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Eri P. XingComputer Siene DivisionUniversity of CaliforniaBerkeley, CA 94720 Mihael I. JordanComputer Siene and StatistisUniversity of CaliforniaBerkeley, CA 94720 Stuart RussellComputer Siene DivisionUniversity of CaliforniaBerkeley, CA 94720AbstratWe present a lass of generalized mean �eld(GMF) algorithms for approximate inferenein exponential family graphial models whihis analogous to the generalized belief prop-agation (GBP) or luster variational meth-ods. While those methods are based on over-lapping lusters, our approah is based onnonoverlapping lusters. Unlike the lustervariational methods, the approah is provedto onverge to a globally onsistent set ofmarginals and a lower bound on the likeli-hood, while providing muh of the exibilityassoiated with luster variational methods.We present experiments that analyze the ef-fet of di�erent hoies of lustering on infer-ene quality, and ompare GMF with beliefpropagation on several anonial models.1 IntrodutionThe variational approah to probabilisti inferene in-volves onverting the inferene problem into an opti-mization problem, by approximating the feasible setor the funtion to be optimized (or both), and solv-ing the relaxed optimization problem. Thus, given aprobability distribution p(xj�) whih fators aordingto a graph, the variational methods yield approxima-tions to marginal probabilities via the solution to anoptimization problem that generally exploits some ofthe graphial struture. The earliest variational in-ferene methods were based on the use of a family oftratable distributions q(xj), where  are a set of free\variational parameters." In this ase a simple appealto Jensen's inequality produes a relaxed optimizationproblem that determines how to set the variational pa-rameters (Jordan et al., 1999). We will refer to suhmethods as \mean �eld methods," a terminology thatreets the lassial setting in whih q(xj) is taken tobe a ompletely fatorized distribution. In general, the

derivation via Jensen's inequality shows that this lassof algorithms yields a lower bound on the likelihood.More reently, Yedidia et al. (2001) realized thatPearl's belief propagation (BP) algorithm|when ap-plied to general loopy graphs|is also a variationalalgorithm. The inferene problem is transformed toan optimization funtional|the \Bethe free energy"|that imposes loal onsisteny on the approximatemarginals. The resulting marginals do not, however,need to be globally onsistent, so that the Jensen in-equality argument no longer applies (and thus the ap-proximation does not yield a lower bound to the like-lihood and may not onverge). An advantage of thisapproah is the simpliity of the algorithm. Moreover,Yedidia et al. showed how to derive generalized be-lief propagation (GBP) algorithms, in whih the vari-ational relaxation is based on overlapping lusters ofvariables. The exibility provided by the ability tohoose lusters of varying sizes is a signi�ant impor-tant step forward.Mean �eld methods an also provide exibility viathe hoie of approximating distribution q(xj), andso-alled \strutured mean �eld methods" have beenbased on hoosing q(xj) to be a tree or some othersparse subgraph of the original graph to whih an ex-at inferene algorithm suh as the juntion tree algo-rithm an be feasibly applied (Saul and Jordan, 1996).Reently, Wiegerink presented a general frameworkfor strutured mean �eld methods involving arbitrarylusterings (Wiegerink, 2000). In partiular, his ap-proah allows the use of overlapping lusters, whihleads to a set of mean �eld equations reminisent ofa juntion tree algorithm. Although there ontinue tobe developments in this area (e.g., El-Hay. and Fried-man, 2001, Bishop et al., 2002), it is fair to say that inpratie the use of mean-�eld-based variational meth-ods requires substantial mathematial skill and thata systemati approah with the generality, exibilityand ease of implementation of GBP has yet to emerge.In this paper we desribe a Generalized Mean Field



method that aims to �ll this gap. The approah yieldsa simple general methodology that applies to a widerange of models. To obtain the desired simpliity ourapproah makes use of nonoverlapping lusters, spe-ializing Wiegerink's general approah, and yieldinga method that is somewhat reminisent of blok meth-ods in MCMC suh as Swendsen-Wang (Swendsen andWang, 1987).Note that the hoie of lusters is generally done man-ually both within the GBP tradition and the mean-�eld tradition. Another reason for our interest innonoverlapping lusters is that it suggests algorithmsfor automatially hoosing lusters based on spetralgraph partitioning ideas. Although not the fous ofthe urrent paper, we disuss some of the possibilitiesin Se. 6.Given an arbitrary deomposition of the original modelinto disjoint lusters, the algorithm that we presentomputes the posterior marginal for eah luster givenits own evidene and the expeted suÆient statistis,obtained from its neighboring lusters, of the variablesin the luster's Markov blanket. The algorithm oper-ates in an iterative, message-passing style until a �xedpoint is reahed. We show that under very general on-ditions on the nature of the inter-luster dependenies,the luster marginals retain exatly the intra-lusterdependenies of the original model, whih means thatthe inferene problem within eah luster an be solvedindependently of the other lusters (given the Markovblanket messages) by any inferene method.One way to understand the algorithm is to onsidera situation in whih all the Markov blanket variablesof eah luster are observed. In that ase, the jointposterior deomposes:p(xC1 ; : : : ;xCn jxE) =Yi p(xCi jMB(xCi));where MB(xCi ) denotes the Markov blanket of lus-ter Ci. GMF approximates this situation, using theexpeted Markov blanket (obtained from neighboringlusters) instead of an observed Markov blanket anditerating this proess to obtain the best possible \self-onsistent" approximation.In its use of expetations in messages between lusters,GMF resembles the expetation propagation (EP) al-gorithm (Minka, 2001), but in the basi algorithm EP'smessages onvey the inuene of only a single vari-able. In providing a generi variational algorithm thatan be applied to a broad range of models with on-vergene guarantees, GMF resembles VIBES (Bishopet al., 2002), but VIBES is based on a deompositioninto individual variables whereas GMF allows arbi-trary disjoint sets. Thus GMF is a generi algorithmsuitable for approximate inferene in large, omplexprobability models.

2 Notation and bakgroundWe onsider a graph (direted or undireted) G =(V; L), where V denotes the set of nodes (verties) andL the set of edges (links) of the graph. Let Xn denotethe random variable assoiated with node n, for n 2 V ,let XC denote the subset of variables assoiated with asubset of nodes C, for C � V , and let X = XV denotethe olletion of all variables assoiated let with thegraph. We refer to a graph H = (V; L0), where L0 � L,as a subgraph of G. We use C = fC1; C2; : : : ; CIg to de-note a disjoint partition (or, a lustering) of all nodesin graph G, where Ci refers to the set of indies ofnodes in luster i; likewise, D = fD1; D2; : : : ; DKg de-notes a set of liques of G. For a given lustering,we de�ne the border lique set Bi as the set of liquesthat interset with but are not ontained in luster i;and the neighbor luster set Ni as the set of lustersthat ontain nodes onneted to nodes in luster i. Forundireted graphs, the Markov blanket of a luster i(MBi) is the set of all nodes outside Ci that onnet tosome node in Ci, and, for direted graphs, the Markovblanket is the set of all nodes that are parents, hil-dren, or o-parents of some node in Ci (Fig. 1). Clus-ters that interset with MBi are alled the Markovblanket lusters (MBCi) of Ci.
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C1Figure 1: The Markov blanket MB1 (blue-shaded nodes)of luster 1 in a direted graph. Shaded blobs onstituteMBC1.2.1 Exponential representationsFor undireted graphial models, the family of jointprobability distributions assoiated with a given graphan be parameterized in terms of a set of potentialfuntions assoiated with a set of liques in the graph.For a set of liques D assoiated with an undiretedgraph, let � = f��j� 2 Dg denote the set of potentialfuntions de�ned on the liques, and � = f��j� 2 Dgthe set of parameters assoiated with these potentialfuntions (for simpliity, we label � and � with theorresponding lique index, e.g., �, rather than withthe lique D� itself). The family of joint distributionsdetermined by � an be expressed as follows:p(xj�) = expfX� ����(xD�)�A(�)g (1)



where A(�) is the log partition funtion. We also de�nethe energy, E(x) = �P� ����(xD�), for state x.For direted graphial models, in whih the joint prob-ability is de�ned as p(x) =Qi p(xijx�i), we transformthe underlying direted graph into a moral graph, andset the potential funtions equal to the negative log-arithm of the loal onditional probabilities p(xijx�i).In the sequel, we will fous on models based on on-ditional exponential families. That is, the onditionaldistributions p(xijx�i) an be expressed as:p(xijx�i) = u(xi) expf�Ti �i(xi;x�i)�A(�i)g; (2)where �i(xi;x�i) is a vetor of potentials assoiatedwith variable set fxi;x�ig.2.2 Cluster-fatorizable potentialsGiven a lustering C, some liques in D may intersetwith multiple lusters (Fig. 2). Cluster-fatorizable po-tentials are potential funtions whih take the form��(xD� ) = F�(��i(xD�\Ci); : : : ; ��j (xD�\Cj )), whereF (�) is a (multipliatively, or additively) fatorizablefuntion over its arguments; i.e., in the ase of twolusters, F (a; b) = a � b or a + b. Fatorizable po-tentials are ommon in many model lasses. Forexample, the lassial Ising model is based on sin-gleton and pairwise potentials of the following fa-torizable form: �(xi) = �ixi, �(xi; xj) = �ijxixj ;higher-order Ising models and general disrete mod-els also admit fatorizable potentials; onjugate expo-nential pairs, suh as the Dirihlet-multinomial, linear-Gaussian, et., are also fatorizable; �nally, for logistifuntions and other generalized linear models (GLIMs)that are not diretly fatorizable, it is often possibleto obtain a fatorizable variational transformation inthe exponential family that lower bounds the origi-nal funtion (Jaakkola and Jordan, 2000); otherwise(e.g., tabular potentials over a lustering of variables),we may overome this problem by avoiding piking alustering in whih these potentials are on the lus-ter boundaries. We will see that luster-fatorizablepotentials allow the deoupling of the omputation ofexpeted potentials.
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DβFigure 2: A lique D� interseting with three lustersfCi; Cj ; Ckg in an undireted graph.

3 Mean Field ApproximationReall that the mean �eld approximation refers to alass of variational approximation methods that ap-proximate the true distribution p(xj�) on a graph Gwith a simpler distribution, q(xj), for whih it is fea-sible to do exat inferene. We all the families ofsuh distributions tratable families. A tratable fam-ily usually orresponds to a subgraph H of G.3.1 Naive mean �eld approximationThe naive mean �eld approximation makes use of asubgraph that is ompletely disonneted. Thus, theapproximating distribution is fully fatorized:q(x) = Yi2V qi(xi): (3)For example, to use this family of distributions to ap-proximate the joint probability of the Boltzmann ma-hine: p(x) = 1Z expfPi<j �ijxixj+Pi �i0xig, one de-�nes qi(xi) = �xii (1��i)1�xi , where the �i are the vari-ational parameters). Minimizing the Kullbak-Leibler(KL) divergene between q and p one obtains the las-sial \mean �eld equations":�i = �� Xj2Ni �ij�j + �i0�; (4)where �(z) = 1=(1 + e�z) is the logisti funtion, andNi is the set of nodes neighboring i.3.2 Generalized mean �eld theoryGiven a (disjoint) lustering C, we de�ne a luster-fatorized distribution as q(x) =QCi2C qi(xCi), whereqi(xCi) = expf�E0i(xCi )g;8Ci 2 C, are free distribu-tions to be optimized. As disussed in the appendix,this optimization problem an be ast as that of max-imizing a lower bound of the likelihood with respetto all valid luster marginals respeting a given lus-tering C. The solution to this problem leads to thegeneralized mean �eld theorem that we present in thissetion.To make the exposition of the theorem and the result-ing algorithm simple, we introdue some de�nitions.De�nition 1. (Mean �eld fator): For a fatoriz-able potential ��(xD� ), let I� denote the set of in-dies of those lusters that have nonempty intersetionwith D�. Thus, ��(xD� ) has as fators the potentials��i(xCi\D� );8i 2 I� . Then, the mean �eld fator fi�is de�ned as:fi� , fi�(xCi\D� ) , h��i(xCi\D� )iqi ; for i 2 I� (5)where h�iqi denotes the expetation with respet to qi.



De�nition 2. (Generalized mean �elds): For anyluster Cj in a given variable partition, the set of mean�eld fators assoiated with the nodes in its Markovblanket is referred as the generalized mean �elds ofluster Cj :Fj , ffi� : D� 2 Bj ; i 2 I� ; i 6= jg: (6)Now we are ready to state the following GMF theorem,the proof of whih is provided in the Appendix.Theorem 3. For a general undireted probabilitymodel p(xH ;xE) where xH denotes hidden nodes andxE denotes evidene nodes, and a lustering C :fxH;Ci ;xE;CigIi=1 of both hidden and evidene nodes,if all the potential funtions that ross luster bordersare luster-fatorizable, then the generalized mean �eldapproximation to the joint posterior p(xH jxE) with re-spet to lustering C is a produt of luster marginalsqGMF (xH) = QCi2C qGMFi (xH;Ci ) satisfying the follow-ing generalized mean �eld equations:qGMFi (xH;Ci ) = p(xH;Ci jxE;Ci ;Fi); 8i: (7)Remark 1. Note that eah variational lustermarginal is isomorphi to the isolated model fragmentorresponding to original luster posterior given theintra-luster evidene and the generalized mean �eldsfrom outside the luster. Thus, eah variational lus-ter marginal inherits all loal dependeny struturesinside the luster from the original model.The mean �eld equations in Theorem 3 are analogousto naive mean �eld approximation. The generalizedmean �elds appearing in Eq. (7) play a role that issimilar to the onventional mean �eld, now applyingto the entire luster rather than a single node, andonduting probabilisti inuene from the remainingpart of the model to the luster. It is easy to verifythat when the lusters redue to singletons, Eq. (7) isequivalent to the lassial mean �eld equation Eq. (4).From a onditional independene point of view, thegeneralized mean �elds an be also understood as anexpeted Markov blanket of the orresponding luster,rendering its interior nodes onditionally independentof the remainder of the model and hene loalizingthe inferene within eah luster given its generalizedmean �elds.Mean �eld approximation for direted models is alsoovered by Theorem 3. This is true beause any di-reted network an be onverted into an undiretednetwork via moralization, and designation of the po-tentials as loal onditional probabilities. The follow-ing orollary make this generalization expliit:Corollary 4. For a direted probability modelp(xH ;xE) =Qi p(xijx�i) and a given disjoint variablepartition, if all the loal onditional models p(xijx�i)

aross the luster borders admit luster-fatorizablepotentials, then the generalized mean �eld approxima-tion to the original distribution has the following form:qGMF (xH) =QCi2C qGMFi (xH;Ci ), andqGMFi (xH;Ci ) = p(xH;Ci jxE;Ci ;Fi); 8i; (8)where Fi refers to the generalized mean �elds of the ex-terior parents, hildren and o-parents of the variablesin luster i.These theorems make it straightforward to obtain gen-eralized mean �eld equations. All that is needed is todeide on a subgraph and a variable lustering, to iden-tify the Markov blanket of eah luster, and to plugin the mean �elds of the Markov blanket variables a-ording to Eqs. (7) or (8). We illustrate the appliationof the generalized mean �eld theorem to several typ-ial ases|undireted models, direted models, andmodels that ombine ontinuous and disrete randomvariables.Example 1. (2-d nearest-neighbor Ising model): Fora 2-d nearest neighbor Ising model, we an pik asubgraph whose onneted omponents are squarebloks of nodes in the original graph (Fig. 3). Theluster marginal of a square blok Gk is simplyq(xGk) = expfP(ij)2L(Gk ) �ijxixj + Pi2V (Gk) �i0xi +P(ij)2L(G);j2MB(Gk ) �ijhxjixig, an Ising model of smallersize, with singleton potentials for the peripheral nodesadjusted by the mean �elds of the adjaent nodes out-side the blok (whih are the MB of xGk ). �Example 2. (fatorial hidden Markov models):For the fHMM, whose underlying graph onsists ofmultiple hains of disrete hidden Markov variablesoupled by a sequene of output nodes, taken to belinear-Gaussian for onreteness, a possible subgraphthat de�nes a tratable family is shown in Figure 5,in whih we retain only the edges within eah hainof the original graph. Given a lustering C, in whiheah luster k ontains a subset of HMM hainsk (the dashed boxes in Fig. 5), the MB of eahluster onsists of all nodes outside the luster.Hene the luster marginal of k is: q(fx(mi)gi2k) /Qi2k p(x(mi))p(yjfx(mi)gi2k ; ff(x(mj ))gj2l;l6=k),where x(mi) denotes variables of hain mi, p(x(mi))is the usual HMM of a single hain, and p(yj�) islinear-Gaussian. When eah k ontains only a singlehain, we reover the strutured variational infereneequations in Ghahramani and Jordan (1997). �Example 3. (Variational Bayesian learning): Fol-lowing the standard setup in Ghahramani and Beal(2000), we have a omplete data likelihood P (x;yj�),where x is hidden, and a prior p(�j�; �), where �; �are hyperparameters. Partitioning all domain variables



into two lusters, fx;yg and f�g, if the potential fun-tion at the luster border, �(x; �) is fatorizable (whihis equivalent to the ondition of onjugate exponential-ity in Ghahramani and Beal), we obtain the followingluster marginals using Corollary 4:q(�) = p(�j�; �; f(x);y) / p(f(x);yj�)p(�j�; �)q(x) = p(xjy; f(�)):These oupled updates are idential to the variationalBayesian learning updates of Ghahramani and Beal.�4 A generalized mean �eld algorithmEqs. (7) and (8) are a oupled set of nonlinear equa-tions, whih are solved numerially via asynhronousiteration until a �xed point is reahed. This iterationonstitutes a simple, message-passing style, General-ized Mean Field algorithm.GMF ( model: p(xH;xE), partition: fxH;Ci ;xE;CigIi=1)Initialization{ Randomly initialize the hidden nodes at the borderof luster i, 8i.{ Initialize f 0i� by evaluating the potentials using theurrent values of the assoiated nodes.{ Initialize F 0i with the urrent f 0i� .While not onvergedFor i = 1 : I{ Update qt+1i (xH;Ci) = p(xH;Ci jxE;Ci ;F ti ).{ Compute the mean �eld fators f t+1i� of all poten-tial fators at the border of Ci via loal infereneusing qt+1i as in Eq. (5).{ Send the f t+1i� messages to all Markov blanket lus-ters of i by updating the appropriate elements intheir GMFs: Ftj ! Ft+1j ; 8j 2MBCi.EndReturn q(xH) =Qi qi(xH;Ci), the GMF approximationRemark 2. Note that the r.h.s. of Eqs. (7) and (8)do not depend on qi, thus the update is a form ofoordinate asent in the fatored model spae (i.e., we�x all qj(xH;Cj ); j 6= i and maximize with respet toqi(xH;Ci) at eah step). Indeed, we have the followingonvergene theorem.Theorem 5. The GMF algorithm is guaranteed toonverge to a loal minimum, whih is a lower boundfor the likelihood of the model.Theorem 5 is an important onsequene of the useof a disjoint variable partition underlying the varia-tional approximate distribution. It distinguishes GMFfrom other variational methods suh as GBP (Yedidiaet al., 2001), or the general ase in Wiegerink's frame-work (Wiegerink, 2000), in whih overlapping variablepartitions are used, and whih optimize an approxi-mate free energy funtion with respet to marginalswhih must satisfy loal onstraints.

The omplexity of eah iteration of GMF is exponen-tial in the tree-width of the loal networks of eah lus-ter of variables, sine inferene is redued to loal op-erations within eah luster.Sine GMF is guaranteed to onverge to a loal opti-mum, in pratie it an be performed in a stohastimultiple-initialization setting similar to the usual pra-tie in EM, to inrease the hane of �nding a betterloal optimum.5 Experimental resultsAlthough GMF supports several types of applia-tions, suh as �nding bounds on the likelihood orlog-partition funtion, omputation of approximatemarginal probabilities, and parameter estimation, inthis paper we fous solely on the quality of approxi-mate marginals. We have performed experiments onthree anonial models: a nearest neighbor Ising model(IM), a sigmoid network (SN), and a fatorial HMM(fHMM); and we have ompared performane of GMFusing di�erent tratable families (spei�ally, usingvariable lusterings of di�erent granularity) with re-gard to the auray on single-node marginals. Toassess the error, we use an L1-based measure1PNi=1Mi NXi=1 MiXk=1 jp(xi = k)� q(xi = k)j;where N is the total number of variables, and Mi isthe number of (disrete) states of the variable xi. Theexat marginals are obtained via the juntion tree al-gorithm. We also ompare the performane with thebelief propagation (BP) algorithm, espeially in aseswhere BP is expensive, and examine whether GMFprovides a reasonably eÆient alternative.We use randomly generated problems for IM and SNand real data for fHMM. For the �rst two ases, inany given trial we speify the distribution p(xj�) by arandom hoie of the model parameter � from a uni-form distribution. For models with observable output(i.e., evidene), observations were sampled from therandom model. Details of the sampling are spei�edin the tables presenting the results. For eah problem,50 trials were performed. The fHMM experiment wasperformed on models learned from a training data set.
Figure 3: Ising model and GMF approximations.Ising models: We used an 8 � 8 grid with binary



nodes. Two di�erent tratable models were used forthe GMF approximation, one based on a lustering of2 � 2 bloks, the other 4 � 4 bloks (Fig. 3). The re-sults on strongly attrative and repulsive Ising models(whih are known to be diÆult for naive MF) are re-ported in Table 1. The rightmost olumn also showsthe mean CPU time (in seonds).Table 1: L1 errors on nearest neighbor Ising models.Upper panel: attrative IM (�i0 2 (�0:25; 0:25); �ij 2 (0; 2));Lower panel: repulsive IM (�i0 2 (�0:25; 0:25); �ij 2 (�2; 0)).Algorithm Mean � std Median Range time2� 2 GMF 0.366�0.054 0.382 [0.276,0.463℄ 2.04� 4 GMF 0.193�0.103 0.226 [0.004,0.400℄ 29.4BP 0.618�0.304 0.663 [0.054,0.995℄ 17.9GBP 0.003�0.002 0.002 [0.000,0.005℄ 166.32� 2 GMF 0.367�0.052 0.383 [0.279,0.449℄ 1.24� 4 GMF 0.185�0.102 0.161 [0.009,0.418℄ 22.1BP 0.351�0.286 0.258 [0.009,0.954℄ 14.3GBP 0.003�0.003 0.003 [0.000,0.014℄ 117.5As expeted, GMF using a lustering with fewer nodesdeoupled yields more aurate estimates than a lus-tering in whih more nodes are deoupled, albeit withinreased omputational omplexity. Overall, the per-formane of GMF is better than that of BP, espeiallyfor the attrative Ising model. For this partiular prob-lem, we also ompared to the GBP algorithm, whihalso de�nes beliefs on larger subsets of nodes, witha more elaborate message-passing sheme. We foundthat for Ising models, GBP performs signi�antly bet-ter than the other methods, but at a ost of signi�-antly longer time to onvergene.
Figure 4: Sigmoid network and GMF approximations.Sigmoid belief networks: The two sigmoid net-works we studied are omprised of three hidden layers(18 nodes), with or without a fourth observed layer (10nodes), respetively. We used a row lustering and ablok lustering of nodes as depited in Figure 4 forGMF. Table 2 summarizes the results.Table 2: L1 errors on sigmoid networks (�ij 2 (0; 1)).Upper: hidden layers only; Lower: with observation layer..Algorithm Mean � std Median Range timeblok GMF 0.013�0.004 0.013 [0.006,0.032℄ 6.8row GMF 0.172�0.036 0.175 [0.100,0.244℄ 0.5BP 0.273�0.025 0.271 [0.227,0.346℄ 9.2blok GMF 0.018�0.009 0.014 [0.009,0.038℄ 8.4row GMF 0.061�0.021 0.059 [0.023,0.145℄ 0.7BP 0.187�0.044 0.189 [0.096,0.312℄ 139.2For the network without observations, the blok GMF,whih retains a signi�ant number of edges from theoriginal graph, is more aurate by an order of mag-nitude than the row GMF, whih deouples the origi-nal network ompletely. Interestingly, when a bottomlayer of observed nodes is inluded in the network, a

signi�ant improvement of approximation auray isseen for the row GMF, but it still does not surpassthe blok GMF. The performane of BP is poor onboth problems, and the time omplexity sales up sig-ni�antly for the network with the observation layer,beause of the large fan-in assoiated with the nodesin the bottom layer.
... ...Figure 5: An fHMM and a GMF approximation (illus-trative graph; the atual model ontains 6 hains and 40steps).Fatorial HMM: We studied a 6-hain fHMM, with(6-dimensional) linear-Gaussian emissions, ternaryhidden state and 40 time steps. The model was trainedusing the EM algorithm (with exat inferene) on 40Bah Chorales from the UCI Repository. Inferene wasperformed with the trained model on another 18 testChorales. GMF approximations were based on lus-terings in whih eah luster ontains either singletons(i.e., naive mean �eld), one hidden Markov hain, twohains, or three hains, respetively. The statistis ofthe L1 errors are presented in Table 3.Table 3: L1 errors on fatorial HMMAlgorithm Mean � std Median Range timenaive MF 0.254�0.095 0.269 [0.083,0.397℄ 9.81-hain GMF 0.237�0.107 0.233 [0.029,0.392℄ 14.32-hain GMF 0.092�0.081 0.064 [0.019,0.314℄ 5.63-hain GMF 0.118�0.092 0.089 [0.035,0.357℄ 15.6BP 0 0 - 106.2Sine the moral graph of a fHMM is a lique tree, BPis exat in this ase, but the omputational omplex-ity grows exponentially with the number of hains andthe ardinality of the variables, hene BP annot saleto large models. Using GMF, we obtain reasonable a-uray, whih in general inreases with the granularityof the variable lustering. The 2-hain GMF appearsto be a partiularly good granularity of lustering inthis ase, leading to both better estimation and fasteronvergene.In summary, GMF shows reasonable performane in allthree of the anonial models we tested, and providesa exible way to trade o� auray for omputationtime. It is guaranteed to onverge, and the ompu-tational omplexity is determined by the treewidth ofthe subgraph. BP, on the other hand, may fail to on-verge. Furthermore, the omplexity of omputing themessage is exponential in the size of the maximal liquein the moralized graph, whih makes it very expensivein direted models with dense loal dependenies.



6 Choie of lustersOne reason for our fous on disjoint partitions has beenthe simpliity and ease-of-implementation of the re-sulting algorithm. But it is also the ase that the useof disjoint partitions opens up an interesting new set ofresearh problems involving the hoie of lusters. In-tuition suggests that one possible de�nition of a goodpartitions is one in whih many edges are ut, withrelatively small parameter values aross the ut. Inthis setting we would expet to have onentration ofthe expetations of the potentials|the \mean �elds"would be well determined.In Xing and Jordan (2003) we explore this idea byombining the GMF algorithm with ombinatorial op-timization methods for graph partition. We havefound that, depending on the onnetivity and ou-pling strength of the graphial model, various auto-mati graph partition shemes an yield e�etive lus-terings. For example, for densely onneted graphwith weak oupling, a max-ut indeed leads to im-proved approximation of marginal probabilities whenompared to naive mean �eld and other simple �xedpartition shemes. On the other hand, for a graphwith relatively sparse onnetivity, and strong ou-pling, a min-ut of the graph leads to better estima-tion of marginals, possibly due to an improved abil-ity to apture the dependeny struture within eahluster, in a manner analogous to the ut-set on-ditioning methods used for exat inferene. Thesepromising results open up the possibility for a fully au-tonomous variational inferene algorithm for omplexmodels based on automati node partition of a graphi-al model and GMF approximation as illustrated inthe following owhart in Figure 6. A prototypeimplementation of suh an algorithm is available at:http://www.s.berkeley.edu/�epxing/GMF.zip.
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E HFigure 6: Flowhart of a autonomous variational inferenealgorithm.7 DisussionWe have presented a generalized mean �eld approahto probabilisti inferene in graphial models, in whiha omplex probability distribution is approximated viaa distribution that fatorizes over a disjoint partitionof the graph. Loally optimal variational approxima-tions are obtained via an algorithm that performs o-ordinate asent in a lower bound of the log-likelihood,with guaranteed onvergene. For a broad family ofmodels in pratial use, we showed that the GMF ap-proximations of the luster marginals are isomorphi

to the original model in the sense that they inheritall of its intra-luster dependenies. Moreover, thesemarginals are independent of the rest of the modelgiven the expeted potential fators (mean �elds) ofthe Markov blanket of the luster. The expliit andgeneri formulation of the \mean �elds" in terms ofthe Markov blanket of variable lusters also leads toa simple, generi, message-passing algorithm for om-plex models.Disjoint lusterings have also been used in sampling al-gorithms to improve mixing rates for large problems.For example, the Swendsen-Wang algorithm (Swend-sen and Wang, 1987) samples Ising (or Potts) model atritial temperatures by grouping neighboring nodeswith the same spin value, thereby forming randomlusters (of oupled spins) that are e�etively inde-pendent of eah other, allowing an MCMC proessto olletively sample the spin of eah luster inde-pendently and at random. This method often dra-matially speeds up the mixing of the MCMC hain.Gilks et al. (1996) also noted that when variablesare highly orrelated in the stationary distribution,bloking highly orrelated omponents into higher-dimensional omponents may improve mixing. How-ever, in the sampling framework, lustering are usuallyobtained dynamially, based on the oupling strength,rather than the topology of the network.There are a number of possible extensions of the re-searh reported here. First, it is of interest to developautomati methods for hoosing lusters in variationalapproximations. As we have already disussed, spe-tral graph partitioning an be adapted for this purposein the ase of GMF methods. It is also possible tomake use of the framework of probabilisti relationalmodels and motivate partitions of the random vari-ables using modularities deriving from the model se-mantis (e.g., lass membership). Preliminary resultsin applying this to a large-sale bioinformatis prob-lem showed that it leads to signi�ant improvementsin performane.Another possible extension involves the use of higher-order expansions in the basi variational bounds.Leisink and Kappen (2000) have shown how to up-grade �rst-order variational bounds suh as that shownin Eq. (10) to yield higher-order bounds. In partiular,the following third-order lower bound an be obtainedfor the likelihood:p(xE) � Z dx exp��E0(xH)	h1��+ 12 exp(�)�2i;where � = 13 h�3i=h�2i, � = E(xH ;xE) � E0(xH), andh�i denotes expetation over the approximate distribu-tion q(xH) = expf�E0(xH)g. The optimizer of thislower bound annot be found analytially. However,we an ompute the gradient of the lower bound with
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A Proof of the GMF theoremTo ast GMF approximation as an optimization prob-lem, we begin with the follow lemma.Lemma 6. For an arbitrary marginal distributionq(xH) = expf�E0(xH)g, we have the following lowerbound:p(xE) � Z dxH exp��E0(xH)	�1�A(xE)� �E(xH ;xE)�E0(xH)��; (9)where xE denotes observed variables (evidene) 1.Proof. Using onjugate duality, we have:exp(x) � exp(�)(1 + x� �); 8x; �: (10)For a joint distribution p(xH ;xE) =expf�E(xH ;xE) � A(xE)g (where A(xE) is theoriginal log-partition funtion plus the onstantevidene potentials), we replae x in Eq. (10) with�(E(xH ;xE) + A(xE)) and lower bound the jointdistribution p(xH ;xE) as follows:p(xH;xE) � q(xH)�1�A(xE)� (E(xH;xE)�E0(xH))�;where E0(xH) de�nes a variational marginal distribu-tion. Integrating over xH on both sides, we obtain the�rst-order lower bound in Eq. (9).Given this lower bound, the optimal approximating(GMF) distribution is spei�ed as the solution of thefollowing onstrained optimization problem:fE0GMFi (xCi)gCi2C = arg maxE0i2E(xCi )Z dx exp��XCi2CE0i(xCi)	�1� �E(x)�XCi2CE0i(xCi)��;(11)where E(xCi) denotes the set of all valid energy fun-tions of variable set xCi . (Beause evidene variablesare �xed onstants in inferene, for simpliity, we omitexpliit mention of the evidene xE , and the subsriptH in the energy term E(�) above and in other relevantterms in the following derivation. In should be learthat, in situations where suh subsripts are omitted,x and related symbols denote only the hidden vari-ables.) The solution to this problem leads to Theo-rem 3, whih we restate here (with evidene symboland hidden variable subsripts omitted).Theorem (GMF): For a general undireted prob-ability model p(x) and a lustering C : fxCigIi=1,if all the potential funtions that ross luster bor-ders are luster-fatorizable, then the generalized mean1Note that (9) is very similar to the Jensen bound onlog likelihood: ln p(xE) � R dxHq(xH) ln q(xH )p(xH ;xE) , and hasthe same maximizer, but it is more general in that it anbe further upgraded to higher order bounds as disussedin the disussion session.



�eld approximation to p(x) with respet to luster-ing C is a produt of luster marginals qGMF (x) =QCi2C qGMFi (xCi ) satisfying the following generalizedmean �eld equations:qGMFi (xCi) = p(xCi jFi); 8i:To prove Theorem 3 we need to use the alulus of vari-ations to solve the optimization de�ned by Eq. (11).For onveniene, we distinguish two subsets of nodesin a luster i, the interior nodes and the border nodes,i.e., letting zCi denote the (hidden) nodes in lusterCi, we have zCi = fxCi ;yCig where xCi 6� xBi andyCi � xBi .Proof. From Eq. (11), to �nd the optimizer of:Z dxdy exp�� XCi2CE0i(xCi ;yCi)	�1���;where � � E �PCi2C E0i + A(�), subjet to the on-straints that eah E0i de�nes a valid marginal dis-tribution qi(xCi ;yCi) of all hidden variables in lus-ter i, we solve the Euler equations for a variationalextremum, de�ned over Lagrangians f(E0i; zCi) =R dz[�ni℄� expf�PiE0ig(1 � �) � Pi �i expf�E0ig�(where z[�ni℄ refers to all hidden variables exludingthose from luster i):�f�E0i � ddzCi � �f� _E0i � = 0 8i: (12)Sine f does not depend on _E0i (= dE0idzCi ), we have:Z dz[�ni℄Yj 6=i expf�E0jg(E �Xi E0i)� �i = 0)E0i = Z dz[�ni℄Yj 6=i expf�E0jg(E �Xj 6=i E0j)� �i= C � XD��Ci����(xD�)� XD�2Bi��
��(yCi\D� ; fyCj\D�gCj2Ni� )�qNi� ;where qj = expf�E0j(xCj ;yCj )g is the loal marginal ofluster j; qNi� =Qj2Ni� qj is the marginal over lusterset Ni�, whih are all the lusters neighboring lusteri that interset with lique �.When the potential funtions at the luster boundariesfatorize with respet to the lustering, we have:E0i = C � XD��Ci ����(xD�)� XD�2Bi ��F�(��i(yCi\D� ); fh��j (fyCj\D�g)iqj gCj2Ni� )So, qi(xi;yi) = expf�E0ig= p(xCi ;yCi jfh��j (yCj\D� )iqjgCj2Ni�;D�2Bi)= p(zCi jFi); 8i: (13)

The expliit presene of evidene xE = fxE;CigIi=1merely hanges Eq. (13) to qi(zCi) / p(zCi ;xE;Ci jFi).After normalization, it leads toqi(zCi) = p(zCi jxE;Ci ;Fi):


