya, Dolev, and Gil [33] showed, using a valency argument, that consensus becomes unsolvable, even
if the validity condition is only required to hold when all processes are non-faulty and have the same input
value. Interestingly, if they replace validity with a non-triviality condition (i.e. two different output values
can occur), they show that any number of arbitrary process faults can be tolerated.

Welch [297] shows how an asynchronous message-passing system can simulate a message-passing system
with synchronous processes, but no bounds on message delivery time. Combined with the fact that 1-
resilient consensus is unsolvable in the former model, this gives a different proof that 1-resilient consensus is
also unsolvable in the latter model.

5.2 Asynchronous Shared-Memory Models

Chor, Tsraeli and Li [98], Loui and Abu-Amara [230], Abrahamson [1], and Herlihy [169] adapted valency ar-
guments to show that wait-free consensus is unsolvable for two processes that communicate using registers.
Using slightly more complicated valency arguments, Loui and Abu-Amara extended this result to show that,
for n > 2 processes, l-resilient consensus is unsolvable when processes communicate using registers and
that 2-resilient consensus is unsolvable using shared-memory systems in which objects have only two states,
for example, test&set objects. Herlihy proved that queues have consensus number 2. This line of research
was carried further to give characterizations of the types of shared-memory objects that are capable of solving
walt-free consensus. See Section 7.2 for results of this type. Herlihy also showed that an array of registers
has increased power if processes can access several elements of the array in a single atomic action: if a process
can atomically assign values to m > 1 different elements, the consensus number becomes 2m — 2. This was
the first example of an object type whose consensus number was greater than two but still finite. Merritt
and Taubenfeld [242] generalized this result to show that consensus can be solved in the presence of up to f
crash failures using such an array if and only if f < max(2m — 3,0). They also gave a lower bound on the
number of elements needed in the array to do so. Interestingly, if the m registers accessed by an atomic
operation must be adjacent in the array, Kleinberg and Mullainathan [208] have shown that the consensus
number is 3, rather than 2m — 2, for all m > 3.

In most cases, the part of a valency argument that shows no critical configuration can exist amounts
to showing that some process cannot always learn enough about which step was taken immediately after
the critical configuration to decide on an output value. For example, in Figure 1(b), the information about
which step was performed first is destroyed by having process P crash. Sometimes, the adversarial scheduler
must construct much more complicated executions to destroy this evidence. For example, consider Herlihy’s
proof that three-process consensus cannot be solved using queues [169]. If two processes enqueue different
values onto a queue just after the critical configuration, processes must be made to dequeue those values (as
well as all values that precede them in the queue) to ensure that the order of the enqueue operations cannot
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be determined. Other types of faults can also be used to conceal information about the first operation that
is performed after the critical configuration. This approach is used by Jayanti, Chandra and Toueg [196] to
prove impossibility results in models where objects, instead of processes, fail.

Afek, Greenberg, Merritt and Taubenfeld [10] also studied models where objects can fail. They showed
that consensus is impossible when processes communicate using any types of objects, if half the processes
can crash and the states of half the objects can become corrupted. Assuming an algorithm exists, the proof
constructs two reachable configurations that are indistinguishable to half the processes. Both are obtained
from an initial configuration where half the processes have input 0 and half the processes have input 1. The
first configuration is obtained by running the processes with input 0 until they all produce output values,
and then corrupting half the objects so that their states are reset to their initial states. The processes with
input 1 do not take any steps. The resulting configuration is univalent with output 0, since the values output
by the processes with input 0 must be 0. To construct the second configuration, the processes with input 0
crash before taking any steps and the other half of the objects are corrupted so that their values are the same
as 1n the first configuration. The second configuration is univalent with output 1. But this is impossible,
since the two configurations are indistinguishable to the processes with input 1.

Moses and Rajsbaum [250] gave a unified framework for proving impossibility results, based on the
valency argument, that applies to both synchronous and asynchronous systems using either message passing
or shared memory. Their approach is to restrict the adversarial scheduler to a nicely structured subset of
the possible executions. For example, they showed that consensus is unsolvable if processes communicate
using only single-writer registers, even when processes are guaranteed to be scheduled in slightly
asynchronous rounds where, in each round, at least n — 1 processes each write to a register and then read
the values written in that round by at least n — 2 other processes. Lubitch and Moran [231] also used a
restricted set of runs to obtain a unified way of proving the impossibility of f-resilient consensus in a variety
of models. Recall that a valency argument works by showing that every multivalent configuration must have
a multivalent successor, in order to construct an infinite execution where no process ever produces an output.
However, when studying f-resilient consensus, one must also show that the infinite execution produced has
at most f failures. Lubitch and Moran’s restricted scheduler ensures that this is automatically true. Other
attempts to unify impossibility results for different models include the work of Herlihy, Rajsbaum and Tuttle
[177] (see Section 8.4) and Gafni [146].

Taubenfeld and Moran [292] used a valency argument to provide a general impossibility result for a
large class of problems in asynchronous systems with crash failures, where processes communicate using
registers. In particular, they show that there isno f-resilient algorithm for the consensus problem restricted
to input vectors in which the number of 0’s and the number of 1’s differ by at least f. This version of consensus
can easily be solved in an (f — 1)-faulty system: each process waits until it has learned the input values of
n — [+ 1 processes and then outputs the majority value. Mostefaoui, Rajsbaum, and Raynal [252] recently
gave an efficiently decidable characterization of the sets of input vectors for which f-resilient consensus
algorithms exist. They also extended their results to message-passing systems.

Malkhi, Merritt, Reiter and Taubenfeld studied shared-memory systems with arbitrary process faults
using access control lists, specified by the programmer, specifying which processes can access each shared
object [236]. These lists limit the extent to which arbitrary process faults can corrupt the shared memory,
making it possible to solve some problems. They used a simple indistinguishability argument to show that,
in this model, f-resilient consensus cannot be solved if n < 3f (using any type of object). However, if
n > 3f + 1, the problem is solvable using sticky bits and registers [241].

5.3 Bounds on the Number of Faults in Synchronous Message-Passing Models

In synchronous models, consensus and related problems are solvable even when arbitrary process faults can
occur, provided there are not too many faults. The earliest papers proved that, in complete networks where
arbitrary process faults can occur, terminating reliable broadcast is solvable if and only if less than n/3
processes can fail [116; 225, 260]. Scenario arguments are used to prove the lower bounds.

The following version of the argument, by Fischer, Lynch and Merritt [140], shows that consensus is
impossible for three processes, P, and R, if one arbitrary process fault may occur. Suppose there is a
consensus algorithm for this system. Consider a system with six processes composed of two copies each of
P,Q and R, joined in a ring in the order Py, Qu, Ro, P, @1, R1. (See Figure 2.) Let « be a scenario (i.e.
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an execution of this system) where Py, @y and Ry have input 0 and P, Q1 and Ry start with input 1. The
output value of each process in «a can be determined by considering another scenario that is indistinguishable
to that process.

Scenario o Scenario 3 Scenario Scenario ¢

R faulty

Figure 2: Scenarios for impossibility of consensus for three processes tolerating one arbitrary process fault

Let 3 be an execution of the algorithm in a three-process system, consisting of P, () and R, where each
process starts with input 0. Process R is faulty in 3. It behaves in the same way towards P as R; behaves
towards Py in «, and it behaves in the same way towards @) as Ry behaves towards g in «. Then, the steps
performed by P and @ in 3 are identical to the steps performed by Py and @y in . Since P and ) must
output 0 in §, Py and @y must also output 0 in o. Similarly, by considering an execution v in a 3-process
system where ) and R have input value 1 and P 1s faulty, one can show that ; and R; must output 1 in a.
Finally, consider another scenario § where P has input 0, R has input 1 and @ is faulty, sending the same
messages to P as @y sends to Py and sending to R the messages ()1 sends to R;. Process P must output
0 in J, since Py outputs 0 in «, and R must output 1 in J, since Ry outputs 1 in «. This contradicts the
agreement property for the execution §. The elegance of this argument lies in its ability to draw conclusions
about the behaviour of processes without requiring any detailed analysis of exactly what those processes are
doing.

This unsolvability result can be extended to systems with n < 3f processes, of which at most f can have
arbitrary faults, via a reduction from the three-process case [225]. Each of the processes P, () and R can
simulate disjoint sets of processes of size at most f. If one of P,Q, or R fails, then at most f of the simulated
processes fail.

The (vertex) connectivity of a network is the minimum number of nodes that must be removed so that
the resulting network is disconnected. We consider the connectivity of the complete network of n nodes to be
n. With only crash failures, f-resilient consensus is solvable if and only if the connectivity of the network is
greater than f [225]. To see why the impossibility result holds, suppose that f processes crash disconnecting
the network and the input values of processes within each component are identical, but different from those
in some other component. For each non-faulty process P, any execution from this configuration cannot be
distinguished by P from an execution that starts in the configuration in which all processes have the same
input value as P. This 1s because processes in different components cannot communicate with one another.
Hence, each process must decide its own input value, violating the agreement condition.

With arbitrary process faults, a higher degree of connectivity is required to solve consensus: Dolev [116]
proved, using a scenario argument, that there is an f-resilient algorithm for terminating reliable broadcast
only if the connectivity of the network is more than 2f. Fischer, Lynch and Merritt [140] gave a similar proof
to show that consensus is solvable in the presence of f arbitrary faults only if the connectivity is greater
than 2f. Dolev [116] gave an f-resilient algorithm for terminating reliable broadcast provided the network
has connectivity more than 2f and more than 3f processes. Hence, these lower bounds are tight.

These scenario arguments for arbitrary process faults have been extended to weak forms of terminating
reliable broadcast [216] and consensus [140], where validity applies only when all processes are non-faulty.
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Garay and Perry [148] observed that these results imply that, in f-faulty synchronous message-passing
systems where there are at most a arbitrary process faults and at most f — a additional processes that can
crash (without taking any steps), consensus is solvable if and only if the number of processes is greater than
f + 2a and the connectivity of the network is greater than f + a.

Hadzilacos [160] studied the terminating reliable broadcast problem in synchronous message-passing
models, where processes can crash and communication channels can fail by ceasing to deliver messages. He
proved that this problem is unsolvable, if there i1s a set of processes and communication channels which can
all fail in the same execution and whose removal disconnects the underlying graph. This is done using a
reduction from l-resilient terminating reliable broadcast in a line of three nodes: the middle node simulates
the processes in the set, another node simulates the processes in one of the connected components that
results from removing this set of processes and channels from the graph, and the last node simulates the
remaining processes. Communication channels not in the set are simulated either within a process or by
one of the two undirected edges in the line. A simple adversary argument is used to show that 1-resilient
terminating reliable broadcast is unsolvable in a line of three nodes. Hadzilacos also gives a matching upper
bound, showing that if no such set exists, then terminating reliable broadcast can be solved even if processes
and communication channels may fail to send some of their messages.

With partially synchronous communication, where there is an unknown upper bound on message delivery
time, and synchronous processes, Dwork, Lynch, and Stockmeyer [125] used a scenario argument to prove
that binary consensus is unsolvable if f processes can crash and 1 < n < 2f: They consider an execution
where half the processes have input value 0 and half have input value 1, communication between processes
with the same input value takes 1 unit of time, and communication between processes with different input
values does not occur until both have produced their outputs. For n > 2f, they gave a consensus algorithm
for partially synchronous communication and processes that tolerates f or fewer omission faults. Thus, if
communication is partially synchronous, the number of faults that can be tolerated does not depend on
whether the faults are crashes or omissions, whether the processes are synchronous or partially synchronous,
or whether the input domain is restricted in size. When communication is synchronous and processes are
partially synchronous, they show that consensus is solvable for any number of crash failures, but, using a
somewhat more complicated scenario argument, prove that n > 2f is necessary for omission faults.

Santoro and Widmayer [280] considered a synchronous message-passing model with dynamic omission
faults. Specifically, at each round, the message broadcast by one (possibly different) process might not be
delivered to some or all of the other processes. Using a valency argument, they prove that a variant of
consensus 1s unsolvable in this model.

The scenario proof illustrated in Figure 2 can also be used to show that the approximate agreement
problem is unsolvable in the message-passing model if there are f Byzantine faults and n < 3f [140]. Dolev,
Lynch, Pinter, Stark and Weihl [119] gave algorithms for the synchronous case when n > 3f and for the
asynchronous case when n > 5f. The latter result contrasts with the unsolvability of consensus for f = 1

(Section 5.1).

5.4 Anonymous Systems

Symmetry arguments can often be used to show that tasks are unsolvable in anonymous systems, even
when processes and communication are assumed to be completely reliable. For example, leader election is
impossible in an anonymous synchronous ring, where processes are arranged in a circle and each process can
communicate only with its two neighbours [47, 234]. An easy induction shows that, at the end of each round,
every process must be in the same state. Thus, if any process declares itself the leader, all other processes do
so too, which would violate the definition of leader election. Similarly, in an asynchronous message-passing
system, a round-robin schedule maintains symmetry among all the processes, if every message sent during a
round is delivered at the very end of that round. Johnson and Schneider [202] and Jayanti and Toueg [199]
proved that the same is true for anonymous systems where processes communicate via registers. A version
of this symmetry argument was also used by Angluin [26] to show that leader election is unsolvable for yet
another anonymous model. Rabin and Lehmann [266] gave a nearly identical proof showing that processes
in an anonymous ring cannot solve the dining philosophers problem. Bougé [73] used similar arguments to
show the impossibility of leader election in various anonymous networks that have underlying graphs which
are sufficiently symmetric.
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Randomization can sometimes be used to break symmetry. Thus, impossibility results that are proved
using symmetry arguments often break down when algorithms are allowed to be randomized. For example,
to elect a leader in an anonymous ring of known size, all processes can choose random identifiers, and elect
the process with the smallest unique identifier, if there is one [26]. (If there is no unique identifier, the
algorithm is repeated.) This algorithm does have infinite executions, but it will terminate with probability
1.

Some distributed tasks can be viewed as computing a function of n inputs, where the inputs are initially
distributed, one to each process. Cidon and Shavitt [102] showed that many important functions cannot
be computed by randomized algorithms in a synchronous anonymous ring of unknown size. (See Section
13.1.) Attiya, Snir and Warmuth [46] gave characterizations of the functions that can be computed on
rings of anonymous processes for both synchronous and asynchronous models. Yamashita and Kameda [298]
gave a characterization of the functions that can be computed in an asynchronous, reliable, anonymous
network, if processes know the network topology. For example, if a function is computable, then for any
automorphism of the network graph, the corresponding permutation of input values cannot change the value
of the function. Boldi and Vigna [66, 67] gave a characterization when only partial knowledge about the
network topology is known: they assume that processes know only that the network graph comes from a
known set of possible graphs. Attiya, Gorbach, and Moran [40] gave similar characterizations for functions
and agreement tasks (i.e. decision tasks satisfying agreement) that can be computed in a reliable, anonymous
shared-memory system where processes communicate via registers. All of these results rely heavily on
symmetry arguments.

5.5 Clock Synchronization

An important problem is to determine how closely clocks (of non-faulty asynchronous processes) can be
synchronized when there is uncertainty in message delivery time. FEach process knows the times (on its
own physical clock) at which its incoming messages arrive. All clocks are assumed to run at the same rate.
Lundelius and Lynch [232] proved, using a shifting argument that, when the maximum and minimum times
for message delivery on each edge can differ by D, then there are executions in a complete network of n
processes in which clocks of two different processes differ by at least 2D(1 — 1/n). To obtain these results,
they first construct an execution with message delivery times within the allowable ranges. Then, for each
process P;, its physical clock and the times at which its steps occur are shifted by some amount A;, with
message delivery times still within the allowable ranges. These two executions are indistinguishable to all
processes, so processes will adjust their clocks the same ways in both. However, the time between steps of
different processes will differ in the two executions. This implies the lower bound on the guaranteed closeness
of the synchronization of the clocks.

Halpern, Megiddo, and Munshi [165] and Biaz and Welch [60] extended this work to arbitrary networks,
with different uncertainties in message delivery time on different edges. Specifically, if the uncertainties are
treated as edge weights, then half the weighted diameter of the graph is a lower bound on the quality of
the approximation that can be achieved. For some graphs, they gave a matching upper bound; for the rest,
they showed this bound is tight to within a factor of 2. Halpern, Megiddo, and Munshi also proved that
randomization does not help to solve this problem.

Attiya, Herzberg, and Rajsbaum [41] consider the situation where upper bounds on message delivery
time might not exist, but other information i1s available, such as bounds on the difference in message delivery
times for opposite directions of a link. They gave lower bounds on how closely clocks can be synchronized in
terms of how far the steps performed by each pair of processes can be shifted in time relative to one another
in an execution.

Scenario arguments have been used to obtain unsolvability results, similar to those in Section 5.3, for the
clock synchronization problem when the physical clocks of the processes do not run at the same rate, but
are bounded above and below by linear functions of real time. An algorithm must ensure that the adjusted
clocks remain close to one another. In addition, adjusted clocks must also be bounded above and below by
linear functions of real time. Otherwise, the problem is trivial: For example, when the adjusted clock of each
process is proportional to the logarithm of its physical clock, the adjusted clocks will eventually become close
to one another, so clock synchronization can be achieved without any communication [118]. Dolev, Halpern,
and Strong [118] proved that this version of clock synchronization is impossible in a network with uncertainty
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in message delivery times, if at least f of the processes can have arbitrary faults and n < 3f. If message
delivery is always instantaneous, clock synchronization is also unsolvable for n < 3f, using essentially the
same proof. Algorithms for complete networks exist when n > 3f [296, 219]. Fischer, Lynch, and Merritt
[140, 233] gave similar, simpler proofs of these unsolvability results and extended them to networks with
connectivity at most 2f. When the message delivery time on each link is a known, non-zero value, Fischer,
Lynch, and Merritt [118] showed that, once clock synchronization has been achieved, it can be maintained
with up to f arbitrary process faults if and only if the degree of every node in the network graph is at
least 2f 4+ 1. If a process sends a message to a correct neighbour and waits for an acknowledgement, it can
determine how much real time has passed and increment its clock accordingly. The fact that a majority
of each process’s neighbours are correct can be used to ensure that faulty processes do not cause correct
processes to update their clocks incorrectly.

If only crash failures can occur, Simons, Welch, and Lynch [285] observed that network connectivity of
at least f+ 1 is required; otherwise the network can become disconnected. For (f + 1)-connected graphs,
J-resilient clock synchronization algorithms exist, even when messages can be lost [118§].

Srikanth and Toueg [288] studied the accuracy of clocks with respect to real time in fault-free asynchronous
systems, where there is a known upper bound on message delivery time and the physical clocks are bounded
above and below by known linear functions of real time. They used a stretching argument to prove that it is
impossible to ensure that the adjusted clocks more closely approximate real time. Even if there are up to f
processes with arbitrary faults, they show this accuracy with respect to real time can be achieved, provided
that n > 2f + 1. They also prove that n > 2f 4 1 is necessary, even for a much weaker fault model in which
processes can only fail by having physical clocks that violate the assumed rate bounds.

Patt-Shamir and Rajsbaum [259] and Fetzer and Cristian [135] obtain lower bounds on how closely clocks
can be synchronized, if processes can only send synchronization information to one another by piggybacking
on messages that are being used by the system for other purposes.

5.6 Other Problems

There are many other distributed computing problems for which unsolvability results are known. For exam-
ple, mutual exclusion is unsolvable in systems with unreliable processes for a very simple reason: a process
that crashes in its critical section prevents any further progress. In this section, we shall briefly mention
some other results. Section 7.3 discusses results that characterize solvable tasks in various models, which
can be used to obtain unsolvability results for additional problems.

Coan, Dolev, Dwork, and Stockmeyer [103] considered the distributed firing squad problem. Using
scenario arguments, they proved bounds on the number of process faults that can be tolerated when processes
can exhibit various types of timing faults.

Topological arguments have been used to prove that wait-free set consensus is unsolvable in asynchronous
systems, except in the trivial case where every process can have a different output value. This is discussed
in more detail in Section 8.2. De Prisco, Malkhi and Reiter [109] studied the solvability of set consensus
with a number of different versions of validity. Using reductions and simple adversary arguments, they
prove bounds on the number of crash and arbitrary process faults that can be tolerated. They also develop
algorithms that show these bounds are tight for most cases.

Bridgland and Watro [76] prove that there is no f-resilient solution to task assignment in message-passing
systems with fewer than Z{Il [(f+1)/i] processes. They do this by explicitly constructing a bad execution
with the aid of the pigeonhole principle.

Attiya, Bar-Noy, Dolev, Koller, Peleg and Reischuk [36] used a valency argument to show that, for any
asynchronous message-passing algorithm for renaming that tolerates one crash failure, the smaller name
space must contain at least n 4 1 identifiers. Herlihy and Shavit [179] later generalized this result using
their Asynchronous Computability Theorem (see Section 8.3). They said that an asynchronous renaming
algorithm that tolerates f crash failures in a shared-memory model using only registers (and, hence, in
the message-passing model) must have a name space of at least n 4+ f identifiers to choose from. Attiya,
Bar-Noy, Dolev, Koller, Peleg and Reischuk [36] proved a lower bound for order-preserving renaming: the
name space must contain at least 2/ (n — f + 1) identifiers. Their proof considered executions where f of the
processes run sequentially after the other n — f have halted. They showed that in such runs, the processes
that finish early must leave large gaps between the identifiers they choose, so that the processes that start
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running later can choose names from within the gaps. They also gave matching upper bounds on the size of
the name space for renaming and order-preserving renaming.

Once processes have determined their output values in an asynchronous, message-passing algorithm for
renaming, they must continue to take steps. This is because other processes that begin executing later need
to communicate with them to find out which output values have already been taken. Using a game-theoretic
characterization of solvable tasks (see Section 7.3), Taubenfeld, Katz, and Moran [291] proved that there is
no f-resilient order-preserving renaming algorithm in an asynchronous message-passing system, for f > 2, if
the processes are required to terminate. The impossibility result holds even if the faulty processes can only
crash at the beginning of an execution, without taking any steps.

The k-assignment problem was studied by Burns and Peterson [80], who used a valency argument to show
that, for f > {/2, there is no f-resilient solution in an asynchronous system where processes communicate
using registers.

Chandra, Hadzilacos, Toueg, and Charron-Bost [87] extended the valency argument of Fischer, Lynch and
Paterson [141] to show that the group membership problem is unsolvable in an asynchronous message-passing
system with one crash failure, even if the algorithm must satisfy only rather weak correctness properties.
There have been many systems that solve versions of the group membership problem using stronger models;
see the survey by Chockler, Keidar and Vitenberg [97].

Jayaram and Varghese [201] consider a message-passing model where message channels may drop packets
and each process may experience faults that reset its local memory to its initial state. Building on earlier
work by Fekete, Lynch, Mansour, and Spinelli [133], they showed that an algorithm in this model can be
driven into a global state that contains any combination of reachable local states. It follows easily that
problems such as leader election and mutual exclusion are impossible in this model.

Greenberg, Taubenfeld and Wang [155] studied the choice coordination problem in asynchronous systems
where processes communicate using read-modify-write objects. Processes have identifiers, although more
than one process may have the same identifier. They showed that a wait-free solution exists if and only
if the number of processes that share the same identifier is less than the least non-trivial divisor of &, the
number of alternatives from which processes must choose. The unsolvability result is proved using a simple
symmetry argument.

6 Relationships Between Models

Researchers in distributed computing have proposed a large variety of mathematical models of distributed
systems. One of the central goals of the theory of distributed computing is to understand the relationships
between them. Which ones can solve more problems? Which ones can solve problems more efficiently? In
this section, we examine how impossibility results can address these questions and how the answers to these
questions can give rise to new impossibility results.

The most direct way to compare two different models is to show that one can simulate the other. For
example, a shared-memory system can simulate a message-passing system with the same number of processes
by using a single-writer single-reader register that can be written to by P and read by P’ to represent
a communication channel from P to P’ [47, 292]. Then, as mentioned in Section 4.1, impossibility results for
this shared-memory model immediately imply impossibility results for the message-passing model. This gives
an alternate proof of the unsolvability of 1-resilient consensus for n > 1 processes in asynchronous message-
passing systems (Section 5.1), since this problem is unsolvable in asynchronous systems when processes
communicate using registers (Section 5.2). Simulations of shared-memory by message-passing models will
be discussed in Section 6.3.

6.1 System Size

Here we describe some simulations between systems with different numbers of processes that are used in
a crucial way to establish impossibility results. For clarity, throughout this section, we call the simulated
processes threads and the simulating processes simulators.

An easy observation is that an f-faulty system of n+ A simulators, where n > f and A > 0, can simulate
an f-faulty system of n threads, by employing only n of the simulators, each of which performs the actions of
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a different thread. Similarly, an f-faulty system of n > f simulators can simulate an (f + A)-faulty system
of n + A threads. Each simulator performs the steps of a different thread. The unsimulated threads are
considered to be crashed processes.

A more interesting simulation of shared-memory systems, by Chandra, Hadzilacos, Jayanti, and Toueg
[86], shows how, for any n,n’ > f, an f-faulty system of n’ simulators can simulate an f-faulty asynchronous
system of n threads. The simulators each try to perform steps of each of the threads, using a total of n
registers and n test&set objects in addition to the objects used by the threads. One test&set object
1s associated with each thread. It is used as a lock to ensure that only one simulator at a time performs a
step of that thread. The state of the thread is recorded in one of the registers. To perform a step of the
thread, a simulator obtains its lock, reads the thread’s state from the register, executes the next step on
behalf of the thread, and updates the state stored in the register. Then it releases the lock and proceeds
to the next thread. If a simulator tries to perform a step of a thread, but does not get access to the lock, it
continues with the next thread. The key observation 1s that each simulator crash causes the crash of most
one simulated thread. This is illustrated in Figure 3, where a / indicates that the specified simulator has
simulated the step, and an x indicates that the simulator crashed while simulating the step. Because steps
of the threads may be performed at different rates, the simulated system must be asynchronous.

steps

1 2 3 4 5

T [P/ P | P/ PP
T2 Pl\/ Pl\/ P3><

threads

T [P/ PP P ]

Figure 3: An illustration of an execution of Chandra, Hadzilacos, Jayanti and Toueg’s simulation

Any set of object types that has consensus number at least 2 can be used, together with registers, to
implement test&set objects [10] and, hence, perform Chandra, Hadzilacos, Jayanti and Toueg’s simulation.
This implies that if a set of object types can be used to solve f-resilient consensus among n processes, for
some n > f > 2, then it can be used to solve wait-free consensus among f + 1 processes, i.e. the consensus
number of the set is at least f + 1. Note that, for f = 1, this result is false: Lo and Hadzilacos [226, 228]
construct object types that can be used to solve 1-resilient consensus among n processes, for each n > 2, but
cannot be used to solve wait-free consensus for two processes. The latter is proved using valency arguments,
which had to be adapted to handle the non-determinism of some of their objects. A special case of this result
is that there are object types that can be used to solve 1-resilient consensus for n = 3 processes, but not for
n — 1 = 2 processes. However, if a set of object types can be used to solve to solve 1-resilient consensus for
n > 4 processes, those object types can also be used to solve 1-resilient consensus for n — 1 processes. Lo and
Hadzilacos [228] proved this by using a non-wait-free implementation of test&set objects by registers to
adapt the simulation.

The BG simulation [70, 68] describes how an f-faulty system of n’ simulators (for any n’ > f) can
simulate an f-faulty asynchronous system of n threads, where both simulators and threads communicate
using only snapshot objects or, equivalently, registers [6, 22, 30]. A key element of the simulation is the
safe agreement subroutine. It satisfies the agreement and validity properties of the consensus problem, but
might not terminate. Every simulator simulates the steps of every thread, including steps where a thread
receives its input. This is done in parallel for all simulators and threads. The simulators use safe agreement
to ensure that a simulated step has the same result in the simulations carried out by different simulators.
Each simulator visits the threads in round-robin order and tries to execute the next step of each thread it
visits. The safe agreement routine is designed so that if simulators are running several copies of the safe
agreement routine in parallel, a simulator failure will block the simulation of at most one thread. This
ensures that, if the original algorithm was f-resilient, then the resulting algorithm will also be f-resilient.

For a wide class of problems such as consensus, set consensus, and approximate agreement, a simulator
can terminate if it observes a thread that has terminated, using the output of the thread as its own output.
This allows impossibility results for such problems to be extended from one model to another using the BG
simulation. For example, as described in Section 8.2, there is no wait-free (i.e. k-resilient) k-set consensus
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algorithm for k + 1 processes that communicate using registers. Then, the BG simulation implies that
there 1s no k-resilient k-set consensus algorithm for n processes, for any n > k. Similarly, from the fact that
wait-free consensus is unsolvable for two processes, it follows that f-resilient consensus is unsolvable when
n>f>1.

An (n, k)-set consensus object is designed to allow n processes to solve k-set consensus. Specifically,
each of the n processes can perform a propose operation, which takes one input as an argument and returns
a value that satisfies validity (the value returned is an input of some propose operation to that object) and
k-agreement (at most k different values are ever returned). Suppose &' > k and we wish to implement an
(n', k')-set consensus object from (n, k)-set consensus objects and registers. One very simple way to
do this is to divide the n’ processes into |n'/n| groups of size n and one group of size n’ mod n. Then
each group can use a different (n, k)-set consensus object to produce at most & distinct outputs, except
for the last group, which will produce at most min(k, n’ mod n) distinct outputs. This simple approach
works, provided &' > k [n'/n] + min(k, n’ mod n). Tt has been shown that no implementation is possible for
smaller values of &’ [69, 95]. This was done using an extension of the BG simulation that can be applied to
algorithms that use (n, k)-set consensus objects as well as registers: the results of propose operations
are determined using safe agreement.

6.2 Timing Assumptions

An important reason to study impossibility results is to establish that one model of computation is more
powerful than another. This 1s done by showing that a particular problem that can be solved in the first
model either cannot be solved as efficiently or cannot be solved at all in the second model. Here, we describe
some impossibility results which were designed specifically to establish such separations between models
having different assumptions on process speeds.

Synchronous systems are known to be more powerful than asynchronous systems: It is possible to solve
wait-free consensus in synchronous message-passing systems on complete networks (Section 5.3), but not
in asynchronous shared-memory systems where processes communicate via registers (Section 5.2) or in
asynchronous message-passing systems (Section 5.1). This separation between synchronous and asynchronous
models was further refined by Dolev, Dwork and Stockmeyer [117], who examined which properties of the
model are needed for consensus to be solvable in a fault-tolerant way. (See Section 5.1.)

Dwork, Lynch and Stockmeyer [125] showed that, when solving consensus in a message-passing model,
some partially synchronous systems lie between synchronous and asynchronous ones: consensus can be solved
in the partially synchronous system, but the number of failures that can be tolerated is lower than in the
fully synchronous model. (See Section 5.3.)

One of the first separations between synchronous and asynchronous shared-memory systems was proved
by Arjomandi, Fischer and Lynch [27], who considered the time required by algorithms in systems where no
faults can occur. They used a simple synchronization task called the session problem. A session consists
of a section of an execution in which a particular set V' of n objects are each accessed at least once. The
(s,n) session problem is to design an n-process algorithm such that any execution can be partitioned
into s sessions. It 1s assumed that each object can be accessed by at most b processes. There is a trivial
synchronous algorithm that solves the problem in s rounds: every process accesses a different object and
each process performs s accesses. However, the same approach does not work in an asynchronous setting,
because one process could perform its last access before some other process performs its first, resulting in
an execution with a single session. They prove that, in an asynchronous system, (slog, n) rounds are
required. (Recall that, in an asynchronous system a round is a segment of the execution where every process
takes at least one step.) This implies that a straightforward step-by-step and process-by-process simulation
of an n-process synchronous system by an n-process asynchronous system necessarily increases the round
complexity by a factor of (log, n), assuming each object can be accessed by at most b different processes.

We sketch the proof of the lower bound. Consider a round-robin execution of any solution to the problem.
Partition the execution into segments of |log, n] rounds each. We say that one step depends directly on
an earlier step if they involve the same object or are performed by the same process. One step depends on
an earlier one if there is a chain of such direct dependencies linking them. This notion of dependency is
useful for determining whether information could have propagated from one object to another. If two steps
do not depend on one another, they can be reordered without any process noticing the change. For any
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particular step, the number of objects that have been accessed by steps that depend on that step increases
by a factor of at most b (roughly) in each round. Tt follows from the fact that the kth segment contains only
[logy n| rounds that information cannot be propagated from object vy, € V to some other object vi41 € V.
Therefore, the steps within the segment can be reordered so that all accesses to viy1 take place before all
accesses to v, and no process will notice the difference. For the reordered run, one can prove by induction
that the kth session ends no earlier than the first access to vg in the kth segment. Suppose this is true for
the kth session. Then there is no access to vg41 in segment k after the end of session k, so session k + 1
cannot end before the first access to vi41 in the next segment. It follows that at most one session ends in
each segment. Since the problem requires that at least s segments occur in the reordered run, the original
run must have contained at least s segments and hence Q(slog, n) rounds.

Similar techniques were used by Rhee and Welch [271] and by Attiya and Mavronicolas [34] to analyse the
complexity of the session problem in other shared-memory and message-passing settings, including partially
synchronous models. These results again established separations between the various models.

Awerbuch [50, 51] proved a tradeofl between the time and the amount of communication necessary for
asynchronous message-passing systems to simulate a round of a synchronous algorithm. This implies lower
bounds on the ability of an asynchronous system to simulate a synchronous system in a round-by-round
manner. To prove the tradeoff, he considered specially constructed networks with many edges, but no small
cycles. During the simulation of a round, a node must receive information from each of its neighbours, either
directly or via a chain of messages, before it knows that the round has been completed. If information travels
across every edge in the graph, the number of messages used will be high. However, if no information travels
across some edge, that information must instead travel along a lengthy path, since there are no short cycles.
In this case, a large amount of time will be used.

6.3 Consistency Conditions

Another way in which models may differ is in the way correctness is defined for objects when they are
accessed concurrently by different processes. Linearizability (defined in Section 2) is a strong condition.
Sequential consistency [221] is a weaker condition. Like linearizability, operations must appear to happen
instantaneously at distinct point in time and, for each process, the order in which its operations appear to
happen must be consistent with the order in which that process performed them. However, the ordering need
not respect the real-time order of pairs of operations performed by different processes. Hybrid consistency
[39] requires that some operations satisly stronger consistency conditions than other operations. We now look
at lower bound results that were proved to show there exist implementations satisfying weaker consistency
conditions which are more efficient than any implementation satisfying stronger conditions.

Attiya and Welch [48] considered the problem of implementing registers, stacks and queues in a
fault-free message-passing model. They gave complexity separations between linearizable implementations
and sequentially consistent implementations. For example, if the time required for a message to travel from
one process to another is between d; and ds, they used a shifting argument to show that, for any linearizable
implementation of registers, read and write operations have worst-case time bounds of at least (d2 —dy)/4
and (da — dy)/2, respectively. Sequentially consistent registers, on the other hand, can be implemented so
that one of the two operations (read or write) requires no communication at all and hence incurs no delay,
while the other operation runs in time 2d,.

The basic idea for their lower bound proofs is similar to earlier work on clock synchronization lower
bounds [232]: If there is sufficient uncertainty about the length of time it takes for messages to be delivered,
one can shift the execution of one process in time without any process noticing the difference. For example,
suppose there is an execution where all message deliveries take time (dy +d2)/2. Consider the execution that
results if process P’s steps are shifted, so that a step that took place at time ¢ in the original run now takes
place at time ¢ + (d2 — d1)/2. The new run is still legal: the delivery time for each message sent to P is ds
and the delivery time for each message sent from P is dy. Furthermore, the two runs are indistinguishable
to all processes. Attiya and Welch show that, if the register operations are performed very quickly, it
is possible to shift processes enough so that the linearization order (and hence the responses returned by
processes) must be different, and yet the executions are indistinguishable to the processes because the shift
i1s “hidden” by the uncertainty in message delays.

Several papers used similar shifting arguments to give lower bounds on the implementations of various
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objects in fault-free partially synchronous message-passing systems. Mavronicolas and Roth [240] proved
lower bounds for implementations of linearizable and sequentially consistent registers when process clocks
are imperfectly synchronized. In their model, each process’s clock runs at the same rate, but they may differ
from one another by a bounded amount. They also assumed that operations simulated on one register do
not affect the way operations on other registers are simulated, and that each register is implemented in
the same way. Kosa [212] compared the costs of satisfying the different consistency conditions for implement-
ing objects that have operations satisfying certain algebraic properties, for example, operations that do not
commute with one another. Lower bounds are given for sequentially consistent implementations with per-
fectly synchronized process clocks, for linearizable implementations with clocks that run at the same rate but
are not synchronized, and for implementations that satisfy hybrid consistency using perfect clocks. Friedman
[144] gave lower bounds for implementations of RMW objects and queues satisfying weak consistency,
where, for each process P, there must be a linear order of all operations that gives the same responses and
agrees with the actual order of P’s operations. Lower bounds for the other consistency models mentioned
above follow as corollaries.

James and Singh [190] studied differences in the resilience of implementations of registers in an asyn-
chronous message-passing system, where the implementations must satisfy different consistency conditions.
For example, in a linearizable implementation, one cannot guarantee that either read or write operations
will terminate if half the processes may fail. However, for sequentially consistent implementations, one can
guarantee that either the read operations or the write operations (but not both) will be completed correctly
in the presence of any number of failures.

Higham and Kawash [182] studied the mutual exclusion problem using registers that satisfy Goodman’s
version of processor consistency [15]. This means that, given an execution, it is possible to find, for each
process P, a linear ordering of P’s reads and the writes of every process that preserves the order of any two
operations done by the same process and gives the same results for each of P’s reads. Furthermore, the order
of the writes to each register must be the same in all of the linear orderings. Higham and Kawash proved
that any mutual exclusion algorithm for n > 1 processes must use at least one (multi-writer) register and
n single-writer registers. A corollary is that (multi-writer) registers cannot be implemented from
single-writer registers in a model that only supports this consistency condition.

6.4 Fault Models

One can consider models where the communication mechanisms have varying degrees of reliability. Although
it is easier to build systems that have weaker reliability guarantees, they are much harder to programme.
This tension between ease of implementation and ease of use can be resolved if reliable versions of the
communication media can be implemented (efficiently) in software, in a system where the unreliable versions
are provided. This approach is not possible in some cases, for example, when a certain problem is solvable
using the reliable model but not using the unreliable one.

Unreliable communication channels cannot be used to implement reliable message delivery in many cases.
This can be formalized by considering the sequence transmission problem, also called the end-to-end
communication problem, where a sender has a sequence of messages that it wants to transmit to a
receiver. In the simplest case, the sender and receiver are connected by an unreliable channel, along which
both can send packets. If the channel crashes, no information can be transmitted. Packet loss, duplication
and reordering can all be tolerated using sequence numbers [289]. Unfortunately, sequence numbers cause
the length of packet headers to grow without bound. However, Wang and Zuck [294] showed that any
protocol tolerating both packet reordering and duplication requires unbounded sequence numbers. Afek,
Attiya, Fekete, Fischer, Lynch, Mansour, Wang and Zuck [7] proved that any protocol tolerating both
packet reordering and loss either requires unbounded sequence numbers or can cause the receiver to receive
an unbounded number of packets per message. When there is a fixed bound on the size of packet headers
and there is a fixed probability that any packet is delayed, Mansour and Schieber [238] proved lower bounds
on the number of packets that have to be sent as a function of the number of messages, matching known
upper bounds [7]. The alternating bit protocol [57, 215] uses a single-bit packet header: the least significant
bit of the sequence number. It tolerates both packet loss and duplication. Fekete and Lynch [132] proved
that there are no headerless protocols that tolerate packet losses, so the alternating bit protocol uses the
shortest possible headers. When the sender and the receiver can fail by losing the information stored in
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their local memories, Fekete, Lynch, Mansour and Spinelli [133] proved that no protocol can tolerate packet
losses, even for an easier version of the problem where the sequence of messages can be output by the receiver
in any order. For more general networks where packet losses can occur, Adler and Fich [5] proved lower
bounds on the size of packet headers necessary for sequence transmission when intermediate nodes do not
store information. Their lower bound is logarithmic in the number of simple paths between the sender and
receiver for many networks, including the complete graph, series-parallel graphs and fixed degree meshes,
matching the upper bounds of an existing algorithm [122]. All of these lower bounds are proved using
adversary arguments. More specifically, an adversary constructs two executions that are indistinguishable
to the receiver, but in which the sequence of messages to be transmitted is different.

It would be useful to automatically translate algorithms that tolerate crash failures into algorithms that
tolerate the same number of more serious faults. For synchronous message-passing systems, the natural
approach is to simulate the original algorithm in a round-by-round manner. Neiger and Toueg [256] gave a
round-by-round simulation of algorithms tolerating crash failures for models in which faulty processes can
fail to send some of their messages. The resulting algorithms use twice as many rounds as the original
algorithms. A similar simulation is possible for models in which f faulty processes can fail to send or receive
messages, provided n > 2f. They also proved that, for this model, a round-by-round simulation i1s impossible
if n < 2f and the simulation must simulate the faulty processes as well as the non-faulty ones. Bazzi and
Neiger [58] showed the simulation is possible if it is not necessary to simulate the internal states of the faulty
processes accurately, but the simulation must increase the time complexity by a factor of approximately
2f/(n — f). They did this by giving a lower bound on the complexity of solving a broadcast problem in a
way that tolerates omission faults. Finally, one can consider the problem of translating to a model where
arbitrary process faults can occur. Such a translation is impossible if n < 3f, since consensus can be solved
in the presence of f crash failures, but not when f arbitrary process faults can occur. (See Section 5.3.)
For n > 3f, Bazzi and Neiger [58] gave upper and lower bounds showing that the translation increases the
running time by a factor of two, three or four depending on the exact value of f.

Jayanti, Chandra, and Toueg [196] showed how a 1-faulty system of m + 2 simulators that communicate
using registers can simulate a 1-faulty system of two threads and m objects, in which one object may fail by
delaying its responses forever. The actions of each thread and object are simulated by a different simulator.
To simulate an operation on an object by a thread, the simulator of the thread writes the operation to
a single-writer single-reader register, which is read by the simulator of the object. The simulator
of the object simulates the operation in its local memory and returns its response to the simulator of the
thread via another single-writer single-reader register. Using this simulation, they prove that wait-
free consensus for two processes is unsolvable in an asynchronous shared-memory system in which one object
may fail. Specifically, if such an algorithm does exist and uses m objects, then m + 2 simulators can solve
1-resilient consensus using the simulation, by having the output value from any completed thread written
into a register, enabling all simulators to return that value. As discussed in Section 5.2, this is known to
be impossible.

Stomp and Taubenfeld [290] gave a space lower bound for implementing reliable test&set objects from
unreliable ones.

6.5 Other Separations Between Models

Chaudhuri and Welch [96] gave time and space lower bounds on the complexity of implementing multi-
bit registers from single-bit registers. Jayanti, Sethi and Lloyd [197] established lower bounds on the
space complexity of implementing regular N-bit single-writer single-reader registers from lineariz-
able single-bit single-writer single-reader registers. (A regular register is weaker than a lineariz-
able one: the value returned by a read operation can be any one of the values that is stored in the register
at some time between the beginning and end of the read [223].) Valois [293] studied lower bounds on the
number of read-modify-write objects needed to implement load-linked/store-conditional registers,
in which a process’s write operation succeeds in updating the state of the register only if the state has not
changed since that process’s last read operation. Schenk [281] showed that approximate agreement can be
solved faster using (multi-writer) registers than using single-writer registers. This result is described
in Section 11.2.

Merritt and Taubenfeld [243] studied the differences in the power of systems equipped with objects that
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satisly different fairness guarantees. Sakamoto [277] studied how the power of a system depends on the
knowledge that processes have, initially, about the network to which they belong, for example, its size.

7 Deciding When Problems are Solvable

Because there are so many different models of distributed systems, it would be useful to have a general
technique to determine whether a given model can solve a given problem, or implement a given data structure.
Unfortunately, this is not possible in general.

7.1 Undecidability

Jayanti and Toueg [200] proved that there is no algorithm that, given the description of an object type and
an initial state, determines whether it has a wait-free implementation from registers. They use a reduction
from the halting problem. Given a deterministic Turing machine M, they construct a type T(M) whose state
stores a configuration of M and a Boolean flag. The object is initially in a state corresponding to M ’s initial
configuration on a blank input tape and the Boolean flag is false. The type T(M) is equipped with a single
operation. The operation updates the configuration stored in the state by simulating one step of M and
returns 0 as long as M has not halted. The first operation applied to T(M) after the simulated machine M
has halted sets the flag to true and returns 1. Any operation on T(M) after the flag is set returns 2.

If M halts on a blank tape, then T(M) can be used to solve wait-free leader election (and hence consensus)
for two processes: each process repeatedly accesses the object until it returns a non-zero value and the process
that receives the value 1 becomes the leader. This means registers cannot implement T(M). However,
if M never halts on a blank input tape, then T(M) can be implemented using a register initialized to 0
and having each operation applied to T(M) replaced by a read of this register. It follows that one cannot
decide whether the type T(M) can be implemented from registers. A similar construction can be used to
show that determining the consensus number of a given finitely-specified type is undecidable.

Naor and Stockmeyer [253] showed that it is undecidable whether a task can be solved in a message-
passing system in constant time in bounded-degree networks, although it is decidable whether a problem
can be solved within a given number of steps.

Further undecidability results are described in Section 8.3.

7.2 Decidability of Consensus Numbers

For some natural classes of types, decision procedures for consensus numbers do exist. They follow from
theorems that characterize types in the class in terms of their consensus number.

One such class consists of the read-modify-write (RMW) object types [213], defined in Section 2. Ruppert
[274] gave a characterization of the RMW types that can solve wait-free consensus among n processes. The
characterization uses a restricted form of the consensus problem, called team consensus, where processes
are divided into two teams and all processes on the same team receive the same input. A RMW type T
has consensus number at least n if and only if there is an algorithm for solving team consensus among n
processes in which every process performs exactly one step on an object of type T. A valency argument
was used to show the necessity of this condition: by examining the behaviour of processes as they each take
their first step after the critical configuration of a consensus algorithm, one can obtain the required one-step
algorithm for team consensus. For finite types, this condition is decidable.

A similar characterization was also given for readable types [274], which allow processes to read the state
of the object without changing it. Together, these two classes of objects contain many of the most common
shared-memory primitives. These characterizations were used to prove unsolvability results for consensus
in multi-object models [273] (where processes can access more than one shared object in a single atomic
action), following the work of Afek, Merritt and Taubenfeld [11].

Recently, Herlihy and Ruppert [178] gave a characterization of deterministic one-shot types that can
solve wait-free consensus among n processes. A one-shot type is one that can be accessed only once by each
process. This characterization, too, 1s decidable for finite types. A partial characterization is also given for
non-deterministic types. (See Section 9.2 for more on this result.)
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A natural open question is to obtain an algorithm that decides the consensus number of any type with
finite state set. An interesting special case would be to consider non-deterministic RMW and readable
types. One might also be able to gain a better understanding of the relative power of different types by
characterizing the types that can solve other problems such as set consensus or implementing an object that
can be used repeatedly to solve different instances of consensus.

7.3 Characterizing Solvable Tasks

The preceding section describes attempts to characterize the models that can solve a particular important
problem. Another way of systematically studying solvability is to characterize the problems that can be
solved in a particular model.

In the asynchronous message-passing model, Biran, Moran and Zaks [61], building on earlier work by
Moran and Wolfstahl [249], gave a combinatorial characterization of the decision tasks that can be solved
1-resiliently in an asynchronous message-passing system with crash failures. This characterization, described
below, is in terms of the task’s vectors of input and output values (with one coordinate of the vectors
corresponding to each process).

Suppose there is a 1-resilient message-passing algorithm to solve a given task for n processes. Let G(¥)
denote the set consisting of all output vectors produced by the algorithm with input vector #. First, for
each input vector Z, Biran, Moran and Zaks consider the similarity graph with vertex set G(#) and edges
between any two vectors that differ in exactly one coordinate. They prove this similarity graph is connected
using a valency argument with slightly different definitions: a configuration C'is univalent if all executions
from C' lead to an output vector in the same connected component and multivalent otherwise. Secondly,
they show that, if I is any set of input vectors that differ only in coordinate j, then there is a set of output
vectors, one from G(Z) for each # € I, that differ only in coordinate j. This follows from consideration of
those executions in which process P; is non-faulty, but takes no steps until all other processes have produced
an output.

Conversely, suppose there is a task for n processes such that there is a set G(¥) of allowable output
vectors for each input vector #, which has the following two properties: the similarity graph with vertex
set G(Z) is connected, and if T is a set of input vectors that differ only in coordinate j, then there is a set
of output vectors, one from G(%) for each & € I, that differ only in coordinate j. Then Biran, Moran and
Zaks proved that there is a 1-resilient message-passing algorithm to solve the task. In later papers, they also
showed that determining whether a task has these properties is NP-hard for more than two processes [62],
and gave very precise bounds on the round complexity of solving any task that satisfies them [63].

Taubenfeld, Katz and Moran [291] gave a game-theoretic characterization of the tasks that can be solved
in a message-passing asynchronous system with f < n/2 crash failures that can only occur before processes
take any steps. They consider tasks with and without termination requirements. They define a two-player
game, where one player represents the algorithm and the other represents an adversarial scheduler. In each
round of the game, the adversary chooses the input values for some additional processes and the algorithm
must choose output values for those processes consistent with the output values chosen in previous rounds.
The algorithm loses if no such choice is possible. The task is solvable if and only if the player representing
the algorithm has a winning strategy in this game. The characterization is constructive: a winning strategy
for the game yields an algorithm for the task.

Chor and Moscovici [100] gave characterizations of tasks that can be solved in asynchronous models by
f-resilient randomized algorithms that never produce an incorrect output. Their characterizations apply
to message-passing systems for f < n/2 and to the shared-memory model where processes communicate
using registers. Although their results are not phrased in terms of game theory, the characterizations are
similar to those described in the previous paragraph. In fact, it follows from the characterizations in these
two papers that a task is solvable by a deterministic message-passing algorithm tolerating f crash failures
which occur before processes take any steps if and only if it is solvable by a randomized algorithm tolerating
f crash failures [291].

Attiya, Gorbach and Moran [40] gave a simple characterization of the tasks that are solvable in systems
where asynchronous processes have no names; run identical programmes, do not know how many processes
are in the system, and communicate using registers. The characterization (and the proof of its necessity)
1s similar in flavour to the results by Biran, Moran and Zaks, described above.
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In an interactive task, each process receives a sequence of input values and must produce the output
value corresponding to its current input value before being given its next input value. A task is specified
by giving the legal sequences of input and output vectors. Chor and Nelson [101] considered asynchronous
systems in which consensus is solvable and characterized the interactive tasks that can be solved in these
systems. Their conditions ensure, among other things, that the set of allowable outputs does not depend on
the input values which have not yet been received. Herlihy’s universality result [169] does not imply that
all interactive tasks can be solved, since the definition of an interactive task is quite general, and there are
some interactive tasks that cannot be viewed as a problem of implementing a linearizable object.

8 Topology

Perhaps the most interesting development in the theory of distributed computing during the past decade has
been the use of topological ideas to prove results about computability in fault-tolerant distributed systems.
The results described in this section include some powerful applications of topology in distributed computing,
particularly for proving impossibility results. Other connections between topology and distributed computing
have been discussed in the literature (see [152, 157, 204, 268]).

8.1 Simplicial Complexes

We begin with some brief definitions of ideas from the topology of simplicial complexes. Several papers
contain good introductions to the connections between distributed computing and simplicial complexes
[145, 173, 176].

A d-dimensional simplex (or d-simplex) is a set of d 4+ 1 independent vertices. Geometrically, the
vertices can be thought of as (affinely) independent points in Euclidean space. A 0-simplex is a single point,
a l-simplex is represented by a line segment, a 2-simplex is represented by a filled-in triangle, and so on. A
(simplicial) complex is a finite set of simplexes closed under inclusion and intersection. The dimension of
a complex is the maximum dimension of any simplex that appears in 1t. Examples of simplicial complexes
appear in Figure 4.

A vertex can be used to represent the internal state (or part of the internal state) of a single process. A
d-simplex whose vertices correspond to different processes represents compatible states of d 41 processes. As
an example, consider the binary consensus problem for three processes, P, and R. The possible starting
configurations of an algorithm for this problem are shown in Figure 4(a). Each vertex is labelled by a
process and the binary input value for that process. The complex consists of eight 2-simplexes arranged to
form a hollow octahedron. Each 2-simplex represents one of the eight possible sets of inputs to the three
processes. The corresponding output complex in Figure 4(b) shows the possible outputs for the binary
consensus problem. In the upper 2-simplex, all processes output value 0, while in the lower 2-simplex, all
processes output value 1. Not all output simplexes are legal for every input simplex: by the validity condition
of consensus, if all processes start with the input value 0, then only the upper output simplex is legal.

More generally, any decision task for n processes can be modelled in a similar way. The input complex
I contains one (n — 1)-simplex for each possible input vector. The output complex O contains one simplex
for each possible output vector. A map A that takes each simplex S of T to a set of simplexes in O (labelled
by the same processes) defines which output vectors are legal for each input vector.

Simplicial complexes are used as a means of describing whether processes can distinguish different con-
figurations from one another. In that sense, they are similar to, though more general than, the similarity
graphs of Biran, Moran and Zaks [61] discussed in Section 7.3. Nodes in those graphs correspond to (n —1)-
simplexes. The situation where two output vectors differ in only one coordinate, which is modelled by an
edge in a similarity graph, is represented in the complex by having the two simplexes share n — 1 common
vertices. Complexes can capture more information about the degree to which two configurations are similar:
two simplexes that have d common vertices are indistinguishable to exactly d processes. This fact makes
complexes useful for studying f-resilient algorithms for any f, whereas similarity graphs are useful primarily
when f = 1.

Consider a wait-free algorithm for n processes that solves some task. One can define a corresponding
(n — 1)-dimensional protocol complex. FEach vertex is labelled by a process and the state of that process

29



—

Figure 4: (a) Input complex and (b) output complex for three-process binary consensus

when it terminates in some execution. Given any input vector and any schedule for the processes (as well as
a description of the results of any coin tosses or non-deterministic choices), the final state of every process
is determined. This final configuration is represented by a simplex in the protocol complex.

Each process must decide on an output value for its task based solely on its internal state information at
the end of the algorithm. This defines a decision map § that takes each vertex of the protocol complex to a
vertex of the output complex (labelled by the same process). Let S be a simplex of the protocol complex.
Since S represents a configuration of compatible final states for some set of processes, §(.5) must be a simplex
of the output complex, representing a compatible set of outputs for those processes. Furthermore, § must
“respect” the task specification: If S represents a configuration reached by some execution whose inputs
come from the simplex I of the input complex, then §(S) must be in A(7).

The basic method of proving impossibility results using the topological approach can now be summarized.
One uses information about the model to prove that any protocol complex has some topological property
which is preserved by the map . The specification of the task is used to show that the image of § cannot
have the property, implying that no such map § can exist.

For example, it can be shown that, in the asynchronous model where processes use registers to com-
municate, any protocol complex (that begins from a connected input complex) is connected [179]. The
connectivity property is preserved by any map §, since § maps simplexes to simplexes. As shown in Figure 4,
the input complex for three-process binary consensus is connected. The image of § must include vertices
in both triangles of the output complex, since the task specification requires that, for any run where all
processes get the same input value v, all processes output v. Thus the image of § is disconnected, and hence
wait-free three-process binary consensus is impossible in this model.

8.2 Set Consensus Results

Much of the inspiration for the early topological impossibility results came from Chaudhuri [92], who defined
the k-set consensus problem. She observed that Sperner’s Lemma [287], a tool often used in topology, could
be applied to study the task. In papers that first appeared at STOC in 1993, Borowsky and Gafni [70], Herlihy
and Shavit [179] and Saks and Zaharoglou [279] independently proved, using versions of Sperner’s Lemma,
that k& + 1 processes cannot solve wait-free k-set consensus in an asynchronous model using registers. In
addition to proving the unsolvability of set consensus, these papers developed interesting techniques that
led to proofs of other results showing connections between distributed computing and topology. This is a
great example of the important role that lower bounds for a well-chosen problem can play in opening up new
areas of research. Similar tools have also been used to provide lower bounds for the set consensus problem
in a synchronous message-passing model [93]. Attiya reproved the impossibility of set consensus using more
elementary tools [35].
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Borowsky and Gafni’s impossibility proof [70] used the protocol complex for k + 1 processes, in the case
where each process uses its process name as its input to the set consensus problem. They introduced the
immediate snapshot model. In this model, processes communicate using a single-writer snapshot
object. Although processes run asynchronously, there are restrictions placed on the adversarial scheduler.
They showed that this model can be simulated by the asynchronous model where processes communicate via
registers; the opposite simulation is trivial. They restrict attention to full-information algorithms, where
each process repeatedly scans the snapshot object and updates its element by appending the result of the
scan. With these simplifications of the model, Borowsky and Gafni showed that protocol complexes have a
very regular form. This allowed them to apply a variant of Sperner’s Lemma to prove that, for some simplex
of any protocol complex, each of the k& + 1 processes outputs a different value. Using the BG simulation
technique, described in Section 6.1, they extended the unsolvability result for wait-free k-set consensus to
the f-resilient setting, for f > k.

The impossibility proof by Saks and Zaharoglou [279], which uses point-set topology, has a different
flavour from the other results described in this section. They use a simplified model similar to that of
Borowsky and Gafni, and consider the space of all (finite and infinite) schedules. They defined a set of
schedules to be open if they can be recognized by some algorithm (i.e. there is an algorithm where at least
one process eventually writes “accept” if and only if the execution is following a schedule in the set). They
proved that this collection of open sets defines a topology on the space of all schedules. Now, suppose a k-set
consensus algorithm exists for k+ 1 processes (where each process has its name as its input). Then the set D,
of schedules in which some process outputs the value ¢ is an open set, and it does not contain any schedule
where ¢ does not take any steps. These facts can be used, together with a version of Sperner’s Lemma,
to show that there 1s a schedule contained in N;D;. In this schedule, the processes output & + 1 different
values, which contradicts the correctness of the algorithm. An interesting direction for future research is to
investigate the structure of this topological space of schedules. Perhaps theorems from point-set topology
could then be applied to prove other results in distributed computing.

8.3 The Asynchronous Computability Theorem

The third paper that proved impossibility of k-set consensus has since been developed into a more general
result that characterizes the tasks that can be solved in a wait-free manner using registers. Herlihy and
Shavit [179] proved that a task is solvable if and only if it is possible to subdivide the simplexes of the input
complex into smaller simplexes (with any newly created vertices being appropriately labelled by processes)
that can then be mapped to the output complex. This mapping pu must satisfy properties similar to those
of a decision map §. It must preserve the process labels on the vertices, map simplexes to simplexes, and it
must respect the task specification: if a simplex I of the input complex is subdivided into smaller simplexes,
the smaller ones must all be mapped to simplexes in A(7T). This characterization is called the Asynchronous
Computability Theorem. It reduces the question of whether a task is solvable to a question about properties
of the complexes defined by the task specification. A key step in proving the necessity of the condition is a
valency argument that shows the protocol complexes in this model contain no holes. Although the condition
used in the characterization is not decidable (see below), the theorem provides insight into the set of solvable
tasks and can be used to study particular tasks. For example, to prove the impossibility of set consensus,
Herlihy and Shavit show (using Sperner’s Lemma) that no mapping p can exist for the set consensus task.
The paper also gives results on the impossibility of renaming.

Gafni and Koutsoupias [147] used the Asynchronous Computability Theorem to show that it is undecid-
able whether a given task has a wait-free solution using registers, even for finite three-process tasks. They
use a reduction from a problem known to be undecidable: loop contractibility, where one must decide
whether or not a loop on a 2-dimensional simplicial complex can be contracted, like an elastic band, to a
point while staying on the surface of the complex. Suppose the input complex (for three processes) is simply
a 2-simplex. Given a loop on a 2-dimensional output complex, they define a task that requires the boundary
of the input simplex to be mapped to the loop by the function g of the Asynchronous Computability The-
orem. This map p can be extended to the whole (subdivided) input simplex if and only if the loop can be
contracted. This undecidability result contrasts with Biran, Moran and Zaks’s characterization of tasks that
can be solved I-resiliently, which is decidable for finite tasks [61] (see Section 7.3). Herlihy and Rajsbaum
[174] extended the undecidability result to other models.
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Havlicek [167] used the Asynchronous Computability Theorem to identify a condition that is necessary
for a task to have a wait-free solution using registers. This condition is computable for finite tasks.

Several researchers have presented characterizations similar to the Asynchronous Computability Theorem.
These alternative views give further insight into the model, and the proof techniques are quite different in
some cases. Herlihy and Rajsbaum [172] showed how to prove impossibility results in distributed computing
using powerful ideas developed in the homology theory of simplicial complexes. They discussed models where
the shared memory consists of registers, or of registers and set consensus objects. They reproved
impossibility results for the set consensus problem, and gave some new results for the renaming problem.
Attiya and Rajsbaum [44] used purely combinatorial arguments to develop a characterization of tasks solvable
using registers, similar to the Asynchronous Computability Theorem. In particular, they showed that the
protocol complexes for a simplified model have a very regular form.

Borowsky and Gafni [72] gave an elegant proof of a version of the Asynchronous Computability Theorem
without using topological arguments. They introduced the iterated immediate snapshot model and
prove that it is capable of solving the same set of tasks as the ordinary register model. They proved the
equivalence of the models by giving algorithms to simulate one model in the other [71, 72]. The protocol
complex of a (full-information) algorithm in their simplified model is a well-understood subdivision of the
input complex. Thus, a problem is solvable in either model if and only if there is a decision map from a
subdivision of this form to the output complex that respects the task specification.

Hoest and Shavit [185] used topological techniques to determine the time complexity of approximate
agreement in a generalization of Borowsky and Gafni’s iterated immediate snapshot model. Essentially,
they related the time complexity of the task to the degree to which the input complex must be subdivided
before one can map it to the output complex. For this problem, the number of subdivisions required can
be computed very precisely. Although, in terms of computability, their model is equivalent to the standard
asynchronous model containing only registers, their complexity results do not carry over. Much work
remains to find additional ways of applying topology to prove complexity lower bounds.

8.4 Solving Tasks With Other Types

Herlihy and Rajsbaum [171] undertook a detailed investigation of the topology of set consensus. They gave
conditions about the connectivity of protocol complexes that are necessary for the solution of set consensus.
They also described connectivity properties of the protocol complexes in a model where the primitive objects
are set consensus objects and registers. They later used this work to give a computable characterization
of tasks that can be solved f-resiliently in various models that allow processes to access consensus or set
consensus objects [174]. The characterization uses topological tools but also builds on the characterization
given by Biran, Moran and Zaks (see Section 7.3) for systems using only registers.

Herlihy and Rajsbaum [175] also considered an interesting class of decision tasks, called loop agreement
tasks [174]. Using topological properties of the output complexes; they describe when one loop agreement
task can be solved using registers and a single copy of an object that solves a different loop agreement
task.

Herlihy, Rajsbaum and Tuttle [177] used the topological approach to give unified proofs of impossibility
results for set consensus in several message-passing models with varying degrees of synchrony. The key idea
in this paper is that protocol complexes for several of the commonly studied models can be represented as
unions of one type of simple building block.

A desirable goal is a better understanding of the structure of protocol complexes for different models. The
protocol complexes tend to be quite complicated, but to obtain impossibility results, 1t 1s often sufficient to
prove that they have certain properties, without fully describing their form. Restrictions on the adversarial
scheduler can also simplify the structure of protocol complexes, making them easier to study while simulta-
neously strengthening any lower bounds obtained. Most of the research has focused on one-shot objects or
tasks; extensions of these techniques to long-lived objects is a subject of current research.

9 Robustness

The consensus number of an object type provides information about the power of a system that has objects
of that type and registers. However, the classification of individual types into the consensus hierarchy
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does not necessarily provide complete information about the power of a system that contains several different
types of objects: it is possible that a collection of weak types can become strong when used in combination.
The hierarchy is robust (with respect to a class of object types) if it is impossible to obtain a wait-free
n-process implementation of a type at level n of the hierarchy from a finite set of types that are each at
lower levels. Robustness is a desirable property since it allows one to study the synchronization power of a
system equipped with several types by reasoning about the power of each of the types individually.

This issue of robustness was first addressed by Jayanti [192, 194]. His impossibility results, discussed in
Section 9.1, were instrumental in clarifying the definition of consensus number. Jayanti [191] provides a good
description of early work on the robustness question. Work on this topic has produced some very interesting
proofs, bringing together ideas discussed in Sections b, 6, 7 and 8.

9.1 Non-Robustness Results

A variety of non-robustness results have been proved during the past decade. Typically, one defines a pair
of objects that are tailor-made to work together to solve consensus easily. To complete the proof, one must
show that each of the types, when used by themselves, cannot solve consensus.

Recall that the definition of the consensus number of a type T is the maximum number of processes that
can solve wait-free consensus using any number of objects of type T and registers. Some of the early
results on the robustness question showed that the hierarchy is not robust under slightly different definitions
of consensus number. Cori and Moran [107] and Kleinberg and Mullainathan [208] showed the hierarchy
is not robust if only one object of type T (and no registers) can be used, Jayanti proved non-robustness
results for the case where one object of type T and any number of registers can be used [192], and for the
case where any number of objects of type T (but no registers) can be used [194]. These results are, in
part, responsible for the choice of the now-standard definition of consensus number.

One of Jayanti’s proofs [192] used an interesting simulation technique. He defined a simple object type,
called weak-sticky. It is possible to solve wait-free consensus among n processes using registers and n—1
weak-sticky objects, but it is not possible using fewer weak-sticky objects. He proved this by giving an
implementation of weak-sticky from registers that is not wait-free but has the property that at most
one operation on the object will fail to terminate. We illustrate his lower bound proof for the case where
n = 3. Suppose there is a wait-free consensus algorithm for three processes that uses a single weak-sticky
object and registers. One could replace the weak-sticky object by the implementation from registers.
Then, if at most one process can fail and at most one process’s operation on the weak-sticky object fails
to terminate, at least one non-faulty process can complete the algorithm and write its output in shared
memory. All non-faulty processes can then return that value. This yields a 1-resilient consensus algorithm
for three processes using only registers, which is impossible (see Section 5.2). The use of “imperfect”
implementations to prove impossibility results is also discussed in Section 6.1.

The robustness question is somewhat more complicated for the standard definition of consensus numbers:
although the hierarchy is not robust for all object types, the robustness property does hold for some classes
of objects.

A number of objects have been constructed that violate the robustness property [85, 86, 245, 263]. The
objects used in these constructions allow the response to an operation to depend on the identity of the
process that invoked the operation.

Schenk [282; 283] proved that the consensus hierarchy is not robust by considering a type with unbounded
non-determinism, i.e. an operation may cause an object to choose non-deterministically from an infinite
number of possible state transitions. In this case, he said an algorithm is wait-free if the number of steps
taken by a process must be bounded, where the bound may depend on the input to the algorithm. For objects
with bounded non-determinism, this definition of wait-freedom 1s equivalent to the usual requirement that
every execution is finite. Lo and Hadzilacos [227] improved Schenk’s result by showing that the hierarchy is
not robust even when restricted to objects with bounded non-determinism.

Schenk defined two types, called lock and key. The key object is a simple non-deterministic object
that can easily be used to solve the weak agreement problem: All processes must agree on a common
output value and, if all processes have the same input value, the output value must differ from it. He used a
combinatorial argument to show that, for any consensus algorithm using keys and registers, there exists
a fixed output value for each key which is consistent with every execution. This allows all the key objects
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to be eliminated, which is impossible, unless cons(key) = 1.

The lock object was specially constructed to provide processes with a solution to the consensus problem
if and only if processes can “convince” the object that they can solve weak agreement. The lock object non-
deterministically chooses an instance of the weak agreement problem and gives this instance to the processes
as a challenge. It then reveals the solution to the original consensus problem if and only if processes provide
the lock object with a correct solution to the challenge. (The idea of defining an object that only provides
useful results to operations when it is accessed properly, in combination with another type of object, was
originated by Jayanti [194] and is common to many of the non-robustness proofs.) If processes have access
to both a lock and key object, they can use the key to solve the lock’s challenge and unlock the solution to
consensus. Thus, cons({lock,key}) = oo. Schenk used a type of valency argument developed by Lo [226],
to show that weak agreement and, hence, consensus for two processes cannot be solved using only locks
and registers.

9.2 Robustness Results

Although the consensus hierarchy is not robust in general, the practical importance of the non-robustness
results is unclear, since the objects used in the proofs are rather unusual. The hierarchy has been shown to
be robust for some classes of objects that include many of the objects commonly considered in the literature.

A consensus object is an object that is specifically designed to solve consensus. It supports one operation,
propose, which has one argument (an input value to the consensus problem being solved). All propose
operations to the same consensus object in an execution return the same value (the output value), which
must be one of the values proposed. An m-consensus object is a restricted form that allows only m propose
operations to be performed. Chandra, Hadzilacos, Jayanti and Toueg [86] showed that m-consensus objects
cannot be combined with any objects that have consensus number n to solve consensus among more than
max(m, n) processes.

Ruppert [274] showed that the consensus hierarchy is robust for the class of all RMW and readable types.
The proof uses the characterization of the types that can be used to solve consensus for n processes, described
in Section 7.2. It is easy to show, using a valency argument, that any consensus algorithm for n processes
built from such objects must use one object whose type satisfies the conditions of the characterization.
Therefore, n-process consensus can be solved using only that type and registers.

Herlihy and Ruppert [178] used the topological approach to characterize the one-shot types that can
be combined with other types to solve consensus. (A one-shot object is one that can be accessed at most
once by each process.) The characterization applies to non-deterministic types, provided the number of
possible responses to any invocation is finite. They defined a kind of connectivity property, called k-solo-
connectivity, of the simplicial complexes associated with the invocations that can be invoked on an object
of type T and the responses that the object can return. They showed that there is a type B such that
cons(B) < k, but cons({T,B}) > k if and only if T is not k-solo-connected. The key tool in showing the
“only if” direction of the proof is a simulation technique that builds on the BG simulation (see Section 6.1).
Assuming T is k-solo-connected, the simulation allows a k-process consensus algorithm built from objects
of types T, B and register to be simulated using only objects of type B and registers. This means that
if cons({T,B}) > k then cons(B) > k too. The other direction is a generalization of the non-robustness
results [227, 283] described above. It follows from Herlihy and Ruppert’s characterization that the class of
deterministic one-shot types is robust.

The robustness result for readable and RMW types used two important properties: such objects are
deterministic and their state information can be accessed in some simple way by each process. The robustness
result for one-shot types used a similar property: when accessing a one-shot object, a process gets, in a
single operation, all of the state information that it will ever be able to obtain directly from the object. Can
robustness results be extended to other natural classes of types that do not have these kinds of properties?
By finding the line that separates those types that can be combined with others to violate robustness from
those that cannot, we gain insight into the way that types behave when used together in complex systems.
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10 Space Complexity Lower Bounds

Some lower bounds on space complexity are concerned with the number of shared objects required to solve
a problem. Others tell us how large the shared objects must be.

One early space lower bound is due to Rabin [265]. He considered choice coordination among two choices,
each of which is identified with one read-modify-write object, and proved that no deterministic asynchronous
algorithm can solve this problem unless the objects have at least /n/2 different possible states. His proof
uses combinatorial and graph-theoretic techniques to construct a bad execution.

Burns, Jackson, Lynch, Fischer, and Peterson [79] considered deterministic solutions to the mutual
exclusion problem using one shared object. They proved lower bounds on the size of the object for different
fairness conditions. For algorithms with lockout freedom, the object must have Q(y/n) different states. A
stronger condition, bounded bypass, requires n different states. Since they gave an algorithm with lockout
freedom that uses n/240(1) states, this shows that bounded bypass is a strictly stronger condition. They also
gave algorithms with bypass bound 2 that use n+O(1) states. The lower bound shows that these algorithms
for mutual exclusion with bounded bypass are optimal to within a small additive constant. However, for
lockout freedom, matching upper and lower bounds for space complexity are not known.

The proof of the lower bound for bounded bypass uses the pigeonhole principle: if the object has an
insufficient number of states, there are two configurations in which different sets of processes want to access
the resource, yet the configurations are indistinguishable to the processes in one set. Then it is possible to
construct an execution from one of these configurations in which processes from this set enter the critical
section many times, but no other processes do. Hence, from the other configuration, there is an analogous
execution in which some other process that wants the resource is forced to wait. Versions of this proof appear
in both [234, Theorem 10.41] and [47, Theorem 4.3]. Similar ideas can be used to prove the €(/n) lower
bound for lockout freedom [234, Theorem 10.44].

Burns and Lynch [77, 234] introduced covering arguments to prove that any mutual exclusion algorithm
for n > 2 processes that communicate using registers uses at least n registers, no matter how large
the registers are. First they consider the situation where some process P begins to want the shared
resource and is given steps exclusively until it obtains the resource. They show that, during this sequence
of steps, PP must write to some register not covered by any other process; otherwise they can construct
an execution in which P and some other process have the shared resource simultaneously. Next, they show
how to construct executions which result in configurations that have successively more covered registers,
yet are indistinguishable (to the other processes) from configurations in which no process has or wants the
shared resource. Their lower bound is optimal, matching the number of registers used by known mutual
exclusion algorithms [220, 222].

Fich, Herlihy, and Shavit [136] considered a very weak termination condition, non-deterministic solo
termination: at any point, if all but one process fails, there is an execution in which the remaining
process terminates. In particular, wait-free and randomized wait-free algorithms satisfy non-deterministic
solo termination. They proved that §(y/n) registers are needed by any asynchronous algorithm for n-
process consensus that satisfies this property. They began by considering the case where processes are
anonymous. They showed that, if the number of processes is sufficiently large compared to the number of
registers, it is possible, using clones, to construct an execution in which both 0 and 1 are output. A clone
of a process P starts in the same initial state as P and runs in lock step with P until it covers a certain
register that P writes to. In their proof, they constructed multivalent configurations from which there is an
execution by one set of processes that output 0 and an execution by a disjoint set of processes that output 1.
These executions both begin by having processes write to the registers they cover. If the processes in one
of these executions only write to the registers covered by the other set of processes, these executions can be
combined to obtain an execution in which some processes output 0 and some output 1. Otherwise, one can
obtain another such multivalent configuration in which more registers are covered. For non-anonymous
processes, this idea 1s combined with a new method of cutting and combining executions. Because consensus
1s a decision task, the proof is more difficult than for mutual exclusion, where processes can repeatedly request
exclusive access to the critical section. Although there are algorithms for randomized wait-free consensus
among n processes that use O(n) registers of bounded size [28], it remains open whether this is optimal.

Fich, Herlihy, and Shavit extended their lower bound to algorithms using historyless objects, objects
whose state depends only on the last non-trivial operation applied to them. (Some examples of historyless
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types are register, swap, and test&set.) They showed that €(/n) historyless objects are necessary for
randomized wait-free implementations of objects such as compare&swap, fetch&increment, and bounded
counters in an n-process system. Jayanti, Tan and Toueg [198] used a simpler covering argument to prove
that n — 1 historyless objects are necessary for randomized wait-free implementations of objects such as
compare&swap, fetch&increment, and bounded counters. In addition to historyless objects, their lower
bound applies to resettable consensus objects. Such an object can be used to repeatedly solve different
instances of consensus through the use of a reset operation that puts the object back to its initial state.

Attiya, Gorbach and Moran [40] used the covering technique to prove lower bounds in a fault-free,
asynchronous, anonymous system, where processes communicate via registers. They showed that Q(logn)
shared registers (and Q(log n) rounds) are required for n processes to solve consensus in this model. Moran,
Taubenfeld and Yadin [247] also used a covering argument to prove that any wait-free implementation of
amod m counter for n processes from objects with only two states must use at least min(”zi, mT-I—l) such
objects.

The non-robustness proofs of Kleinberg and Mullainathan [208] and of Jayanti [192], discussed in Section
9.1, include space lower bounds which show that wait-free consensus is impossible using a small number of
objects of certain types. Kleinberg and Mullainathan [208] also considered objects which can be read and
pairs of which can have their contents swapped. Using graph theory together with some indistinguishability
arguments, they proved that to solve consensus among n processes using these objects and registers, at
least n + 1 of these objects are necessary.

Saks, Zaharoglou and Cori [278] studied the problem of implementing a list that contains one element
for each process and supports two operations: report, which returns the entire list, and move-to-front, which
moves the element belonging to the process to the front of the list. Such a list might be used for scheduling
decisions based on the order in which the processes started executing their current jobs. They proved that
if the only objects available for the implementation are one single-writer multi-reader register per
process, then the average size of each is Q(log2 n) bits. The proof makes use of the fact that, in a system
of n processes, if the element belonging to some process is at the end of the list and that process takes no
steps, the algorithm behaves like a solution to the problem for n — 1 processes. This observation leads to a
recurrence that bounds the space needed by n processes in terms of the space needed by n—1 processes. They
also show that there is a matching upper bound when no operations are concurrent with any move-to-front
operation.

Much work remains to obtain space complexity lower bounds for other problems and in models with more
powerful objects.

11 Time Complexity Lower Bounds

Time complexity is usually measured by the number of rounds required for a system to solve a problem, or
by the number of steps an individual process must take. This section surveys time complexity lower bounds
for a variety of problems.

11.1 Agreement Problems

The first significant lower bound on time complexity for a distributed problem was proved for terminating
reliable broadcast in a synchronous message-passing model where up to f arbitrary process faults can occur.
Using a chain argument, Fischer and Lynch [139] showed that at least f+ 1 rounds are required. The bound
also holds in models where processes can use cryptographic primitives to authenticate messages [110, 115],
although the chain arguments are more complicated. In fact, Dolev, Reischuk, and Strong [114] proved that
every algorithm has executions with at least min(b+ 2, f 4+ 1) rounds in which b < f arbitrary process faults
actually occur.

When only crash failures occur, Hadzilacos [159] and Lamport and Fischer [218] were able to prove that
min(f + 1,n — 1) rounds are necessary for solving f-resilient terminating reliable broadcast, even if at most
one process can crash in each round. A version of the proof, which uses a chain argument, is given in [234,
Section 6.7] and [47, Section 5.1.4] to prove that min(f + 1,n — 1) rounds are needed for consensus in a
synchronous message-passing system with f crash failures. The chain is constructed implicitly and is very
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long. Babaoglu, Stephenson and Drummond [54] proved similar lower bounds for solving terminating reliable
broadcast using broadcast primitives that are prone to faults.

Aguilera and Toueg [14] and Moses and Rajsbaum [250] used valency arguments to obtain considerably
simpler proofs of the lower bound on the number of rounds for consensus. At each round, to ensure multiva-
lence, the adversary causes one process to crash. This can continue only so long as there remains a process
to crash.

Dolev, Reischuk, and Strong [114] used a chain argument to prove that, for simultaneous terminating
reliable broadcast, if up to f arbitrary process faults can occur, then at least f + 1 rounds are necessary,
even for the execution in which no faults occur. Using a knowledge-based approach, Dwork and Moses [126]
studied simultaneous consensus in the synchronous message-passing model with crash failures. They gave
matching upper and lower bounds on the number of rounds needed to achieve simultaneous consensus in an
execution in terms of the pattern of failures that occur in the execution. Their lower bound applies even to
the weak version of the problem, where validity is required only when no faults occur. Interestingly, they
showed that if validity is replaced by a non-triviality condition that requires that there is an execution in
which processes decide 0 and an execution in which processes decide 1, the problem can be solved in two
rounds. However, this algorithm does not extend to the stronger model in which at most one process can
crash in each round.

Moses and Tuttle [251] extended Dwork and Moses’ bounds on the number of rounds for obtaining
simultaneous consensus to a large class of related problems and to models in which faulty processes can fail
to send or receive some of their messages. When all faulty processes only fail to send certain messages or
when all faulty processes only fail to receive certain messages, they showed that processes can determine
when to decide using a polynomial amount of local computation. However, if faulty processes can fail to send
some messages and fail to receive some messages, they proved that, unless P = N P, there is no algorithm
for these problems in which processes can decide at the earliest possible round in every execution using only
a polynomial amount of local computation.

Inoue, Moriya, Masuzawa, and Fujiwara [187] considered the problem of clock synchronization in syn-
chronous shared-memory systems with single-writer registers. Any number of processes may fail to
take a step in a round (and so do not advance their clocks). Their requirement is that those processes which
have been non-faulty for sufficiently many rounds must agree exactly on the value of their clocks. They
proved that at least n — 1 rounds are required from the time a process last failed to take a step until its clock
value is guaranteed to agree. To do so, they considered two executions that are indistinguishable to some
process for n — 2 rounds, but in which that process must have different clock values to be correct. They
also gave an algorithm in which all processes that have taken steps for Q(n) consecutive rounds will agree
on their clock values.

Attiya, Dwork, Lynch, and Stockmeyer [38] used valency arguments to give lower bounds on the time
required to solve consensus in a partially synchronous message-passing model with crash failures, where
messages are delivered within time d and there is a bound, r, on the ratio of process speeds. They proved that
the worst-case running time of an f-resilient consensus algorithm is at least (r+ f—1)d. Attiya and Djerassi-
Shintel [37] used similar techniques to prove an Q(T’;d_’}) lower bound for the consensus problem in a partially
synchronous model where up to f processes experience timing faults: they continue to execute the algorithm,
but may not satisfy the timing assumptions of the model. They also proved lower bounds for set consensus
and renaming in this model. Alur, Attiya and Taubenfeld [18] considered wait-free consensus in partially
synchronous models where processes can experience crash failures and communicate using registers. They
proved that each process requires @(%gg%) time, where U is an (unknown) upper bound on the time
between steps of a process. To do this, they carefully assign times, consistent with the parameter U, to the
steps of any sufficiently long asynchronous execution.

Afek and Stupp [12] obtained complexity results from computability results by using a simulation. They
considered the problem of electing a leader in a system of n processes using registers and one compare&swap
object that can store one of v different values, and proved that some process must take Q(log, n) steps.
Given such a leader election algorithm in which no process ever takes more than d steps, they showed how
|n/(d+ 1)| simulators can simulate the n threads, using only registers, and thereby solve (v — 1)%set
consensus. In the simulation, different simulators may actually simulate different executions of the leader
election algorithm. However, the number of different simulated executions is at most (v — 1), so the
simulators will output at most (v — 1)? different values. The lower bound on d follows from the fact that
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registers alone cannot solve set consensus when (v — 1)% < [n/(d + 1)] (see Section 8.2).

11.2 Approximate Agreement

Attiya, Lynch, and Shavit [42] proved that any wait-free approximate agreement algorithm with convergence
ratio at most 1/2, for n processes that communicate using single-writer registers (of unbounded size),
has a failure-free execution in which no process decides the value of its output before round log, n. They
do this by obtaining an upper bound on the number of processes that can influence the state of a particular
process during the first ¢ rounds of a round-robin execution. Then they show that if a process P is not
influenced by another process P’, it cannot decide; otherwise, there is another execution which is indistin-
guishable to P in which P’ runs to completion before the other processes begin and outputs an incompatible
value.

For wait-free two-process approximate agreement using registers, Herlihy [168] used a valency argument
to prove that a process has to take Q(log %) steps in the worst case, where p is the convergence ratio. Schenk
[281] proved that any algorithm for this problem using objects of consensus number one must have a chain
of at least 1/p different final configurations, where adjacent configurations are indistinguishable to one of
the processes. From this result, he used a combinatorial argument to obtain a tradeoff between the number
of steps taken by a single process and the number of rounds in the execution: If the worst-case number
of steps is at most k, then the worst-case number of rounds is at least Q(logs, %) For single-writer
registers, this tradeofl was first obtained by Attiya, Lynch, and Shavit [42]. Schenk used a different
combinatorial argument to prove that any wait-free approximate agreement algorithm for n processes that
uses b-bit registers must take Q((log %)/b) rounds and use Q((log %)/b) registers. The proof considers
the amount of information a process needs to determine its output value after all the other processes have
decided.

Schenk also gave an algorithm using 1-bit registers that matches his lower bounds for b = 1. Together
with Attiya, Lynch, and Shavit’s log, n lower bound for single-writer registers, this implies that any
wait-free implementation of registers from single-writer registers has round complexity Q(logn).
However, there is a large gap between this lower bound and the best known implementation [164]. It also
remains open whether approximate agreement can be solved in fewer rounds using larger registers.

As described in Section 8.3, Hoest and Shavit [185] used the topological approach to study the complexity
of solving approximate agreement in the iterated immediate snapshot model.

Dolev, Lynch, Pinter, Stark and Weihl [119] considered approximate agreement in message-passing mod-
els with f arbitrary process faults. Specifically, they obtained lower bounds for the convergence ratio of
synchronous one-round algorithms and asynchronous single-phase algorithms, in which processes share their
input values and then, based on this information, choose their output values. Fekete [130] gave lower bounds
on the convergence ratio of any synchronous algorithm, as a function of the number of rounds, for crash fail-
ures and arbitrary process faults. Fekete [131] also gave a lower bound of [(n — f)/f]™" on the convergence
ratio for r-round algorithms in an asynchronous message-passing model where up to f faulty processes could
omit sending some of their messages. Note, if f > n/2, this says that the convergence ratio is at least 1,
implying that approximate agreement is impossible. Plunkett and Fekete [264] gave a lower bound on the
convergence ratio for single-round algorithms that tolerate a variety of faults.

11.3 The Complexity of Universal Constructions

Herlihy’s universality result [169], discussed in Section 3, and subsequent papers [8, 90, 170, 200], provide
universal constructions, which automatically give a wait-free distributed implementation of any object
type, using sufficiently powerful shared-memory primitives. Jayanti [193, 195] has studied some of the
limitations of this approach to providing implementations. He showed that a process that performs a wait-
free simulation of an operation using a universal construction requires £(n) steps of local computation in
the worst case, where n is the number of processes [193]. This bound does not depend on the nature of the
communication between processes, and even holds in an amortized setting. The key idea in the proof is the
design of an object type that conspires with the scheduler to reveal as little information about the behaviour
of the object as possible. This ensures that each process, simulating a single operation op, must do some
computation for each simulated operation that precedes op. The bound is tight [169].
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Jayanti [195] also proved a lower bound of Q(logn) on the number of shared-memory operations that must
be performed by a universal construction in the worst case. This bound applies to a shared-memory model
that has quite powerful primitive types of objects and holds (for expected complexity) even if randomization
is permitted. Jayanti proved the bound by considering the wakeup problem and studying how information
propagates through the system. Roughly speaking, each shared-memory operation at most doubles the size
of the the set of processes that are known (by some process or memory location) to have woken up. This
lower bound is also tight [8].

11.4 Counting

In the counting problem, processes atomically increment a counter and get the current value of the counter
in response. Counting is useful for sharing resources, implementing timestamps, and other applications.

Moran and Taubenfeld [246] studied counting modulo m in the context of asynchronous systems equipped
with single-bit read-modify-write objects. Even for a very weak correctness requirement, they show that m
must be a divisor of 27 where 7" is the worst-case running time of the increment operation. It follows that
the running time is at least log, m, and also that the problem is impossible if m is not a power of two. The
key idea of the proof is to create executions where, for some ¢t < 1', 2¢ processes are hidden: the execution
cannot be distinguished by the other processes from one where the hidden processes take no steps. Whenever
one hidden process flips a bit, another process flips it back before any non-hidden process can see it. If
processes are to return the correct answer, it must be that m divides 2, so that processes do not need to
distinguish the two runs. Similar ideas were used by Moran, Taubenfeld and Yadin [247] to obtain space
lower bounds (see Section 10).

Herlihy, Shavit and Waarts [180] proved that the number of steps to execute increment is €(n/c), where
¢ 1s the maximum number of processes that access any particular object in any execution of the algorithm.
They looked at the sequences of objects accessed by different processes in certain runs and showed that these
sequences must contain common objects to avoid having both processes return the same value. It follows

n—1

that a sequence must contain at least {;—‘ objects to ensure that 1t intersects the sequence of every other

process. Dwork, Herlihy and Waarts [124] obtained a tradeofl for consensus using a similar proof.

11.5 Other Time Complexity Lower Bounds

Building on their earlier work [61] (see Section 7.3), which characterized the tasks that can be solved in an
asynchronous message-passing model with at most one crash failure, Biran, Moran, and Zaks [63] gave tight
upper and lower bounds on the number of rounds needed for tasks that are solvable in this model.

Chaudhuri, Herlihy and Tuttle [94] showed that Q(logn) rounds are required in a synchronous message-
passing system for any wait-free comparison-based algorithm to break symmetry. As an algorithm runs, a
process may get information about the identifiers of other processes in the system and store this information
in its local state. For comparison-based algorithms, two processes will behave in the same way as long as
their identifiers have the same relative order compared to each of the identifiers they have learned about. In
each round, they showed how an adversary can kill a constant fraction of the remaining processes to ensure
that all surviving processes remain in indistinguishable states. This establishes a general Q(logn) lower
bound for problems, such as leader election, that require different processes to perform different actions.

Peleg and Rubinovich [261] showed that the time required to construct a minimum spanning tree in a
synchronous message-passing system is €(y/n/(Blogn)), where B is the maximum number of bits that can
be transmitted in a single message. Their result holds for networks of diameter Q(logn). Lotker, Patt-
Shamir and Peleg [229] later showed that an ©(/n/B) bound holds even for graphs of diameter 4 using
similar techniques. Both results are proved by considering a specific network of small diameter where the
construction of a minimum spanning tree requires a large amount of information to be transmitted from
one part of the network to another. Although there is a short path that connects the two parts (since the
diameter is small), the bound on message size ensures that transmitting all the information along this path
would take a long time. Transmitting the information along other paths also takes a long time, since those
paths are much longer.

Several papers have studied the time complexity of wait-free implementations of snapshot objects, which
are convenient for programmers to use, from registers, which are more commonly provided in real sys-
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tems. Israeli and Shirazi [188] considered the implementation of a single-writer snapshot object from
single-writer registers and showed that Q(n) steps are required to update an element. Specifically,
given any implementation with small enough update time, they show how an adversary can construct two
indistinguishable executions that each contain a scan which should return different results. Jayanti, Tan
and Toueg [198] used a covering argument to show that (n) steps are needed for scans, even when the
implementation only has to be non-blocking and can use registers. Fatourou, Fich and Ruppert [128, 129]
considered the problem of implementing a snapshot object with m elements in a wait-free manner from
multi-writer registers. When n > m+ 1, at least m registers are required. They used covering argu-
ments to prove that, for any implementation that uses this many registers, the scan requires (mn) steps
in the worst case. This bound is tight. They also proved that £(y/mn) steps are required to perform a scan
in an implementation that uses any number of single-writer registers in addition to the m registers

In some applications, processes typically execute their operations when no other processes are running.
Although algorithms are required to be correct regardless of how many processes run simultaneously, it may
be that the important measure of performance is contention-free complexity, the maximum complexity
over all possible solo executions. Alur and Taubenfeld [19] gave the first lower bounds for contention-free time
complexity. They proved that any asynchronous algorithm solving mutual exclusion using only registers
has a solo execution that takes Q(ﬁfg—n) steps, where b is the number of bits per register. They showed,
using a combinatorial argument, that if all solo executions take fewer steps, then there are two processes
whose solo executions are similar enough that they can be interleaved without either process noticing the
presence of the other, so that both processes enter the critical section at the same time. There do exist
mutual exclusion algorithms using O(logn)-bit registers that have O(1) contention-free complexity [217],
matching the lower bound for b € ©(logn). Alur and Taubenfeld also showed that some solo execution

must access ?lfgggﬂ) different registers. In the same paper, they gave simple lower bounds on the
contention-free complexity of solving the renaming problem, using different types of single-bit read-modify-
write objects.

In some systems, shared objects are stored at different processes and a process can access locally stored
shared objects at a significantly lower cost than remotely stored shared objects. Anderson and Yang [21]
proved a necessary tradeoff for mutual exclusion between the number of accesses to remote shared objects
performed by processes and the contention (the maximum number of processes that can simultaneously
access the same object). The proof uses a combinatorial argument that allows an adversary to construct a
long execution if the contention is always low. Anderson and Kim [23] have improved this result to obtain a
lower bound on time complexity (that does not depend on the contention). Specifically, they prove that in
a system of n processes, some process must perform Q(logn/loglogn) critical events (for example, certain
accesses to registers or compare&swap objects) to enter and exit its critical section. This is very close to
the known O(logn) upper bound. Furthermore, there are a number of significant technical difficulties in
removing the dependence on contention that make the proof very interesting.

12 Message and Bit Complexity Lower Bounds

In systems where processes communicate by sending messages to one another, the total number of messages
and the total number of bits transmitted by an algorithm are useful measures of the algorithm’s complexity.
In this section, we describe lower bounds on the message and bit complexities of various problems.

12.1 Computation in a Ring

Many of the early message complexity lower bounds were proved expressly for ring networks, where processes
are arranged in a circle. Two properties of rings are used to prove strong lower bounds. Firstly, 2(n) messages
must be sent to transmit information from a process to the diametrically opposite process. Secondly, the
high degree of symmetry of a ring can be exploited to show strong lower bounds on message complexity:
before the symmetry is broken, whenever a process sends a message, many other processes must do likewise.
Thus, although a ring is a very simple network, and hence suitable for lower bound proofs, it is not so simple
that problems become easy to solve. This makes the ring a good candidate when one is looking for the
worst-case network topology for a problem, and a good starting point for lower bound proofs.
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There are a number of modelling issues to be considered when studying ring lower bounds: the processes
may operate synchronously or asynchronously, communication may be bidirectional or unidirectional, pro-
cesses may either have distinct identifiers or be anonymous, and processes may or may not initially know the
size of the ring. In the case of a bidirectional ring, processes may or may not initially know which direction
is clockwise. For each of these five choices, the latter option makes problems harder (or at least no easier)
to solve, so lower bounds for the former automatically apply to the latter.

In a unidirectional ring, one crash failure of a process or communication channel makes it impossible for
some processes to communicate information to processes further along the ring. Similarly, in a bidirectional
ring, two crash failures can disconnect the network. Thus, when studying rings, one generally assumes that
the system 1s reliable.

Burns [78] showed a worst-case lower bound of (n logn) messages for leader election among n processes
in an asynchronous bidirectional ring, if processes do not initially know n, but do have distinct identifiers. See
[47, Section 3.3.3] for a discussion of his inductive proof, which generates a costly execution for n processes
by pasting together a pair of costly executions for n/2 processes that have no communication across one
edge. Bodlaender [64] proved, using a combinatorial argument, that the €(n logn) bound holds even for the
average message complexity (taken over all assignments of identifiers to processes) when processes know the
ring size and have distinct identifiers drawn from a set of size (1 4 ¢)n, for € > 0. He also showed how to
extend this result to randomized algorithms. Pachl [258] gave a similar proof of an £2(nlogn) lower bound
on expected message complexity for randomized algorithms that allow a constant probability of error on a
unidirectional ring of unknown size, where processes have distinct identifiers.

Higham and Przytycka [184] used a weighted measure of message complexity, where some edges are more
expensive to use than others (cf. [52]). Using this complexity measure, they obtained a generalization of
the lower bound for leader election in an asynchronous, unidirectional ring when processes have distinct
identifiers.

The solitude verification problem is to determine whether there is exactly one process with input
value 1. It i1s closely related to the leader election problem. It can be used to verify that a leader has been
elected and, in a unidirectional ring with a leader, solitude verification can be performed with O(n) bit
transmissions. Hence, w(n) lower bounds for solitude verification imply the same lower bounds for leader
election.

When the ring size is only known to within a factor of 2, 1.e. N < n < 2N for some N, and processes
have distinct identifiers chosen from a universe of size s > 2N, Abrahamson, Adler, Gelbart, Higham, and
Kirkpatrick [2] proved that the average (over all possible assignments of identifiers to processes) expected
bit complexity of randomized solitude verification on asynchronous unidirectional rings is in Q(nlog(n/s)).
Their proof uses the pigeonhole principle combined with a scenario argument. They also provided a leader
election algorithm with O(n log s) expected bit complexity for unknown ring size, matching their lower bound
when s > n'*¢ for some constant ¢ > 0. If processes are anonymous, but ring size is known to within a
factor of 2, they gave another randomized leader election algorithm that uses O(nlogn) expected bits of
communication. They showed that this algorithm is optimal by proving a lower bound of Q(nlog A) when
N <n <N + A for some N and each identifier can be assigned to at most two processes.

Abrahamson, Adler, Higham, and Kirkpatrick [4] obtained tight bounds for the bit complexity of solitude
verification on asynchronous unidirectional rings of anonymous processes allowing randomization and a
constant probability of error. Their bounds do not depend on whether the error is one-sided or two-sided
or whether deadlock can occur, but do depend on the processes’ knowledge of the ring size and whether the
processes must know when the algorithm has terminated. For example, if the ring size n is known and all
processes must output the answer, they proved that any algorithm solving solitude verification with error
probability € > 0 has expected bit complexity ©(n min(y/logn,\/loglog(1/¢))). They used sophisticated
scenario and symmetry arguments to obtain their lower bounds on the expected number of bits transmitted.
Their technique considered a configuration having exactly one process with input value 1 and for which,
with high probability, only a small number of bits are transmitted. They showed that there must be a
short sequence of bits that are transmitted along a particular link with reasonably high probability. Then by
removing, replicating, and splicing parts of the ring, they were able to construct another configuration having
more than one process with input value 1 on which the algorithm errs with unacceptably high probability.

A more general problem related to leader election is for processes to compute a function of their input
values. Once a leader has been elected, that leader can initiate a message which will travel around the ring
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gathering all the inputs. When the message returns to the leader, it computes the function locally, and then
distribute the answer to the other processes using n — 1 additional messages. On the other hand, leader
election can be solved by computing the maximum, using the (distinct) process identifiers as input values
and electing the process with the largest input value. There are deterministic algorithms for computing the
maximum of the input values in an asynchronous unidirectional ring using O(nlogn) messages [113, 262],
so leader election has the same complexity. Thus having randomness or bidirectional links does not help to
elect a leader in an asynchronous ring where processes have distinct identifiers.

To compute a function on a ring of anonymous processes, the function value must be the same when
the inputs are cyclically permuted around the ring. Attiya, Snir and Warmuth [46] studied the problem
of computing a Boolean function of input values in an anonymous bidirectional ring of known size, where
processes begin in identical states and do not know which direction is clockwise. Any function that is
computable in this model can be computed using O(n?) messages: every process sends its input around the
ring. They showed most functions that are computable in this setting do require ©(n?) messages, using a
symmetry argument. Duris and Galil [123] gave an ©(nlog” n) bound on the number of messages needed
for any non-constant function. Moran and Warmuth [248] showed this bound is tight for some functions
and proved that the bit complexity must be Q(nlogn) for any non-constant function. They also constructed
a family of non-constant functions that can be computed within these bounds. Their lower bound on bit
complexity was generalized by Bodlaender, Moran and Warmuth [65] to apply to networks where processes
have distinct identifiers. For randomized computation on a unidirectional anonymous ring, Abrahamson,
Adler, Higham, and Kirkpartrick [3] proved that €(n+/logn) bits must be transmitted for computing any
non-constant function and showed that this bound is tight for some functions. Their lower bound holds
even when algorithms may become deadlocked or fail to terminate with high probability: They show that an
erroneous computation can be obtained by cutting and splicing parts of an accepting computation in which
too few bits are transmitted. Attiya and Snir [45] gave an £(nlogn) bound on the number of messages for
computing, in an anonymous ring, a function (such as exclusive or) whose output value is not determined by
a short subsequence of the input values. Their bound applies to the average, over all inputs, of the number
of messages sent in the worst-case execution for that input. They also give related lower bounds for the
expected complexity of randomized algorithms. Similar results are known for non-anonymous rings [64].

If the function to be computed has the range {0,1}, we can think of the problem of computing the
function as a problem of recognizing strings in a language, namely those that produce the output value
1. Each process begins with one character of the input string (in order around the ring). Mansour and Zaks
[237] studied this problem in a ring of unknown size with a distinguished leader. The obvious algorithm
which has the leader send one message all the way around the ring to gather the entire string uses ©(n)
messages, which is clearly optimal for non-trivial languages. However this algorithm transmits messages
containing a total of ©(n?) bits. Mansour and Zaks studied whether the bit complexity can be improved.
They gave an elegant proof that the bit complexity of the problem is O(n) if and only if the language is
regular. If the language is not regular, Q(nlogn) bits are necessary, which establishes an interesting gap.

Lower bounds for synchronous rings generally rely on symmetry arguments. A highly symmetric config-
uration of an algorithm is one that contains many processes in the same state. The first step of the proof is
to carefully design one or more initial configurations that have a high degree of symmetry (for example, by
choosing the identifiers so that comparison-based algorithms cannot tell apart sections of the ring). One then
shows that, in order to solve a problem, processes must reduce the level of symmetry by communicating with
one another. The message complexity lower bounds take advantage of the fact that, whenever a message is
sent by one process, it is also sent by all other processes in the same state.

Frederickson and Lynch [143] showed that any comparison-based leader election algorithm in a bidirec-
tional synchronous ring requires Q(n log n) messages. For simplicity, consider the case where n is a power of
2. They designed an assignment of identifiers to processes so that, for any segment of the ring of length 27,
there are n/2" segments that look identical to any comparison-based algorithm. Consider a process in one
such segment and another process in the corresponding location in another segment. These two processes will
be in identical states until information is propagated to one of them from outside its segment. If a process
wishes to propagate information to its neighbour that will be useful in distinguishing the two segments, it
must either send a message to its neighbour, or it can remain silent while the corresponding process in the
other segment sends a message to its neighbour. Frederickson and Lynch keep track of the longest distances
across which information has been propagated in this way. Doubling this quantity from 2! to 2/+! requires
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messages to be sent in 2 rounds. However, each time one message is sent, it will be sent simultaneously
by n/2it! other processes embedded in indistinguishable segments. This gives a total of n/2 messages to
double the maximum distance that information has been propagated. The Q(n logn) bound follows from the
fact that information must eventually be propagated at least halfway around the ring to ensure symmetry
is broken and exactly one leader is elected.

Using Ramsey theory, Frederickson and Lynch extend their Q(nlogn) lower bound from comparison-
based algorithms to arbitrary time-bounded algorithms, provided the process identifiers are chosen from a
sufficiently large set. They also give a leader election algorithm for a synchronous unidirectional ring that
allows process identifiers to be arbitrary integers and sends only O(n) messages, but can take a very large
number of rounds. There is also a randomized leader election algorithm for anonymous synchronous rings
with expected message complexity O(n), provided processes know the ring size n [189].

Attiya, Snir and Warmuth [46] used similar ideas to prove that computing most functions in a synchro-
nous, bidirectional, anonymous ring requires (n logn) messages. Attiya and Mansour [43] built on these
results to prove lower bounds in this model on the number of messages required for recognizing strings in a
language.

This section describes many €(n log n) lower bounds for computation in rings. However, the lower bounds
do not subsume one another, because of differences in models or in the measures of complexity used. The
problem of unifying these results remains open: perhaps one strong lower bound for ring computation would
imply all the others. Such a result would improve our understanding of the lower bounds.

12.2 Other Network Topologies

Consider the terminating reliable broadcast problem in a fault-free message-passing model, where n processes
are arranged in a connected network with m message channels. Every process except the sender must receive
at least one message in a fault-free execution, so at least n — 1 messages are necessary. If processes do not
have any information about the topology of the graph, every edge must be traversed to ensure that there
is no node “hiding” in the middle of the edge, so at least m messages are necessary. A simple flooding
algorithm shows that m messages are sufficient. If each process knows the identities of its neighbours, depth
first search uses ©(n) messages. However, the messages transmitted may become very large: In order to
ensure that the algorithm sends only one message to each node, a list of previously reached nodes is added
to the message so that the algorithm can tell when it is unnecessary to forward the message to some of its
neighbours. Awerbuch, Goldreich, Peleg and Vainish [53] analysed the message complexity of this problem
for the case where messages must be of bounded length. Their lower bounds apply to synchronous systems,
but they also give matching upper bounds for asynchronous networks, thereby establishing tight upper and
lower bounds for both models. They showed that if each process knows the identities and arrangement
of processes within a radius of p, then @(min(m,nl‘l'@(l)/p)) messages are required. When p = 1, ©(m)
messages of bounded-size are required. Their lower bound is for comparison-based algorithms, but this
restriction can be removed using Ramsey theory [233].

Korach, Moran and Zaks [210, 211] considered complete networks of synchronous processes with no faults,
where processes do not know which of their channels is connected to which process. They proved that (n?)
messages are required to find a minimum spanning tree of the network, even if only edge weights 0 and 1 can
occur. If an algorithm uses too few messages, they use a combinatorial argument to show that the weights
on some the edges not used by the algorithm can be changed to obtain a network with a different minimum
spanning tree. However, the algorithm cannot distinguish the new network from the original one. They also
gave an Q(n?/k) bound for finding a spanning tree of degree at most k. Korach, Moran and Zaks defined the
class of global problems and generalized their work to obtain lower bounds on message complexity for any
problem in this class. A problem is global if, for any algorithm that solves the problem, each execution of the
algorithm must use a set of edges that spans the network. Leader election, broadcast and the construction of
a spanning tree are examples of global problems. Their proof is an adversary argument, where the adversary
chooses the round at which each process begins execution and chooses which edge a process obtains when
it tries to send a message an unused incident edge. As the adversary constructs an execution, it keeps track
of the size of the largest connected component in the subgraph induced by edges that have been used so
far. Suppose at least m(k) messages must be sent to obtain a component of size k. How many messages are
required to get a component of size 2k + 17 The adversary first has the algorithm construct two components
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of size k, using at least 2m(k) messages. If any process in one of the two large components then starts sending
messages across unused edges, the adversary can direct the first & of them into the other large component.
So at least k& + 1 messages must be sent before any vertex outside the two large components is discovered.
Thus, a total of 2m(k) + k + 1 messages are needed to construct a component of size 2k + 1. The lower
bound of £2(n log n) messages follows from the fact that all n processes must belong to the same component
at the end of the execution. Korach, Moran and Zaks also provide a similar proof of an Q(n?) lower bound
for certain matching problems.

Afek and Gafni [9] gave a tradeoff between time and message complexity for leader election. Singh [286]
showed a stronger tradeoff between time and message complexity for asynchronous networks. Reischuk and
Koshors [270] looked at global problems in arbitrary networks. They showed that if processes initially know
the identifiers of only their immediate neighbours, ©(m) bounded-size messages are required, where m is the
number of edges in the network graph.

Goldreich and Sneh [151] studied the problem of computing a function of the processes’ input values in
an asynchronous system. The processes communicate using unidirectional channels which can experience
crash failures, but it is assumed that the network remains strongly connected. They construct a graph with
n vertices and m edges for which the problem of computing any function that depends on all of its inputs
requires Q(mn/polylog(n)) messages. This means that the naive O(mn) algorithm in which every process
sends its input value to every other process by flooding the network is close to optimal. A combinatorial
argument is used to show that, if every message that a process P can send causes fewer than m/polylog(n)
other messages to be sent around the network, the adversary could crash some edges of the graph to ensure
that no new information ever gets back to P. Their proof continues by showing how an adversary can
construct a bad schedule. The adversary first schedules one message from P that causes at least m/polylog(n)
other messages to be sent. When all of these messages have been delivered, the adversary allows P to send
another message, which again must trigger m/polylog(n) further messages. They show that this can be
repeated n/polylog(n) times.

Wattenhofer and Widmayer [295] studied the counting problem in an asynchronous message-passing
environment. They consider executions where each of the n processes executes one increment operation. A
centralized solution would have a single process keep track of the value of the counter. However, this requires
one process to send and receive n messages during the execution. A solution where the work performed is
more evenly distributed is desirable. They showed that it is not possible to create an algorithm where every
process sends and receives O(1) messages: in fact, even if no two increments are allowed to run concurrently,
they show how to construct an execution in which one process will send or receive a total of Q(logn/ loglog n)
messages. The key observation used to obtain the lower bound is that each increment must find out about
the previous increment via some chain of messages. The adversary greedily chooses which increment to
schedule next so that this chain is long.

Dwork and Skeen [127] considered the commit problem in the synchronous network model where processes
may experience crash failures. They showed that there must be a chain of messages from each process P to
each other process ) in the failure-free execution where every initial value is 1. Otherwise, one can construct
an execution where P’s initial value 1s 0, but @ still decides 1, by killing any process as soon as it hears
(directly or indirectly) from P. Tt follows that at least 2(n — 1) messages are required in the failure-free
execution. This result was reproved using formal notions of knowledge by Hadzilacos [161]. Segall and
Wolfson [284] generalized Dwork and Skeen’s argument to give a lower bound on the number of message
hops needed for solving the commit problem among a subset of processes in a network.

Amdur, Weber and Hadzilacos [20] studied the terminating reliable broadcast problem in a synchronous
system where up to f of the processes may experience crash failures. In each round, each process may send a
message to any set of processes. They showed that at least [(n 4+ f — 1)/2] messages must be used in one of
the failure-free executions, and this result is tight. Hadzilacos and Halpern [162] proved similar tight results
for other kinds of faults. For the case of arbitrary process faults, they proved ©(nf) messages are used in
some failure-free execution. Dolev and Reischuk [120] gave a similar proof of this result. Both papers also
derived bounds for the situation where processes may use authenticated messages to combat arbitrary process
faults. The lower bounds also apply to the consensus problem because of the simple reduction mentioned in
Section 3.3.

We illustrate the technique used for these lower bounds by proving the a similar bound for consensus
in a system with arbitrary process faults [120, 162]. Consider an algorithm for n processes that tolerates f
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faulty processes. Let FE; be the execution where all processes are correct and begin with input ¢. Suppose the
total number of processes with which some process P communicates directly either in Fy or Fy is at most
f. Consider an execution where those processes are faulty and P has input 0 while all other processes have
input 1. If the faulty processes behave towards P as they do in Fy, and towards the rest of the processes as
they do in Ey, P must decide 0, and the other correct processes must decide 1, violating agreement. Thus,
for each process P, the set of processes with which P communicates either in Fy or in | must contain at
least f + 1 processes. Tt follows that one of the two executions uses at least n(f + 1)/4 messages.

13 Randomized Computation

Adding randomness to a model can increase its computational power. For example, it 1s possible to break
symmetry by having processes flip coins. Thus an unsolvability result for a deterministic model that was
proved using a symmetry argument might not be valid for a randomized model. Note that there will still be
some execution where symmetry is never broken, namely the execution where all processes generate exactly
the same infinite sequence of coin flips. However, the probability of this happening is 0. Thus, one might
only require a randomized algorithm to terminate with probability 1 instead of requiring termination in all
executions. A stronger condition requires that the expected time until termination is finite. Randomized
consensus differs from consensus in exactly this way, making it easier: As discussed below, randomized con-
sensus can be solved by a randomized algorithm that tolerates up to [n/2]—1 crash failures, but consensus is
unsolvable in asynchronous message-passing systems with just one crash failure. When considering random-
ized algorithms, correctness conditions can also be modified, allowing incorrect outputs, but requiring that
the probability of such errors is very small. Gupta, Smolka and Bhaskar’s survey [158] is a good introduction
to the use of randomization in the design of distributed algorithms.

More powerful models combined with weakened problem specifications make proving impossibility results
more difficult than for deterministic models. However, a variety of unsolvability results and lower bounds
for randomized algorithms do exist. These are discussed in the remainder of this section.

13.1 Unsolvability Results

An impossibility result for the terminating reliable broadcast problem in a randomized synchronous message-
passing system was presented by Graham and Yao[153]. They considered algorithms for three processes, one
of which may behave arbitrarily. In particular, the action of the faulty process at each round can depend
on the messages sent by the other processes during that round. They showed that no algorithm can achieve
agreement and validity with probability greater than (\/5 — 1)/2, where the probability is taken over the
random choices made by the processes during executions chosen by an adversary. The proof is a detailed
scenario argument, where the views of a process in two scenarios are indistinguishable in the sense that they
are identical random variables. They also obtain an algorithm that achieves their bound.

Bracha and Toueg [74] considered the problem of solving consensus in an asynchronous message-passing
system. As described in Section 5.1, this cannot be done using a deterministic algorithm that is resilient to
even one crash failure. They showed an f-resilient randomized algorithm (which never errs and terminates
with probability 1) exists if and only if f < n/2. We sketch a simpler proof of the unsolvability result.
First consider the case of two processes, P and ), one of which may fail. The standard type of valency
argument shows the existence of an infinite execution, but this is insufficient to show that no randomized
consensus algorithm can exist, since there may be infinite executions that occur with probability 0. Thus,
modified definitions of valency are used for this proof: a configuration is solo-univalent if all terminating
solo executions from C' lead to the same decision value; otherwise, the configuration is solo-multivalent. Any
initial configuration where processes have different inputs is solo-multivalent. To derive a contradiction, we
now prove that no configuration of a consensus algorithm can be solo-multivalent. Suppose C' is a solo-
multivalent configuration. Then there exist solo executions op by P and og by @ starting from C' that
lead to different decision values dp and dg. Now consider an execution from C' where P first executes op
(and decides dp), and then ) executes o (and decides dg). By indefinitely delaying any messages sent
during op, one can ensure that this execution is legal. But this execution violates the agreement property
of consensus algorithms. The result for n processes can be obtained by a reduction: if an [n/2]-resilient
algorithm for n processes exists, then a 1-resilient algorithm for two processes could be constructed by having

45



P simulate [n/2] processes and @ simulate the other |n/2| processes. Bracha and Toueg [74] also showed
that n-process consensus can be solved in this model in a way that tolerates f arbitrary process faults if and
only if f < n/3.

Coan and Welch [105] proved there are no f-resilient algorithms for the commit problem in partially
synchronous systems of n < 2f processes, where non-faulty processes must eventually terminate with proba-
bility 1. They do this by explicitly constructing bad executions. They also prove that the expected number
of steps taken by each process cannot be bounded. This proof uses a valency argument that allows the
construction of many long executions leading to multivalent configurations.

Angluin [26] showed that if the ring size is known only within a factor of two, then even randomized
algorithms cannot elect a leader in a synchronous, anonymous ring. Suppose there exists such an algorithm.
Consider some terminating execution for a ring of n processes that occurs with probability p > 0. We
construct an execution in a ring of 2n processes formed by cutting the original ring and pasting two copies
together. With probability p?, each pair of diametrically opposite processes will take exactly the same steps
as the corresponding process in the n-process ring did. Since one process declared itself the leader in the
n-process ring, two processes will do so at the end of the execution in the larger ring, which means the
algorithm errs with non-zero probability. As mentioned in Section 5.4, there are randomized algorithms to
elect a leader in an anonymous ring of known size. It follows that no randomized algorithm can determine the
number of processes in an anonymous ring of unknown size. Cidon and Shavitt [102] used similar arguments
to prove the impossibility of computing a large class of functions (including ring size and exclusive or) in
an anonymous, synchronous ring of unknown size. Their proof applies even to randomized algorithms that
terminate correctly with probability 1, provided they have bounded average message complexity.

Chor and Moscovici [100] characterized the tasks that are solvable by f-resilient randomized algorithms.

(See Section 7.3.)

13.2 Complexity Lower Bounds

Randomized consensus is solvable in the asynchronous shared-memory model where processes communicate
using registers and can flip coins. There are wait-free algorithms for randomized consensus among n
processes that perform O(n?logn) expected work [75] and wait-free algorithms where the expected number
of operations performed by each process is O(nlog2 n) [32]. Most algorithms for randomized consensus are
based on collective coin flipping, which 1s a way of combining many local coin flips into a single global coin
flip. However, there is a complication: a malicious adversary can destroy some of the local coins after they
are tossed but before they are used. The goal of a collective coin flip algorithm is to limit the degree to
which the adversary can influence the outcome of the global coin flip.

Aspnes proved that any f-resilient algorithm for randomized consensus performs Q(f?/ log2 f) local coin
flips (and, hence, work) with high probability [29]. His result applies to asynchronous shared-memory systems
where processes communicate using only registers, as well as to all models that can be deterministically
simulated by such a model, including asynchronous message-passing systems and asynchronous shared-
memory systems with snapshot objects. The proof of his lower bound has two parts. One is a lower bound
on the number of local coin flips needed to prevent an adversary from having too much influence on the
outcome of a collective coin flip. The other is an extension of the valency argument to the randomized
setting to show that an algorithm either performs a collective coin flip with small bias or spends lots of local
coin flips to avoid doing so. Aspnes introduces the notion of an a¢-univalent configuration, a configuration
from which an adversary scheduler can cause the algorithm to produce the output value a with sufficiently
high probability. Then a bivalent configuration is both 0-univalent and l-univalent and a nullvalent
configuration is neither. He shows that, with high probability, an adversary scheduler can force any
algorithm into a bivalent or nullvalent configuration from its initial configuration or whenever a local coin
flip 1s performed. He also proves that a bivalent configuration always leads to a nullvalent configuration or
to a configuration in which a local coin flip can be scheduled next. Finally, in nullvalent configurations, he
shows that the coin flipping lower bound applies. A polylogarithmic gap remains between the upper and
lower bounds for the amount of work to solve randomized consensus in asynchronous models.

Bar-Joseph and Ben-Or [56] extended Aspnes’s result to synchronous message-passing systems, obtaining
a lower bound of Q(f/+/nlogn) rounds (with high probability) for f-resilient randomized consensus among
n processes. They also gave a matching upper bound in this model. In contrast, for deterministic algorithms,
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f =+ 1 rounds are needed (see Section 11.1).

If the power of the adversary scheduler is restricted so that its choices can only depend on the actions of
the processes (and cannot depend directly on the outcome of coin flips), then faster algorithms are possible:
there is a randomized consensus algorithm using registers with expected O(logn) operations performed
per process [49]. For message passing, even expected constant time randomized consensus algorithms have
been achieved against weak adversaries, for asynchronous systems with omission faults [99] and synchronous
systems with arbitrary process faults [134], tolerating a constant fraction of faulty processes. Chor, Merritt,
and Shmoys [99] also obtained an upper bound on the probability of early termination in a synchronous
message-passing system with crash failures. They did this by proving that, if the probability is too high,
there 1s some input for which the chain argument used in the deterministic time lower bound applies.

Russell, Saks, and Zuckerman [276] proved lower bounds on the time to generate a shared coin flip that
has a positive constant probability of being heads and a positive constant probability of being tails, even
when arbitrary process faults can occur. The probability is taken over the random choices made by non-
faulty processes. Specifically, they consider n-process synchronous algorithms with r(n) rounds, where, at
each round, each non-faulty process flips a fair coin and broadcasts the outcome to the other processes. They
show that, if r(n) < (% — €)log™ n, for some constant € > 0, then the algorithm is not €(n)-resilient. They
also provide a tradeoff between the number of faulty processes and the number of rounds. These results are
obtained by bounding the influence of random sets of variables on the value of Boolean functions. Collective
coin flipping can be reduced to leader election using one additional round in which the chosen leader, if
non-faulty, flips a fair coin and broadcasts it to all other processes. Thus their lower bounds also apply to
leader election, where the probability of causing a faulty process to be leader must be bounded by some
constant less than 1.

Coan and Dwork [104] obtained a lower bound on the number of rounds necessary for any randomized
synchronous message-passing algorithm to solve simultaneous consensus when up to f processes can crash.
More specifically, they proved that f + 1 rounds are required in any execution in which at most r processes
crash by round r, for all » < f. They did this by showing how to transform any randomized algorithm
for this problem into a deterministic algorithm for the same problem and then applying results discussed in
Section 11.1. They also obtained a similar lower bound for the distributed firing squad problem by reducing
it to simultaneous consensus.

The write-all problem is to set n registers, all initially 0, to 1. It has been used for the construction of
efficient wait-free algorithms [24, 156] and as the basis of step-by-step simulations of fault-free synchronous
shared-memory systems by shared-memory systems with crash failures or asynchrony [24, 205, 239, 206].
Buss, Kanellakis, Ragde, and Shvartsman [81] proved that any randomized asynchronous algorithm for
this problem that uses n processes, at most half of which can crash, must perform Q(nlogn) writes to
these registers. In a fault-free synchronous shared-memory model, write-all can be solved by having n
processes each write 1 to a different register, with work n. Hence, there is a complexity separation between
synchronous and randomized asynchronous fault-free shared-memory models. The idea of their proof is that
an adversary schedules the processes to run until each covers one of the n registers. Among the registers
with value 0, the adversary chooses the half which have the fewest processes covering them and schedules
the n/2 or more processes which cover other registers to perform their writes. This can be repeated
log, n times, each time reducing the number of registers with value 0 by at most a factor of 2. They
provide a matching deterministic upper bound when processes can communicate using snapshot objects.
Against restricted adversaries whose choices cannot depend directly on the outcome of coin flips, there is
a randomized algorithm using registers that performs O(n(logn)®) work with high probability [31]. For
any ¢ > 0, there is also a deterministic algorithm using only registers that performs O(n'*¢) work [25].
However, it is an open question whether there is a deterministic algorithm for the write-all problem that
uses only registers and performs n(log n)o(l) total operations.

The write-all problem has also been considered in the synchronous shared-memory model with
faulty processes. Kanellakis and Shvartsman [205] showed that the work complexity of the problem is
O(nlogn/loglogn) using snapshot objects and give an algorithm that does O(n(logn)?/loglogn) work
using only registers. Kedem, Palem, Raghunathan, and Spirakis [207] improved the lower bound using
registers to Q(nlogn) expected work for randomized algorithms. Martel and Subramonian [239] showed
that this expected lower bound on work could be obtained using a restricted adversary. These lower bounds
are obtained by reduction from the problem of computing the or of n bits. To prove a lower bound for
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computing or, they derived an upper bound (via a recurrence) on the number of processes at time ¢ that
are affected when some input bit is flipped, starting from the input configuration where all inputs are 0.
Kanellakis and Shvartsman [206] give a more detailed discussion of the write-all problem and other related
problems.

The randomized space complexity for the mutual exclusion problem was considered by Kushilevitz,
Mansour, Rabin, and Zuckerman [214] when a single read-modify-write object is used to provide a fair
randomized solution. They proved a lower bound on the size of the object. Specifically, Q(loglogn) bits
are necessary. They also proved that their lower bound is tight, in contrast to the deterministic case, where
O(logn) are necessary, as discussed in Section 10. For weaker fairness conditions, they obtain smaller lower
bounds that depend on the number of processes accessing the critical section in a mutually exclusive manner.
Their proofs are based on an analysis of Markov chains.

Allenberg-Navony, Ttai, and Moran [17] and Bodlaender [64] discuss circumstances under which lower
bounds on the average-case complexity of deterministic distributed algorithms (where the average is taken
over a probability distribution on the inputs) give rise to lower bounds on the expected complexity of
randomized distributed algorithms. Their work extends Yao’s minimax principle [299], which applies to
sequential and parallel computation. Using this technique, they obtain lower bounds on the expected message
complexity of finding the maximum process identifier in bidirectional rings of processes.

Several of the message complexity lower bounds for rings discussed in Section 12.1 apply to randomized
algorithms.

14 Conclusions

This survey has presented many impossibility results in distributed computing and different techniques for
proving them. This research topic has proved to be an interesting and fruitful one over the past two decades.
Stronger impossibility results can be proved in distributed computing than in most other areas of computer
science, because of the limitations imposed by local knowledge. We hope this survey will inspire and enable
more people to contribute new 1mpossibility results for distributed computing problems and new techniques
for obtaining them.
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