APPROXIMATION ALGORITHMSFOR THE SHORTEST
COMMON SUPERSTRING PROBLEM

Jonathan S. Turner *
Computer Science Department
Washington University, St. Louis

Abstract. The object of the shortest common superstring problem (scs) isto find the shortest
possible string that contains every string in a given set as substrings. As the problem is
NP-complete, approximation algorithmsare of interest. The value of an approximate solution
to scsisnormally taken to be itslength, and we seek algorithmsthat make the length as small
as possible. A different measure is given by the sum of the overlaps between consecutive
stringsin a candidate solution. When considering thismeasure, the object isto find solutions
that make it as large as possible. These two measures offer different ways of viewing the
problem. While the two viewpoints are equivalent with respect to optimal solutions, they
differ with respect to approximate solutions. We describe several approximation algorithms
that produce solutions that are always within a factor of two of optimum with respect to
the overlap measure. We also describe an efficient implementation of one of these, using
McCreight's compact suffix tree construction algorithm. The worst-case running time is
O(mlogn) for small aphabets, where m is the sum of the lengths of all the strings in the
set and » isthe number of strings. For large alphabets, the algorithm can be implemented in
O(mlogm) time by using Sleator and Tarjan’s lexicographic splay tree data structure.

Key words. shortest common superstring, approximation algorithms, longest path prob-
lem, traveling salesman problem, suffix trees

1. Introduction. Let s; = ay...a, and s, = by...b, be strings over some
finitealphabet ~. We say that s; isasubstringof s, if thereisaninteger i € [0, s — r]
suchthat a; = b;4; for 1 < j < r. Weaso say inthis case that s; is a superstring
of s1.

An instance of the shortest common superstring problem (scs) isaset of strings
S = {s1,...,s,} over afinite alphabet Z. The object of the problem isto find a
minimum length string that is a superstring of every s; € 5. We let ¢*(.5) denote
the length of a minimum length superstring.

EXAMPLE: If 5 = {egiach,bfgiak,hfdegi, iakhfd, fgiakh}, the string
bf gi akhf degi ach isasolution of length 15.

We say that a set of stringsis substring freeif no string in the set is a substring of
any other. We will generally limit our attention to substring free sets. Thisinvolves
no loss of generality, since any set of strings has a unique substring free subset which
has the same solutions as the original set.

We have presented the problem in the conventional way, with the object being
to minimize the solution length. It is useful to consider an alternative viewpoint as

9* The research described here was supported by the National Science Foundation (grant #DCR-
8409435) and the National Institutes of Health (grant #RR-01380)

2 TURNER

well. One can view the object of the problem as being to find an ordering of the
strings that maximizes the amount of overlap between consecutive strings. To make
this precise we need a few definitions.

Letsy =a1...a, and sy = by...b,; bestrings. We define

¥(s1,82) = Max{k > 0| ay—p4; = b; 1 < i < k}

If ¢(81, 82) = k then s1 o s is defined to be the string ai...a,, bk_|_1. ..bs. We
note that if sj, s», s3 are strings, none of which is a substring of another, then
510 (sp083) = (s1082) o s3; that is, the overlapping operation is associative for
substring free sets. Consequently, we may write sy o sp o - - - 0 s,, With no ambiguity.

Let 7 be a permutation on {1,...,n}. We will usually write m; for =(i). We
define

n—1
Pre(81, .., 80) = Z V(Sris Sripr)
=1

and ¢ (s1,...,8,) = |$r, 0---0 s, |. Notethat for any instance 5 = (s1,...,5,)
of scs,

¢r(5) = (IS = ¥x(5)

where ||5|| = Y74 |s|. Inparticular,
¢ (9) = ||S|| = ¥*(S) where ¢*(s1,...,8,) = max Pr(81,. 0y 8n)

Hence, we can view the object of the scs problem as being to find a mapping = that
maximizes i,

Let A beanalgorithmfor scswhichgivenacollectionof strings.S' = (s1,. .., s,)
producesamapping ™ = m4(.5). We define 4(.5) = ¥-(5) and ¢ 4(.5) = ¢-(9).

scs was shown to be NP-complete by Maier and Storer in [8]. Another, and
more elegant proof appearsin [3] and [4]. One obvious application for the problem
is data compression. Storer and Szymanski [15] for example, consider a fairly
general model of data compression which includes scs as an important special
case. See aso [9]. Another application isto DNA sequencing. Scs is one of the
simplest models for the problem of recovering DNA sequencing information from
experimental data[5, 12, 14]. To our knowledge the only approximation algorithmto
be discussed in theliterature is a simple greedy algorithm which istreated briefly by
Gallant in[4]. Galant claimsthat for thisa gorithm, which we refer to as SGREEDY,
dsGreEeDY () < (3/2)¢*(.5) for al collectionsof strings.S. We show that thisis not
in fact true by displaying a set of strings .S for which ¢sgreepy (9) ~ 2¢*(.5). We
have found no worse example problem than this, but have also been unsuccessful in
proving an upper bound on the performance of this algorithm in terms of the length
measure. On the other hand, we do show that ¢*(.5') < 2¢sgreepy ().

Insection 2werelate scsto thelongest path problem (LPP) in graphsby describing
a transformation from scs to LPp that preserves solution values with respect to the
overlap measure. We then construct three approximation algorithms for LPP, two
based on matching and the third a greedy heuristic. By virtue of the transformation

THE SHORTEST COMMON SUPERSTRING PROBLEM 3

from scs, al three are also approximation algorithms for scs. We show that the
greedy heuristic for Lpp always produces solutions within a factor of three of the
optimum value. In section 3, we show that the instances of LPpP that result from our
transformation from scs have a special structure that allows us to obtain a tighter
bound. We aso describe an efficient implementation of this greedy algorithm for
strings using a compact representation of suffix trees. In section 4, we relate scs
to the traveling salesman problem (TsP) by another transformation that preserves
solution values, this time with respect to the length measure. The instances of TSP
arising from this transformation are asymmetric, but satisfy the triangle inequality.
There are no approximation algorithms known for this problem with provably good
worst-case performance, nor have we succeeded in finding any. Nevertheless, this
transformation meansthat if such an algorithmisfound, it can be used for scs aswell
asTsP. If ontheother hand, it turnsout that approximating thisversion of Tspishard,
then any approximation algorithm for scs, will have to make use of special structural
properties present in the instances of TSP that arise from this transformation.

2. SCS and the Longest Path Problem. In this section we relate scs to the
longest path problem (LPP) in graphs. An instance of the longest path problemis a
complete directed graph ¢ = (V, F') with each edge (u«, v) having a non-negative
integer length ((u, v). Thelength of a path p in G is defined to be the sum of the
lengths of its edges and is denoted A (G, (). The object of the longest path problem
is to find a Hamiltonian path p (that is a path including every vertex) in G that
maximizes A\, (G, (). Thelength of such alongest path is denoted A*(G, €).

Let S = (s1,...,s,) beaninstance of scs. We define LPP(.5) to be an instance
(G, 0) of LPPwith

Vo={u1,...,un} E=VxV

An example of thistransformation is shown in Figure 1.

Let 7 beapermutationon {1,...,n}. We can view 7 as defining a Hamiltonian
path ., ..., u-, iNG. Welet \.(G, () denote the length of thispath. We now state
atrivial, but useful theorem.

THEOREM 2.1. Let S = (s1,...,s,) beaninstance of scs, (G, () = LPP(.S) and let
7 beany permutationon {1,...,n}. A (G,) = ¥(5). Inparticular, *(G, () =
().

The theorem impliesthat any approximation algorithm for LPP is an approxima-
tion algorithm for scs with respect to the overlap measure. In the remainder of this
section, we present three simple approximation agorithmsfor LPP.

2.1. Matching Algorithm. A matchinginagraph G = (V, F)isaset of edges,
no two of which share a common vertex. A maximum matching in a graph with

4 TURNER

o
S = {cbadef, f chade, adefcd, fcdaf b}
Figure 1. Example of transformation from scsto LPP

@

100 100 100 100

101|100 101|100 101|100 101|100 101|100

100 100 100 100

Figure 2: Worst-Case Example for Theorem 2.2

edge lengths ((e) is a matching M that maximizes (M). We define p*(G, () =
maxys ((M) to be the value of a maximum matching. There are agorithms for
finding maximum matchings having running times of O(n3) (where n = |V]) [16].

Our first algorithm for LPP is based on the observation that any matching for an
instance (', ¢) of LPP can be extended to a path (since ¢ is assumed to be complete)
and a maximum matching must have total length at least half that of alongest path.
(Recall that we are restricting attention to non-negative weights.)

THEOREM 2.2. If (G = (V, E),{)isaninstanceof LPpthen X*(G, () < 2u*(G, ().

Proof. Let P beaset of edges defining any Hamiltonian path. Let ¢) be obtained
by taking alternate edgesfrom P andlet R = P — (). Both () and R are matchings.
The sum of the lengths of the edgesin @) is < p*(G, ¢). Similarly, the sum of the
lengths of the edgesin R is < p*(G, (). Hence, ((P) < 2u*(G, () and since this
holdsfor al paths P, it followsthat A*(G, () < 2p*(GL (). O

Remark. There are instances (G, () of LPp for which X*((, () approaches
21* (G,). Figure 2 shows a graph for which A*(G, () = 901 and p*(G, £) = 505.
(The edges not explicitly shown have length 0.) The example is easily extended to
give graphs for which theratio A*/p* is arbitrarily closeto 2.

THE SHORTEST COMMON SUPERSTRING PROBLEM 5

function edgeset MATCH(digraph G = (V,), edgelengths ()
edgeset P, M;
P =0
do F 7£ 0 —
M = MAXMATCH(G, 0);
P:=PuUM,
for (u,v)e M —
Delete from ¢, al edges of the form (u, z) or (y, v);
Collapse u and v into asingle vertex;
rof;
od;
return P;
end;

Figure 3: Matching Algorithm for LPP

Theorem 2.2 provides the basis for our first approximation algorithm shown in
Figure 3. The procedure MATCH starts by finding a maximum matching in &, then
removes edges that are ruled out by the selected edges, collapses the selected edges
into single vertices and then repeats the process on the new graph. To see that
the algorithm does construct a Hamiltonian path, note the following: (1) the edge
eliminationsensurethat the set P never containstwo edges |eaving a common vertex
or entering acommon vertex, (2) the collapsing of edgesinto single vertices prevents
creation of cycles and (3) since the origina graph is assumed to be complete, the
algorithm will halt only when a complete Hamiltonian path has been constructed.
An example illustrating the operation of the algorithmis given in Figure 4.

Theorem 2.2 impliesthat ¢*(G, () < 2i¥matcH(G,) for any instance (G, £) of
LPP. Thiscannot beimproved, as can be seen by considering the operation of MATCH
on the graph in Figure 2. The running time of MATCH is determined primarily by the
matching algorithm used. Assuming a matching algorithm that runsin O(n?) time,
we get arunning time of O(n2logn) for MATCH.

2.2. Directed Matching Algorithm. A directed matching in a digraph G' =
(V,E)is aset of edges, no two of which enter a common vertex and no two of
which leave a common vertex. In other words, it is a subgraph of G' comprising a
collection of digoint paths and cycles. A maximum directed matching in agraph ¢
with edge lengths ((¢) is a directed matching M that maximizes (M). We define
6*(G, L) = maxas (M) to be the value of a maximum directed matching (where
in thiscase, M ranges over al directed matchings of). There are agorithms for
finding a maximum directed matchings having running times of O(7.5/2) [16].

Given any matching M, let M~ be a subset of M obtained by discarding a
least cost edge from each cyclein M. Our next algorithm for LPP is based on the

6 TURNER

matching: (cf, ba)

matching: (ed, cfba)
@5_’ % cfba solution value: 35

Figure 4: Example of Algorithm MATCH

observation contained in the next theorem.

THEOREM 2.3. Let (G' = (V, E),() be an instance of LPP, let M be a maximum
directed matching of ¢¢ and let k& be the minimum number of edges in any cycle
defined by M. *(G,€) < £0(M ™). Inparticular, *(G,) < 20(M ™).

Proof. Let P be aset of edges defining apath and let M be a maximum directed
matching. Notice that P is a directed matching and hence ((P) < ((M). Let C be
acyclein M with i edges and let C~ be a path obtained by discarding a minimum
length edge from C'.

THE SHORTEST COMMON SUPERSTRING PROBLEM 7

function edgeset DIMATCH(digraph G = (V, F), edgelengths ()
edgeset P, M;
P =10
do £ 7£ @ —
M := MAXDIMATCH(G, ();
M~ := M — oneleast cost edge from each cycle of M
P=PUM—;
for eachpath (uq,...,u,) € M~ —
Delete from (&, all edges of theform (u;, z), 2
Delete from (&, all edges of theform (z, u;), 1
Delete from ¢ the edge (u,, u1), if present;
Collapse the path into a single vertex;
rof;
od;
return P;
end;

Figure 5: Directed Matching Algorithm for LPP

Also, for every path R € M, ((R) < 2:((R). Summing over al paths and
cyclesin M yieds (M) < ﬁK(M—). Since thisistrue for al paths P and since
U(P) < U(M), X(G,0) < 25 0M). O

Remark. There are instances (G, () of LPP for which (G, () approaches
2((M~). Consider for example, the graph shown in Figure 2. For this graph
A*(G, 0) = 901 and the optimum directed matching consists of five cycles each hav-
ing two edges and length 201. When the cycles are broken, we have ¢(M~) = 505.
The example is easily extended to give graphs for which the ratio A*(G,) /¢(M ™)
isarbitrarily closeto 2.

We note that 6*(G, () > X*(G, (). Hence, it provides a measure of how close
a given solution is to optimal. We expect that the solutions obtained by breaking
cycles will often be much closer to optimal than the bound in the theorem implies.

Theorem 2.3 provides the basis for our next approximation algorithm for LPP,
shown in Figure 5. This agorithm constructs a maximum directed matching M in
G, then breaks all the cyclesin M and constructs anew graph in which the paths of
M correspond to vertices. It then proceeds by finding a maximum directed matching
in the new graph, continuing in this fashion until a Hamiltonian path in the original
graph has been found. To verify that the algorithm does construct a Hamiltonian
path, it suffices to note the following: (1) the edge eliminations ensure that the set P
never containstwo edges |eaving acommon vertex or entering acommon vertex, (2)
cyclesformed are explicitly broken and the broken edges removed from thegraph and
(3) since the original graph is assumed to be complete, the algorithm will halt only

8 TURNER

directed matching:
(b,a), (a,¢), (¢, f)
(f,0),(d;¢), (e, d)

directed matching:
@5_’ '_@ (ed, cfba), (cfba, ed)

solutionvalue: 35

Figure 6: Example of Algorithm DIMATCH

when a complete Hamiltonian path has been constructed. An example illustrating
the operation of the algorithmis given in Figure 6.

Theorem 2.3 impliesthat 1*(G, () < 2¢¥pymatcH(G, ¢) for any instance (G, ()
of LPP. This cannot be improved, as can be seen by considering the operation
of MATCH on the graph in Figure 2. The running time of DIMATCH is determined
primarily by the directed matching algorithm used. Assuming an agorithm that runs
in O(n%?) time, we get arunning time of O(n%2logn) for DIMATCH.

DIMATCH isessentially an adaptation of an algorithmfor the asymmetrictraveling
salesman problem (TsP) described by Karp in [6]. Karp’s algorithm has poor worst-
case performance for TSP, but performs well in a probabilistic sense for instances
in which inter-city distances are selected uniformly on the interval [0, 1]. We have
simply adapted his algorithm to the longest path problem (simplifying it slightly in
the process), and observed that its worst-case performance is provably good in this
context.

2.3. Greedy algorithm. The algorithmsconsidered above are both fairly com-
plicated and time consuming because they require the calculation of maximum
weighted matchings. Another algorithm that is worth considering is the ssimple
greedy agorithm that scans the edges in non-increasing order of length and selects
anedge (u, v) if it has not previoudly selected an edge of theform (u,) or (y, v) and
if the collection of paths constructed so far doesnot includeapath from » to . Onthe

THE SHORTEST COMMON SUPERSTRING PROBLEM 9

() -
® O

O
@

® O—— -0 O

Figure 7: Illustration for Theorem 2.4

graph in Figure 6, this algorithm selects the edges (¢, f), (b, a), (e, d),(f,b),(d, c)
in that order. The next theorem gives a worst-case bound on the performance of the
greedy algorithm.

THEOREM 2.4. If (G, () isaninstanceof LPP then X*(G, {) < 3Apereepy (G, {).

Proof. Let F' be the set of edges in some optimum solution to (G, (). Let
H = {hi,...,hs} bethe set of edges chosen by the greedy algorithmin the order in
which they were selected (that is, h1 was selected first, h, second, and so forth).

We say an edge is permissible at some stage of the execution of the algorithm if
its selection has not been precluded by earlier selections. Define H; to be the set of
edges which are permissible just before ; is selected, but not permissible after &, is
sel ected.

Let h; = (w, y) and consider the situation just before h; is selected by the greedy
algorithm. Atthispoint, w isthelast vertex of somepath constructed by thealgorithm
and y is the first vertex of some path (one or both paths may contain just a single
vertex). Let e be the edge joining the first vertex on the path containing w to the last
vertex on the path containing y, as shown in Figure 7.

If e ispermissible before the selection of &, then it isa member of H;. All other
members of /1; have the form (w, z) or theform (z, y). Notethat /' can contain at
most one edge of the form (w, z) and at most one edge of the form (z, y). Hence,

Next, notethat ((;) = max {{(e) |e € H;} and that (H1,..., H,) isapartition
of E. Consequently, for i € [1,s], {((F' N H;) < 3((h;) and

U(F) = ZS:K(F nH;) < 325:4/%) = 3((H) =
=1 =1

Figure 8 gives an example graph showing that the bound of Thereom 2.4 cannot
be improved. (The edges not shown have length 0.) PGREEDY finds a solution of
length 101, while the optimal solution has length 300. Figure 9 is a sketch of an
implementation of the greedy algorithm. Upon return the mappings left and right
give the left and right neighbors of each vertex in the solution path. If left(«) is
null, then rightend(u) gives the vertex at the end of the path containing vertex
w in the current partial solution; le ftend(w) is sSimilar. The running time for this
implementationis O(n2logn).

10 TURNER

100 100 100
(w) (@)) (®)

101

Figure 8: Worst-Case example for PGREEDY

function edgeset PGREEDY (digraph ' = (V, F'), edgelengths ¢,
mapping left,right: V — V U {null})
vertex wu,v; mapping leftend, rightend : V — V;
for ueV —
left(u), right(u) := null;
leftend(u), rightend(u) := u;
rof;
Sort £ from longest to shortest;
for (u,v)e F —
if right(x) = null and left(v) = null and v # le ftend(u) —
right(u), left(v) 1= v, ;
rightend(le ftend(w)) 1= rightend(v);
leftend(rightend(v)) := le ftend(u);
fi;
rof;
return 5,
end

Figure 9: Greedy Algorithmfor LPP

3. A Greedy Algorithm for SCS. The greedy algorithm for the longest path
problem can be restated for scs as follows. Given a nhon-empty set of strings .9,
repeat the following step until S contains just one string.

Select apair of strings s1, s € S that maximizes (s, s2). Remove s; and
so from .5, replacing them with s1 o s5.

We refer to thisalgorithm as SGREEDY . Gallant [4] claimsthat ¢sgreepy (5) <
(3/2)¢*(9). Thisisnot in fact true, as can be seen by considering the set of strings

S = {abcbcbcbcb, cbcbebebe, bebebebebd}

for which ¢sgreepy (5) = 20 > (3/2)¢*(.5) = 19.5. Onecan easily generaizethis
example to show that thereisno constant ¢ < 2 for which ¢sgreepy (5) < c¢™(5).
We currently do not know if thereissome constant ¢ > 2 for which ¢sgreepy (5) <

cd*(S).

THE SHORTEST COMMON SUPERSTRING PROBLEM 11

z[y]
z I I
w[—a]w[—7]
w I I |
ylo —y + 1] y[l6] yla]
y | I I i
z[—6]

Figure 10: Illustration for Lemma 3.1

Ontheother hand, Theorem 2.4 allowsusto concludethat 1*(.5') < 3¢'sgreepy(5)-
In fact, we can improvethe constant factor to 2 by noting that theinstances of LPp that
arise from the transformation from scs have a specia structure which is described
in the following lemma.

LEMMA 3.1. Let S beanyset of stringsand let (G, () = LPP(S). If {w,z,y,2} CV
with ((w,y) = max {((w,y), ((w,z).0(x,y).0(x, =)} then (w,y) + ((x.z) >
Uw,z)+ Uz, y).

Proof. ldentify w, z, y, = with the corresponding stringsin S andlet o = ((w, y),
g =Llz,z2),v7=Llw,z),d = L(z,y). Notethat if « > v + ¢ the result follows
immediately. We will assume therefore that « < 4 + 4. Figure 10 illustrates the
situation described in the lemma.

We define some notation for designating substrings. If s = a3 ...a, isastring,
s[i] denotes the symbol «; if ¢ > 0 and a,4;41 if i < 0. The notation s[, j] denotes
the substring s[:] . . . s[7].

By definition of &,
w[_av_l] = y[lva] (1)
w[-y,-1] = z[1,9] 2
$[—6,—l] = y[lvé] (3)

Also, w[—v] = y[a — v + 1]. From thiswefind

Z[Ly+6—a] = w-v,6—a-1] from(2),a<~y+danda > 6
= yla—~v+1,4] from (1)
= z2fla—v-46-1] from (3)

Hence, = ¢(z,2) > v+ 6 —a. O
THEOREM 3.1. Let S be any set of strings. ¢*(5) < 2¢¥sgreepy ().

Proof. Let (G, () = LPP(S). Let H = {ha,...,h,} bethe set of edges chosen
by the greedy algorithm in the order in which they were selected (that is, h; was

12 TURNER

selected first, hp second, and so forth). Define X = ((P) — (({h1,...,hi}),
where P is alongest path that includes { %1, ..., h;}. We show that for ¢ € [1, s],
Afq < 20(hi) + Ar. Since, ¥*(S5) = Mg, repeated expansion of this inequality
impliesthe theorem.

Leth, = (w,y)andlet X = P — {h1,...h;_1}, where P isalongest path that
includes {1, ..., hi—1} (0 {(X) = A7_;). By definition of the greedy algorithm,
lw,y) = max {{(e)|e € X}. At mostthree edges of X are not permissible after
h; isselected. If at most two become impermissible, then A7 > A ; — 2{(w, y) as
desired. If three edges become impermissible then one must have the form (w, z)
with z # y, another the form (z, y) with z # w and the third one, e joins the last
vertex on the path containing y with the first vertex on the path containing w. This
meansthat X U {h1,...,h;_1} containsa path from z to z, which in turn meansthat
(z,z)ispermissible after (w, y) is selected. Consequently,

Ai 2 U(X) = (({(2, y), (w,2),€}) + {(=, 2).
By Lemma3.1, {(w,y)+ ((z,z) > {(w, z) + {(z,y), SO
Uz, y)+ Uw,z)+ l(e) —l(z,2z) < 2(w,y)

whichimpliesAF > A*_; — 2{(w, y). O

The bound given by Theorem 3.1 cannot be improved as can be seen by consid-
ering the set of strings mentioned at the beginning of this section. Theimprovement
obtained for the greedy a gorithm on strings raises the question of whether or not the
boundsfor the other approximation algorithmstreated in section 2 can be improved.
It turns out that they cannot. If we define

S={ aFxbF, bFxck, cFxdF, dFxe”, efxfh,
bk_lxakx, ck_lxbkx, dk_lxckx, ek_lxdkx, kaekx}

and (G, ¢) = LPP(S), wefind that *(G, () = 9%, AmaTcH(G, () = ADIMATCH =
5(k + 1). The example can be extended to make the ratios */ApmatcH and
/*//\DIMATCH arbltrarlly closeto 2.

A naive implementation of SGREEDY takes at |least quadratic time. A similar
running timeisobtained if one usesthetransformation to LPP and then uses PGREEDY .
A much faster running time can be obtained however by making use of an appropriate
data structure. For our purposes, a suffix tree T" is an abstract data type representing
a collection of strings S = {s1,...,s,} on which the following operations are
defined.

T.SUFFIX_TREE(S = {s1,...,s,}) Initialize T' to represent the stringsin 5. This
operation may only be performed once.

T.LOOKUP(integer 7, j) Returnsapair [, k], where ¢ isthe length of the
longest prefix of s; whichisalso asuffix of some
stringin S — {s;} and s, isone such string.

T.DELETE(integer i) Removess; from the set of strings represented.

THE SHORTEST COMMON SUPERSTRING PROBLEM 13

s1 = bbaca

c s3> = aabac
85 = acggc

O O O O S4 = acbba
2 3 4 > 1 sé = bacbb

Figure 11: Example of Trie Representation for Suffix Tree

The obvious implementation of a suffix tree is a trie (see [1]) containing an
entry for every suffix of every string in the set. An example of thisrepresentation is
shown in Figure 11. The lists of integers next to some of the nodes are the indices
of strings with suffixes ending at that point. This representation does not quite
satisfy our needs, as the size of the trie and hence the time required to construct
it is Q(m?) in the worst-case. A more compact representation can be obtained by
labeling edges with strings rather than single characters. Thisallows usto eliminate
many nodes with single children and results in a representation that requires O(m)
space and that can be constructed in O(m) time, as described by McCreight [10].
See dso [2, 11]. (Actualy, McCreight defines a suffix tree to contain suffixes of
a single string rather than a collection of strings. Our variant requires only minor
modifications to McCreight’s method.) An example of this compact representation
of suffix treesis shown in Figure 12.

We perform deletion in suffix treesusing lazy deletion. That is, to delete astring
s;, we simply mark it deleted in an auxiliary bit vector maintained for this purpose.
When a lookup operation is performed, we perform a probe in the tree to find the
longest match. Let « be the node at which the probe terminates. The list of matching
stringsat « is scanned and any that are marked deleted are removed from the list. If
this makes the list empty and « has no children, then « is removed from the tree. If
no acceptable match can be found in the list, the search continues at the parent of «.

The time required for a single lookup operation may well exceed the length of
the string being searched for. However, any excesstimeisspent deleting list entries.
Since there are initially m + n list entries in the whole tree, the time spent on any
sequence of lookupsisO(m) plusthe sum of thelengths of all stringsbeing searched
for.

14 TURNER

s1 = bbaca

cc a abb ca 5% = aabac
83 = acacc

3 04 1 05 01 s4 = acbba

sé = bacbb

Figure 12: Example of Compacted Trie Representation

We say that a sequence of lookup and delete operationsis monotonic if for every
i, 7, kwith j # k, whenever the sequence containsthe operation 7".LOOKUP(1, j) and
later on the operation 7".LOOKUP(z, k) it containsthe operation 7".DELETE(5) between
the other two.

We can speed up a monotonic sequence of operations, by maintaining for each
string, a pointer to the node where the most recent lookup for that string ended. This
allows usto avoid theinitial probe of the tree when we perform alookup operation.
Instead, we use the pointer to go straight to the node where the last probe ended,
and search up from that node if necessary. In thisway, we can perform a monotonic
sequence of r operationsin O(m + r) time.

Thisanalysis assumes that the symbol aphabet is small enough that it is reason-
able to use avector of pointersto children in each node, indexed by the first symbol
of the strings labeling the edges. If a large alphabet is needed, a hash table may
be used. Another option is to use a variant on Sleator and Tarjan’s lexicographic
splay tree [13]. With this representation, the time required to perform a sequence
of operationsis O(m), plusthe sum of the lengths of the strings being searched for,
plus O(logm) per operation. For a monotonic sequence of r operationsthe timeis
O(m + rlogm).

An efficient implementation of the greedy algorithm for strings is shown in
Figure 13. The agorithm does not explicitly combine strings, but keeps track of the
decisions made using the two mappings left(), right(z) which give theleft and right
neighbors of string ¢ in the solution constructed so far. A value of 0 meansthat there
is no neighbor. The solution is returned in these mappings. If a string : has no left
neighbor yet, rightend(7) is the original string which is currently rightmost in the
piece of the partial solution that containsi; le ftend(j) issimilar.

The heap 1, isused to determine which pair of strings should be combined next.
Each string is entered in & with the key being the length of the best match for h.

THE SHORTEST COMMON SUPERSTRING PROBLEM 15

procedure SGREEDY (set S' = (s1,...,s,), mapping left, right: [1, n] — [0, n])
integer ¢, 7,¢;
mapping leftend, rightend : [1,n] — [1, n];
mapping key : [1,n] — integer ;
heap h; suffix_tree T;
T.SUFFIX_TREE(S);
for i €[1,n]—
left(2), right(¢) := 0;
leftend, rightend(?) := 1,
[key(7), j] := T.LOOKUP(4,%);
h.INSERT();
rof;
do |h| > 1—
i := h.FINDMAX();
[(, 7] := T.LOOKUP(i, rightend(i)));

if (= key(i)—
ft(i), right /) := J.
leftend(rightend(

i)) = leftend(j);
rightend(le ftend(j)) := rightend(j);
T.DELETE(j); h.DELETE(%);

|l < key(t) —
key(t) 1= (; h.SIFTDOWN(%);
fi;
od;
end

Figure 13: Greedy Algorithmfor scs

As the algorithm proceeds, certain matches become unavailable and the values of
key() may become invalid. Consequently, whenever a string s; is selected from £,
anew lookup operation is performed inT". If the result of that operation is a match
of the same length as key(¢), the strings are combined. If the lookup resultsin a
shorter match, the value of key(7) is changed and the position of s; in the heap is
adjusted to reflect the new value. Note that a string is deleted from the heap once
it is successfully matched with another string on its left end. Similarly, a string is
deleted from the suffix tree once it ismatched with a string on the right.

The running time of the algorithm is dominated by the operations on the various
data structures within the main loop. The number of iterations of the main loop
is O(m) in the worst case. Since the heap operations are O(logn) per operation,
the total time spent on the heap operationsis O(m logn). This can be improved to
O(m + nlogn) by using Fibonacci heaps [13]. Since the sequence of operationson
the suffix tree is monotonic, the time needed for the suffix tree operationsis O(m)

16 TURNER

S = {cbadef, f cbade, adef cd }

Figure 14: Example of transformation from sCs to TSP

assuming a small alphabet and O(m logm) assuming a large alphabet and the use
of lexicographic splay trees. Thisyieldsatotal running time of O(m + nlogn) for
small alphabets and O(m logm) for large a phabets.

4. SCSand the Traveling Salesman Problem. In thissection werelate scsto
the path version of thetraveling salesman problem (TsP). Aninstance of thetraveling
salesman problemisalistof citiesC' = (¢q, . . ., ¢,) withadistance d(¢;, ¢;) between
each pair of cities. TheobjectistofindapermutationTon{1,...,n}. thatminimizes

n—1
071'(07 d) = Z d(Cmv C7Ti+1)
=1
We define 6°(C', d) = min,; 6.(C, d).
Let S = (s1,...,s,) beaninstance of scs. We define TSP(s, . . ., s,,) to be an
instance (C', d) of TsPwithC' = (eq, ..., ¢y, cny1) and

il = (siy85) 1<i<n 1<j<n i#j
151l i=n+1 1<j<n

An example of thistransformation is given in Figure 14. Note that in general, if
7 satisfies0.(C, d) = 6*(C,d) then 7,11 = ¢, 41.

THEOREM 4.1. Let S = (s1,...,s,)beaninstanceof scs, (C,d) = TsP(.S) and let
7 beapermutationon{1,...,n,n+1}to(cy,..., ¢y, chy1) forwhichm, 1 = n+1.
Then6,(C,d) = ¢,+(5), wheren’ istherestrictionof r to {1, ..., n}. Inparticular,
0°(C, d) = ¢"(5).

THE SHORTEST COMMON SUPERSTRING PROBLEM 17

Proof.

n n—1
0-(C,d) = Zd(cmvcmH) = [Z |57, | — ¢(5Wivsri+1)] + S|
n—1

= ZH:I%I] - [Z ¢(8m$m+1)1 = 151l = ¥x(S) = ¢2(5)
i=1

=1

6*(C,d) = ¢*(9) follows from the observation that any optimum solution = for
(C,d)musthave 7,41 = ¢,p1. O

Theorem 4.1 implies that any good approximation algorithm for this version of
the traveling salesman problem is a good approximation algorithm for scs as well.
The particular instances of TSP constructed by the transformation defined above
have some special properties. First, they may be asymmetric; that is d(¢;, ¢;) need
not equal d(c;, ¢;). The next theorem shows that they obey the so-called triangle
inequality.

THEOREM 4.2. Let S = (s1,...,s,) beaninstanceof scsandlet (C', d) = TSP(5).
For all Ci, Cj, CE € C, d(Ci,Ck) < d(Ci,C]‘) + d(C]‘,Ck).

Proof. There are several cases to consider. If i,k < j = n+ 1, d(g,cx) <
|S]| = d(c;, cx) and the result followsimmediately. Similarly, if 7, j < k = n + 1,
d(cie;) <|sil = d(e;,ep)andif 5,k < i =n+1,d(c;,c;) = d(e;, c). Thisleaves
the case where 7, j, k < n. For convenience, let o = d(¢;, ¢;) and 8 = d(¢;, ¢) and
note that

sila+ 1, |s:]] = s;[1,]si| —a] and s;[8+ 1, [s;|] = sk[1, |sg| — 3]

Notethat if |s;| < o+ 3, wearedone. Therefore, assume |s;| > a+ 3. Thisimplies
that

silo+ 041, |sil] = sk[L, [sif = (o + B)]

andthat d(c;,¢;) < a4 5. O

There exist efficient approximation algorithms for the symmetric version of the
traveling salesman problem with triangle inequality that produce solutionswithin a
factor of (3/2) of optimal. When the triangle inequality does not hold, finding good
approximate solutionsis as difficult as finding optimum solutions (see [7]). For the
asymmetric version with triangle inequality however, little is known. There are no
known approximation agorithms that are both efficient and have good worst-case
performance (nor have we found any), but the approximation problem has not been
shownto be hard. Consequently, therel ationship between scsand TSP hasyettoyield
any directly useful results. The relationship does imply some consequences if the
status of either problem isresolved in the future. 1f good approximation algorithms
are found for TSP, they may be applied to scs. If the approximation problem for scs
is shown to be hard, then the approximation problem for Tsp must be hard. It also
may be that good approximation algorithms discovered for scs, could be adapted to

18 TURNER

TsP, athough this does not necessarily follow. Finaly, a proof that Tsp is hard to
approximatewould notimply that scsis hard to approximate, but it would imply that
approximation algorithmsfor scs would have to exploit specia structural properties
present in the instances of TSP that result from our transformation.

5. Closing Remarks. We have related the shortest common matching string
problem to two other problems, using transformations that preserve solution values.
These two transformations reflect different ways of viewing scs. We have used
the transformations to gain insight into the problem of approximating scs and have
discovered several agorithmsthat have provably good performance with respect to
the overlap measure. The best of these is the string version of the greedy algorithm
for which we have described an efficient implementation using suffix trees.

While we have shown that the string version of the greedy algorithm has good
worst-case performance with respect to the overlap measure, we cannot determine
its performance with respect to the length measure. We know that it can be off by as
much as afactor of two with respect to the length measure, but we do not know if it
can be worse than this. One open problem then, isto resolve thisissue.

Although, we have been unable to make use of the relationship between scs and
TSP to advantage, we fedl that it may yet prove useful. More generaly, we think
that the use of transformations that preserve solution values can be used to extend
the application of known approximation algorithmsto new domains. A methodical
development of such transformations could provide many useful results.

Another worthwhile line of investigation for future research is to study the
probable performance of the various approximation algorithms using appropriate
probability models. It appears likely for example, that the directed matching algo-
rithm for the longest path problem performs much better than its worst-case bound
would indicate for awide class of natural probability models. Similarly, one would
expect the greedy algorithm to perform well in a probabilistic sense for many useful
probability models.

References.

References

[1] Aho, Alfred V., John E. Hopcroft and Jeffery D. Ullman. “ Data Structures and
Algorithms,” Addison-Wesley, 1982.

[2] Chen, M. T.andJ. . Seiferas. “Efficient and Elegant Subword-Tree Construc-
tion,” University of Rochester, Computer Science Department, technical report
TR 129, 12/83.

[3] Gallant, John K., David Maier, James A. Storer. “On Finding Minimal Length
Superstrings,” Journal of Computer and System Sciences, vol. 20, no. 1, 50-58,
2/80.

THE SHORTEST COMMON SUPERSTRING PROBLEM 19

[4]

[5]

6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Gallant, John K. * String Compression Algorithms,” Ph.D. Dissertation, Prince-
ton University, Department of Electrical Engineering and Computer Science,
June 1982.

Gingeras, T. R., J. P. Milao, D. Sciaky and R. J. Roberts. “Computer Programs
for the Assembly of DNA Sequences,” Nucleic Acids Research, vol. 7, 1979,
529-545.

Karp, Richard M. “A Patching Algorithm for the Nonsymmetric Traveling
Salesman Problem,” SAM Journal on Computing, vol. 8, no. 4, 561-573,
1179.

Lawler, E. L., J. K. Lenstraand A. H. G. Rinnooy Kan (editors). “ The Traveling
Salesman Problem,” John Wiley and Sons, Ltd, 1986.

Maier, Davidand JamesA. Storer. “ A Note onthe Complexity of the Superstring
Problem,” Princeton University Technical Report 233, Department of Electrical
Engineering and Computer Science, October 1977.

Mayne, A. and E. B. James. “ Information Compression by Factorising Common
Strings,” The Computer Journal 18, 1975, 157-160.

McCreight, Edward M. “A Space-Economical Suffix Tree Construction Algo-
rithm,” Journal of the ACM, vol. 23, 4/76, 262—-272.

Rodeh, M., V. R. Pratt and S. Even. “Linear Algorithm for Data Compression
via String Matching,” Journal of the ACM, vol. 28, 1/81, 16-24.

Shapiro, M. B. “An Algorithm for Reconstructing Protein and RNA Se-
guences,” Journal of the ACM, voal. 14, 1967, 720-731.

Sleator, Daniel D. and Robert E. Tarjan. “ Self-Adjusting Binary Search Trees,”
Journal of the ACM, vol. 32, 7/85, 652—686.

Stefik, M. “Inferring DNA Structures From Segmentation Data,” Artificial
Intelligence, vol. 11, 1978, 85-114.

Storer, James A. and Thomas G. Szymanski. “Data Compression via Textual
Substitution,” Journal of the ACM, vol. 29, 10/82, 928-951.

Tarjan, Robert E. “Data Structures and Network Algorithms,” Society for In-
dustrial and Applied Mathematics, 1983.

