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tWe present a 
lass of generalized mean �eld(GMF) algorithms for approximate inferen
ein exponential family graphi
al models whi
his analogous to the generalized belief prop-agation (GBP) or 
luster variational meth-ods. While those methods are based on over-lapping 
lusters, our approa
h is based onnonoverlapping 
lusters. Unlike the 
lustervariational methods, the approa
h is provedto 
onverge to a globally 
onsistent set ofmarginals and a lower bound on the likeli-hood, while providing mu
h of the 
exibilityasso
iated with 
luster variational methods.We present experiments that analyze the ef-fe
t of di�erent 
hoi
es of 
lustering on infer-en
e quality, and 
ompare GMF with beliefpropagation on several 
anoni
al models.1 Introdu
tionThe variational approa
h to probabilisti
 inferen
e in-volves 
onverting the inferen
e problem into an opti-mization problem, by approximating the feasible setor the fun
tion to be optimized (or both), and solv-ing the relaxed optimization problem. Thus, given aprobability distribution p(xj�) whi
h fa
tors a

ordingto a graph, the variational methods yield approxima-tions to marginal probabilities via the solution to anoptimization problem that generally exploits some ofthe graphi
al stru
ture. The earliest variational in-feren
e methods were based on the use of a family oftra
table distributions q(xj
), where 
 are a set of free\variational parameters." In this 
ase a simple appealto Jensen's inequality produ
es a relaxed optimizationproblem that determines how to set the variational pa-rameters (Jordan et al., 1999). We will refer to su
hmethods as \mean �eld methods," a terminology thatre
e
ts the 
lassi
al setting in whi
h q(xj
) is taken tobe a 
ompletely fa
torized distribution. In general, the

derivation via Jensen's inequality shows that this 
lassof algorithms yields a lower bound on the likelihood.More re
ently, Yedidia et al. (2001) realized thatPearl's belief propagation (BP) algorithm|when ap-plied to general loopy graphs|is also a variationalalgorithm. The inferen
e problem is transformed toan optimization fun
tional|the \Bethe free energy"|that imposes lo
al 
onsisten
y on the approximatemarginals. The resulting marginals do not, however,need to be globally 
onsistent, so that the Jensen in-equality argument no longer applies (and thus the ap-proximation does not yield a lower bound to the like-lihood and may not 
onverge). An advantage of thisapproa
h is the simpli
ity of the algorithm. Moreover,Yedidia et al. showed how to derive generalized be-lief propagation (GBP) algorithms, in whi
h the vari-ational relaxation is based on overlapping 
lusters ofvariables. The 
exibility provided by the ability to
hoose 
lusters of varying sizes is a signi�
ant impor-tant step forward.Mean �eld methods 
an also provide 
exibility viathe 
hoi
e of approximating distribution q(xj
), andso-
alled \stru
tured mean �eld methods" have beenbased on 
hoosing q(xj
) to be a tree or some othersparse subgraph of the original graph to whi
h an ex-a
t inferen
e algorithm su
h as the jun
tion tree algo-rithm 
an be feasibly applied (Saul and Jordan, 1996).Re
ently, Wiegerin
k presented a general frameworkfor stru
tured mean �eld methods involving arbitrary
lusterings (Wiegerin
k, 2000). In parti
ular, his ap-proa
h allows the use of overlapping 
lusters, whi
hleads to a set of mean �eld equations reminis
ent ofa jun
tion tree algorithm. Although there 
ontinue tobe developments in this area (e.g., El-Hay. and Fried-man, 2001, Bishop et al., 2002), it is fair to say that inpra
ti
e the use of mean-�eld-based variational meth-ods requires substantial mathemati
al skill and thata systemati
 approa
h with the generality, 
exibilityand ease of implementation of GBP has yet to emerge.In this paper we des
ribe a Generalized Mean Field



method that aims to �ll this gap. The approa
h yieldsa simple general methodology that applies to a widerange of models. To obtain the desired simpli
ity ourapproa
h makes use of nonoverlapping 
lusters, spe-
ializing Wiegerin
k's general approa
h, and yieldinga method that is somewhat reminis
ent of blo
k meth-ods in MCMC su
h as Swendsen-Wang (Swendsen andWang, 1987).Note that the 
hoi
e of 
lusters is generally done man-ually both within the GBP tradition and the mean-�eld tradition. Another reason for our interest innonoverlapping 
lusters is that it suggests algorithmsfor automati
ally 
hoosing 
lusters based on spe
tralgraph partitioning ideas. Although not the fo
us ofthe 
urrent paper, we dis
uss some of the possibilitiesin Se
. 6.Given an arbitrary de
omposition of the original modelinto disjoint 
lusters, the algorithm that we present
omputes the posterior marginal for ea
h 
luster givenits own eviden
e and the expe
ted suÆ
ient statisti
s,obtained from its neighboring 
lusters, of the variablesin the 
luster's Markov blanket. The algorithm oper-ates in an iterative, message-passing style until a �xedpoint is rea
hed. We show that under very general 
on-ditions on the nature of the inter-
luster dependen
ies,the 
luster marginals retain exa
tly the intra-
lusterdependen
ies of the original model, whi
h means thatthe inferen
e problem within ea
h 
luster 
an be solvedindependently of the other 
lusters (given the Markovblanket messages) by any inferen
e method.One way to understand the algorithm is to 
onsidera situation in whi
h all the Markov blanket variablesof ea
h 
luster are observed. In that 
ase, the jointposterior de
omposes:p(xC1 ; : : : ;xCn jxE) =Yi p(xCi jMB(xCi));where MB(xCi ) denotes the Markov blanket of 
lus-ter Ci. GMF approximates this situation, using theexpe
ted Markov blanket (obtained from neighboring
lusters) instead of an observed Markov blanket anditerating this pro
ess to obtain the best possible \self-
onsistent" approximation.In its use of expe
tations in messages between 
lusters,GMF resembles the expe
tation propagation (EP) al-gorithm (Minka, 2001), but in the basi
 algorithm EP'smessages 
onvey the in
uen
e of only a single vari-able. In providing a generi
 variational algorithm that
an be applied to a broad range of models with 
on-vergen
e guarantees, GMF resembles VIBES (Bishopet al., 2002), but VIBES is based on a de
ompositioninto individual variables whereas GMF allows arbi-trary disjoint sets. Thus GMF is a generi
 algorithmsuitable for approximate inferen
e in large, 
omplexprobability models.

2 Notation and ba
kgroundWe 
onsider a graph (dire
ted or undire
ted) G =(V; L), where V denotes the set of nodes (verti
es) andL the set of edges (links) of the graph. Let Xn denotethe random variable asso
iated with node n, for n 2 V ,let XC denote the subset of variables asso
iated with asubset of nodes C, for C � V , and let X = XV denotethe 
olle
tion of all variables asso
iated let with thegraph. We refer to a graph H = (V; L0), where L0 � L,as a subgraph of G. We use C = fC1; C2; : : : ; CIg to de-note a disjoint partition (or, a 
lustering) of all nodesin graph G, where Ci refers to the set of indi
es ofnodes in 
luster i; likewise, D = fD1; D2; : : : ; DKg de-notes a set of 
liques of G. For a given 
lustering,we de�ne the border 
lique set Bi as the set of 
liquesthat interse
t with but are not 
ontained in 
luster i;and the neighbor 
luster set Ni as the set of 
lustersthat 
ontain nodes 
onne
ted to nodes in 
luster i. Forundire
ted graphs, the Markov blanket of a 
luster i(MBi) is the set of all nodes outside Ci that 
onne
t tosome node in Ci, and, for dire
ted graphs, the Markovblanket is the set of all nodes that are parents, 
hil-dren, or 
o-parents of some node in Ci (Fig. 1). Clus-ters that interse
t with MBi are 
alled the Markovblanket 
lusters (MBCi) of Ci.
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C1Figure 1: The Markov blanket MB1 (blue-shaded nodes)of 
luster 1 in a dire
ted graph. Shaded blobs 
onstituteMBC1.2.1 Exponential representationsFor undire
ted graphi
al models, the family of jointprobability distributions asso
iated with a given graph
an be parameterized in terms of a set of potentialfun
tions asso
iated with a set of 
liques in the graph.For a set of 
liques D asso
iated with an undire
tedgraph, let � = f��j� 2 Dg denote the set of potentialfun
tions de�ned on the 
liques, and � = f��j� 2 Dgthe set of parameters asso
iated with these potentialfun
tions (for simpli
ity, we label � and � with the
orresponding 
lique index, e.g., �, rather than withthe 
lique D� itself). The family of joint distributionsdetermined by � 
an be expressed as follows:p(xj�) = expfX� ����(xD�)�A(�)g (1)



where A(�) is the log partition fun
tion. We also de�nethe energy, E(x) = �P� ����(xD�), for state x.For dire
ted graphi
al models, in whi
h the joint prob-ability is de�ned as p(x) =Qi p(xijx�i), we transformthe underlying dire
ted graph into a moral graph, andset the potential fun
tions equal to the negative log-arithm of the lo
al 
onditional probabilities p(xijx�i).In the sequel, we will fo
us on models based on 
on-ditional exponential families. That is, the 
onditionaldistributions p(xijx�i) 
an be expressed as:p(xijx�i) = u(xi) expf�Ti �i(xi;x�i)�A(�i)g; (2)where �i(xi;x�i) is a ve
tor of potentials asso
iatedwith variable set fxi;x�ig.2.2 Cluster-fa
torizable potentialsGiven a 
lustering C, some 
liques in D may interse
twith multiple 
lusters (Fig. 2). Cluster-fa
torizable po-tentials are potential fun
tions whi
h take the form��(xD� ) = F�(��i(xD�\Ci); : : : ; ��j (xD�\Cj )), whereF (�) is a (multipli
atively, or additively) fa
torizablefun
tion over its arguments; i.e., in the 
ase of two
lusters, F (a; b) = a � b or a + b. Fa
torizable po-tentials are 
ommon in many model 
lasses. Forexample, the 
lassi
al Ising model is based on sin-gleton and pairwise potentials of the following fa
-torizable form: �(xi) = �ixi, �(xi; xj) = �ijxixj ;higher-order Ising models and general dis
rete mod-els also admit fa
torizable potentials; 
onjugate expo-nential pairs, su
h as the Diri
hlet-multinomial, linear-Gaussian, et
., are also fa
torizable; �nally, for logisti
fun
tions and other generalized linear models (GLIMs)that are not dire
tly fa
torizable, it is often possibleto obtain a fa
torizable variational transformation inthe exponential family that lower bounds the origi-nal fun
tion (Jaakkola and Jordan, 2000); otherwise(e.g., tabular potentials over a 
lustering of variables),we may over
ome this problem by avoiding pi
king a
lustering in whi
h these potentials are on the 
lus-ter boundaries. We will see that 
luster-fa
torizablepotentials allow the de
oupling of the 
omputation ofexpe
ted potentials.
Ci

Ck

Cl

DβFigure 2: A 
lique D� interse
ting with three 
lustersfCi; Cj ; Ckg in an undire
ted graph.

3 Mean Field ApproximationRe
all that the mean �eld approximation refers to a
lass of variational approximation methods that ap-proximate the true distribution p(xj�) on a graph Gwith a simpler distribution, q(xj
), for whi
h it is fea-sible to do exa
t inferen
e. We 
all the families ofsu
h distributions tra
table families. A tra
table fam-ily usually 
orresponds to a subgraph H of G.3.1 Naive mean �eld approximationThe naive mean �eld approximation makes use of asubgraph that is 
ompletely dis
onne
ted. Thus, theapproximating distribution is fully fa
torized:q(x) = Yi2V qi(xi): (3)For example, to use this family of distributions to ap-proximate the joint probability of the Boltzmann ma-
hine: p(x) = 1Z expfPi<j �ijxixj+Pi �i0xig, one de-�nes qi(xi) = �xii (1��i)1�xi , where the �i are the vari-ational parameters). Minimizing the Kullba
k-Leibler(KL) divergen
e between q and p one obtains the 
las-si
al \mean �eld equations":�i = �� Xj2Ni �ij�j + �i0�; (4)where �(z) = 1=(1 + e�z) is the logisti
 fun
tion, andNi is the set of nodes neighboring i.3.2 Generalized mean �eld theoryGiven a (disjoint) 
lustering C, we de�ne a 
luster-fa
torized distribution as q(x) =QCi2C qi(xCi), whereqi(xCi) = expf�E0i(xCi )g;8Ci 2 C, are free distribu-tions to be optimized. As dis
ussed in the appendix,this optimization problem 
an be 
ast as that of max-imizing a lower bound of the likelihood with respe
tto all valid 
luster marginals respe
ting a given 
lus-tering C. The solution to this problem leads to thegeneralized mean �eld theorem that we present in thisse
tion.To make the exposition of the theorem and the result-ing algorithm simple, we introdu
e some de�nitions.De�nition 1. (Mean �eld fa
tor): For a fa
toriz-able potential ��(xD� ), let I� denote the set of in-di
es of those 
lusters that have nonempty interse
tionwith D�. Thus, ��(xD� ) has as fa
tors the potentials��i(xCi\D� );8i 2 I� . Then, the mean �eld fa
tor fi�is de�ned as:fi� , fi�(xCi\D� ) , h��i(xCi\D� )iqi ; for i 2 I� (5)where h�iqi denotes the expe
tation with respe
t to qi.



De�nition 2. (Generalized mean �elds): For any
luster Cj in a given variable partition, the set of mean�eld fa
tors asso
iated with the nodes in its Markovblanket is referred as the generalized mean �elds of
luster Cj :Fj , ffi� : D� 2 Bj ; i 2 I� ; i 6= jg: (6)Now we are ready to state the following GMF theorem,the proof of whi
h is provided in the Appendix.Theorem 3. For a general undire
ted probabilitymodel p(xH ;xE) where xH denotes hidden nodes andxE denotes eviden
e nodes, and a 
lustering C :fxH;Ci ;xE;CigIi=1 of both hidden and eviden
e nodes,if all the potential fun
tions that 
ross 
luster bordersare 
luster-fa
torizable, then the generalized mean �eldapproximation to the joint posterior p(xH jxE) with re-spe
t to 
lustering C is a produ
t of 
luster marginalsqGMF (xH) = QCi2C qGMFi (xH;Ci ) satisfying the follow-ing generalized mean �eld equations:qGMFi (xH;Ci ) = p(xH;Ci jxE;Ci ;Fi); 8i: (7)Remark 1. Note that ea
h variational 
lustermarginal is isomorphi
 to the isolated model fragment
orresponding to original 
luster posterior given theintra-
luster eviden
e and the generalized mean �eldsfrom outside the 
luster. Thus, ea
h variational 
lus-ter marginal inherits all lo
al dependen
y stru
turesinside the 
luster from the original model.The mean �eld equations in Theorem 3 are analogousto naive mean �eld approximation. The generalizedmean �elds appearing in Eq. (7) play a role that issimilar to the 
onventional mean �eld, now applyingto the entire 
luster rather than a single node, and
ondu
ting probabilisti
 in
uen
e from the remainingpart of the model to the 
luster. It is easy to verifythat when the 
lusters redu
e to singletons, Eq. (7) isequivalent to the 
lassi
al mean �eld equation Eq. (4).From a 
onditional independen
e point of view, thegeneralized mean �elds 
an be also understood as anexpe
ted Markov blanket of the 
orresponding 
luster,rendering its interior nodes 
onditionally independentof the remainder of the model and hen
e lo
alizingthe inferen
e within ea
h 
luster given its generalizedmean �elds.Mean �eld approximation for dire
ted models is also
overed by Theorem 3. This is true be
ause any di-re
ted network 
an be 
onverted into an undire
tednetwork via moralization, and designation of the po-tentials as lo
al 
onditional probabilities. The follow-ing 
orollary make this generalization expli
it:Corollary 4. For a dire
ted probability modelp(xH ;xE) =Qi p(xijx�i) and a given disjoint variablepartition, if all the lo
al 
onditional models p(xijx�i)

a
ross the 
luster borders admit 
luster-fa
torizablepotentials, then the generalized mean �eld approxima-tion to the original distribution has the following form:qGMF (xH) =QCi2C qGMFi (xH;Ci ), andqGMFi (xH;Ci ) = p(xH;Ci jxE;Ci ;Fi); 8i; (8)where Fi refers to the generalized mean �elds of the ex-terior parents, 
hildren and 
o-parents of the variablesin 
luster i.These theorems make it straightforward to obtain gen-eralized mean �eld equations. All that is needed is tode
ide on a subgraph and a variable 
lustering, to iden-tify the Markov blanket of ea
h 
luster, and to plugin the mean �elds of the Markov blanket variables a
-
ording to Eqs. (7) or (8). We illustrate the appli
ationof the generalized mean �eld theorem to several typ-i
al 
ases|undire
ted models, dire
ted models, andmodels that 
ombine 
ontinuous and dis
rete randomvariables.Example 1. (2-d nearest-neighbor Ising model): Fora 2-d nearest neighbor Ising model, we 
an pi
k asubgraph whose 
onne
ted 
omponents are squareblo
ks of nodes in the original graph (Fig. 3). The
luster marginal of a square blo
k Gk is simplyq(xGk) = expfP(ij)2L(Gk ) �ijxixj + Pi2V (Gk) �i0xi +P(ij)2L(G);j2MB(Gk ) �ijhxjixig, an Ising model of smallersize, with singleton potentials for the peripheral nodesadjusted by the mean �elds of the adja
ent nodes out-side the blo
k (whi
h are the MB of xGk ). �Example 2. (fa
torial hidden Markov models):For the fHMM, whose underlying graph 
onsists ofmultiple 
hains of dis
rete hidden Markov variables
oupled by a sequen
e of output nodes, taken to belinear-Gaussian for 
on
reteness, a possible subgraphthat de�nes a tra
table family is shown in Figure 5,in whi
h we retain only the edges within ea
h 
hainof the original graph. Given a 
lustering C, in whi
hea
h 
luster k 
ontains a subset of HMM 
hains
k (the dashed boxes in Fig. 5), the MB of ea
h
luster 
onsists of all nodes outside the 
luster.Hen
e the 
luster marginal of 
k is: q(fx(mi)gi2
k) /Qi2
k p(x(mi))p(yjfx(mi)gi2
k ; ff(x(mj ))gj2
l;l6=k),where x(mi) denotes variables of 
hain mi, p(x(mi))is the usual HMM of a single 
hain, and p(yj�) islinear-Gaussian. When ea
h 
k 
ontains only a single
hain, we re
over the stru
tured variational inferen
eequations in Ghahramani and Jordan (1997). �Example 3. (Variational Bayesian learning): Fol-lowing the standard setup in Ghahramani and Beal(2000), we have a 
omplete data likelihood P (x;yj�),where x is hidden, and a prior p(�j�; �), where �; �are hyperparameters. Partitioning all domain variables



into two 
lusters, fx;yg and f�g, if the potential fun
-tion at the 
luster border, �(x; �) is fa
torizable (whi
his equivalent to the 
ondition of 
onjugate exponential-ity in Ghahramani and Beal), we obtain the following
luster marginals using Corollary 4:q(�) = p(�j�; �; f(x);y) / p(f(x);yj�)p(�j�; �)q(x) = p(xjy; f(�)):These 
oupled updates are identi
al to the variationalBayesian learning updates of Ghahramani and Beal.�4 A generalized mean �eld algorithmEqs. (7) and (8) are a 
oupled set of nonlinear equa-tions, whi
h are solved numeri
ally via asyn
hronousiteration until a �xed point is rea
hed. This iteration
onstitutes a simple, message-passing style, General-ized Mean Field algorithm.GMF ( model: p(xH;xE), partition: fxH;Ci ;xE;CigIi=1)Initialization{ Randomly initialize the hidden nodes at the borderof 
luster i, 8i.{ Initialize f 0i� by evaluating the potentials using the
urrent values of the asso
iated nodes.{ Initialize F 0i with the 
urrent f 0i� .While not 
onvergedFor i = 1 : I{ Update qt+1i (xH;Ci) = p(xH;Ci jxE;Ci ;F ti ).{ Compute the mean �eld fa
tors f t+1i� of all poten-tial fa
tors at the border of Ci via lo
al inferen
eusing qt+1i as in Eq. (5).{ Send the f t+1i� messages to all Markov blanket 
lus-ters of i by updating the appropriate elements intheir GMFs: Ftj ! Ft+1j ; 8j 2MBCi.EndReturn q(xH) =Qi qi(xH;Ci), the GMF approximationRemark 2. Note that the r.h.s. of Eqs. (7) and (8)do not depend on qi, thus the update is a form of
oordinate as
ent in the fa
tored model spa
e (i.e., we�x all qj(xH;Cj ); j 6= i and maximize with respe
t toqi(xH;Ci) at ea
h step). Indeed, we have the following
onvergen
e theorem.Theorem 5. The GMF algorithm is guaranteed to
onverge to a lo
al minimum, whi
h is a lower boundfor the likelihood of the model.Theorem 5 is an important 
onsequen
e of the useof a disjoint variable partition underlying the varia-tional approximate distribution. It distinguishes GMFfrom other variational methods su
h as GBP (Yedidiaet al., 2001), or the general 
ase in Wiegerin
k's frame-work (Wiegerin
k, 2000), in whi
h overlapping variablepartitions are used, and whi
h optimize an approxi-mate free energy fun
tion with respe
t to marginalswhi
h must satisfy lo
al 
onstraints.

The 
omplexity of ea
h iteration of GMF is exponen-tial in the tree-width of the lo
al networks of ea
h 
lus-ter of variables, sin
e inferen
e is redu
ed to lo
al op-erations within ea
h 
luster.Sin
e GMF is guaranteed to 
onverge to a lo
al opti-mum, in pra
ti
e it 
an be performed in a sto
hasti
multiple-initialization setting similar to the usual pra
-ti
e in EM, to in
rease the 
han
e of �nding a betterlo
al optimum.5 Experimental resultsAlthough GMF supports several types of appli
a-tions, su
h as �nding bounds on the likelihood orlog-partition fun
tion, 
omputation of approximatemarginal probabilities, and parameter estimation, inthis paper we fo
us solely on the quality of approxi-mate marginals. We have performed experiments onthree 
anoni
al models: a nearest neighbor Ising model(IM), a sigmoid network (SN), and a fa
torial HMM(fHMM); and we have 
ompared performan
e of GMFusing di�erent tra
table families (spe
i�
ally, usingvariable 
lusterings of di�erent granularity) with re-gard to the a

ura
y on single-node marginals. Toassess the error, we use an L1-based measure1PNi=1Mi NXi=1 MiXk=1 jp(xi = k)� q(xi = k)j;where N is the total number of variables, and Mi isthe number of (dis
rete) states of the variable xi. Theexa
t marginals are obtained via the jun
tion tree al-gorithm. We also 
ompare the performan
e with thebelief propagation (BP) algorithm, espe
ially in 
aseswhere BP is expensive, and examine whether GMFprovides a reasonably eÆ
ient alternative.We use randomly generated problems for IM and SNand real data for fHMM. For the �rst two 
ases, inany given trial we spe
ify the distribution p(xj�) by arandom 
hoi
e of the model parameter � from a uni-form distribution. For models with observable output(i.e., eviden
e), observations were sampled from therandom model. Details of the sampling are spe
i�edin the tables presenting the results. For ea
h problem,50 trials were performed. The fHMM experiment wasperformed on models learned from a training data set.
Figure 3: Ising model and GMF approximations.Ising models: We used an 8 � 8 grid with binary



nodes. Two di�erent tra
table models were used forthe GMF approximation, one based on a 
lustering of2 � 2 blo
ks, the other 4 � 4 blo
ks (Fig. 3). The re-sults on strongly attra
tive and repulsive Ising models(whi
h are known to be diÆ
ult for naive MF) are re-ported in Table 1. The rightmost 
olumn also showsthe mean CPU time (in se
onds).Table 1: L1 errors on nearest neighbor Ising models.Upper panel: attra
tive IM (�i0 2 (�0:25; 0:25); �ij 2 (0; 2));Lower panel: repulsive IM (�i0 2 (�0:25; 0:25); �ij 2 (�2; 0)).Algorithm Mean � std Median Range time2� 2 GMF 0.366�0.054 0.382 [0.276,0.463℄ 2.04� 4 GMF 0.193�0.103 0.226 [0.004,0.400℄ 29.4BP 0.618�0.304 0.663 [0.054,0.995℄ 17.9GBP 0.003�0.002 0.002 [0.000,0.005℄ 166.32� 2 GMF 0.367�0.052 0.383 [0.279,0.449℄ 1.24� 4 GMF 0.185�0.102 0.161 [0.009,0.418℄ 22.1BP 0.351�0.286 0.258 [0.009,0.954℄ 14.3GBP 0.003�0.003 0.003 [0.000,0.014℄ 117.5As expe
ted, GMF using a 
lustering with fewer nodesde
oupled yields more a

urate estimates than a 
lus-tering in whi
h more nodes are de
oupled, albeit within
reased 
omputational 
omplexity. Overall, the per-forman
e of GMF is better than that of BP, espe
iallyfor the attra
tive Ising model. For this parti
ular prob-lem, we also 
ompared to the GBP algorithm, whi
halso de�nes beliefs on larger subsets of nodes, witha more elaborate message-passing s
heme. We foundthat for Ising models, GBP performs signi�
antly bet-ter than the other methods, but at a 
ost of signi�-
antly longer time to 
onvergen
e.
Figure 4: Sigmoid network and GMF approximations.Sigmoid belief networks: The two sigmoid net-works we studied are 
omprised of three hidden layers(18 nodes), with or without a fourth observed layer (10nodes), respe
tively. We used a row 
lustering and ablo
k 
lustering of nodes as depi
ted in Figure 4 forGMF. Table 2 summarizes the results.Table 2: L1 errors on sigmoid networks (�ij 2 (0; 1)).Upper: hidden layers only; Lower: with observation layer..Algorithm Mean � std Median Range timeblo
k GMF 0.013�0.004 0.013 [0.006,0.032℄ 6.8row GMF 0.172�0.036 0.175 [0.100,0.244℄ 0.5BP 0.273�0.025 0.271 [0.227,0.346℄ 9.2blo
k GMF 0.018�0.009 0.014 [0.009,0.038℄ 8.4row GMF 0.061�0.021 0.059 [0.023,0.145℄ 0.7BP 0.187�0.044 0.189 [0.096,0.312℄ 139.2For the network without observations, the blo
k GMF,whi
h retains a signi�
ant number of edges from theoriginal graph, is more a

urate by an order of mag-nitude than the row GMF, whi
h de
ouples the origi-nal network 
ompletely. Interestingly, when a bottomlayer of observed nodes is in
luded in the network, a

signi�
ant improvement of approximation a

ura
y isseen for the row GMF, but it still does not surpassthe blo
k GMF. The performan
e of BP is poor onboth problems, and the time 
omplexity s
ales up sig-ni�
antly for the network with the observation layer,be
ause of the large fan-in asso
iated with the nodesin the bottom layer.
... ...Figure 5: An fHMM and a GMF approximation (illus-trative graph; the a
tual model 
ontains 6 
hains and 40steps).Fa
torial HMM: We studied a 6-
hain fHMM, with(6-dimensional) linear-Gaussian emissions, ternaryhidden state and 40 time steps. The model was trainedusing the EM algorithm (with exa
t inferen
e) on 40Ba
h Chorales from the UCI Repository. Inferen
e wasperformed with the trained model on another 18 testChorales. GMF approximations were based on 
lus-terings in whi
h ea
h 
luster 
ontains either singletons(i.e., naive mean �eld), one hidden Markov 
hain, two
hains, or three 
hains, respe
tively. The statisti
s ofthe L1 errors are presented in Table 3.Table 3: L1 errors on fa
torial HMMAlgorithm Mean � std Median Range timenaive MF 0.254�0.095 0.269 [0.083,0.397℄ 9.81-
hain GMF 0.237�0.107 0.233 [0.029,0.392℄ 14.32-
hain GMF 0.092�0.081 0.064 [0.019,0.314℄ 5.63-
hain GMF 0.118�0.092 0.089 [0.035,0.357℄ 15.6BP 0 0 - 106.2Sin
e the moral graph of a fHMM is a 
lique tree, BPis exa
t in this 
ase, but the 
omputational 
omplex-ity grows exponentially with the number of 
hains andthe 
ardinality of the variables, hen
e BP 
annot s
aleto large models. Using GMF, we obtain reasonable a
-
ura
y, whi
h in general in
reases with the granularityof the variable 
lustering. The 2-
hain GMF appearsto be a parti
ularly good granularity of 
lustering inthis 
ase, leading to both better estimation and faster
onvergen
e.In summary, GMF shows reasonable performan
e in allthree of the 
anoni
al models we tested, and providesa 
exible way to trade o� a

ura
y for 
omputationtime. It is guaranteed to 
onverge, and the 
ompu-tational 
omplexity is determined by the treewidth ofthe subgraph. BP, on the other hand, may fail to 
on-verge. Furthermore, the 
omplexity of 
omputing themessage is exponential in the size of the maximal 
liquein the moralized graph, whi
h makes it very expensivein dire
ted models with dense lo
al dependen
ies.



6 Choi
e of 
lustersOne reason for our fo
us on disjoint partitions has beenthe simpli
ity and ease-of-implementation of the re-sulting algorithm. But it is also the 
ase that the useof disjoint partitions opens up an interesting new set ofresear
h problems involving the 
hoi
e of 
lusters. In-tuition suggests that one possible de�nition of a goodpartitions is one in whi
h many edges are 
ut, withrelatively small parameter values a
ross the 
ut. Inthis setting we would expe
t to have 
on
entration ofthe expe
tations of the potentials|the \mean �elds"would be well determined.In Xing and Jordan (2003) we explore this idea by
ombining the GMF algorithm with 
ombinatorial op-timization methods for graph partition. We havefound that, depending on the 
onne
tivity and 
ou-pling strength of the graphi
al model, various auto-mati
 graph partition s
hemes 
an yield e�e
tive 
lus-terings. For example, for densely 
onne
ted graphwith weak 
oupling, a max-
ut indeed leads to im-proved approximation of marginal probabilities when
ompared to naive mean �eld and other simple �xedpartition s
hemes. On the other hand, for a graphwith relatively sparse 
onne
tivity, and strong 
ou-pling, a min-
ut of the graph leads to better estima-tion of marginals, possibly due to an improved abil-ity to 
apture the dependen
y stru
ture within ea
h
luster, in a manner analogous to the 
ut-set 
on-ditioning methods used for exa
t inferen
e. Thesepromising results open up the possibility for a fully au-tonomous variational inferen
e algorithm for 
omplexmodels based on automati
 node partition of a graphi-
al model and GMF approximation as illustrated inthe following 
ow
hart in Figure 6. A prototypeimplementation of su
h an algorithm is available at:http://www.
s.berkeley.edu/�epxing/GMF.zip.
GP GMF

q(x  )posterior:
approximate jointgraphical model: node clustering

p(x  , x  )H p(x  , x  )H E
E HFigure 6: Flow
hart of a autonomous variational inferen
ealgorithm.7 Dis
ussionWe have presented a generalized mean �eld approa
hto probabilisti
 inferen
e in graphi
al models, in whi
ha 
omplex probability distribution is approximated viaa distribution that fa
torizes over a disjoint partitionof the graph. Lo
ally optimal variational approxima-tions are obtained via an algorithm that performs 
o-ordinate as
ent in a lower bound of the log-likelihood,with guaranteed 
onvergen
e. For a broad family ofmodels in pra
ti
al use, we showed that the GMF ap-proximations of the 
luster marginals are isomorphi


to the original model in the sense that they inheritall of its intra-
luster dependen
ies. Moreover, thesemarginals are independent of the rest of the modelgiven the expe
ted potential fa
tors (mean �elds) ofthe Markov blanket of the 
luster. The expli
it andgeneri
 formulation of the \mean �elds" in terms ofthe Markov blanket of variable 
lusters also leads toa simple, generi
, message-passing algorithm for 
om-plex models.Disjoint 
lusterings have also been used in sampling al-gorithms to improve mixing rates for large problems.For example, the Swendsen-Wang algorithm (Swend-sen and Wang, 1987) samples Ising (or Potts) model at
riti
al temperatures by grouping neighboring nodeswith the same spin value, thereby forming random
lusters (of 
oupled spins) that are e�e
tively inde-pendent of ea
h other, allowing an MCMC pro
essto 
olle
tively sample the spin of ea
h 
luster inde-pendently and at random. This method often dra-mati
ally speeds up the mixing of the MCMC 
hain.Gilks et al. (1996) also noted that when variablesare highly 
orrelated in the stationary distribution,blo
king highly 
orrelated 
omponents into higher-dimensional 
omponents may improve mixing. How-ever, in the sampling framework, 
lustering are usuallyobtained dynami
ally, based on the 
oupling strength,rather than the topology of the network.There are a number of possible extensions of the re-sear
h reported here. First, it is of interest to developautomati
 methods for 
hoosing 
lusters in variationalapproximations. As we have already dis
ussed, spe
-tral graph partitioning 
an be adapted for this purposein the 
ase of GMF methods. It is also possible tomake use of the framework of probabilisti
 relationalmodels and motivate partitions of the random vari-ables using modularities deriving from the model se-manti
s (e.g., 
lass membership). Preliminary resultsin applying this to a large-s
ale bioinformati
s prob-lem showed that it leads to signi�
ant improvementsin performan
e.Another possible extension involves the use of higher-order expansions in the basi
 variational bounds.Leisink and Kappen (2000) have shown how to up-grade �rst-order variational bounds su
h as that shownin Eq. (10) to yield higher-order bounds. In parti
ular,the following third-order lower bound 
an be obtainedfor the likelihood:p(xE) � Z dx exp��E0(xH)	h1��+ 12 exp(�)�2i;where � = 13 h�3i=h�2i, � = E(xH ;xE) � E0(xH), andh�i denotes expe
tation over the approximate distribu-tion q(xH) = expf�E0(xH)g. The optimizer of thislower bound 
annot be found analyti
ally. However,we 
an 
ompute the gradient of the lower bound with



respe
t to E0i (assuming a 
luster-fa
torized approxi-mate distribution), whi
h requires 
omputation of upto third-order 
umulants of the nodes in the bordering
liques in the subgraph. Leisink and Kappen (2000)reported an appli
ation of su
h a strategy to the 2-D latti
e model and sigmoid belief network, approx-imated by a 
ompletely dis
onne
ted subgraph, andreported signi�
antly improved bounds. In the GMFsetting, whi
h uses an approximating subgraph withmore stru
ture, the 
omputation of the gradient iseven simpler be
ause fewer nodes are involved in the
umulant 
al
ulation.A
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A Proof of the GMF theoremTo 
ast GMF approximation as an optimization prob-lem, we begin with the follow lemma.Lemma 6. For an arbitrary marginal distributionq(xH) = expf�E0(xH)g, we have the following lowerbound:p(xE) � Z dxH exp��E0(xH)	�1�A(xE)� �E(xH ;xE)�E0(xH)��; (9)where xE denotes observed variables (eviden
e) 1.Proof. Using 
onjugate duality, we have:exp(x) � exp(�)(1 + x� �); 8x; �: (10)For a joint distribution p(xH ;xE) =expf�E(xH ;xE) � A(xE)g (where A(xE) is theoriginal log-partition fun
tion plus the 
onstanteviden
e potentials), we repla
e x in Eq. (10) with�(E(xH ;xE) + A(xE)) and lower bound the jointdistribution p(xH ;xE) as follows:p(xH;xE) � q(xH)�1�A(xE)� (E(xH;xE)�E0(xH))�;where E0(xH) de�nes a variational marginal distribu-tion. Integrating over xH on both sides, we obtain the�rst-order lower bound in Eq. (9).Given this lower bound, the optimal approximating(GMF) distribution is spe
i�ed as the solution of thefollowing 
onstrained optimization problem:fE0GMFi (xCi)gCi2C = arg maxE0i2E(xCi )Z dx exp��XCi2CE0i(xCi)	�1� �E(x)�XCi2CE0i(xCi)��;(11)where E(xCi) denotes the set of all valid energy fun
-tions of variable set xCi . (Be
ause eviden
e variablesare �xed 
onstants in inferen
e, for simpli
ity, we omitexpli
it mention of the eviden
e xE , and the subs
riptH in the energy term E(�) above and in other relevantterms in the following derivation. In should be 
learthat, in situations where su
h subs
ripts are omitted,x and related symbols denote only the hidden vari-ables.) The solution to this problem leads to Theo-rem 3, whi
h we restate here (with eviden
e symboland hidden variable subs
ripts omitted).Theorem (GMF): For a general undire
ted prob-ability model p(x) and a 
lustering C : fxCigIi=1,if all the potential fun
tions that 
ross 
luster bor-ders are 
luster-fa
torizable, then the generalized mean1Note that (9) is very similar to the Jensen bound onlog likelihood: ln p(xE) � R dxHq(xH) ln q(xH )p(xH ;xE) , and hasthe same maximizer, but it is more general in that it 
anbe further upgraded to higher order bounds as dis
ussedin the dis
ussion session.



�eld approximation to p(x) with respe
t to 
luster-ing C is a produ
t of 
luster marginals qGMF (x) =QCi2C qGMFi (xCi ) satisfying the following generalizedmean �eld equations:qGMFi (xCi) = p(xCi jFi); 8i:To prove Theorem 3 we need to use the 
al
ulus of vari-ations to solve the optimization de�ned by Eq. (11).For 
onvenien
e, we distinguish two subsets of nodesin a 
luster i, the interior nodes and the border nodes,i.e., letting zCi denote the (hidden) nodes in 
lusterCi, we have zCi = fxCi ;yCig where xCi 6� xBi andyCi � xBi .Proof. From Eq. (11), to �nd the optimizer of:Z dxdy exp�� XCi2CE0i(xCi ;yCi)	�1���;where � � E �PCi2C E0i + A(�), subje
t to the 
on-straints that ea
h E0i de�nes a valid marginal dis-tribution qi(xCi ;yCi) of all hidden variables in 
lus-ter i, we solve the Euler equations for a variationalextremum, de�ned over Lagrangians f(E0i; zCi) =R dz[�ni℄� expf�PiE0ig(1 � �) � Pi �i expf�E0ig�(where z[�ni℄ refers to all hidden variables ex
ludingthose from 
luster i):�f�E0i � ddzCi � �f� _E0i � = 0 8i: (12)Sin
e f does not depend on _E0i (= dE0idzCi ), we have:Z dz[�ni℄Yj 6=i expf�E0jg(E �Xi E0i)� �i = 0)E0i = Z dz[�ni℄Yj 6=i expf�E0jg(E �Xj 6=i E0j)� �i= C � XD��Ci����(xD�)� XD�2Bi��
��(yCi\D� ; fyCj\D�gCj2Ni� )�qNi� ;where qj = expf�E0j(xCj ;yCj )g is the lo
al marginal of
luster j; qNi� =Qj2Ni� qj is the marginal over 
lusterset Ni�, whi
h are all the 
lusters neighboring 
lusteri that interse
t with 
lique �.When the potential fun
tions at the 
luster boundariesfa
torize with respe
t to the 
lustering, we have:E0i = C � XD��Ci ����(xD�)� XD�2Bi ��F�(��i(yCi\D� ); fh��j (fyCj\D�g)iqj gCj2Ni� )So, qi(xi;yi) = expf�E0ig= p(xCi ;yCi jfh��j (yCj\D� )iqjgCj2Ni�;D�2Bi)= p(zCi jFi); 8i: (13)

The expli
it presen
e of eviden
e xE = fxE;CigIi=1merely 
hanges Eq. (13) to qi(zCi) / p(zCi ;xE;Ci jFi).After normalization, it leads toqi(zCi) = p(zCi jxE;Ci ;Fi):


