
APPROXIMATION ALGORITHMS FOR THE SHORTEST
COMMON SUPERSTRING PROBLEM

Jonathan S. Turner �

Computer Science Department
Washington University, St. Louis

Abstract. The object of the shortest common superstring problem (SCS) is to find the shortest
possible string that contains every string in a given set as substrings. As the problem is
NP-complete, approximation algorithms are of interest. The value of an approximate solution
to SCS is normally taken to be its length, and we seek algorithms that make the length as small
as possible. A different measure is given by the sum of the overlaps between consecutive
strings in a candidate solution. When considering this measure, the object is to find solutions
that make it as large as possible. These two measures offer different ways of viewing the
problem. While the two viewpoints are equivalent with respect to optimal solutions, they
differ with respect to approximate solutions. We describe several approximation algorithms
that produce solutions that are always within a factor of two of optimum with respect to
the overlap measure. We also describe an efficient implementation of one of these, using
McCreight’s compact suffix tree construction algorithm. The worst-case running time is
O(m logn) for small alphabets, where m is the sum of the lengths of all the strings in the
set and n is the number of strings. For large alphabets, the algorithm can be implemented in
O(m logm) time by using Sleator and Tarjan’s lexicographic splay tree data structure.

Key words. shortest common superstring, approximation algorithms, longest path prob-
lem, traveling salesman problem, suffix trees

1. Introduction. Let s1 = a1 : : : ar and s2 = b1 : : : bs be strings over some
finite alphabet Σ. We say that s1 is a substring of s2 if there is an integer i 2 [0; s�r]
such that aj = bi+j for 1 � j � r. We also say in this case that s2 is a superstring
of s1.

An instance of the shortest common superstring problem (SCS) is a set of strings
S = fs1; : : : ; sng over a finite alphabet Σ. The object of the problem is to find a
minimum length string that is a superstring of every si 2 S. We let ��(S) denote
the length of a minimum length superstring.

EXAMPLE: If S = fegiach; bfgiak; hfdegi; iakhfd; fgiakhg, the string
bfgiakhfdegiach is a solution of length 15.

We say that a set of strings is substring free if no string in the set is a substring of
any other. We will generally limit our attention to substring free sets. This involves
no loss of generality, since any set of strings has a unique substring free subset which
has the same solutions as the original set.

We have presented the problem in the conventional way, with the object being
to minimize the solution length. It is useful to consider an alternative viewpoint as

0� The research described here was supported by the National Science Foundation (grant #DCR-
8409435) and the National Institutes of Health (grant #RR-01380)

1

2 TURNER

well. One can view the object of the problem as being to find an ordering of the
strings that maximizes the amount of overlap between consecutive strings. To make
this precise we need a few definitions.

Let s1 = a1 : : :ar and s2 = b1 : : : bs be strings. We define

 (s1; s2) = max fk � 0 j ar�k+i = bi 1 � i � kg

If (s1; s2) = k then s1 � s2 is defined to be the string a1 : : : ar; bk+1 : : : bs. We
note that if s1; s2; s3 are strings, none of which is a substring of another, then
s1 � (s2 � s3) = (s1 � s2) � s3; that is, the overlapping operation is associative for
substring free sets. Consequently, we may write s1 � s2 � � � � � sn with no ambiguity.

Let � be a permutation on f1; : : : ; ng. We will usually write �i for �(i). We
define

 �(s1; : : : ; sn) =
n�1X
i=1

 (s�i ; s�i+1)

and ��(s1; : : : ; sn) = js�1 � � � � � s�n j. Note that for any instance S = (s1; : : : ; sn)
of SCS,

��(S) = kSk � �(S)

where kSk =
Pn

i=1 jsij. In particular,

��(S) = kSk � �(S) where �(s1; : : : ; sn) = max
�

 �(s1; : : : ; sn)

Hence, we can view the object of the SCS problem as being to find a mapping � that
maximizes �.

LetA be an algorithm for SCS which given a collection of stringsS = (s1; : : : ; sn)
produces a mapping � = �A(S). We define A(S) = �(S) and �A(S) = ��(S).

SCS was shown to be NP-complete by Maier and Storer in [8]. Another, and
more elegant proof appears in [3] and [4]. One obvious application for the problem
is data compression. Storer and Szymanski [15] for example, consider a fairly
general model of data compression which includes SCS as an important special
case. See also [9]. Another application is to DNA sequencing. SCS is one of the
simplest models for the problem of recovering DNA sequencing information from
experimental data [5, 12, 14]. To our knowledge the only approximation algorithm to
be discussed in the literature is a simple greedy algorithm which is treated briefly by
Gallant in [4]. Gallant claims that for this algorithm, which we refer to as SGREEDY,
�SGREEDY(S) � (3=2)��(S) for all collections of stringsS. We show that this is not
in fact true by displaying a set of strings S for which �SGREEDY(S) � 2��(S). We
have found no worse example problem than this, but have also been unsuccessful in
proving an upper bound on the performance of this algorithm in terms of the length
measure. On the other hand, we do show that �(S) � 2 SGREEDY(S).

In section 2 we relate SCS to the longest path problem (LPP) in graphs by describing
a transformation from SCS to LPP that preserves solution values with respect to the
overlap measure. We then construct three approximation algorithms for LPP, two
based on matching and the third a greedy heuristic. By virtue of the transformation

THE SHORTEST COMMON SUPERSTRING PROBLEM 3

from SCS, all three are also approximation algorithms for SCS. We show that the
greedy heuristic for LPP always produces solutions within a factor of three of the
optimum value. In section 3, we show that the instances of LPP that result from our
transformation from SCS have a special structure that allows us to obtain a tighter
bound. We also describe an efficient implementation of this greedy algorithm for
strings using a compact representation of suffix trees. In section 4, we relate SCS

to the traveling salesman problem (TSP) by another transformation that preserves
solution values, this time with respect to the length measure. The instances of TSP

arising from this transformation are asymmetric, but satisfy the triangle inequality.
There are no approximation algorithms known for this problem with provably good
worst-case performance, nor have we succeeded in finding any. Nevertheless, this
transformation means that if such an algorithm is found, it can be used for SCS as well
as TSP. If on the other hand, it turns out that approximating this version of TSP is hard,
then any approximation algorithm for SCS, will have to make use of special structural
properties present in the instances of TSP that arise from this transformation.

2. SCS and the Longest Path Problem. In this section we relate SCS to the
longest path problem (LPP) in graphs. An instance of the longest path problem is a
complete directed graph G = (V;E) with each edge (u; v) having a non-negative
integer length `(u; v). The length of a path p in G is defined to be the sum of the
lengths of its edges and is denoted �p(G; `). The object of the longest path problem
is to find a Hamiltonian path p (that is a path including every vertex) in G that
maximizes �p(G; `). The length of such a longest path is denoted ��(G; `).

Let S = (s1; : : : ; sn) be an instance of SCS. We define LPP(S) to be an instance
(G; `) of LPP with

V = fu1; : : : ; ung E = V � V

`(ui; uj) = (si; sj) 1 � i; j � n; i 6= j

An example of this transformation is shown in Figure 1.
Let � be a permutation on f1; : : : ; ng. We can view � as defining a Hamiltonian

path u�1; : : : ; u�n inG. We let ��(G; `) denote the length of this path. We now state
a trivial, but useful theorem.

THEOREM 2.1. Let S = (s1; : : : ; sn) be an instance of SCS, (G; `) = LPP(S) and let
� be any permutation on f1; : : : ; ng. ��(G; `) = �(S). In particular, ��(G; `) =
 �(S).

The theorem implies that any approximation algorithm for LPP is an approxima-
tion algorithm for SCS with respect to the overlap measure. In the remainder of this
section, we present three simple approximation algorithms for LPP.

2.1. Matching Algorithm. A matching in a graphG = (V;E) is a set of edges,
no two of which share a common vertex. A maximum matching in a graph with

4 TURNER

��
��

1 ��
��

2

��
��

3 ��
��

4

-�

-�

6

?

6

?�
�
�
�
�
�
�
����
�
�
�
�

�
�
��	 @

@
@

@
@
@
@
@@I@
@
@
@
@
@
@
@@R

1

5

3

0

0 4 0 0
0

0

1

3

S = fcbadef,fcbade,adefcd,fcdafbg

Figure 1: Example of transformation from SCS to LPP

f f f f f

f f f f f
6 6 6 6 6

? ? ? ? ?

101 101 101 101 101100 100 100 100 100

- - - -100 100 100 100

����
100 100 100 100

Figure 2: Worst-Case Example for Theorem 2.2

edge lengths `(e) is a matching M that maximizes `(M). We define ��(G; `) =
maxM `(M) to be the value of a maximum matching. There are algorithms for
finding maximum matchings having running times of O(n3) (where n = jV j) [16].

Our first algorithm for LPP is based on the observation that any matching for an
instance (G; `) of LPP can be extended to a path (sinceG is assumed to be complete)
and a maximum matching must have total length at least half that of a longest path.
(Recall that we are restricting attention to non-negative weights.)

THEOREM 2.2. If (G = (V;E); `) is an instance of LPP then ��(G; `) � 2��(G; `).

Proof. Let P be a set of edges defining any Hamiltonian path. LetQ be obtained
by taking alternate edges from P and letR = P �Q. Both Q and R are matchings.
The sum of the lengths of the edges in Q is � ��(G; `). Similarly, the sum of the
lengths of the edges in R is � ��(G; `). Hence, `(P) � 2��(G; `) and since this
holds for all paths P , it follows that ��(G; `)� 2��(G; `). 2

Remark. There are instances (G; `) of LPP for which ��(G; `) approaches
2��(G; `). Figure 2 shows a graph for which ��(G; `) = 901 and ��(G; `) = 505.
(The edges not explicitly shown have length 0.) The example is easily extended to
give graphs for which the ratio ��=�� is arbitrarily close to 2.

THE SHORTEST COMMON SUPERSTRING PROBLEM 5

function edgeset MATCH(digraph G = (V;E), edgelengths `)
edgeset P , M ;
P := ;;
do E 6= ; !

M := MAXMATCH(G; `);
P := P [M ;
for (u; v) 2M !

Delete from G, all edges of the form (u; x) or (y; v);
Collapse u and v into a single vertex;

rof;
od;
return P ;

end;

Figure 3: Matching Algorithm for LPP

Theorem 2.2 provides the basis for our first approximation algorithm shown in
Figure 3. The procedure MATCH starts by finding a maximum matching in G, then
removes edges that are ruled out by the selected edges, collapses the selected edges
into single vertices and then repeats the process on the new graph. To see that
the algorithm does construct a Hamiltonian path, note the following: (1) the edge
eliminations ensure that the set P never contains two edges leaving a common vertex
or entering a common vertex, (2) the collapsing of edges into single vertices prevents
creation of cycles and (3) since the original graph is assumed to be complete, the
algorithm will halt only when a complete Hamiltonian path has been constructed.
An example illustrating the operation of the algorithm is given in Figure 4.

Theorem 2.2 implies that �(G; `) � 2 MATCH(G; `) for any instance (G; `) of
LPP. This cannot be improved, as can be seen by considering the operation of MATCH

on the graph in Figure 2. The running time of MATCH is determined primarily by the
matching algorithm used. Assuming a matching algorithm that runs in O(n3) time,
we get a running time of O(n3 logn) for MATCH.

2.2. Directed Matching Algorithm. A directed matching in a digraph G =
(V;E) is a set of edges, no two of which enter a common vertex and no two of
which leave a common vertex. In other words, it is a subgraph of G comprising a
collection of disjoint paths and cycles. A maximum directed matching in a graph G
with edge lengths `(e) is a directed matching M that maximizes `(M). We define
��(G; `) = maxM `(M) to be the value of a maximum directed matching (where
in this case, M ranges over all directed matchings of G). There are algorithms for
finding a maximum directed matchings having running times of O(n5=2) [16].

Given any matching M , let M� be a subset of M obtained by discarding a
least cost edge from each cycle in M . Our next algorithm for LPP is based on the

6 TURNER

la lb

lc

ldle

lf

3 - 8�
aaaaaaaaaaaaaaaaaaa

5aaj

4aaY

e
e
e
e
e
e
e
e
e
e
e
e
e
e
e

5
eeR

6
eeI

4

?

3
6

%
%
%
%
%
%
%

3
%%	

0
%%�

e
e
e
e
e
e
e

6
eeR

2
eeI

1

?

5
6

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

2
%%	

5
%%�

!!!!!!!!!!!!!!!!!!!

3!!�

6!!*
9�1 -
!!!!!!!!!!!!!!!!!!!

3!!�

4!!*

%
%
%
%
%
%
%

1
%%	

5
%%�

aa
aa

aa
aa

aa
aa

aa
aa

aaa

4aaY

3aaj

6�7 -
e
e
e
e
e
e
e

2
eeI

0
eeR

matching: (b; a); (c; f); (e; d)

��
��
ed

��
��
ba

��
��
cf

5

�

4

�

5 - 0�
J
J
J
J
J
JJ

6J
J]

5
JĴ

matching: (cf; ba)

��
��
ed

�
�
�

cfba5 - 4� matching: (ed; cfba)

solution value: 35

Figure 4: Example of Algorithm MATCH

observation contained in the next theorem.

THEOREM 2.3. Let (G = (V;E); `) be an instance of LPP, let M be a maximum
directed matching of G and let k be the minimum number of edges in any cycle
defined by M . ��(G; `) � k

k�1`(M
�). In particular, ��(G; `)� 2`(M�).

Proof. Let P be a set of edges defining a path and letM be a maximum directed
matching. Notice that P is a directed matching and hence `(P) � `(M). Let C be
a cycle in M with h edges and let C� be a path obtained by discarding a minimum
length edge from C.

`(C) �
h

h � 1
`(C�) �

k

k � 1
`(C�)

THE SHORTEST COMMON SUPERSTRING PROBLEM 7

function edgeset DIMATCH(digraph G = (V;E), edgelengths `)
edgeset P , M ;
P := ;;
do E 6= ; !

M := MAXDIMATCH(G; `);
M� :=M � one least cost edge from each cycle of M ;
P := P [M�;
for each path (u1; : : : ; ur) 2M� !

Delete from G, all edges of the form (ui; x), 2 � i � r;
Delete from G, all edges of the form (x; ui), 1 � i � r � 1;
Delete from G the edge (ur; u1), if present;
Collapse the path into a single vertex;

rof;
od;
return P ;

end;

Figure 5: Directed Matching Algorithm for LPP

Also, for every path R 2 M , `(R) � k
k�1 `(R). Summing over all paths and

cycles in M yields `(M) � k
k�1 `(M

�). Since this is true for all paths P and since

`(P) � `(M), ��(G; `) � k
k�1`(M

�). 2
Remark. There are instances (G; `) of LPP for which ��(G; `) approaches

2`(M�). Consider for example, the graph shown in Figure 2. For this graph
��(G; `) = 901 and the optimum directed matching consists of five cycles each hav-
ing two edges and length 201. When the cycles are broken, we have `(M�) = 505.
The example is easily extended to give graphs for which the ratio ��(G; `)=`(M�)
is arbitrarily close to 2.

We note that ��(G; `) � ��(G; `). Hence, it provides a measure of how close
a given solution is to optimal. We expect that the solutions obtained by breaking
cycles will often be much closer to optimal than the bound in the theorem implies.

Theorem 2.3 provides the basis for our next approximation algorithm for LPP,
shown in Figure 5. This algorithm constructs a maximum directed matching M in
G, then breaks all the cycles in M and constructs a new graph in which the paths of
M correspond to vertices. It then proceeds by finding a maximum directed matching
in the new graph, continuing in this fashion until a Hamiltonian path in the original
graph has been found. To verify that the algorithm does construct a Hamiltonian
path, it suffices to note the following: (1) the edge eliminations ensure that the set P
never contains two edges leaving a common vertex or entering a common vertex, (2)
cycles formed are explicitly broken and the broken edges removed from the graph and
(3) since the original graph is assumed to be complete, the algorithm will halt only

8 TURNER

la lb

lc

ldle

lf

3 - 8�
aaaaaaaaaaaaaaaaaaa

5aaj

4aaY

e
e
e
e
e
e
e
e
e
e
e
e
e
e
e

5
eeR

6
eeI

4

?

3
6

%
%
%
%
%
%
%

3
%%	

0
%%�

e
e
e
e
e
e
e

6
eeR

2
eeI

1

?

5
6

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

2
%%	

5
%%�

!!!!!!!!!!!!!!!!!!!

3!!�

6!!*
9�1 -
!!!!!!!!!!!!!!!!!!!

3!!�

4!!*

%
%
%
%
%
%
%

1
%%	

5
%%�

aa
aa

aa
aa

aa
aa

aa
aa

aaa

4aaY

3aaj

6�7 -
e
e
e
e
e
e
e

2
eeI

0
eeR

directed matching:
(b; a); (a; c); (c; f)
(f; b); (d; e); (e; d)

��
��
ed

�
�
�

cfba5 - 4� directed matching:

(ed; cfba); (cfba; ed)

solution value: 35

Figure 6: Example of Algorithm DIMATCH

when a complete Hamiltonian path has been constructed. An example illustrating
the operation of the algorithm is given in Figure 6.

Theorem 2.3 implies that �(G; `) � 2 DIMATCH(G; `) for any instance (G; `)
of LPP. This cannot be improved, as can be seen by considering the operation
of MATCH on the graph in Figure 2. The running time of DIMATCH is determined
primarily by the directed matching algorithm used. Assuming an algorithm that runs
in O(n5=2) time, we get a running time of O(n5=2 logn) for DIMATCH.

DIMATCH is essentially an adaptation of an algorithm for the asymmetric traveling
salesman problem (TSP) described by Karp in [6]. Karp’s algorithm has poor worst-
case performance for TSP, but performs well in a probabilistic sense for instances
in which inter-city distances are selected uniformly on the interval [0; 1]. We have
simply adapted his algorithm to the longest path problem (simplifying it slightly in
the process), and observed that its worst-case performance is provably good in this
context.

2.3. Greedy algorithm. The algorithms considered above are both fairly com-
plicated and time consuming because they require the calculation of maximum
weighted matchings. Another algorithm that is worth considering is the simple
greedy algorithm that scans the edges in non-increasing order of length and selects
an edge (u; v) if it has not previously selected an edge of the form (u; x) or (y; v) and
if the collection of paths constructed so far does not include a path from v to u. On the

THE SHORTEST COMMON SUPERSTRING PROBLEM 9

mw

my

m

m

m

m

m

m

� �� �

- -- -

6

?

e

Figure 7: Illustration for Theorem 2.4

graph in Figure 6, this algorithm selects the edges (c; f); (b; a); (e; d); (f; b); (d; c)
in that order. The next theorem gives a worst-case bound on the performance of the
greedy algorithm.

THEOREM 2.4. If (G; `) is an instance of LPP then ��(G; `) � 3�PGREEDY(G; `).

Proof. Let F be the set of edges in some optimum solution to (G; `). Let
H = fh1; : : : ; hsg be the set of edges chosen by the greedy algorithm in the order in
which they were selected (that is, h1 was selected first, h2 second, and so forth).

We say an edge is permissible at some stage of the execution of the algorithm if
its selection has not been precluded by earlier selections. Define Hi to be the set of
edges which are permissible just before hi is selected, but not permissible after hi is
selected.

Let hi = (w; y) and consider the situation just before hi is selected by the greedy
algorithm. At this point,w is the last vertex of some path constructed by the algorithm
and y is the first vertex of some path (one or both paths may contain just a single
vertex). Let e be the edge joining the first vertex on the path containing w to the last
vertex on the path containing y, as shown in Figure 7.

If e is permissible before the selection of hi then it is a member of Hi. All other
members of Hi have the form (w; z) or the form (x; y). Note that F can contain at
most one edge of the form (w; z) and at most one edge of the form (x; y). Hence,
jF \Hij � 3.

Next, note that `(hi) = max f`(e) j e 2 Hig and that (H1; : : : ; Hs) is a partition
of E. Consequently, for i 2 [1; s], `(F \Hi) � 3`(hi) and

`(F) =
sX

i=1

`(F \Hi) � 3
sX

i=1

`(hi) = 3`(H) 2

Figure 8 gives an example graph showing that the bound of Thereom 2.4 cannot
be improved. (The edges not shown have length 0.) PGREEDY finds a solution of
length 101, while the optimal solution has length 300. Figure 9 is a sketch of an
implementation of the greedy algorithm. Upon return the mappings left and right
give the left and right neighbors of each vertex in the solution path. If left(u) is
null, then rightend(u) gives the vertex at the end of the path containing vertex
u in the current partial solution; leftend(u) is similar. The running time for this
implementation is O(n2 logn).

10 TURNER

�

��
w �

��
x �

��
y �

��
z- -100 100-

�
100

101

Figure 8: Worst-Case example for PGREEDY

function edgeset PGREEDY(digraph G = (V;E), edgelengths `,
mapping left; right : V 7! V [fnullg)
vertex u; v; mapping leftend; rightend : V 7! V ;
for u 2 V !

left(u); right(u) := null;
leftend(u); rightend(u) := u;

rof;
Sort E from longest to shortest;
for (u; v) 2 E !

if right(u) = null and left(v) = null and v 6= leftend(u)!
right(u); left(v) := v; u;
rightend(leftend(u)) := rightend(v);
leftend(rightend(v)) := leftend(u);

fi;
rof;
return S;

end

Figure 9: Greedy Algorithm for LPP

3. A Greedy Algorithm for SCS. The greedy algorithm for the longest path
problem can be restated for SCS as follows. Given a non-empty set of strings S,
repeat the following step until S contains just one string.

Select a pair of strings s1; s2 2 S that maximizes (s1; s2). Remove s1 and
s2 from S, replacing them with s1 � s2.

We refer to this algorithm as SGREEDY. Gallant [4] claims that �SGREEDY(S) �
(3=2)��(S). This is not in fact true, as can be seen by considering the set of strings

S = fabcbcbcbcb,cbcbcbcbc,bcbcbcbcbdg

for which�SGREEDY(S) = 20 > (3=2)��(S) = 19:5. One can easily generalize this
example to show that there is no constant c < 2 for which �SGREEDY(S) � c��(S).
We currently do not know if there is some constant c > 2 for which �SGREEDY(S) �
c��(S).

THE SHORTEST COMMON SUPERSTRING PROBLEM 11

kw kx

ky kz? ?

@
@
@
@
@
@
@
@R

�
�

�
�

�
�

�
�	

� �

 �

z[
]

w[��]w[�
]

y[��
 + 1] y[�] y[�]

x[��]
x

y

w

z

Figure 10: Illustration for Lemma 3.1

On the other hand, Theorem 2.4 allows us to conclude that �(S) � 3 SGREEDY(S).
In fact, we can improve the constant factor to 2 by noting that the instances of LPP that
arise from the transformation from SCS have a special structure which is described
in the following lemma.

LEMMA 3.1. Let S be any set of strings and let (G; `) = LPP(S). If fw; x; y; zg � V
with `(w; y) = max f`(w; y); `(w; z); `(x; y); `(x; z)g then `(w; y) + `(x; z) �
`(w; z) + `(x; y).

Proof. Identifyw; x; y; zwith the corresponding strings inS and let � = `(w; y),
� = `(x; z),
 = `(w; z), � = `(x; y). Note that if � �
 + � the result follows
immediately. We will assume therefore that � �
 + �. Figure 10 illustrates the
situation described in the lemma.

We define some notation for designating substrings. If s = a1 : : : ar is a string,
s[i] denotes the symbol ai if i > 0 and ar+i+1 if i < 0. The notation s[i; j] denotes
the substring s[i] : : :s[j].

By definition of G,

w[��;�1] = y[1; �] (1)

w[�
;�1] = z[1;
] (2)

x[��;�1] = y[1; �] (3)

Also, w[�
] = y[��
 + 1]. From this we find

z[1;
 + � � �] = w[�
; �� � � 1] from (2), � �
 + � and � � �
= y[��
 + 1; �] from (1)
= x[��
 � �;�1] from (3)

Hence, � = (x; z) �
 + � � �. 2

THEOREM 3.1. Let S be any set of strings. �(S) � 2 SGREEDY(S).

Proof. Let (G; `) = LPP(S). Let H = fh1; : : : ; hsg be the set of edges chosen
by the greedy algorithm in the order in which they were selected (that is, h1 was

12 TURNER

selected first, h2 second, and so forth). Define ��i = `(P) � `(fh1; : : : ; hig),
where P is a longest path that includes fh1; : : : ; hig. We show that for i 2 [1; s],
��i�1 � 2`(hi) + ��i . Since, �(S) = ��0, repeated expansion of this inequality
implies the theorem.

Let hi = (w; y) and let X = P � fh1; : : :hi�1g, where P is a longest path that
includes fh1; : : : ; hi�1g (so `(X) = ��i�1). By definition of the greedy algorithm,
`(w; y) = max f`(e) j e 2 Xg. At most three edges of X are not permissible after
hi is selected. If at most two become impermissible, then ��i � ��i�1 � 2`(w; y) as
desired. If three edges become impermissible then one must have the form (w; z)
with z 6= y, another the form (x; y) with x 6= w and the third one, e joins the last
vertex on the path containing y with the first vertex on the path containing w. This
means thatX [fh1; : : : ; hi�1g contains a path from x to z, which in turn means that
(x; z) is permissible after (w; y) is selected. Consequently,

�i � `(X)� `(f(x; y); (w; z); eg)+ `(x; z):

By Lemma 3.1, `(w; y) + `(x; z) � `(w; z) + `(x; y), so

`(x; y) + `(w; z) + `(e)� `(x; z) � 2`(w; y)

which implies ��i � ��i�1 � 2`(w; y). 2
The bound given by Theorem 3.1 cannot be improved as can be seen by consid-

ering the set of strings mentioned at the beginning of this section. The improvement
obtained for the greedy algorithm on strings raises the question of whether or not the
bounds for the other approximation algorithms treated in section 2 can be improved.
It turns out that they cannot. If we define

S = f akxbk; bkxck; ckxdk; dkxek ; ekxfk;

bk�1xakx; ck�1xbkx; dk�1xckx; ek�1xdkx; fkxekxg

and (G; `) = LPP(S), we find that ��(G; `) = 9k, �MATCH(G; `) = �DIMATCH =
5(k + 1). The example can be extended to make the ratios ��=�MATCH and
��=�DIMATCH arbitrarily close to 2.

A naive implementation of SGREEDY takes at least quadratic time. A similar
running time is obtained if one uses the transformation to LPP and then uses PGREEDY.
A much faster running time can be obtained however by making use of an appropriate
data structure. For our purposes, a suffix tree T is an abstract data type representing
a collection of strings S = fs1; : : : ; sng on which the following operations are
defined.
T:SUFFIX TREE(S = fs1; : : : ; sng) Initialize T to represent the strings in S. This

operation may only be performed once.

T:LOOKUP(integer i; j) Returns a pair [`; k], where ` is the length of the
longest prefix of si which is also a suffix of some
string in S � fsjg and sk is one such string.

T:DELETE(integer i) Removes si from the set of strings represented.

THE SHORTEST COMMON SUPERSTRING PROBLEM 13

d

d d

a
HHHHHHH

c

1,4 2,3

1,2,3,4,5

d
b

5

d
�
�

��
a

d
b

d

HHHHHHH
c

2 d
�
�
��
a

4 d
b

5 d
�
�
��
a

1 d
b

d
@
@
@@
c

3

d
b

d
a

d
�
�
��
a

1 d
b

d
@
@
@@
c

3 d
c

2 d
a

4 d
c

d
b

5

d
a

d
c

2 d
c

d
b

5 d
�
�
��
a

1 d
b

d
c

d
c

3 d
a

4

d
c

2 d
c

3 d
a

4 d
b

5 d
a

1

s1 = bbaca
s2 = aabac
s3 = acacc
s4 = acbba
s5 = bacbb

Figure 11: Example of Trie Representation for Suffix Tree

The obvious implementation of a suffix tree is a trie (see [1]) containing an
entry for every suffix of every string in the set. An example of this representation is
shown in Figure 11. The lists of integers next to some of the nodes are the indices
of strings with suffixes ending at that point. This representation does not quite
satisfy our needs, as the size of the trie and hence the time required to construct
it is Ω(m2) in the worst-case. A more compact representation can be obtained by
labeling edges with strings rather than single characters. This allows us to eliminate
many nodes with single children and results in a representation that requires O(m)
space and that can be constructed in O(m) time, as described by McCreight [10].
See also [2, 11]. (Actually, McCreight defines a suffix tree to contain suffixes of
a single string rather than a collection of strings. Our variant requires only minor
modifications to McCreight’s method.) An example of this compact representation
of suffix trees is shown in Figure 12.

We perform deletion in suffix trees using lazy deletion. That is, to delete a string
si, we simply mark it deleted in an auxiliary bit vector maintained for this purpose.
When a lookup operation is performed, we perform a probe in the tree to find the
longest match. Let u be the node at which the probe terminates. The list of matching
strings at u is scanned and any that are marked deleted are removed from the list. If
this makes the list empty and u has no children, then u is removed from the tree. If
no acceptable match can be found in the list, the search continues at the parent of u.

The time required for a single lookup operation may well exceed the length of
the string being searched for. However, any excess time is spent deleting list entries.
Since there are initially m + n list entries in the whole tree, the time spent on any
sequence of lookups isO(m) plus the sum of the lengths of all strings being searched
for.

14 TURNER

e

e e

����������������

a

HHHHHHHH

c

1,2,3,4,5

1,4 2,3e
b

5

e

�
�

��
abac

2 e2
bac

e

@
@
@@

c

2 e

�
�
��

a

4 e
b

5 e

�
�
��

a

1 e
bb

5 e

@
@
@@

c

3

e

�
�
��

a

1 e
bb

5 e

@
@
@@

c

3 e
c

2 e
a

4 e
cc

3 e
a

4

e
cc

3 e
a

4 e

�
�
��

a

1 e
bb

5 e
ca

1

s1 = bbaca
s2 = aabac
s3 = acacc
s4 = acbba
s5 = bacbb

Figure 12: Example of Compacted Trie Representation

We say that a sequence of lookup and delete operations is monotonic if for every
i; j; kwith j 6= k, whenever the sequence contains the operation T:LOOKUP(i; j) and
later on the operation T:LOOKUP(i; k) it contains the operation T:DELETE(j) between
the other two.

We can speed up a monotonic sequence of operations, by maintaining for each
string, a pointer to the node where the most recent lookup for that string ended. This
allows us to avoid the initial probe of the tree when we perform a lookup operation.
Instead, we use the pointer to go straight to the node where the last probe ended,
and search up from that node if necessary. In this way, we can perform a monotonic
sequence of r operations in O(m+ r) time.

This analysis assumes that the symbol alphabet is small enough that it is reason-
able to use a vector of pointers to children in each node, indexed by the first symbol
of the strings labeling the edges. If a large alphabet is needed, a hash table may
be used. Another option is to use a variant on Sleator and Tarjan’s lexicographic
splay tree [13]. With this representation, the time required to perform a sequence
of operations is O(m), plus the sum of the lengths of the strings being searched for,
plus O(logm) per operation. For a monotonic sequence of r operations the time is
O(m+ r logm).

An efficient implementation of the greedy algorithm for strings is shown in
Figure 13. The algorithm does not explicitly combine strings, but keeps track of the
decisions made using the two mappings left(i), right(i) which give the left and right
neighbors of string i in the solution constructed so far. A value of 0 means that there
is no neighbor. The solution is returned in these mappings. If a string i has no left
neighbor yet, rightend(i) is the original string which is currently rightmost in the
piece of the partial solution that contains i; leftend(j) is similar.

The heap h, is used to determine which pair of strings should be combined next.
Each string is entered in h with the key being the length of the best match for h.

THE SHORTEST COMMON SUPERSTRING PROBLEM 15

procedure SGREEDY(set S = (s1; : : : ; sn), mapping left; right : [1; n] 7! [0; n])
integer i; j; `;
mapping leftend; rightend : [1; n] 7! [1; n];
mapping key : [1; n] 7! integer ;
heap h; suffix tree T ;
T:SUFFIX TREE(S);
for i 2 [1; n]!

left(i); right(i) := 0;
leftend; rightend(i) := i;
[key(i); j] := T:LOOKUP(i; i);
h:INSERT(i);

rof;
do jhj > 1 !

i := h:FINDMAX();
[`; j] := T:LOOKUP(i; rightend(i)));
if ` = key(i)!

left(i); right(j) := j; i;
leftend(rightend(i)) := leftend(j);
rightend(leftend(j)) := rightend(j);
T:DELETE(j); h:DELETE(i);

j l < key(i)!
key(i) := `; h:SIFTDOWN(i);

fi;
od;

end

Figure 13: Greedy Algorithm for SCS

As the algorithm proceeds, certain matches become unavailable and the values of
key() may become invalid. Consequently, whenever a string si is selected from h,
a new lookup operation is performed in T . If the result of that operation is a match
of the same length as key(i), the strings are combined. If the lookup results in a
shorter match, the value of key(i) is changed and the position of si in the heap is
adjusted to reflect the new value. Note that a string is deleted from the heap once
it is successfully matched with another string on its left end. Similarly, a string is
deleted from the suffix tree once it is matched with a string on the right.

The running time of the algorithm is dominated by the operations on the various
data structures within the main loop. The number of iterations of the main loop
is O(m) in the worst case. Since the heap operations are O(logn) per operation,
the total time spent on the heap operations is O(m logn). This can be improved to
O(m+ n logn) by using Fibonacci heaps [13]. Since the sequence of operations on
the suffix tree is monotonic, the time needed for the suffix tree operations is O(m)

16 TURNER

��
��

1 ��
��

2

��
��

3 ��
��

4

-�

-�

6

?

6

?�
�
�
�
�
�
�
�
����
�
�
�
�
�
�
�
��	 @

@
@
@
@
@

@
@
@@I@@
@
@
@
@
@
@
@@R

5

1

6

18

6 2 18 6

18

6

6

3

S = fcbadef,fcbade,adefcdg

Figure 14: Example of transformation from SCS to TSP

assuming a small alphabet and O(m logm) assuming a large alphabet and the use
of lexicographic splay trees. This yields a total running time of O(m+ n logn) for
small alphabets and O(m logm) for large alphabets.

4. SCS and the Traveling Salesman Problem. In this section we relate SCS to
the path version of the traveling salesman problem (TSP). An instance of the traveling
salesman problem is a list of citiesC = (c1; : : : ; cn)with a distance d(ci; cj) between
each pair of cities. The object is to find a permutation�on f1; : : : ; ng. that minimizes

��(C; d) =
n�1X
i=1

d(c�i; c�i+1)

We define ��(C; d) = min� ��(C; d).
Let S = (s1; : : : ; sn) be an instance of SCS. We define TSP(s1; : : : ; sn) to be an

instance (C; d) of TSP with C = (c1; : : : ; cn; cn+1) and

d(ci; cj) =

8><
>:

jsij � (si; sj) 1 � i � n 1 � j � n i 6= j
jsij 1 � i � n j = n+ 1
kSk i = n + 1 1 � j � n

An example of this transformation is given in Figure 14. Note that in general, if
� satisfies ��(C; d) = ��(C; d) then �n+1 = cn+1.

THEOREM 4.1. Let S = (s1; : : : ; sn) be an instance of SCS, (C; d) = TSP(S) and let
� be a permutation on f1; : : : ; n; n+1g to (c1; : : : ; cn; cn+1) for which �n+1 = n+1.
Then ��(C; d) = ��0(S), where �0 is the restriction of � to f1; : : : ; ng. In particular,
��(C; d) = ��(S).

THE SHORTEST COMMON SUPERSTRING PROBLEM 17

Proof.

��(C; d) =
nX
i=1

d(c�i ; c�i+1) =

"
n�1X
i=1

js�i j � (s�i ; s�i+1)

#
+ js�n j

=

"
nX
i=1

js�i j

#
�

"
n�1X
i=1

 (s�i ; s�i+1)

#
= kSk � �0(S) = ��0(S)

��(C; d) = ��(S) follows from the observation that any optimum solution � for
(C; d) must have �n+1 = cn+1. 2

Theorem 4.1 implies that any good approximation algorithm for this version of
the traveling salesman problem is a good approximation algorithm for SCS as well.
The particular instances of TSP constructed by the transformation defined above
have some special properties. First, they may be asymmetric; that is d(ci; cj) need
not equal d(cj; ci). The next theorem shows that they obey the so-called triangle
inequality.

THEOREM 4.2. Let S = (s1; : : : ; sn) be an instance of SCS and let (C; d) = TSP(S).
For all ci; cj; ck 2 C, d(ci; ck) � d(ci; cj) + d(cj; ck).

Proof. There are several cases to consider. If i; k < j = n + 1, d(ci; ck) �
kSk = d(cj; ck) and the result follows immediately. Similarly, if i; j < k = n + 1,
d(ci; cj) � jsij = d(ci; ck) and if j; k < i = n+ 1, d(ci; cj) = d(ci; ck). This leaves
the case where i; j; k < n. For convenience, let � = d(ci; cj) and � = d(cj; ck) and
note that

si[�+ 1; jsij] = sj [1; jsij � �] and sj [� + 1; jsj j] = sk [1; jskj � �]

Note that if jsij � �+�, we are done. Therefore, assume jsij > �+�. This implies
that

si[�+ � + 1; jsij] = sk [1; jsij � (�+ �)]

and that d(ci; cj) � �+ �. 2
There exist efficient approximation algorithms for the symmetric version of the

traveling salesman problem with triangle inequality that produce solutions within a
factor of (3/2) of optimal. When the triangle inequality does not hold, finding good
approximate solutions is as difficult as finding optimum solutions (see [7]). For the
asymmetric version with triangle inequality however, little is known. There are no
known approximation algorithms that are both efficient and have good worst-case
performance (nor have we found any), but the approximation problem has not been
shown to be hard. Consequently, the relationship between SCS and TSP has yet to yield
any directly useful results. The relationship does imply some consequences if the
status of either problem is resolved in the future. If good approximation algorithms
are found for TSP, they may be applied to SCS. If the approximation problem for SCS

is shown to be hard, then the approximation problem for TSP must be hard. It also
may be that good approximation algorithms discovered for SCS, could be adapted to

18 TURNER

TSP, although this does not necessarily follow. Finally, a proof that TSP is hard to
approximate would not imply that SCS is hard to approximate, but it would imply that
approximation algorithms for SCS would have to exploit special structural properties
present in the instances of TSP that result from our transformation.

5. Closing Remarks. We have related the shortest common matching string
problem to two other problems, using transformations that preserve solution values.
These two transformations reflect different ways of viewing SCS. We have used
the transformations to gain insight into the problem of approximating SCS and have
discovered several algorithms that have provably good performance with respect to
the overlap measure. The best of these is the string version of the greedy algorithm
for which we have described an efficient implementation using suffix trees.

While we have shown that the string version of the greedy algorithm has good
worst-case performance with respect to the overlap measure, we cannot determine
its performance with respect to the length measure. We know that it can be off by as
much as a factor of two with respect to the length measure, but we do not know if it
can be worse than this. One open problem then, is to resolve this issue.

Although, we have been unable to make use of the relationship between SCS and
TSP to advantage, we feel that it may yet prove useful. More generally, we think
that the use of transformations that preserve solution values can be used to extend
the application of known approximation algorithms to new domains. A methodical
development of such transformations could provide many useful results.

Another worthwhile line of investigation for future research is to study the
probable performance of the various approximation algorithms using appropriate
probability models. It appears likely for example, that the directed matching algo-
rithm for the longest path problem performs much better than its worst-case bound
would indicate for a wide class of natural probability models. Similarly, one would
expect the greedy algorithm to perform well in a probabilistic sense for many useful
probability models.
References.

References

[1] Aho, Alfred V., John E. Hopcroft and Jeffery D. Ullman. “Data Structures and
Algorithms,” Addison-Wesley, 1982.

[2] Chen, M. T. and J. I. Seiferas. “Efficient and Elegant Subword-Tree Construc-
tion,” University of Rochester, Computer Science Department, technical report
TR 129, 12/83.

[3] Gallant, John K., David Maier, James A. Storer. “On Finding Minimal Length
Superstrings,” Journal of Computer and System Sciences, vol. 20, no. 1, 50–58,
2/80.

THE SHORTEST COMMON SUPERSTRING PROBLEM 19

[4] Gallant, John K. “String Compression Algorithms,” Ph.D. Dissertation, Prince-
ton University, Department of Electrical Engineering and Computer Science,
June 1982.

[5] Gingeras, T. R., J. P. Milao, D. Sciaky and R. J. Roberts. “Computer Programs
for the Assembly of DNA Sequences,” Nucleic Acids Research, vol. 7, 1979,
529–545.

[6] Karp, Richard M. “A Patching Algorithm for the Nonsymmetric Traveling
Salesman Problem,” SIAM Journal on Computing, vol. 8, no. 4, 561–573,
11/79.

[7] Lawler, E. L., J. K. Lenstra and A. H. G. Rinnooy Kan (editors). “The Traveling
Salesman Problem,” John Wiley and Sons, Ltd, 1986.

[8] Maier, David and James A. Storer. “A Note on the Complexity of the Superstring
Problem,” Princeton University Technical Report 233, Department of Electrical
Engineering and Computer Science, October 1977.

[9] Mayne, A. and E. B. James. “Information Compression by Factorising Common
Strings,” The Computer Journal 18, 1975, 157–160.

[10] McCreight, Edward M. “A Space-Economical Suffix Tree Construction Algo-
rithm,” Journal of the ACM, vol. 23, 4/76, 262–272.

[11] Rodeh, M., V. R. Pratt and S. Even. “Linear Algorithm for Data Compression
via String Matching,” Journal of the ACM, vol. 28, 1/81, 16–24.

[12] Shapiro, M. B. “An Algorithm for Reconstructing Protein and RNA Se-
quences,” Journal of the ACM, vol. 14, 1967, 720–731.

[13] Sleator, Daniel D. and Robert E. Tarjan. “Self-Adjusting Binary Search Trees,”
Journal of the ACM, vol. 32, 7/85, 652–686.

[14] Stefik, M. “Inferring DNA Structures From Segmentation Data,” Artificial
Intelligence, vol. 11, 1978, 85–114.

[15] Storer, James A. and Thomas G. Szymanski. “Data Compression via Textual
Substitution,” Journal of the ACM, vol. 29, 10/82, 928–951.

[16] Tarjan, Robert E. “Data Structures and Network Algorithms,” Society for In-
dustrial and Applied Mathematics, 1983.

