
MySRB & SRB – Components of a Data Grid 
 
 

Arcot Rajasekar, Michael Wan, Reagan Moore 
San Diego Supercomputer Center, University of California at San Diego 

{sekar,mwan,moore}@sdsc.edu 
 
 

Abstract 
 

Data Grids are becoming increasingly important in 
scientific communities for sharing large data collections 
and for archiving and disseminating them in a digital 
library framework. The Storage Resource Broker 
provides transparent virtualized middleware for sharing 
data across distributed, heterogeneous data resources 
separated by different administrative and security 
domains. The MySRB is a web-based interface to the SRB 
that provides a user-friendly interface to distributed 
collections brokered by the SRB. In this paper we briefly 
describe the use of the SRB infrastructure as tools in the 
Data Grid Architecture for building distributed data 
collections, digital libraries, and persistent archives. We 
also provide details about the mySRB and its 
functionalities. 
  
 
1. Introduction 
 
     The “Grid” is a term used to describe the software 
infrastructure that links multiple computational 
resources such as people, computers, sensors and data 
[1].  The term “Data Grid” has come to denote a network 
of distributed storage resources, from archival systems, 
to caches, to databases, that are linked using a logical 
name space to create global, persistent identifiers.  
Examples of data grids can be found in the physics 
community  [2,3,5,6], for climate prediction [4] and for 
ecological sciences [7].   More recently several projects 
have promoted the establishment of data grids for other 
communities such as astronomy  [8], geography, and 
earthquake and plate tectonic systems [9], etc.  Most of 
these data grids are under construction and represent 
different proto-typical systems for building distributed 
data management 
environments.  

      At SDSC we have developed software middleware,  
called the Storage Resource Broker [12], that can be 
used to build a data grid. The SRB together with 
MySRB, a web-based interface to the SRB, provides a 
suite of functionalities that can be used to implement 
data and information management systems. We discuss 
the SRB and MySRB infrastructure within the context of 

data grids, and demonstrate how data grids can be used 
to implement distributed data collections, digital 
libraries, and persistent archives. 

 
 
2. Data Grid Architecture (DGA) 
 
    All Data grids form the core infrastructure for 
building data management systems that span multiple 
administration domains, multiple types of storage 
systems, and multiple types of data access environments.  
We can characterize data management environments as 
distributed data collections, digital libraries and 
persistent archives.  Distributed data collections provide 
a single name space for referencing data stored on 
multiple storage systems, typically within the same 
administration domain.  Digital libraries integrate remote 
archival storage systems into a data collection, while 
providing discovery and manipulation services.  
Persistent archives support the migration of data 
collections onto new technologies, while preserving the 
ability to organize, discover, and access data.  Each of 
these systems builds upon the capabilities provided by 
the lower level system, and all build upon data grids for 
managing distributed resources.  We can characterize 
these capabilities as follows: 
 
Distributed data collection capabilities [17]: 
• Integrate Data Collections and Associated Metadata.  

As part of any DGA, we assume that the digital 
entities within a data collection will be described by 
attributes that characterize administrative, structural, 
provenance, and discipline-specific information.  A 
data grid should provide mechanisms to support 
attributes associated with each registered digital 
entity. 

• Handle Multiplicity of Platforms, Resource & Data 
Types.  The DGA network should handle diverse 
computational and storage resources.  In the 
network, one should be able to access files on a 
super computer such as a IBM SP-2 or a desktop 
system (say an SGI) or a lap top running Linux or 
Windows OS.  The DGA should support access 
from arbitrary types of compute platforms. 



• Seamless access to data and information stored 
within the DGA.  The data from various collections 
at participating sites will be stored in archival 
storage systems (such as HPSS, DMF, ADSM, 
UniTree), file systems (Unix, NTFS, Linux), and 
databases (Oracle, Sybase, DB2) . Researchers at 
remote sites should be able to access these data as 
though they were accessing a local dataset, 
including support for reading and writing files. 

 
Digital Library capabilities [18]: 
• Handle Seamless Authentication.   A digital library 

typically manages digital entities under a collection 
or community ID.  To access data from a remote 
archive, the DGA should be able to manage the 
authentication of a user to the data handling 
environment, the authorization of the user for access 
to a digital entity, and the authentication of the data 
handling system to the remote archive. The DGA 
should be able to provide access to the user to all 
the storage systems with a single sign on 
authentication. 

• Virtual organization structure for data and 
information based on a digital library framework.  
Even though data will be stored at multiple sites, it 
would help users if the data are organized according 
to some logical (context-dependent) structure with 
an easy navigational aid. Hence, the DGA has to 
provide means to group data into collections 
(actually hierarchies of collections) and provide 
management facilities for the same. 

• Handle Dataset Scaling in size and number.  The 
sizes and numbers of datasets involved in any DGA  
will grow in the coming years  Hence any solution 
for the data grid should be scalable to handle 
millions of datasets, hundreds of Terabytes as well 
as large files that are tens of Gigabytes in size.  
Support is also needed for aggregating small data 
files into physical blocks called containers for 
storage into archives, and for decreasing latency 
when accessed over a wide area network. 

 
Persistent Archive capabilities [14,15,16] : 
• Replication of Data:  For reasons of fault tolerance, 

disaster recovery and load balancing it will be 
useful for data to be replicated across distributed 
resources.  Moreover, the consistency of the replicas 
should be maintained with very little effort on the 
part of the users. 

• Version Control: Since datasets may evolve over 
time, providing distributed version control will help 
in collaborative data sharing. This includes facilities 
for locking and checking out files. 

• Handle Access Control and provide Auditing 
Facilities.  In some communities, data need to be 
guarded so that access to them is given only to 
selected and relevant people. Moreover, the 
selection should be done by the owner of the data.  
The DGA should be able to control access at 
multiple levels (collections, datasets, resources, etc) 
for users and user groups beyond that offered by file 
systems.  Moreover, in some cases, it may be 
necessary to audit usage of the collections/datasets.  
Hence, auditing facilities will be needed as part of 
the framework. 

 
     Data grids can provide support for each of the above 
capabilities, making it possible to extend current data 
collection, digital library, and persistent archive 
technology into distributed data management 
environments. 

 
3. The Storage Resource Broker 
 
     The SDSC Storage Resource Broker (SRB) is client-
server middleware that uses collections to build a logical 
name space for identifying distributed data [12,19]. The 
SRB provides a means to organize information stored on 
multiple heterogeneous systems into logical collections 
for ease of use. The SRB, in conjunction with the Meta 
data Catalog  [13], supports location transparency by 
accessing data sets and resources based on their 
attributes rather than their names or physical locations  
[20]. The SRB provides access to data stored on archival 
resources such as HPSS, UniTree and ADSM, file 
systems such as the Unix File System, NT File System 
and Mac OSX File System and databases such as Oracle, 
DB2, and Sybase. The SRB provides a logical 
representation for describing storage systems, digital file 
objects, and collections and provides specific features 
for use in digital libraries, persistent archive systems and 
collection management systems. SRB also provides 
capabilities to store replicas of data, for authenticating 
users, controlling access to documents and collections, 
and auditing accesses.  SRB also privides a facility for 
co-locating data together using containers. One can view 
containers as tarfiles but with  more flexibility in 
accessing and updating files. The SRB can also store 
user-defined metadata at the collection and object level 
and provides search capabilities based on these 
metadata.  

     SRB is a federated server system, with each SRB 
server managing/brokering a set of storage resources.  
The federated SRB implementation provides unique 
advantages:   



1) Location transparency - Users can connect to 
any SRB server to access data from any other 
SRB server , and discover data sets by either a 
logical path name or by collection attributes. 

2) Improved reliability and availability - data may 
be replicated in different storage systems on 
different hosts under control of different SRB 
servers to provide load balancing .   

3) Logistical and administrative reasons - different 
storage systems may be run on different hosts 
under different security protocols, through use 
of a single sign-on environment and Access 
Control Lists maintained for each digital entity;  

4) Fault tolerance – data can be accessed by the 
global persistent identifier, with the system 
automatically redirecting access to a replica on 
a separate storage system when the first storage 
system is unavailable. 

5) Integrated data access – SRB provides the same 
mechanisms for accessing data in distributed 
caches and archives, making it possible to 
integrate access to back-up copies into the data 
management environment 

6) Persistence – data can be replicated onto new 
storage systems by a recursive directory 
movement command, without changing the 
name by which the data is discovered and 
accessed.  This makes it possible to migrate 
collections onto new resources without 
affecting access. 

    The SRB has been implemented on multiple platforms 
including IBM AIX, Sun, SGI, Linux, Cray T3E and 
C90, Windows NT, 2000, Me, Mac OSX, etc.  The SRB 
has been used in several efforts to develop infrastructure 
for GRID technologies, including the Biomedical 
Information Research Network (NIH) NSF/DOE Particle 
Physics Data Grid [2], DOE ASCI [10], NASA 
Information Power Grid [11] and NSF GrPhyN[5]. The 
SRB also has been used for handling large-scale data 
collections, including the 2-Micron All Sky Survey data 
(10 TB comprising 5 million files in a digital library), 
NPACI data collections, the Digital Embryo collection 
(a digital library of images) and LTER hyper-spectral 
datasets (a distributed data collection). More details on 
the SRB can be found at 
http://www.npaci.edu/DICE/SRB/. 

 
 
4. MySRB– a web-based interface to the SRB 
 

MySRB is a web-oriented interface for accessing the 
data and metadata brokered by the SRB, that allows 
users to share their scientific data collections with their 
colleagues in a secure fashion. It provides a system 
where users can organize their static files and dynamic 
digital objects (virtual data) according to logical 
cataloging schemes independently of the physical 
location and formats of the files and also associate 
queriable metadata with these files.  

    MySRB provides three primary functionalities:  

• collection and file management: operations 
collection, maintenance and deletion, operations 
for data creation, data ingestion, reload and 
registration, data replication and movement, 
access control, and for data deletion. Versioning 
and locking functions are under implementation. 

• metadata handling: operations for ingestion, 
extraction, copy, maintenance, update, and 
deletion of user-defined and standardized 
metadata.  Standardized metadata might be based 
on lists of elements such as  the Dublin Core, or 
might be from definitions based on Semantic 
Web. 

• access and display of files and metadata: 
functions for browsing files in the collection 
hierarchy and to search and query using 
system-level, user-defined and standard 
metadata. 

 

    MySRB uses the secure-http (https) protocol with 128-
bit RSA authentication. Each session to MySRB is given 
a unique session key (stored as an in-memory cookie at 
the Browser). These session keys have a maximum time-
limit set on them (currently 60 minutes).  MySRB also 
performs security checks on the session keys when 
validating a user request.  

    The web-browser interface for MySRB uses a  split-
window, shown in Figure 1. The small top-window is 
used to display metadata about data objects and 
collections, and the larger bottom-window is used for 
displaying elements in a collection or for displaying data 
objects accessed by the user. Hence, when a user 
“opens” a file, the attributes about the file are displayed 
along with the contents of the file. We show a 
screenshot of the MySRB interface in Figure 2 that is 
used to enter metadata. Default attribute values can be 
specified, as well as restricted vocabularies for attribute 
values, and as well as user-defined metadata. 
 
We illustrate the functionalities supported by MySRB 
through an exemplar scenario: 



 
    Consider a curator who wants to form a new 
collection called  “Avian Culture” under an existing 
“Cultures” collection. Her aim is to gather in one 
`folder’ all documents and multi-media available on the 
topic even though they might be located as distributed 
files, images, and movies stored on diverse media-
formats in file systems, archives, databases and web-
sites.  Some of the files would be under the control of 
the collection being created but others might be owned 
and curated by outside administrators with only links 
provided to them. She would also like to allow other 
curators to include their own materials into the 
collection. But she wants to have them include some 
minimal set of metadata based on entities defined under 
“MetaCore for Cultures” which she has augmented with 
more attributes relevant to her specialized topic. Also, 
she would like a set of selected users to add additional 
metadata for the collected items as and when they come 
across more information. Moreover, she would like users 
to add their own comments, ratings, errata  and 
dialogues and annotations which will make the 
collection richer and more useful. Also an important 
criteria to her, is to include multi-modal relationships 
among the collection items so that one can link the 
objects in many ways for ease of browsing. Finally, she 
would like the public users to be able to access her 
collection by browsing in a pre-determined fashion 
(which is done by organizing the collections as sub-
collections as well as through multi-modal 
relationships), and/or search/query the collection using 
the rich mix of metadata based on standardized meta 
data, curatorial meta data, user annotations, ratings and 
dialogues.  
 
    All the above operations are facilitated through the 
MySRB interface. The collections and sub-collections 
structure provides a means to organize the objects in a 
hierarchical fashion. Metadata at the collection-level can 
be used to provide (queriable) information about the 
collections and sub-collections as well as to enforce 
metadata that need to be provided when new items are 
added to the collection.  Metadata at object level and 
collection level can be used to encode multi-modal 
relationships between the objects in the collection as 
well as to provide links to other documents and data 
outside the collection. The metadata stored in MySRB 
are not just entity-value pairs, but have a richer structure 
including associated ontology, units of the meta-value, 
groupings of the meta entities in schemas and sub-
groupings. (The ontology part is under development).  
MySRB also allows for storing annotations to capture 
dialogues, comments, ratings and user annotations and 
errata. MySRB supports a rich set of metadata 
management operations to help curators, users and 

public to ingest, maintain and access multiple kinds of 
metadata. A rich set of access control mechanisms 
provides a role-based access matrix from curator to 
public. The SRB facilitates federated and seamless 
access to remote storage from web-servers and file 
servers to tape archives and databases.  It also provides 
for copying data as well as remote linking to enable 
read-only access to data not curated by current 
collection. Also, the SRB provides a feature to link 
objects and sub-collections across multiple collections 
without copying them. Finally SRB provides a 
replication management capability that can be used to 
provide fault-tolerance, load balancing and archival 
functionalities.  
 
     
5. Features in MySRB 
 
    We briefly discuss the mySRB in terms of its data 
movement capabilities and metadata management features   
       
Data Movement Operations: 
 
      At the collection-level, a user can ingest a file  into 
SRB  or create new sub-collection through the mySRB 
interface. At ingestion time, the user can choose the 
logical resource that will be used for storing  in SRB. The 
logical resource can be a single physical resource (say a 
Unix or NT file system, database, or archival file system) 
or it can be a logical resource that ties together two or 
more physical resources. In such a case, the file is 
replicated and stored in the underlying physical resources. 
For example, consider a logical resource logrsrc1 which 
consists of two resources: unix-sdsc, a unix file system  at 
SDSC and hpss-caltech, a HPSS archival system at 
CalTech; then storing a file into logrsrc1 will ingest the 
file into both physical resources, unix-sdsc and hpss-
caltech, synchronously and the two copies will be shown 
as two replicas of the same SRB object. During retrieval, 
the user can ask for a particular copy or or let SRB 
choose its own 
access for the file. 

  Instead of specifying the resource, the user can specify a  
container when ingesting the file. In this case, the file is 
added to the container. Note that a container specification 
on ingestion overrides a resource specification. During 
ingestion, the user can specify the data type as well as any 
metadata that is required by the collection as well as a 
few user-defined metadata (metadata is discussed later in 
the section). MySRB uses the file-browse mechanism of 
web Browsers to identify the local file that need to be 
ingested. Files from Unix, Windows and Macintosh have 
been successfully ingested using mySRB. At this stage, 
only single file ingestion is supported. Apart from 



ingesting a file, a user can reingest a file (i.e., all metadata 
associated with the file by the SRB are still linked to it) 
and edit a file, if it is a small ASCII file (the edit facility 
is allowed only for a few data types). 
 
Apart from ingesting a file, a user can register SRB 
objects where no physical copy of the file is maintained 
or controlled by the SRB but a pointer to a physical 
location is maintained. There are five such types of 
objects that can be registered through mySRB: 
  1. A file that can exist either in a file system, an archival 
storage system or as a LOB in a database system. In this 
case, the user specifies the physical resource in which the 
file exist and the path name to the file in that resource. 
The user can perform all operations that mySRB offers, 
including deletion on registered files. Since the file is not 
fully under SRB’s control, the file size and other 
characteristics might change without SRB being aware of 
these changes.  
  2. A directory in a file system or an archival storage 
system. The user specifies the physical resource and the 
directory path name. The mySRB registers this path name 
as a ’shadow directory object’ (i.e., the cone of files under 
this directory is visible through this object),  and provides 
all operations that can be performed by the user on a file 
except new file ingestion into the directory structure or 
update/deletion of files. These functionalities have some 
security implications but might be supported in a later 
version if these concerns are resolved. 
  3. A SQL query for a database resource. The user 
specifies a SQL query which can be either partial (i.e., the 
user can specify reminder of the query at retrieval time) 
or a full SQL query. Note that for security reasons, we 
recommend that one register only ’select’ commands and 
also have at least a partial query starting with select as 
part of the SQL. The select statement can be any query 
supported by the underlying database, including table 
joins, functions, stored-procedures, sub-queries and union 
queries (limitation of size might apply). The query is 
executed at retrieval time, and is not stored on 
registration. Hence the answer to the query can vary with 
time. During registration of the SQL, the user can specify 
the template to be used for pretty-printing the retrieved 
table. The mySRB  supports three built-in templates that 
can be used: the first template HTMLREL, prints the 
result as a relational table in HTML format, the second 
template HTMLNEST, prints the result as a nested table 
in HTML, and the third template XMLREL, prints the 
result in XML using a simple DTD. Apart from the built-
in template, the user can specify their own ’style-sheet’. In 
this case, the user specifies a file already in SRB as the 
style-sheet file. Currently the style-sheet is written in T-
language, an interpreted language native to SRB that 
supports rule-based data extraction and style-sheet for 
data organization. Support for other style-sheet languages 

such as XSLT will be provided in a later version. (Note: 
for additional information on T-language please refer to 
the primer given as part of the SRB package.) Deletion 
operation on this SRB object just removes the query from 
the SRB (and also any associated metadata and 
annotations) but does not change or delete tables in the 
underlying database. Currently mySRB does not support 
ingestion into databases (note that the SRB allows 
ingestion through command line and API), but the feature 
might be supported in a later version. 
   4. A URL. The user can specify any URL including ftp 
calls and cgi queries. On retrieval, the contents of the 
URL are retrieved and displayed. The contents of the 
URL are not stored in the SRB on registration. Deletion 
operation just removes the URL and any associated 
metadata from SRB and does not damage the contents of 
the URL at its physical location. 
   5. A method object or virtual data. The user can specify 
two types of registered method objects. The first type of 
method object runs an executable program  that is 
invoked by the SRB as a remote proxy command. A 
proxy command is an executable that is available in the 
bin directory of a SRB server and is made available for 
execution by the SRB administrator (users have to ask a 
SRB administrator to place an object in a, possibly 
remote, SRB bin directory; this is done as a security 
precaution). When the method object is ’accessed’, the 
command is executed on the remote server and any 
results of that execution piped back to the browser. The 
user can provide command-line parameters at the 
invocation. As an example, one can register a method 
object that invokes a ’srbps’ command on a remote host. 
The ’srbps’ shows the process status similar to ’ps’ 
command in Unix, and the result is sent back to mySRB 
browser. The second method is an invocation of a proxy 
function inside SRB. One can compile user-defined 
functions in SRB and can invoke them using this feature. 
For example the metadata extraction function (explained 
later) is implemented in this manner. 
 
Apart from ingesting or registering files into mySRB, the 
user can also perform other data movement/maintenance 
operations. We briefly discuss them below: 
 
replicate: In mySRB, a user can replicate any file that is 
either ingested into the SRB or one that has been 
registered into SRB. Files inside a registered directory is 
not replicable. When replicating, the user specifies the 
resource that will be used for storing the replica. The new 
replica inherits all  metadata  associated with its siblings. 
A replica number is uniquely determined for the new 
replica and is displayed for the user in the listing. At this 
stage, mySRB does not support replication of files inside 
a container using this operation. Replication of a 
container (and its objects) is done by the SRB system 



using semantics associated with the logical resource 
specification of the container.  
 
register replicate: When a SRB object is a registered 
directory, URL, or SQL, then another object which has 
similar characteristics can be registered as a replicate. For 
example, if a SQL object which queries an oracle 
database, say dlib1, is registered in SRB, one can also 
register as a replicate of the first object another SQL 
object which queries another database, say a db2 databese 
dlib2. This might imply that they are  equal (in some 
sense) and either queries will give the same result. Note 
that SRB does not check whether a registered replica is 
really an equal of the other copy. One can use this 
technique to register another object as a semantically 
equal copy of each other. For example, two SQL queries 
one giving an HTML output and another giving an XML 
output can be registered as replicas. 
 
ingest replica: For a SRB object (ingested or registered), 
one can ingest another file as a replicate. This is very 
useful when you want two different files in SRB that are 
syntactically different but semantically equal (eg. a tiff 
file and a gif file of the same image).  Note that SRB does 
not check for syntactic or semantic equality.  
 
copy: A SRB collection, file  or registered file  can be 
copied as another SRB file or collection in another 
collection possibly with a new name. Currently we do not 
support copy of URL, SQL or method objects. The copy 
command does not copy any user-defined metadata or 
annotations for the new copy. We discuss these 
operations later. A copy is different from the replication 
operation because these two objects are considered to be 
entirely different and unconnected. Notions of 
synchronizations, trying for alternate replicas for retrieval 
and other operations and semantics associated with 
replicas do not apply to copied objects. The user specifies 
the new resource, path name and collection for the copy 
operation. 
 
move: Both files (ingested or  registered)  and sub-
collections in SRB can be moved from one collection to 
another. The user-defined metadata remains unchanged. 
This move is considered a logical move. Another type of 
move supported by the mySRB is a physical move of the 
object. This is possible only for files ingested into SRB 
resources (container-based files cannot be moved using 
this operation).  In this case, the user provides the 
resource and path names of the new location for the file.  
 
link: One can link a SRB object (ingested or registered) 
in another collection. The operation is similar to soft 
linking in Unix. The access control of the original object 
is inherited by the linked object. Metadata and 

annotations associated with the original object can be 
viewed as part of the link object’s metadata but does not 
allow modification of the original object’s metadata. One 
can associate metadata and annotations with the link 
object apart from those available for the linked. One can 
also link a collection as a sub-collection of another 
collection. One can have more than one link to the same 
data (though replicas are not allowed). Chaining of links 
is not allowed. An attempt to link to another link object 
will result in a direct link to the parent object. Linking 
will be supported in the next version of SRB release. 
 
delete: A user can delete an ingested  or registered file 
using the delete operation. A registered directory, SQL, 
URL or method object are unlinked without any deletion 
of the physical object. The objects or links when deleted 
is done one replica at a time and when the  last replica is 
deleted all the metadata and annotations are also deleted. 
A linked file cannot be deleted through the link; a delete 
operation on a link  basically performs an unlink 
operation. 
 
lock, pin, checkout:  Using mySRB, an object can be 
locked so that operations on it are restricted. Two types of 
locks are supported: a ’shared’  lock which locks the 
object from being written to by any user other than the 
locking user but reads from the object and associated 
metadata are allowed, and ’exclusive’ lock which allows 
no interactions with the object. A lock placed by a user 
has an expiry date at which time it gets unlocked. A user-
driven unlock operation is also supported. Pin operation 
makes sure that a SRB object does not get deleted from a 
particular resource. This is useful for pinning a file in a 
cache resource from being purged by SRB when 
performing cache management. An expiry time is also 
associated with pins and an explicit unpin operation is 
also supported. Checkout and checkin operations provide 
very crude forms of version control in mySRB. A 
checkout by a user disallows any changes to be made to 
that object and when checkin occurs, the older version of 
the object is still maintained as an earlier version with a 
distinct version number. Note that this is a very 
rudimentary version control and will be improved in later 
versions. These operations are implemented in mySRB 
but are not available in the current version of the SRB 
(1.1.8); they  will be supported in the next version of the 
SRB release. 
 
Metadata Operations:  
 
The mySRB interface provides a very rich set of 
operations for creating, maintaining, viewing and 
searching different types of metadata for SRB objects as 
well as collections. There are five types of metadata in 
mySRB: 



1. system-defined  metadata,  
2. user-defined metadata,  
3. type-oriented (domain-oriented) metadata,  
4. file-based metadata, and 
5. annotations and commentary metadata. 
 
The system-defined metadata is created and maintained 
by the SRB system and the user can view them and also 
use them in their search mechanism. User-defined and 
type-oriented metadata for SRB files and objects are 
descriptive in nature and are made of name, value and 
units triplets. The metadata for a SRB collection can be of 
two types: descriptive and structural. Descriptive 
metadata are tripletswhich describe the content of the 
collection where as the structural metadata describe 
metadata that is required/suggested by the collection 
creator/curator for objects ingested or registered in the 
collection. The structural metadata has two additional 
parameters, default values and comments for explaining 
the metadata and its requirements. For these type of 
metadata, one can associate either no default values, or 
one default value or a set of reserved keywords which 
appear as a drop-down list in mySRB. Also the creator 
can designate zero or more of these metadata as 
mandatory wherein the file ingestor is required to provide 
a value for the metadata.  
 
There are four  ways of associating user-defined metadata  
in mySRB. The first method allows the user to associate 
metadata when ingesting or registering an object, or when 
creating a new sub-collection. The second method is to 
invoke the insert metadata function which provides a 
form for the operation. This operation can be performed 
as many times as required and hence there is no limits for 
the number of metadata associated with a SRB object or 
collection. The third method is to copy metadata from 
other SRB objects or collections. 
 
The fourth method is to extract metadata from an 
extraction method associated with the data-type of the 
file. The metadata can be extracted from the object itself 
(eg. FITS files, HTML files) or one can extract the 
metadata from a second SRB object and associate the 
metadata to the first object (eg. AMICO image metadata 
with XML metadata files, or DICOM image metadata 
from separate header files). One can associate more than 
one metadata extraction method for a data-type and the 
user is allowed to choose one at the time of metadata 
creation. If necessary, more than one method can be 
applied to the same object to extract different metadata. 
Metadata extraction methods can be written in T-
language, which has a simple form of rules for identifying 
metadata values and associating them with metadata 
names.  
 

The type-oriented metadata are pre-defined sets of 
metadata elements that can be associated with the SRB 
objects through their data types or for all SRB objects. 
For example, Dublin Core metadata can be associated 
with any SRB object and an entry form for Dublin Core 
can be invoked when needed. Data-type designated 
metadata can be ingested for SRB objects of particular 
type and can be done through forms, by copying from 
other objects and/or by extracting through metadata 
extraction methods. User-defined metadata and type-
oriented metadata can be ingested only by users who have 
’ownership’ permission for the SRB object or collection.  
 
File-based metadata is as name suggests a file in SRB that 
is associated as a metadata-carrying file for another SRB 
object. This metadata is used only for viewing and cannot 
take part in querying (at the current time). One can 
associate the same file to be a metadata file for more than 
one SRB object. Currently triplets are the only form of 
metadata supported in this manner. XML-based metadata 
will be supported in a later release. 
 
Annotations and commentary metadata are useful for 
associating free-form metadata to a SRB object. They can 
be used for providing notes, comments, errata, queries 
and answers, annotations, memoranda, etc. These have a 
type/location associated with them and the timestamp and 
the annotation writer’s name. Unlike other types of 
metadata, the annotations and commentary can be 
inserted by any user with a read permission on the object. 
 
Having seen all the different types of metadata ingestion 
methods, one can be very creative in the type of  metadata 
being ingested. Currently one can associate a URL as a 
metadata and if the URL is designated as  being of 
’inlineable’ type then the mySRB shows the contents of 
the URL. One can also associate other SRB objects as 
related to this object and in that case, a reference is 
provided as a clickable hot-link in mySRB.  If this SRB 
object isdesignated as ’inlineable’, mySRB shows the 
content of the object. This is useful when showing thumb-
nail images for larger images or when showing some 
properties that are stored in a database. Other creative 
modes of metadata support  will be  implemented in 
future mySRB releases. 
 
Metadata in mySRB can be viewed in two ways. When a 
user selects an object for viewing, then the associated 
metadata is shown in a split screen on the browser.  
Hence the user can see both the data and the metadata at 
the same time. In the case of collections, the user-defined 
metadata is shown in one part of the screen  and the 
collection listing with some of the system-metadata is 
shown in the other part of the screen.  In the second 
method, the user can select to just view the metadata for 



an object. In the case of collections users have a choice of 
seeing the descriptive, structural or all metadata. 
 
The importance of metadata in SRB comes from the 
queriability of the metadata. MySRB provides a query 
interface where one can either query only the user-
defined and type-defined metadata or query also with 
annotations and some system-defined metadata. When a 
user selects the mySRB icon in a collection-page of 
mySRB, it opens a new page with a set of query 
conditions where each condition has four parts: a 
metadata name part which is a drop-down menu 
containing all the metadata names that are queryable in 
that collection and every collection in the hierarchy under 
the collection. Hence, one can query across collections by 
being above the collections. The second part is a 
comparison operator where one can choose 
=,>,<,<=,>=,<>,like, not like, etc. The third part is a text 
box where the user can provide values for the comparison 
condition. The fourth part is a checkbox where a user can 
check if the user wants to see the values for a metadata-
name in the query result listing. One can check the box of 
a metadata name without using it as part of any query 
condition. The query is taken as a conjunctive query in 
the current implementation, i.e., an AND of all the 
condition is used for search purposes. The result of the 
query is a listing of SRB objects that satisfy the search 
conditions. 
 
Apart from creation, viewing and querying of metadata, 
MySRB provides functionality for updating, copying and 
deleting user-defined metadata and annotations. 
 
Apart from these operations, the MySRB interface 
provides additional functionalities such as user 
registration,  access to  resource, user and  container 
metadata, ability to navigate the collection hierarchy and 
on-line help. The MySRB interface is available at 
https://srb.npaci.edu/mySRB.html.  
 
6. Conclusion 
 

Data Grids are becoming increasingly important in 
scientific communities for sharing large data collections 
and for archiving and disseminating them in a digital 
library framework. The Storage Resource Broker 
provides transparent virtualized middleware for sharing 
data across distributed, heterogeneous data resources 
separated by different administrative and security 
domains. The MySRB is a web-based interface to the 
SRB that provides a user-friendly interface to distributed 
collections brokered by the SRB. In this paper we saw 
brief descriptions of the use of the SRB and the MySRB 
infrastructure as potent tools in the Data Grid 

Architecture for building distributed data collections, 
digital libraries, and persistent archives. 
 
7. References 
 
[1] Foster, I., and Kesselman, C., (1999) “The Grid: 
Blueprint for a New Computing Infrastructure,” Morgan 
Kaufmann. 
 
[2] PPDG, (1999)  “The Particle Physics Data Grid”, 
(http://www.ppdg.net/, 
http://www.cacr.caltech.edu/ppdg/). 
 
[3] Hoschek, W., Jaen-Martinez, J., Samar, A., 
Stockinger, H., and Stockinger,  K. (2000) “Data 
Management in an  International Data Grid Project,”  
IEEE/ACM International Workshop on Grid Computing 
Grid’2000,  Bangalore, India 17-20 December 2000. 
(http://www.eu-
datagrid.org/grid/papers/data_mgt_grid2000.pdf). 
 
[4] Hammond, S., (1999). "Prototyping an Earth System 
Grid", at the Workshop on Advanced Networking 
Infrastructure Needs in Atmospheric and Related 
Sciences, National Center for Atmospheric Research, 
Boulder CO, 03 June 1999.  
(http://www.scd.ucar.edu/css/esg/presentations/nlanr/inde
x.htm). 
 
[5] GriPhyN, (2000) “The Grid Physics Network”, 
(http://www.griphyn.org/proj-desc1.0.html). 
 
[6] NEES, (2000) “Network for Earthquake Engineering 
Simulation”, (http://www.eng.nsf.gov/nees/). 
 
[7] KNB, (1999)  “The Knowledge Network for 
Biocomplexity”, ( http://knb.ecoinformatics.org/). 
 
[8] NVO, (2001)  “National Virtual Observatory”, 
(http://www.srl.caltech.edu/nvo/). 
 
[9] EarthScope, (2001) “EarthScope”, ( 
http://www.earthscope.org/). 
 
[10] ASCI, (1999) “Accelarated Strategic Computing 
Initiative”, A DOE Project, (http://www.llnl.gov/asci/). 
 
[11] IPG, (2000) “Information Power Grid”, A  NASA 
Project, ( http://www.ipg.nasa.gov/). 
 
[12] SRB, (2001) “Storage Resource Broker, Version 
1.1.8”, SDSC (http://www.npaci.edu/dice/srb). 
 
[13] MCAT, (2000)  “MCAT: Metadata Catalog », 
SDSC (http://www.npaci.edu/dice/srb/mcat.html). 



 
[14] Rajasekar, A., R. Marciano, R. Moore,  (1999), 
“Collection Based Persistent Archives,” Proceedings of 
the 16th IEEE Symposium on Mass Storage Systems, 
March 1999. 
 
[15] Moore, R., C. Baru, A. Gupta, B. Ludaescher, R. 
Marciano, A. Rajasekar,  (1999), “Collection-Based long-
Term Preservation,” GA-A23183, report to National 
Archives and Records Administration, June, 1999. 
 
[16] Moore, R., C. Baru, A. Rajasekar, B. Ludascher, R. 
Marciano, M. Wan, W. Schroeder, and A. Gupta, (2000),  
“Collection-Based Persistent Digital Archives – Parts 1& 
2”, D-Lib Magazine, April/March 2000, 
http://www.dlib.org/ 
 
[17] Moore, R.,  (2001a) “Knowledge-based Grids,” 
Proceedings of the 18th IEEE Symposium on Mass 
Storage Systems and Ninth Goddard Conference on Mass 
Storage Systems and Technologies, San Diego, April 
2001. 
 
[18] Moore, R.,  (2001b)  “Knowledge-Based Data 
Management for Digital Libraries”, NIT2001, Beijing, 
China, May 2001 
 
[19] Moore R., and A. Rajasekar,  (2001) “Data and 
Metadata Collections for Scientific Applications”, High 
Performance Computing and Networking (HPCN 2001), 
Amsterdam, NL, June 2001. 
 
[20] Baru, C., R, Moore, A. Rajasekar, M. Wan,  (1998)   
“The SDSC Storage Resource Broker,” Proc. 
CASCON'98 Conference, Nov.30-Dec.3, 1998, Toronto, 
Canada. 



 
Figure 1: SRB Main page showing the 
Collections with different objects and Operations 

 
Figure 2:  File Ingestion Page with Metadata for Dublin 
Core Attributes and other user-defined attributes. 
 
 


