
A

epted for publi
ation in J. Fun
tional Programming. (
) 2003 Cambridge University Press 1Grammati
al FrameworkA Type-Theoreti
al Grammar FormalismAARNE RANTA�Department of Computing S
ien
eChalmers University of Te
hnology and the University of Gothenburg41296 Gothenburg, Sweden.(e-mail: aarne�
s.
halmers.se)Abstra
tGrammati
al Framework (GF) is a spe
ial-purpose fun
tional language for de�ning gram-mars. It uses a Logi
al Framework (LF) for a des
ription of abstra
t syntax, and adds tothis a notation for de�ning
on
rete syntax. GF grammars themselves are purely de
lara-tive, but
an be used both for linearizing syntax trees and parsing strings. GF
an des
ribeboth formal and natural languages. The key notion of this des
ription is a grammati
alobje
t, whi
h is not just a string, but a re
ord that
ontains all information on in
e
tionand inherent grammati
al features su
h as number and gender in natural languages, orpre
eden
e in formal languages. Grammati
al obje
ts have a type system, whi
h helps toeliminate run-time errors in language pro
essing.In the same way as a LF, GF uses dependent types in abstra
t syntax to expresssemanti

onditions, su
h as well-typedness and proof obligations. Multilingual grammars,where one abstra
t syntax has many parallel
on
rete syntaxes,
an be used for reliableand meaning-preserving translation. They
an also be used in authoring systems, wheresyntax trees are
onstru
ted in an intera
tive editor similar to proof editors based on LF.While being edited, the trees
an simultaneously be viewed in di�erent languages.The paper starts with a gradual introdu
tion to GF, going through a sequen
e of simplerformalisms till the full power is rea
hed. The introdu
tion is followed by a systemati
 pre-sentation of the GF formalism and outlines of the main algorithms: partial evaluation andparser generation. The paper
on
ludes by brief dis
ussions of the Haskell implementationof GF, existing appli
ations, and related work.1 Introdu
tion: the goals of GFThe Grammati
al Framework (GF) is a grammar formalism, i.e. a language forde�ning grammars. The development of GF started as a notation for type-theoreti
algrammars (Ranta, 1994), whi
h use Martin-L�of's type theory (1984) to express thesemanti
s of natural language. The �rst implementation was released in 1998 at� Thanks to Markus Forsberg, Reiner H�ahnle, Kristofer Johannisson, Bengt Nordstr�om, and ananonymous referee for
areful reading and valuable
omments on this paper. GF itself hasbene�tted from
ontributions by many people at XRCE Grenoble, at Chalmers and GothenburgUniversity, at CAMS in Paris, and in the European TYPES Community. The work has beensupported by the VINNOVA foundation within the proje
t \Intera
tive Language Te
hnology"(2001-06340).

2 A. RantaXerox Resear
h Centre Europe in Grenoble, with fo
us on multilingual authoringvia a type-theoreti
al pivot language. After the �rst publi
ation (M�aenp�a�a & Ranta,1999), GF has developed into a fun
tional programming language, whereby itsnotation has been
ompletely revised, but it has preserved downward
ompatibility.The fo
us of GF has thus shifted from an initial theoreti
al idea to pra
ti
alappli
ations. In this paper, we try to make expli
it the theory that has proveduseful for pra
ti
al appli
ations. The goal of GF is to serve both linguists, whowant a high-level and reliable grammar formalism, and programmers, who want anelegant and eÆ
ient tool for building natural-language appli
ations.1.1 A Logi
al Framework with
on
rete syntaxWhen des
ribing or implementing a language, it is
ustomary to distinguish betweenits abstra
t syntax, i.e. the hierar
hi
al stru
ture of the language, and its
on
retesyntax, i.e. what the language looks like as it is read and written. The idea isthat notions su
h as type
he
king and semanti
s are better de�ned on the level ofabstra
t syntax, without the
lutter of
on
rete syntax details.In programming language design,
on
rete syntax is usually kept as simple aspossible, with some
on
essions allowed to tradition, e.g. to in
lude standard math-emati
al notations. In linguisti
s, the situation is di�erent: the linguist has to takea natural language as it is, and des
ribe it the best she
an. It is not
ommonto rea
h a level at whi
h one
an make a neat distin
tion between abstra
t and
on
rete syntax, or to dis
uss questions like type
he
king and semanti
s with thesame pre
ision as in programming languages.GF was born from a synthesis between the
omputer s
ien
e and linguisti
s waysof thinking: what about if we take an abstra
t syntax, with all type
he
king andsemanti
s, and try to de�ne a
on
rete syntax that looks exa
tly as we want, in
lud-ing natural languages? We took a powerful formalism for abstra
t syntax, a Logi
alFramework (LF)1, and extended it with a notation for
on
rete syntax. With thisformalism, it be
ame possible to de�ne all aspe
ts of a language at on
e, whi
h isan advantage for language implementation. At the same time, it gives a new per-spe
tive on natural languages, sin
e it makes pre
ise semanti
al notions appli
ableto those fragments of natural language that are re
ognized by GF grammars.The pra
ti
al issue of adding
on
rete syntax to LF was already addressed in theMathemati
al Verna
ular proje
t of de Bruijn (1994). The goal was to make LFproof systems more a

essible to users. An early implementation of this idea is aprogram that translates proofs in the logi
al framework Coq into an English-likenotation (Cos
oy et al., 1995). However, the translation is part of the implemen-tation of Coq itself: thus, even though the abstra
t syntax of new mathemati
al
on
epts is user-de�nable in Coq, their
on
rete syntax is not.A step towards user-de�ned
on
rete syntax is taken in Isabelle (Paulson, 2002),whi
h has a mix�x notation to de�ne the
on
rete syntax of fun
tions. Mix�x is1 The logi
al framework of GF is a version
onstru
tive type theory, as are LF (Harper et al.,1993), ALF (Magnusson & Nordstr�om, 1994), and Coq (The Coq Development Team, 1999).

Grammati
al Framework 3a generalization of in�x de
larations|whi
h of
ourse are rudimentary
on
rete-syntax de�nitions|into full
ontext-free rules. To some extent, mix�x notation isenough even for natural language. For instan
e, if we want to de�ne an Englishnotation for the length fun
tion, whose abstra
t syntax is given by the fun
tionde
laration length : (A : Set) ! List A ! Intit is enough to write:2length x = "the" ++"length" ++"of" ++ xHowever, if we want to express length in
orre
t German, we need to in
e
t it indi�erent
ases, put its argument into the dative
ase pre�xed by the prepositionvon, and tell what gender it has. All this is done by a GF de�nitionlength = f1 "L�ange" Femwhere f1 is a
on
rete syntax fun
tion taking
are of the details of in
e
tion andargument
ase. Of
ourse, f1 itself is user-de�ned,f1 : Str ! Gen ! fs : Cas) Str ; g : Geng ! fs : Cas) Str ; g : Geng =�F;G; x ! fs = table f
) der SgG
++F ++"von" ++x:s ! Datg ; g = GgThis rule uses another user-de�ned fun
tion, der, whi
h gives the in
e
tional formsof the German de�nite arti
le.Rules like the ones for length are typi
ally written by persons who work in LF andare experts in the mathemati
al theories that they are working with. Fun
tions likef1 and der require expertise in linguisti
s and German grammar. A good divisionof labour is that fun
tions of the latter kind are provided in resour
e grammarswritten by linguists and
an be taken for granted by those who write appli
ations.This requires a powerful notation permitting high levels of abstra
tion.1.2 A grammar formalism with the linearization perspe
tiveBoth
omputer s
ientists and linguists have developed grammar formalisms|de
la-rative des
riptions of language from whi
h language-pro
essing algorithms
an beautomati
ally generated. The best-known algorithm is parsing, whi
h takes stringsinto syntax trees (in the
ase of GF: to fun
tional terms). Many grammar formalismsare designed to permit easy generation of parsers. The rules of GF, however, havetheir most dire
t readings in the dire
tion of linearization, whi
h takes fun
tionalterms into strings. To show that also a parser
an be derived from every GF gram-mar requires a
ompli
ated argument.In
omputer s
ien
e, the best-known grammar formalisms are
ontext-free gram-mars (=BNF) and attribute grammars (Knuth, 1968). BNF is used for des
ribinglanguages in reports, but language implementations use extensions of the de
larativeformat with semanti
 a
tions written in a general-purpose programming language.2 We use GF notation; Isabelle mix�x does not support argument suppression.

4 A. RantaYACC (Johnson, 1975) is the
lassi
al model for su
h formalisms. Be
ause of se-manti
 a
tions, YACC grammars
annot generally be used for linearization. BNFdoes not
over the type-
he
king aspe
t of languages, whereas attribute grammarsare able to do some of it. In YACC, some type
he
king
an be performed in seman-ti
 a
tions, but this easily be
omes a mess, and separate phases are re
ommendedinstead. In logi
al frameworks, type
he
king
an be neatly in
luded in abstra
tsyntax de�nitions, but there are not yet any tools for doing so in pra
ti
al languageimplementations.In linguisti
s, the tradition
losest to GF is Montague grammar (Montague,1974), whi
h uses simple type theory to express abstra
t syntax. In a way, GFis just a generi
 framework for implementing Montague-style grammars extendedwith dependent types3. Another point of referen
e are the grammar formalismsbased on uni�
ation. These formalisms in
lude DCG (Pereira & Warren, 1980) andPATR (Shieber, 1986), whi
h are, like GF, pure frameworks, and HPSG (Pollard& Sag, 1994) and LFG (Bresnan, 1982), whi
h have elements of built-in linguisti
theory. While postponing the dis
ussion of related work to Se
tion 10, it
an beuseful to point out the major ways in whi
h GF di�ers from uni�
ation grammarformalisms:� GF has separate rules for abstra
t and
on
rete syntax.� The primary perspe
tive in GF is linearization.� GF has a strong type system.� GF is a fun
tional language.� GF
an integrate semanti
s with abstra
t syntax.� GF supports multilingual grammars.A
ommon feature between GF and formalisms like PATR and HPSG is the use ofre
ords to model
omplex grammati
al obje
ts,1.3 A multilingual authoring systemGF
an be used in bat
h mode for linearization, parsing, and translation. A newkind of appli
ation is inherited from type-theoreti
al proof editors: syntax editingnatural language. This is the appli
ation that explains Xerox's interest in the GFproje
t: with a multilingual grammar, the user of GF
an edit a do
ument in alanguage that she does not know, while at the same time seeing how it evolves inher own language. This a
tivity is
alled multilingual authoring (Power & S
ott,1998; Dymetman et al., 2000). For instan
e, a letter being edited in Swedish maylook like this:K�ara [Re
ipient℄,jag har �aran att meddela dig att du har blivit befordrad till [Position℄.3 The semanti
 aspe
ts of this extension are studied in (Ranta, 1994). A strong appli
ation ofdependent types is the analysis of pronominal referen
e.

Grammati
al Framework 5The expressions in bra
kets are pla
eholders, yet to be �lled in to
omplete the letter.The possible �llings are either
hoi
es from menus (generated from the grammar)or strings of English or Swedish text (parsable by the grammar). In parallel withSwedish, an English version may be generated from the same abstra
t sour
e:Dear [Re
ipient℄,I have the honour to inform you that you have been promoted to [Position℄.The author
an be sure that both letters
ome out grammati
ally
orre
t and
onveythe same message. The type-theoreti
al representation works as a pivot language,whi
h
ontrols the
onsisten
y of the do
ument, and guarantees that all translationshave the same meaning. Intera
tion eliminates a notorious problem of automati
translation, whi
h is that a sour
e text written in natural language generally doesnot fully determine the semanti

ontent (
f. Kay (1997)).A multilingual GF grammar is a simple and eÆ
ient way to implement transla-tion, whi
h works surprisingly well, due to the long distan
e from
on
rete-syntaxdetails that is possible in abstra
t syntax. Most other systems use separate transferrules to translate between languages. The obvious disadvantage of transfer rulesis that n(n � 1) transfer modules are needed to translate between n languages,whereas GF only needs n + 1 grammar modules. The disadvantage of GF's pivotlanguage method is that translation is limited to be stru
ture-preserving. Even ifthere is no GF notation to express transfer rules, GF does not pre
lude them: theAPI module (Se
tion 8.4) gives support for de�ning transfer rules in Haskell.2 Context-free rewrite grammarsThis se
tion starts a series of more and more powerful fragments of GF. Most GF
on
epts and appli
ations already make sense in this �rst fragment, but only alimited
lass of GF grammars
an be written in it. Se
tions 3 and 4 extend theabstra
t syntax part of GF, whereas Se
tion 5 independently extends the
on
retesyntax part.2.1 From
ontext-free grammars to
ontext-free rewrite grammarsContext-free rewrite grammars are a generalization of
ontext-free grammars, aris-ing from a distin
tion between two aspe
ts: abstra
t syntax and
on
rete syntax.Consider a
ontext-free rule f: C ::= t1 : : : tmwhere f is the rule label, C is a
ategory symbol, and ea
h ti is either a
ategorysymbol (a nonterminal) or a string (a terminal). The abstra
t syntax aspe
t of thisrule is a a fun
tion de
laration, de
laring f as a fun
tion whose value type is C andargument types are the nonterminals C1 : : : Cn among t1 : : : tm:fun f : C1 ! � � � ! Cn ! C

6 A. RantaThe
on
rete syntax aspe
t is a linearization rule, whi
h assigns a linear pattern tothe fun
tion f : pattern f x1 : : : xn = t1 ++ : : :++tmEa
h ti is either one of the variables xj (a nonterminal) or a string (a terminal).As an example of splitting a
ontext-free rule into a fun
tion de
laration and alinearization rule,
onsider the ruleDiv: Prop ::= Exp "is" "divisible" "by" ExpSplitting gives the rule pairfun Div : Exp ! Exp ! Proppattern Div x y = x++"is" ++"divisible" ++"by" ++yAbstra
t syntax rules alone de�ne a system of syntax trees, i.e. fun
tional termsformed by using rule labels as
onstants. Given two more fun
tion de
larations,fun two : Expsum : Exp ! Exp ! Expwe
an form the syntax tree Div (sum two two)twowhose type is Prop. Given the linearization rulespattern sum x y = "the" ++"sum" ++"of" ++x++"and" ++ytwo = "two"we have a
orresponden
e between this tree and the stringthe sum of two and two is divisible by two2.2 Permutation, suppression, and redupli
ationTo represent
ontext-free rules in
ontext-free rewrite grammar, the full expres-sive power of linear patterns is not needed, but only the spe
ial
ase in whi
hthe sequen
e of nonterminals in the linear pattern
orresponds one-to-one to thearguments of the fun
tion. The full format extends this spe
ial
ase in three ways:� Permutation:
onstituent order may be
hanged.� Suppression:
onstituents may be hidden.� Redupli
ation:
onstituents may be repeated.Permutation is important if we want to have
on
rete syntaxes sharing an abstra
tsyntax. For instan
e, it permits giving the same abstra
t syntax to pre�x and in-�x notation, or to adje
tival modi�
ation in English (pre�x: even number) andFren
h (post�x: nombre pair). Suppression is needed if we want a syntax tree to
arry more information than the
orresponding string, as in proof-
arrying do
u-ments (Se
tion 4.3). Redupli
ation shows that the formalism is more powerful than

Grammati
al Framework 7
ontext-free grammars: for instan
e, the
opy language of the universal language U(over some alphabet) fxxjx 2 Ugis
ontext-sensitive, but it is en
oded by the
ontext-free rewrite grammarfun f : U ! S ; pattern f x = x ++x2.3 LinearizationTo linearize a syntax tree f a1 : : : anthe linearization algorithm reads the linear pattern given in the rulepattern f x1 : : : xn = t1 ++ : : :++tmand s
ans the sequen
e t1 ++ : : :++tm from left to right:(f a1 : : : an)o = s1 ++ : : : ++ smwhere si = � aoj if ti = xj (the j'th argument)s if ti = s (string)The algorithm assumes that expressions are in the full appli
ation form, i.e. fun
-tions are endowed by all their arguments: otherwise it is in general not possible to�ll the linear pattern in a meaningful way. To express fun
tions, lambda abstra
tionmust be used (Se
tion 3).42.4 Type
he
king and syntax editingThe type
he
ker uses abstra
t syntax to look up the types of fun
tions and veri�esthat they are used in a

ordan
e with their types. Rather than formulating thealgorithm expli
itly, we give the typing rule of syntax trees:f : C1 ! : : :! Cn ! C a1 : C1 : : : an : Cnf a1 : : : an : CThis is of
ourse the same as the full appli
ation rule of typed lambda
al
ulus.Syntax editing takes pla
e in a state, whi
h
onsists of a tree being edited andthe subtree that is the
urrent fo
us. The tree may be in
omplete, that is,
ontainpla
eholders (also
alled metavariables), whi
h are yet to be �lled by subtrees. Anexample is the following arithmeti
al proposition, where the fo
us is marked by anasterisk (�) and pla
eholders by question marks (?):Div (sum two �?) ?4 Full appli
ation is usually required in all fun
tional languages whenever other kinds of fun
tionsare used than pre�xes: one
annot write (if b then 5 else) to repla
e (nx -> if b then 5else x), and omitting two arguments would lead to the
ompletely bizarre (if b then else).One of the rare ex
eptions are Haskell's in�x se
tions, su
h as (4+) (equal to (nx -> 4 + x))

8 A. RantaThe linearization of this tree isthe sum of two and (� ?) is divisible by ?An important aspe
t of editing in GF is that it is possible to swit
h between thetree representation and its linearizations, even when the tree is in
omplete.For an eÆ
ient implementation of editing
ommands, we represent trees in a formin whi
h the types of all subtrees are shown. The above tree is then representedDiv : Propsum : Exptwo : Exp* ? : Exp? : ExpThe editor uses the typing rule for full appli
ations to annotate ea
h subtree withthe value type of its fun
tion head.The most important editing
ommand is re�nement, whi
h repla
es the metavari-able in fo
us with a fun
tion. If the fun
tion takes arguments, like sum, re�nementintrodu
es new metavariables:the sum of two and (� the sum of ? and ?) is divisible by ?The value type of the fun
tion must of
ourse mat
h the type of the fo
us metavari-able. The editor guarantees this by maintaining a menu of type-
orre
t re�nementsextra
ted from the grammar.The editor fo
us is analogous to the
ursor in a string editor: it marks the pla
e towhi
h editing
ommands apply. The analogue of
ursor movements are navigation
ommands, whi
h shift the fo
us without
hanging the tree. GF uses a zipper (Huet,1997) to represent the editor state. As shown by Huet, navigation
ommands
anbe implemented eÆ
iently for the zipper. Editing
ommands are eÆ
ient, as well,if the nodes lo
ally
ontain all information that is needed when exe
uting them|inparti
ular, the types of all subtrees.Re�nement is a purely top-down editing
ommand, inherited to GF from theproof editor ALF (Magnusson & Nordstr�om, 1994). The zipper implementationhas made it easy to add a generalized bottom-up
ommand, the lo
al wrap. The lo
alwrap embeds the fo
us subtree, whi
h need not be a metavariable, in a fun
tionappli
ation. If the fo
us is a tree t : Athen any fun
tion f : � � � ! A ! � � � ! A
an be used to repla
e t with (f ? : : : t : : :?); i.e. one argument pla
e of f is �lled byt, and the other pla
es by metavariables. For instan
e, wrapping the fo
us term ofDiv two (�one)in the �rst argument pla
e of sum : Exp ! Exp ! Exp results in the treeDiv two (�sum one ?)

Grammati
al Framework 9In the
orresponding English senten
e, the word one gets embedded in the phrasethe sum of one and ?. Su
h an insertion is of
ourse trivial in a text editor workingon strings, but not available in most tree-based stru
ture editors. Yet it is a fun
-tionality that do
ument authors expe
t from an editor: they want to make lo
almodi�
ations in a do
ument without having to destroy and rebuild parts of it.The wrap operation is similar to tree adjoining in the grammar formalism TAG(Tree Adjoining Grammars) (Joshi, 1985). A spe
ial
ase is wrapping the top node,whi
h is pure bottom-up editing: there we
an relax the requirement that the valuetype of the fun
tion be the same as the type of the fo
us.2.5 ParsingWhile linearization in
ontext-free rewrite grammars is straightforward, parsing isa sear
h problem. We redu
e it to parsing in
ontext-free grammars, whi
h has a
omplete solution by e.g. the Earley algorithm (Earley, 1970). Context-free parsingis
ompleted by postpro
essing that involves a rearrangement of subtrees.Translation into
ontext-free rules. To ea
h pair of a typing judgement anda linearization rule� fun f : C1 ! : : :! Cn ! Cpattern f x1 : : : xn = t1 ++ : : : ++ tmwe assign the
ontext-free rule fp: C ::=
1 : : :
mwhere
i = � Cj if ti = xj (nonterminal)s if ti = s (terminal)The fun
tion f is indexed by a pro�le p, whi
h is a list of lists of integers[p1; : : : ; pn℄where pi = [j j j 2 f1; : : : ; kg; t0j = xi℄where t01 : : : t0k is the sequen
e of nonterminals in the pattern
lause. In otherwords, ea
h item pi in the pro�le tells what pla
es the ith argument o

upies in thelinear pattern. For instan
e, the pair of rulesfun f : A ! B ! C ! D ; pattern f x y z = y++"kuin"++y++"on"++zgenerates the rule f[[℄;[1;2℄;[3℄℄: D ::= B "kuin" B "on" CPostpro
essing
ontext-free parse trees. A parse tree produ
ed by the
ontext-free parser may have a wrong number of arguments in wrong pla
es andeven in in
onsistent ways (be
ause of redupli
ation). The transformation R of parsetrees into proper fun
tional terms is performed by referen
e to the pro�le of the

10 A. Rantafun
tion head5: (fp
1 : : :
m)R = f a1 : : : anwhere ai = �
Rk if k 2 pi and xi is
onsistently represented? if pi is emptyIf an argument is suppressed in linearization, this operation thus introdu
es ametavariable to represent it. If di�erent o

urren
es of an argument are not repre-sented
onsistently6, the operation of rearrangement fails.Context-free parsing. The
hoi
e of
ontext-free parsing algorithm is often themain eÆ
ien
y issue when pro
essing a language. Sin
e GF grammars are imple-mented as �rst-
lass data obje
ts in Haskell, well-known analyses and transforma-tions (Hop
roft & Ullman, 1979)
an be applied to them. For instan
e, even thoughthe Earley algorithm is appli
able to all grammars, some grammars may turn outto permit deterministi
 LR(1) parsing (Knuth, 1965), whi
h
an then be
hosen foreÆ
ien
y.Some pathologi
al rules
ause problems for all
ontext-free parsing algorithms.A
y
li
 rule f: C ::= Cgenerates the in�nite sequen
e of parse treest; f t; f (f t); f (f (f t)); : : :for any tree t of type C. Cy
li
 rules are sometimes generated from inno
ent-lookingGF rules, su
h as fun f : A ! C ! C ; pattern f x y = ywhere the argument x is suppressed in linearization.2.6 Semanti
 de�nitions and
omputationThe abstra
t syntax of a GF grammar
an be thought of as a semanti
 model ofthe language, espe
ially in those
ases where GF is used as a synta
ti
 annotationlanguage for a logi
al framework. In su
h a model, we often want not only to de
larefun
tions but also to de�ne them. To this end, GF has the form of judgementdef f x1 : : : xn = twhere f : C1 ! � � � ! Cn ! C and t : C in the
ontext x1 : C1; : : : ; xn : Cn.An example is def double x = sum x x5 In
ontext-free rewrite grammar, pro�les are an optimization that make it possible to avoidlookups in the grammar at the postpro
essing stage. In full GF, pro�les are indispensable (
f.Se
tion 7.2).6 Consistent means here that the trees are the same. In a more general setting, it means thatthey are uni�able;
f. Se
tion 7.2.

Grammati
al Framework 11De�nitions are used for
omputing trees, and they de�ne thereby a notion of equalitybetween trees. This equality is
alled semanti
 equality, sin
e it does not a�e
tlinearization: even though the terms two and double one are equal by de�nition,they are linearized as two di�erent strings. We say that strings resulting fromsemanti
ally equal trees are paraphrases of ea
h other.3 Variable bindingsMany interesting languages have variable-binding operations. For instan
e, predi-
ate
al
ulus has the universal quanti�er 8 forming propositions su
h as8x:x+ 0 = xwhere the variable x is bound in the subformula x+0 = x. The
ontext-free syntaxof universally quanti�ed propositions isProp ::= "8" Var ":" PropThis rule, however, does not
apture the fa
t that the variable is bound in thesubformula. The two parts of the stru
ture, Var and Prop, are not
onstituentsin the same sense: the Prop is an argument, whereas the Var is a binding. Thedistin
tion between arguments and bindings is fundamental for abstra
t syntaxoperations, su
h as type
he
king and
omputation|and in parti
ular for syntaxediting|and has to be stated somewhere, either by separate rules, or by usinghigher-order abstra
t syntax instead of
ontext-free syntax. We will now explain howGF implements higher-order abstra
t syntax and
orresponding
on
rete syntax.3.1 The abstra
t syntax of bindingsIn higher-order abstra
t syntax, variable-binding operators are treated as fun
tionsthat take fun
tions as arguments. For instan
e, the universal quanti�er has just oneargument: a fun
tion from expressions to propositions:fun Univ : (Exp ! Prop) ! PropThis fun
tion has a se
ond-order type. The general form of a type is nowA1 ! � � � ! An ! Cwhere ea
h Ai is a type and C is a
ategory7. Obje
ts of fun
tion types
an beformed by �-abstra
tion, of the form�x1; : : : ; xn ! bWe require that the number of �-bound variables be the same as the number ofargument types; this is known as the � long normal form of �-terms.7 We
ould say: C is a type, but the resulting notion of type would be equivalent. As we formulateit now, we emphasize that ea
h type has a basi
 type as its value type.

12 A. RantaFor example, the formula 8x:x+ 0 = x has the syntax treeUniv(�x ! Eq (sum x Zero) x)3.2 The
on
rete syntax of bindingsIn the � long normal form, every subtree whose type is a fun
tion type has a boundvariable for ea
h of its argument types. We
olle
t the variable symbols x1; : : : ; xnand the linearization b of the body into a re
ordfv1 = x1 ; : : : ; ; vn = xn ; s = bgwhi
h is the linearization of the whole tree. We use the re
ord label s for the body,and the labels v1; v2; v; : : : for the variables; if there is just one variable, we use v.For example, the linearization of �x ! Eq (sum x Zero) x isfv = "x" ; s = "x" ++"+" ++"0" ++"=" ++"x"gThe linearization rule of the fun
tion Univ islin UnivP = fs = "8" ++ P:v ++ ":" ++ P:sgThe general form of a linearization rule is nowlin f x1 : : : xn = fs = t1 ++ : : :++ tmgwhere ea
h ti has one of the forms "foo" (terminal string), xj :s (nonterminal body),xj :vk (nonterminal variable). The linearization algorithm distinguishes three
ases:appli
ation: (f a1 : : : an)o = t(x1 := ao1; : : : ; xn := aon)if lin f x1 : : : xn = tabstra
tion: (�z1 ! � � � ! �zn ! b)o = fv1 = `z1'; : : : ; vn = `zn'g �� bovariable: xo = fs = `x'gThis de�nition uses an operation �� for
onjoining re
ords, and a substitution oper-ation (x := a). It also presupposes a symbol-printing operation produ
ing a string`x' from a variable symbol x.8 The full normal form of linearization is obtained bythese rules, substitutions, and the re
ord proje
tion rulef: : : ; r = t; : : :g:r = tUsing re
ords instead of strings as values of linearization is
ru
ial for maintain-ing the
ompositionality of linearization: for ea
h fun
tion f , the linearization ruleassigns a
on
rete-syntax fun
tion f 0 su
h that(f a1 : : : an)o = f 0 ao1 : : : aon8 One
ase is missing from this de�nition: variable applied to arguments. This
ase is needed if theabstra
t syntax uses third- or higher-order fun
tions. GF then produ
es an ad ho
 linearizationwhere the symbol x is pre�xed to the linearizations of the arguments in parentheses. In pra
ti
e,fun
tions of higher order than the se
ond are rare in abstra
t syntax; stri
tly speaking, how-ever, one should
on
lude that GF only supports user-de�ned
on
rete syntax for se
ond-orderabstra
t syntax.

Grammati
al Framework 13where we denote the linearization of a tree t by to. Thus the linearization of a treedepends only on the linearizations of its subtrees, not on the subtrees themselves.Compositionality guarantees a natural
orresponden
e between abstra
t and
on-
rete syntax. It also helps to make the implementation of GF eÆ
ient (Se
tion 5.4).The pattern format used for
ontext-free rewrite grammars is a spe
ial
ase ofthe lin format, as de�ned in Se
tion 6.4.2.3.3 Parsing bindingsFrom the
ontext-free point of view, variable bindings are
onstituents: the parserreading the input looks for items of a
ertain shape (e.g. \x") that mat
h a parti
ularnonterminal Var. The
ontext-free rule generated from Univ looks as follows:Univ[([[1℄℄;[2℄)℄ Prop ::= "8" Var ":" PropThe right-hand-side is as expe
ted. The pro�le now
ontains information aboutwhere in the parse tree the bound variables are found: we extend the pro�les ofSe
tion 2.5 to lists of pairs (b;
) where
 is a pro�le item in the old sense, tellingwhat pla
es the
onstituent o

upies, and b is a list of items telling what pla
esea
h of the bound variables o

upy.When produ
ing
ontext-free grammars. we introdu
e a
ategory Var distin
tfrom all
ategories in the
ontext-free grammar, with some rules for re
ognizingvariables. We add a rule varC : C ::= Varfor ea
h
ategory C. Finally, when postpro
essing the parse tree, a suppressedbinding (i.e. one with the pro�le item [℄) is not repla
ed by a metavariable (?), butby a fresh ordinary variable. Noti
e that the uni�
ation phase of postpro
essing is�rst-order, sin
e variables in bindings are treated as ordinary arguments.3.4 Type
he
king and syntax editing bindingsType
he
king syntax trees with bindings is the same thing as monomorphi
 type
he
king in simply typed lambda
al
ulus. In addition to the full appli
ation ruleof Se
tion 2.4, we have the full abstra
tion rule(x1 : A1; : : : ; xn : An)
 : C�x1; : : : ; xn !
 : A1 ! : : :! An ! CFor syntax editing, we
ontinue to use the zipper. Nodes are extended to
ontainthe a
tual bindings. Ea
h binding shows the type of the variable, whi
h makes iteasy to look up the type. For instan
e, a tree for the logi
al formula8x:x = xlooks as follows:

14 A. RantaUniv : Prop(x : Exp) Equal : Propx : Expx : Exp4 Dependent typesDependent types are types that depend on obje
ts. We will give examples of twouses of them: �rst a grammar that de�nes the type
he
ker of a small programminglanguage, and se
ondly a grammar of proofs, whi
h leads to the notion of proof-
arrying do
uments. 4.1 Typed expressionsThe following judgements de�ne a
ategory Typ of datatypes, and the
ategoryExp of expressions, whi
h depends on Typ.
at TypExp TypExamples of datatypes are integers, booleans, and lists:fun Int, Bool : TypList : Typ ! TypTo de�ne expressions, we use generalized fun
tion types where the value type de-pends on the argument9:fun Zero : Exp IntTrue : ExpBoolNil : (A : Typ) ! ExpACons : (A : Typ) ! ExpA ! Exp (ListA) ! Exp (ListA)append : (A : Typ) ! (; : Exp (ListA)) ! Exp (ListA)For example, Cons Int Zero (Nil Int)is a valid syntax tree of type Exp (List Int), whereasCons Int Zero (Cons Bool True (Nil Int))is not a valid tree of any type. The grammar thus expresses not only the synta
ti
well-formedness of the language but also its well-typedness.Noti
e how dependent types de�ne the fun
tions Nil, Cons, and append as poly-morphi
: their Exp arguments
an be expressions of any types, in virtue of the9 In all variable-binding
onstru
tions of GF, the wild
ard
an serve as a bound variable, if thevariable is not used.

Grammati
al Framework 15Typ argument. The same te
hnique is used in monomorphi
 type theory (Nord-str�om et al., 1990) and in the dependently typed programming language Cayenne(Augustsson, 1998). Polymorphism in
on
rete syntax results from argument sup-pression: for instan
e, the Haskell notation for lists is de�ned by the ruleslin Nil = fs = "[℄"gCons x y = fs = x:s++":" ++y:sgappend x y = fs = "(" ++x:s++"++" ++y:s++")"gWhen
ompleted with semanti
 de�nitions,def append (Nil) y = yappendA (Cons a x) y = ConsAa (appendAxy)the grammar de�nes a
omplete parser, pretty-printer, type
he
ker, interpreter,and syntax editor for this little language10.4.2 Curry-Howard isomorphismThe de�nition of type-
orre
t expressions in abstra
t syntax is a fairly simple appli-
ation of dependent types. A more involved one, and originally the main motivationof logi
al frameworks, is to de�ne logi
al
al
uli by formulating inferen
e rules asde
larations of proof fun
tions. The stru
ture is the same as with types and expres-sions: we have a basi
 type Prop of propositions and the dependent type ProofAof proofs of a proposition A. The idea to treat propositions as types of proofs isknown as the Curry-Howard isomorphism. An example is impli
ation �a la Martin-L�of (1984): the formation, introdu
tion, and elimination rules
ome out as follows:fun Impl : Prop ! Prop ! PropImplI : (A;B : Prop) ! (ProofA ! ProofB) ! Proof (ImplAB)ImplE : (A;B : Prop) ! Proof (ImplAB) ! ProofA ! ProofBIf we now want to express formal proofs in natural language, we simply give lin-earization rules that produ
e texts, e.g.lin ImplI AB b = fs = "assume" ++A:s++":"++b:s++":" ++"Hen
e" ++"if" ++A:s++"then" ++B:sgOn the top level of mathemati
al texts, we use a
ategory Text for textual unitssu
h as theorems with or without proofs:fun ThmProof, ThmOmit : (A : Prop) ! ProofA ! Textlin ThmProof Aa = fs = "Theorem:" ++A:s++"Proof:" ++a:s++"QED"gThOmit A = fs = "Theorem:" ++A:s++"Proof:" ++"Omitted:"g10 In GF's parameter system (Se
tion 5), we
ould moreover de�ne a pre
eden
e parameter toregulate the use of parentheses.

16 A. RantaThe typing of these fun
tions for
es the proof in ThmProof really to prove thetheorem; in ThmOmit, a proof must exist even though it is not shown. Thus anyonewho uses the GF syntax editor to build proof texts is for
ed to making them
orre
t.4.3 Proof-
arrying do
umentsBesides mathemati
al texts, dependent types and the Curry-Howard isomorphismare useful for other kinds of texts, to guarantee semanti
 properties. Consider, forinstan
e, texts des
ribing train
onne
tions:To get from Gothenburg to Hamburg, �rst take train 487 to Copenhagen and then
hangeto train 36.The semanti
 well-formedness
onditions for this text are that train 487 runs fromGothenburg to Copenhagen, that train 36 runs from Copenhagen to Hamburg, andthat train 487 arrives at Copenhagen before train 36 leaves. All of these
onditions
an be
on
isely expressed by a grammar with a dependent type TrainAB of train
onne
tions from the
ity A to the
ity B, and a type of proofs of the fa
t that onetrain arrives before another train leaves. New
onne
tions are generated by the rulefun Conne
t : (A;B;C : City) ! (a : TrainAB) ! (b : TrainBC) !BeforeABC a b ! TrainACIt is easy to write a linearization rule for Conne
t generating texts like the exampleabove. Linearization hides the proof of the Before
ondition, but anyone who usesthe GF syntax editor to build the text is obliged to give a proof in order for thetext to be
omplete. We
all this idea proof-
arrying do
uments, with a referen
eto proof-
arrying
ode (Ne
ula, 1997).4.4 Con
rete syntax and dependent typesLittle need be said about the
on
rete syntax of dependent types, sin
e linearizationrules look pre
isely the same as without them. In parsing rules, the arguments ofdependent
ategories are just ignored. The
ontext-free parsing phase thus ignorestype dependen
ies. It a

epts ill-formed expressions su
h as \0 : True : [℄", whi
hthe subsequent type
he
king phase reje
ts.It is possible to improve the performan
e of the GF parser by integrating parsingand type
he
king: errors are then dete
ted at an earlier stage. Some amount ofintegration is ne
essary if the grammar has synta
ti
ally dummy
oer
ion rules likefun
oer
e : Exp Int ! ExpFloat ; lin
oer
ex = x:The
orresponding
ontext-free rule is
y
li
,
oer
e: Exp ::= Exp;and produ
es an in�nity of parse trees, at most one of whi
h is type-
orre
t11.11 Luo and Callaghan (1999) investigate
oer
ion as a
entral phenomenon of informal mathemat-i
al language and suggest an algorithm for resolving it

Grammati
al Framework 174.5 Type
he
king and syntax editing dependent typesType
he
king with dependent types is harder than without them, sin
e it involves
omputation of expressions. For instan
e, a proof that 2 is even is also a proof that1 + 1 is even. In the presen
e of variables and metavariables, moreover, it
annotalways be de
ided if an expression has a given type: whether a proof of Even 2 isalso a proof of Even (1+?) depends on the value of ?. Therefore, what the type
he
ker returns is not a boolean value but a set of
onstraints, whi
h are equalitiesbetween terms. The value True
orresponds to the empty set of
onstraints. Thevalue False
orresponds to the situation where some of the
onstraints is impossible,e.g. 1 = 0 (
f. (Magnusson & Nordstr�om, 1994)).In general,
onstraints
ontain metavariables that appear in di�erent positionsin the tree. Be
ause of this, metavariables have to
arry unique identi�ers; we usesubindexed question marks for this. For instan
e, parsing the expression0 : 1 : [℄in the grammar of Se
tion 4.1
reates an in
omplete term of an in
omplete type:Cons ?0 Zero (Cons ?1One (Nil ?2)) : Exp ?3The type
he
ker
an easily �nd out the following
onstraints:?0 = ?1 = ?2 = Int; ?3 = List ?0In this example, a simple
onstraint-solving me
hanism is enough to automati
allyinstantiate all the metavariables. Su
h is usually the
ase for hidden type arguments
orresponding to polymorphism: the user of an editor does not need to �ll in thesearguments.Even if
onstraints remain unsolved, they
an be helpful in syntax editing. sin
ethey narrow down available
hoi
es. For instan
e, in a menu of re�nements for? : ExpBool, fun
tions whose value type is Exp Int are not shown.Formal rules for dependent types are given in Se
tion 6.2. As type
he
kingalgorithm, we have used the one in (Coquand, 1996), whi
h we have modi�ed sothat it type-annotates terms into trees used by the zipper editor. In addition tobindings, fun
tion body, and value type, as in Se
tion 3.4, the information storedin a node in
ludes the
onstraints
reated when type
he
king that node.5 Extending
on
rete syntaxThe values returned by linearization have so far been strings and re
ords of strings.In this se
tion, we generalize this to re
ords that may also
ontain string-valued�nite fun
tions, tables, as well as parameters. Di�erent
on
rete syntaxes may usedi�erent re
ord types for one and the same type in the abstra
t syntax. This exten-sion is essential to keep abstra
t syntax independent of language-dependent featuressu
h as in
e
tion.

18 A. Ranta5.1 Parameters, tables, and re
ordsA parameter type is a �nite set of parameter values, on whi
h the linearizationof an expression may depend. For example, the type of grammati
al numbers inEnglish has two values: the singular and the plural. Expressions linearized as English
ommon nouns have two forms: e.g. Int has the singular form integer and the pluralform integers.We write param Num = Sg j Plto de�ne the parameter type Num. The typeNum) Stris the type of string-valued tables on Num, and the expressiontable fSg) "integer" ; Pl) "integers"ggives su
h a table in expli
it form. The sele
tion operation (!) is used for applyingtables to arguments:table fSg) "integer" ; Pl) "integers"g ! Pl = "integers"Con
rete syntax assigns to every
ategory in abstra
t syntax a linearization type:for instan
e, the linearization type of CN is given by the judgementlin
at CN = fs : Num) StrgLinearization rules for expressions of the
ategory CN must have this value type.An example of su
h a rule islin Int = fs = table fSg) "integer" ; Pl) "integers"ggIn German,
ommon nouns do not only depend on number, but also on
ase(Nominative, A

usative, Genitive, Dative). The linearization type thus has a two-argument table, whi
h we \
urry" into a table of tables:lin
at CN = fs : Num) Case) StrgIn yet other languages, there may be three numbers (Arabi
 has the dual) or �fteen
ases (Finnish has|well. . .). In
ontext-free (rewrite) grammars, all this variationwould have to be expressed by unrelated rules, whi
h would make it impossible touse a
ommon abstra
t syntax.In addition to parameters that produ
e di�erent forms, expressions may haveparameters as inherent features. For instan
e, German
ommon nouns have a gender(Mas
uline, Feminine, Neuter) asso
iated to them, but not as in
e
tion forms: anynoun inherently has just one gender. Inherent features are expressed by re
ord �eldsin linearization types. Here is an amended rule for German
ommon nouns:lin
at CN = fs : Num) Case) Str ; g : GengThe re
ord linearizing a tree
ontains all linguisti
 information
on
erning theexpression: its in
e
tion table and its inherent features. Su
h information is what

Grammati
al Framework 19we normally �nd in di
tionaries. In grammar, this information is not only neededfor individual words, but for arbitrarily
omplex phrases. For instan
e, in English,when a
ommon noun is modi�ed by an adje
tive, the resulting
omplex
ommonnoun
an still be in
e
ted in number:fun Mod : Adj ! CN ! CNlin Mod F A = fs = table fSg) F:s++A:s ! Sg ; Pl) F:s++A:s ! PlggAll fun rules must have lin rules of mat
hing linearization types. This
an be
he
ked at
ompile time, before the grammar is used. It is also easy to
he
k thatthe rules are
omplete|essentially, that all tables have values for all elements oftheir argument types. Using a type system to prevent run-time errors is one of thekey ideas that GF has inherited from fun
tional programming languages.5.2 Hierar
hi
al parametersParameter types are like data types in Haskell and other fun
tional languages,with the restri
tion that they must be �nite. Hierar
hi
al parameter types arepermitted, and they are, in fa
t, often very appropriate. To give an example, Fren
hverbs, as presented in the authoritative Bes
herelle (1997), have three persons,two numbers, two genders, four (non-
omposite) tenses, and six modes. But thein
e
tion tables display only 51 (non-
omposite) verb forms, not 288, whi
h wouldbe the
ase if the forms were simply
ross-produ
ts of all parameters. The reason isthat many
ombinations do not exist. A natural way of des
ribing this parametersystem is by using parameter types whose
onstru
tors have arguments from otherparameter types. The following system is a straightforward GF formalization of theBes
herelle:12param Nombre = Sg j PlPersonne = P1 j P2 j P3Genre = Mas
 j FemTemps = Pres j Imparf j Passe j FuturTSubj = SPres j SImparfTPart = PPres j PPasse Genre NombreNImper = SgP2 j PlP1 j PlP2VForm = Inf j Indi
TempsNombrePersonne j CondNombrePersonnej Subj TSubj Nombre Personne j Imper NImper j Part TPart12 We have used this type system in a
omplete GF implementation of the Bes
herelle
onjugations;see GF Homepage (Ranta, 2002). Huet (2000) uses CAML datatypes in the same way in hismorphology of Sanskrit.

20 A. Ranta5.3 Dis
ontinuous
onstituentsIn all examples so far, the linearization of a tree has been a re
ord with one prin
ipalstring or string-valued table, stored in a �eld labelled s. Now we
onsider
aseswhere the linearization
onsists of separate parts, whi
h
an
hange order and getother expressions inserted between them. Su
h expressions are
alled dis
ontinuous
onstituents.A famous example of dis
ontinuous
onstituents is German verb phrases. A verbphrase is a
omplex expression
onsisting of a verb and its
omplements, in Englishe.g. loves Mary in John loves Mary. The analysis of a senten
e into a noun phrase(the subje
t) and a verb phrase (the predi
ate) is motivated both by logi
 (Aris-totelian or modern) and by linguisti
 fa
ts su
h as the
onjun
tion John loves Maryand hates Bill. In German, however, the verb phrase (liebt Maria)
annot be foundin all uses of the senten
e (Johann liebt Maria). For instan
e, in the
onditionalwenn Johann Maria liebt, liebt Johann Mariathe verb phrase is used with a reverse word order in the ante
edent, and dissolvedinto two parts in the su

edent. Those linguists who still believe that liebt Maria isa
onstituent of the senten
e, have to treat it as a dis
ontinuous
onstituent.In GF, dis
ontinuous
onstituents are re
ords with more than one string-valued�elds. The German linearization type of verb phrases
an be de�ned aslin
at VP = fs1 : Agr) Str ; s2 : Strg
onsisting of the verb part s1 and the
omplement part s2. The verb part depends onagreement features, su
h as number and person. It re
eives them from the subje
t ofthe senten
e, whi
h has them as inherent features. The senten
e-forming predi
ationrule fun Pred : NP ! VP ! Sis linearized under a three-valued parameter that produ
es di�erent strings fordire
t, inverse, and subordinate senten
es:lin PredN V = fs = table fDir) N:s++V:s1 ! N:a++V:s2 ;Inv) V:s1 ! N:a++N:s++V:s2 ;Sub) N:s++V:s2 ++V:s1 ! N:aggThe
omplementation rule forms a verb phrase from a transitive verb (TV) and anoun phrase: fun Compl : TV ! NP ! VPlin Compl V N = fs1 = V:s ; s2 = N:s ! A

gGiven the noun phrases Johann and Maria and the transitive verb Lieben, we
anform the syntax tree Pred Johann (Compl LiebenMaria)whi
h has a linearization produ
ing three forms: Johann liebt Maria, liebt JohannMaria, and Johann Maria liebt.

Grammati
al Framework 21Parsing dis
ontinuous
onstituents will be explained as a part of the full GFparsing algorithm (Se
tion 7.2). We just noti
e that dis
ontinuous
onstituentsmake it possible to de�ne intri
ate non-
ontext-free languages, su
h asfanbn
n j n = 1; 2; : : :gThis language is de�ned by the
ategory S of the following GF grammar:
at S ; Auxfun exp : Aux ! S ; �rst : Aux ; next : Aux ! Auxlin
at Aux = fs1 : Str ; s2 : Str ; s3 : Strglin expx = fs = x:s1 ++x:s2 ++x:s3g�rst = fs1 = "a" ; s2 = "b" ; s3 = "
"gnextx = fs1 = "a" ++x:s1 ; s2 = "b" ++x:s2 ; s3 = "
" ++x:s3g5.4 Canoni
al GFWe have extended
ontext-free grammars into grammars where linearizations ofsyntax trees are re
ords of tables of grammati
al obje
ts. The operational seman-ti
s of these grammars will be explained in terms of
omputation rules for tablesele
tions and re
ord proje
tions in Se
tion 6.3. From this perspe
tive, linearizationis similar to evaluation in a fun
tional programming language.However, GF has a
omputational model that is simpler than evaluation in fun
-tional language, sin
e it does not involve substitutions for variables. The only vari-ables that are present in the right-hand-side t of a linearization rulelin f x1 : : : xn = tare x1 : : : xn, whi
h stand for the linearizations of the arguments of f . The substi-tution of values for these variables
an be performed in the same way as sele
tionsand proje
tions: as look-up followed by simple repla
ement. Linearization as a wholeis a single inorder traversal of the syntax tree.We will refer to the GF
on
rete-syntax notation so far introdu
ed as
anoni
alGF. In the next se
tion, we will go far beyond
anoni
al GF by adding fun
tionsand pattern mat
hing. This extension is important for the usability of GF. Forthe implementation, however, the important thing is that the ri
h notation
an be
ompiled ba
k into
anoni
al GF. Even though linearization
ould be performeddire
tly as evaluation on the ri
h notation, it is mu
h more eÆ
ient to performpartial evaluation on the grammar and use
anoni
al GF at runtime. Moreover, itis from
anoni
al GF that parsers are derived. Partial evaluation and parsing willbe explained in Se
tion 7.5.5 Abstra
tion me
hanismsLinguists, just like fun
tional programmers, like to work with strong generalizationsand on a high level of abstra
tion. GF makes a

essible to linguists two abstra
tionme
hanisms of fun
tional programming: fun
tion de�nitions and pattern mat
hing.

22 A. RantaFun
tion de�nitions in GF are
alled operation de�nitions to distinguish themfrom the fun judgements of abstra
t syntax. An example is the operation thatprodu
es regular
ommon nouns in English:oper regCN : Tok ! fs : Num) Strg = �
 ! fs = Sg)
 ; Pl)
+"s"g13The linearization rule of the datatype expression Int
an now be
on
isely writtenlin Int = regCN "integer"Pattern mat
hing is used in tables: bran
hes
an be de�ned not only for
onstru
-tor expressions, but also for patterns, whi
h may
ontain variables and wild
ards(). For instan
e, the following table de�nes the English adje
tival modi�
ation ruleby using a pattern variable n for number:lin Mod F A = fs = table fn) F:s++A:s ! nggIt is possible to expand this table into the fully expli
it form shown in Se
tion 5.1;using patterns, however,
aptures the generalization that it is the noun part thatre
eives the number of the whole phrase.Fun
tion types (A ! B) and table types (A) B) have many
ommon proper-ties: both allow
urrying, full and partial appli
ation, and formation by abstra
tion.There are important di�eren
es, however:� Tables, but not fun
tions, are restri
ted to �nite argument types.� Tables, but not fun
tions,
an be formed by
ase analysis.14� Tables, but not fun
tions, are values in
anoni
al GF.The partial evaluation algorithm (Se
tion 7.1) shows in fa
t that� Fun
tions
an always be eliminated from linearization rules.5.6 Resour
e grammarsThe intended use of GF is to build natural-language fragments on top of semanti
models, su
h as mathemati
al theories. This makes it possible to minimize the sizeof grammars and avoid many irrelevant linguisti
 problems. For instan
e, a Fren
hgrammar for mathemati
s does not need to de�ne all the 51 Fren
h verb forms, buttwo is often enough.However, the ad ho
 way of de�ning grammars may lead to dupli
ation of work: ifdi�erent parts of verb
onjugation are needed in di�erent appli
ations, one
annotuse the
onjugation de�ned for one grammar as a resour
e for another grammar.And, of
ourse, this style of grammar-writing favours linguisti
ally unmotivatedsolutions.The idea of resour
e grammars is to de�ne
ommon and unproblemati
 parts of
on
rete syntax|su
h as in
e
tion tables|independently of abstra
t syntax. Using13 We use + instead of ++ between strings to say that they belong to the same token (Tok).14 If the argument type of a fun
tion f is a parameter type,
ase analysis is of
ourse possible inthe form f = �x ! table f: : :g ! x.

Grammati
al Framework 23a resour
e grammar needs some
are, however: a grammar en
oding 51 forms ofone thousand verbs is a heavy tool for a
tually dealing with two forms of ten verbs.When used in a na��ve way, it produ
es enormous runtime systems. What makesresour
e grammars pra
ti
al is type-driven partial evaluation (Se
tion 7.1). Supposewe only need two forms of Fren
h verbs|say, the indi
ative and subjun
tive of thirdperson singular present tense. The linearization type of verbs is thenlin
at Verb = fs : Mode) StrgAssume that we have a resour
e grammar with
omplete forms of
onjugation �a laBes
herelle, in a form likeoper tenir : VForm) Str = twhere VForm is the parameter type with 51 values. When evaluated, t yields thefull table for the verb tenir (
f. Se
tion 5.2). Now, to use obje
ts of this type aslinearizations of verbs in the
ategory Verb, all we need is an interfa
e operationoper useVerb : (VForm) Str) ! fs : Mode) Strg = �t !fs = table fInd) t ! (Indi
 Pres SgP3) ; Sub) t ! (Subj Pres SgP3)ggLinearizations
an then be de�ned
ompa
tly, for instan
e,lin Tenir = useVerb tenirand the result is a two-element table with the forms tient, tienne, sin
e the termis �-expanded with respe
t to the expe
ted linearization type and then evaluated.If some other set of forms is needed, all that has to be
hanged is the de�nition ofthe interfa
e operation useVerb.Resour
e grammars are an obvious way to de�ne morphology and lexi
on, andthey
an often be
ompiled from existing resour
es or
reated by using general-purpose programming languages. But the idea also makes sense for syntax. Forinstan
e, the German linearization types for senten
es, noun phrases, verb phrases,and transitive verbs, and the predi
ation and
omplement rules (Se
tion 5.3)
anbe written as operations:15oper S : Type = fs : Ord) StrgNP : Type = fs : Case) Str ; n : AgrgVP : Type = fs1 : Agr) Str ; s2 : StrgTV : Type = fs : Agr) StrgPred : NP ! VP ! S = : : :Compl : TV ! NP ! VP = : : :15 If the linguist prefers to write her grammar using fun,
at, lin, and lin
at, as in Se
tion 5.3,the oper de�nitions
an be extra
ted automati
ally from them.

24 A. RantaMore fun
tions
an be de�ned in terms of these basi
 operations:Pred1 : VP ! NP ! S = �F; x ! Pred x FPred2 : VP ! NP ! NP ! S = �F; x; y ! Pred x (Compl F y)The writer of an appli
ation grammar for e.g. mathemati
s
an use these operationswithout knowing anything about German word order and agreement. If she hasde
ided that propositions are linearized as S, one-pla
e predi
ates as VP, and two-pla
e predi
ates as TV, all she has to know is whi
h verbs (from the resour
egrammar) are used for ea
h predi
ate16. For instan
e, to linearize the one-pla
e
onvergen
e predi
ate and the two-pla
e interse
tion predi
ate, she writeslin Converge = Pred1 konvergierenInterse
t = Pred2 s
hneidenIn this way, a division of labour is a
hieved between authors of resour
e grammars,who are experts in linguisti
 rules, and authors of appli
ation grammars, who areexperts in the domain of appli
ation.6 The GF languageThis se
tion gives a
on
ise de�nition of the GF formalism. The framework-levelnotions of type
he
king and evaluation are spe
i�ed by inferen
e rules. The nota-tion we use is exa
tly the same as the notation re
ognized by the GF parser, withthe exeption of a handful of non-ASCII symbols: in ASCII-written GF sour
e
ode,we repla
e � by \, ! by ->, and) by =>.176.1 Grammars and judgementsA GF grammar is a sequen
e of judgements. Judgements are divided into two sorts:those of abstra
t syntax and those of
on
rete syntax. Figure 1 shows the forms ofjudgement used in GF grammars, together with their verbal readings.Every form of judgement has a keyword (su
h as
at, param). Every judgementends with a semi
olon (;), whi
h we usually omit in typeset text, where we havea

ess to layout. Using the semi
olon (or layout) makes it possible to omit keywords:on
e a keyword appears in the
ode, it is read as the �rst word of every semi
olon-separated judgement, until a keyword is en
ountered again.The forms of judgement shown in Figure 1 are the ones that may appear in GFgrammars. On the metalevel, we also use judgements of the formsA : Type A is a typea : A a is an obje
t of type Aa = b a is de�nitionally equal to b16 In
luding adje
tives as possible linearizations of predi
ates would not be a problem: theadje
tive-verb distin
tion
ould be hidden in slightly more general linearization types.17 Some GF stru
tures that are supported by the a
tual implementation are left out, sin
e we
onsider them experimental; we refer to do
umentation in (Ranta, 2002) for su
h features.

Grammati
al Framework 25Abstra
t syntax.
at C � C is a
ategory depending on the
ontext �fun f : A f is a fun
tion of type Adef a = b a is de�ned as bdata C = f1 j : : : j fn C has the
onstru
tors f1; : : : ; fnCon
rete syntax.param P = C1 �1 j : : : j Cn �n P is a parameter type with the
onstru
torsC1 with
ontext �1, . . . , Cn with
ontext �nlin
at C = L C has the linearization type Llindef C = t C has the default linearization tlin f = t f has the linearization fun
tion toper h : T = t h is an operation of type T , de�ned as tSynta
ti
 sugar: omitting keywords.key J ; : : : ; K �� key J ; : : : ; key KFig. 1. Forms of judgement in GF.with their usual Logi
al Framework meanings (in e.g. (Nordstr�om et al., 1990)).6.2 Abstra
t syntax6.2.1 Categories, types, and fun
tionsJudgements of
at and fun forms are used for building basi
 types and obje
ts.The
at judgement
at C �presupposes that � is a
ontext, i.e. a sequen
e of variable de
larations(x1 : A1) � � � (xn : An)where Ai : Type (x1 : A1) � � � (xi�1 : Ai�1) for every i = 1; : : : ; n. The ruleof basi
 type formation (Figure 2) tells how types are formed from a
ategory byinstantiating the
ontext. If n = 0, the
ontext is empty, and C is itself a type.The fun judgement fun f : Apresupposes that A is a type. It generates an obje
t f of type A, to whi
h the rulesof appli
ation and abstra
tion apply in a

ordan
e with the type A, as well as the� and �
onversion rules. These rules are shown in Figure 2. They are more or lessthe standard rules of logi
al frameworks with dependent types, su
h as (Nordstr�omet al., 1990).Synta
ti
 sugar in Figure 3 is of two opposite kinds: variable elimination and typefa
torization. As usual in dependently typed languages, variables
an be eliminatedfrom
ontexts and fun
tion types whenever there are no dependen
ies on them.The resulting notation is similar to simply typed languages, su
h as Haskell. On

26 A. RantaBasi
 type formation.
at C (x1 : A1) � � � (xn : An) a1 : A1 : : : an : An(x1 := a1; : : : ; xn�1 := an�1)C a1 : : : an : TypeBasi
 obje
t formation. fun f : Af : AFun
tion type formation, appli
ation, and abstra
tion.A : Type (x : A)B : Type(x : A)! B : Type f : (x : A)! B a : Af a : B(x := a) (x : A)b : B�x! b : (x : A)! B� and �
onversion. (�x! b)a = b(x := a)
 : (x : A) ! B
 = �x! (
 x)De�nition expansion.f a1 : : : an = t
1 : : :
nfor the �rst def f p1 : : : pn = t su
h that p1<
1>a1; : : : ; pn<
n>anFig. 2. Rules for types and obje
ts in abstra
t syntax.
Variable elimination.(: A)� �� (x : A)� if � does not depend on xA � �� (: A)�(: A)! B �� (x : A)! B if B does not depend on xA! B �� (: A)! B� ! b �� �x! b if b does not depend on xFa
torization. fun f; : : : ; g : A �� fun f : A ; : : : ; g : A(x; : : : ; y : A) �� (x : A) � � � (y : A)(x; : : : ; y : A)! B �� (x : A)! � � � ! (y : A)! B�x; : : : ; y ! b �� �x! � � � ! �y ! bFig. 3. Synta
ti
 sugar for abstra
t syntax.the other hand, the use of variables allows type fa
torizations that are not possiblein Haskell. For instan
e, the following abbreviation is useful if A is
omplex:(; ; : A)! B �� A! A! A! B:

Grammati
al Framework 276.2.2 Normal forms of abstra
t syntax types and obje
tsThe type of any fun fun
tion f has the form(x1 : A1)! � � � ! (xn : An)! Awhere A is a basi
 type C t1 : : : tm where C is a
ategory. With referen
e to thisform, we say that A1; : : : ; An are the argument types of f , that A is its value type,and that C is its value
ategory. The full appli
ation of f has the formf a1 : : : anwhose type is A(x1 := a1 : : : xn := an). A term of a fun
tion type is in �� normalform, if it is an abstra
tion �z1 ! � � � ! �zn ! band b is an appli
ation of a
onstant or a variable or a metavariable, with allarguments in �� normal form. We
an use the � and �
onversion rules to bringany well-typed term into this form.186.2.3 MetavariablesThere is an in�nite supply of metavariables?0; ?1; ?2; : : :whi
h
an be terms of any type. Metavariables are generated in parsing and inintera
tive editing, and they do not appear in GF grammars. Sin
e they are gen-erated dire
tly in �-expanded form �x1; : : : ; xm ! ?k, the metavariable ?k itselfhas always a basi
 type C a1 : : : an.6.2.4 De�nitionsA judgement of the form data C = f1 j : : : j fnpresupposes that C is a
ategory and that f1; : : : ; fn are fun fun
tions, su
h thatthe value
ategory of ea
h fi is C. What the judgement says is that f1; : : : ; fnare
onstru
tors of the
ategory C. Like in ALF (Magnusson & Nordstr�om, 1994),
onstru
tors
an be added in
rementally, by new data judgements.A judgement of the form def f p1 : : : pm = dpresupposes that f is a fun fun
tion but not a
onstru
tor, and that d is an obje
tof type determined by the types of f and p1; : : : ; pm19. The arguments p1; : : : ; pm18 Thus a fun
tion f alone is a term in normal form only if its type is a basi
 type: in the general
ase, the normal form of the term f is �z1 ! � � � ! �zn ! f z1 : : : zn.19 Cf. the de�nition of pattern
ontexts in Figure 6, modi�ed for dependent types.

28 A. Rantaare patterns, i.e. terms formed from variables, the wild
ard , and
onstru
tors.Those def judgements that have one and the same f form the impli
it de�nitionof that f . They determine how appli
ations of f are
omputed by using patternmat
hing. Mat
hing is performed in the order in whi
h the equations appear in thegrammar, and the patterns may overlap; the pattern-mat
hing rules are the sameas the ones for
on
rete syntax in Figure 6.Fun
tions f that are neither
onstru
tors nor de�ned impli
itly are primitivenotions. The lexi
al rules of GF make no distin
tion between
onstru
tors, de�nedfun
tions, and primitive notions.6.3 Con
rete syntax types and expressions6.3.1 Tokens and stringsThe type Str, informally
alled \strings", is a
tually a type of lists of tokens, whi
hare obje
ts of type Tok. Tokens in normal form are quoted strings ("foo"). Theagglutination t + u of two tokens is also a token. Token lists are built from theempty list [℄ and from tokens by means of
on
atenation ++ (Table 4).We treat Tok and Str as abstra
t types, whi
h
an be instantiated by any typesthat support the aforementioned methods. A simple model is one in whi
h tokensare strings and token lists are lists of strings. In this model, + is string
on
atenationand ++ is list
on
atenation. Expressions for tokens
an also be used as expressionsfor singleton token lists, and are thus overloaded. 206.3.2 Parameters and parameter typesA parameter type (PType) P is de�ned by a parameter de
larationparam P = C1 �1 j : : : j Cn �nwhere ea
h �i is a parameter
ontext, i.e. a sequen
e P1 : : : Pm of parameter types.The parameter de
laration introdu
es the parameter
onstru
tors C1; : : : ; Cn, whi
h
an be used as fun
tions from their parameter
ontexts to P .The parameter de
larations of a grammar may not be re
ursive, nor mutuallyre
ursive. As a
onsequen
e, every parameter type P is �nite, and we
an form thelist of all parameter values of type P ,VP = [1P ; 2P ; : : : ; np℄generated by a left-to-right enumeration of the parameter values of type P 21.20 Another model of tokens are word des
riptions obtained from a morphologi
al analyser, e.g.\point+Noun+Pl" instead of \points". This demands separate morphology passes before parsingand after linearization, but is an eÆ
ient way to implement parsing when the lexi
on is large.21 This is similar to the derivation of Enum
lass instan
es in Haskell, but more powerful, sin
e itapplies not only to enumerated types but also to disjun
tive and
onjun
tive types.

Grammati
al Framework 29The types of tokens and strings and parameter types.Tok; Str; PType : TypeTokens, the empty string, tokens as strings, agglutination, and
on
atenation."foo" : Tok [℄ : Str t : Tokt : Str t; u : Tokt+ u : Tok s; t : Strs++t : StrParameter types and
onstru
tors.param P = : : :P : PType P : PTypeP : Type param P = : : : j C P1 : : : Pn j : : :C : P1 ! : : : ! Pn ! PRe
ord type formation. T1; : : : ; Tn : Typefr1 : T1 ; : : : ; rn : Tng : TypeRe
ord formation and proje
tion.t1 : T1 : : : tn : Tnfr1 = t1 ; : : : ; rn = tng : fr1 : T1 ; : : : ; rn : Tng
 : f: : : ; r : T ; : : :g
:r : TProje
tion
omputation. f: : : ; r = t; : : :g:r = tTable type formation. P : PType T : TypeP) T : TypeTable formation and sele
tion.t1 : T �P p1 : : : tn : T �P pn [p1; : : : ; pn exhaustive for P ℄table fp1) t1 ; : : : ; pn) tng : P) T
 : P) T p : P
 ! p : TSele
tion
omputation.table f: : : ; p) t; : : :g ! v = t
 for the �rst p su
h that p<
>vLo
al de�nition. t : T (x : T)e : Elet fx : T = tg in e : E let fx : t = Tg in e = e(x := t)Global de�nition. oper h : T = th : T oper h : T = th = tFig. 4. Types and obje
ts of
on
rete syntax

30 A. RantaCon
atenation of tokens.["foo : : : bar"℄ �� "foo" ++ : : :++"bar"Fa
torization.f: : : ; r; : : : ; s : T ; : : :g �� f: : : ; r : T ; : : : ; s : T ; : : :gf: : : ; r; : : : ; s = t; : : :g �� f: : : ; r = t; : : : ; s = t; : : :glet fx1 : T1 = t1; : : : ;xn : Tn = tng in e �� let fx1 : T1 = t1gin: : : let fxn : Tn = tng in eCase expression.
ase e of f� � � g �� table f� � � g ! eFig. 5. Synta
ti
 sugar for
on
rete syntax.6.3.3 Re
ord types and re
ordsThe rules for labelled re
ords in Figure 4 are
ompletely standard. Re
ord labelshave lo
al s
opes, and their name spa
e is distin
t from identi�ers. For a re
ord r tobe of the type R, it is enough that every label of R is given a value of appropriatetype in r. The order of �elds does not matter, nor do super
uous �elds in r. Innotation, �elds in re
ord types and re
ords
an be fa
torized.6.3.4 Table types, tables, and pattern mat
hingTables of type P) T are �nite fun
tions from P to T . The argument type Pmust be a parameter type. The normal form of a table is a
omplete enumerationof argument-value pairs:table f1P) t1 ; : : : ; nP) tngFor
onvenien
e, and to
apture generalizations, the use of patterns is permittedas well.22 There are three kinds of patterns, as shown in Figure 6. The mat
hingrelation p<
>v\the pattern p mat
hes the value v with the substitution
", is used in Figure 6 tode�ne the
omputation of sele
tions from tables with patterns. To test whether alist of patterns is exhaustive for a given type P , we just test whether all values oftype P are mat
hed by them.Patterns are mat
hed from left to right, and they are allowed to overlap, like inHaskell. Nonlinear patterns are forbidden (i.e. patterns where a variable x o

ursmore than on
e). It is in virtue of this that pattern
ontexts and substitutions
anbe simply
on
atenated.22 Tables with patterns are synta
ti
ally similar to fn expressions in ML.

Grammati
al Framework 31Patterns: wild
ard, variable, and
onstru
tor.x C p1 : : : pnPattern
ontexts. �P = () �Px = (x : P)�P (C p1 : : : pn) = �A1p1 � � ��Anpn if C : A1 ! : : : ! An ! APattern mat
hing rules.<>v x<(x := v)>v p1<
1>v1 : : : pn<
n>vnC p1 : : : pn<
1 : : :
n>C v1 : : : vnFig. 6. Patterns and pattern mat
hing.If the argument type P of a table t is known, the table
an be expanded toeliminate patterns, by going through the list of all parameter values of P :t = table f1P) t ! 1P ; : : : ; nP) t ! nP gIt is often handy to use
ase expressions as synta
ti
 sugar for sele
tions, asshown in Figure 5.6.3.5 Fun
tions, operation de�nitions, and lo
al de�nitionsCon
rete syntax uses the same rules for fun
tions and fun
tion types as abstra
tsyntax (Figure 2). Sin
e fun
tions are not part of
anoni
al GF (Se
tion 5.4), the�� normal form plays no role in
on
rete syntax.Fun
tions are mostly introdu
ed in operation de�nitions, judgements of the formoper h : T = twhere T is any type (in the sense of
on
rete syntax) and t : T . Lo
al de�nitions(let expressions) have a similar syntax, but they are lo
al to expressions.The oper de�nitions of a grammar may not be (mutually) re
ursive. A
on-sequen
e of this is that a de�ned operation h
an always be eliminated from agrammar by repla
ing it with its de�nition t; this pro
edure is known as inlining.6.3.6 Type variablesGF does not have polymorphism. Expli
it type variables and dependent types areused instead. The type of these variables is Type; there is for the time being nostrati�
ation. An example is the
ip fun
tion (familiar from Haskell):oper
ip : (a; b;
 : Type)! (a! b!
)! b! a!
 = � ; ; ; f; x; y ! fyxAnother example is a lo
al type de�nition, whi
h is not possible in Haskell:let fS : Type = fs : Strgg in S ! S ! S ! S

32 A. Ranta6.4 Con
rete syntax for abstra
t syntaxA mathemati
al view of a GF grammar is that the abstra
t syntax de�nes a freealgebra of syntax trees, and the
on
rete syntax de�nes a homomorphism fromthis algebra into a system of
on
rete-syntax obje
ts. Mainly for the purpose ofderiving parsers, we restri
t
on
rete-syntax obje
ts to
ertain spe
ial forms ofre
ords,
aptured by the notion of a linearization type.6.4.1 Linearization typesA linearization type L is a re
ord type usable as value type of linearization. It musthave one or more �elds whose types are Str-valued tables, the other �elds havingparameter types. More pre
isely,� A string type is either Str or P) S where S is a string type.� If S is a string type, fs : Sg is a linearization type.� If L is a linearization type, so is the type resulting from adding a �eld r : Twhere T is a parameter type or a string type.To simplify the generation of a parser, we require that all and only the string typevalued �elds are labelled s1; s2; : : :, or s23.When giving a linearization rule to a fun
tion whose arguments have fun
tiontypes, we need to know what the linearization type of su
h a type is. The following
lauses de�ne this notion indu
tively for all types:(C a1 : : : an)o = L, if lin
at C = L((x1 : A1)! (xn : An)! A)o = fv1 : Str; : : : ; vn : Strg �� AoIn the latter
lause, we assume that the fun
tion type is in normal form, i.e. thatA is a basi
 type. To form the linearization type of a fun
tion type, we thus addto the linearization type of the value type one �eld of type Str for ea
h argumenttype. The idea is to introdu
e a �eld for ea
h variable symbol. If n = 1, we followthe
onvention of adding v : Str without a subs
ript. To avoid
lashes with thesystem-generated labels v; v1; v2; : : :, for bound variables, these labels are forbiddenin user-de�ned re
ord types.6.4.2 Linearization type de�nitions and linearization rulesA linearization type de�nition for a
ategory C is a judgement of the formlin
at C = Lwhi
h presupposes that L is a linearization type. A notational
onvention allows usto omit the lin
at judgement of a
ategory C if the linearization type is fs : Strg.A linearization rule for a fun
tionfun f : (x1 : A1)! (xn : An)! A23 An alternative would be to type-annotate the re
ord �elds.

Grammati
al Framework 33Pattern variables in linearization rules.lin f x1 : : : xm = t �� lin f = �x1; : : : ; xm ! tThe pattern rule format.pattern f x1 : : : xn = t1 ++ : : : ++ tm �� lin f x1 : : : xn = fs = t01 ++ : : : ++ t0mgwhere "foo"0 = "foo" and x0i = xi:s.Fig. 7. Synta
ti
 sugar for linearization.is a judgement of the form lin f = twhi
h presupposes that t : Ao1 ! : : : ! Aon ! AoA
on
rete syntax is
omplete w.r.t. an abstra
t syntax, if it
ontains a lin
at judge-ment for every
at judgement, and a lin judgement for every fun judgement.The pattern notation for linearization rules (Se
tion 2)
an be used if the ar-gument and value types of f all have the linearization type fs : Strg. A patternelement ti is then either a token or one of the variables xj (see Figure 7).6.4.3 Default linearizationTo linearize symbols not de�ned in the grammar (variables and metavariables),GF uses default linearization. It is a fun
tion that takes a string to an obje
t ofa linearization type. The default linearization of a
ategory C is de�ned by thejudgement lindef C = twhi
h presupposes t : Str! Co:If the grammar does not
ontain a judgement of this form, a default default lin-earization is used: for a string t, it is a re
ord where every �eld of a string type hasuniformly the value t, and every parameter �eld of type P has as its value 1P , i.e.the �rst value of type P .7 Partial evaluation and parsingWhile the linearization and type
he
king algorithms follow straightforwardly fromthe semanti
s of GF, there are two other algorithms that are
ru
ial for most pra
-ti
al appli
ations of GF, and whi
h are nontrivial: partial evaluation and parsing.Partial evaluation takes a GF grammar into a form by whi
h linearization
an beperformed with the minimum of interpretational overhead. The same form is thebasis of parsing, sin
e it permits the derivation of a �nite set of
ontext-free rules.

34 A. Ranta7.1 Partial evaluationPartial evaluation is evaluation at
ompile time, leaving evaluation at runtime lesswork to do (Jones et al., 1993). A partial evaluator takes a program and
omputes itas far as it
an. In general, the result is not fully evaluated, sin
e some input of theprogram is unknown. Moreover, partial evaluation
an be performed in di�erentways, e.g. optimizing either the time needed to run the runtime program or thespa
e needed to store it.What we do in GF is evaluate linearization rules into the
anoni
al form ofSe
tion 5.4. This operation does not always optimize spa
e: although it sometimesdoes redu
e spa
e, it may also do quite the
ontrary. However, the result is alwaysa time-optimized runtime grammar.Given a rule pairfun f : (x1 : A1)! : : :! (xn : An)! A ; lin f = twe �-expand the term t with respe
t to a sequen
e of argument variables, that is,variables standing for arguments of the fun
tion f . We denote argument variablesby pairs <C; i> , where C is the value
ategory C of the argument type Ai, andi tells that it is the i'th argument. Showing the
ategory will be useful in parsergeneration. The result is a linearization rulelin f = �<C1; 1>; : : : ; <Cn; n> ! fr1 = t1 ; : : : ; rm = tmgwhere further �-expansions w.r.t. the linearization type of A have produ
ed there
ord form. Ea
h tj (j = 1; : : : ;m) is either an expression of a basi
 type (Str ora parameter type) or a fully expanded tabletable f1P) u ! 1P ; : : : ; nP) u ! nP gwhere ea
h term u ! kP is evaluated further by inlining oper and let
onstants,�-expanding re
ords and tables, and applying the evaluation rules for proje
tions,sele
tions, and fun
tion appli
ations. Sometimes we also need transformations anal-ogous to the elimination of maximal segments in proof theory (Prawitz, 1965). Themost important su
h transformation is(table fp) f ; : : : ; q) gg ! e) a B table fp) f a ; : : : ; q) g ag ! epushing an appli
ation inside a table. The transformation is needed if the sele
-tion
annot be
omputed: su
h is the
ase if e depends on an argument variable.There are similar rules for proje
tion and sele
tion. The eliminability of fun
tionappli
ations is analogous to the subformula property of intuitionisti
 propositional
al
ulus: sin
e the type of the linearization term
onsists solely of re
ords, tables,strings, and parameters, no terms of fun
tion types need appear in it.After partial evaluation, the only remaining unknown input in linearization rulesare the argument variables. Be
ause of
ompositionality, they
an be treated aspointers to the linearizations of subtrees.

Grammati
al Framework 357.2 ParsingIn Se
tions 2.5 and 3.3, the parsing problem of simpli�ed versions of GF wereredu
ed to parsing in
ontext-free grammars. We will now do the same to full GF.We use the partially evaluated form of linearization fun
tions, and
onsider the�elds that are of string types. Ea
h �eld is an n-pla
e table (n � 0) that has�nitely many possible values u of type Str. We
all these values u the produ
tionsof the fun
tion f . We derive a �nite set of
ontext-free rules from every produ
tion:starting from a linearization rulelin f = �<C1; 1>; : : : ; <Cn; n> ! r
onsider an sk-labelled (and thus Str-valued) �eld of r. Let u be a produ
tion
oming from this �eld. The
ontext-free rules generated from u have the formfp: Ck ::=
where the value
ategory Ck stands for the k'th part of C, and the right-hand side
 is a sequen
e of
ontext-free items. The sequen
e
 is
onstru
ted from elementsof the set u�, whi
h is de�ned indu
tively on the stru
ture of the produ
tion u:Terminal: s� = fsgNonterminal: (<C; i> :sj)� = fCji gBinding: (<C; i> :vj)� = fVarjigCon
atenation: (a++b)� = f

0 j
 2 a�;
0 2 b�gSele
tion: (a ! p)� = a�Table: (table fp1) b1; : : : ; pk) bkg)� = k[i=1 b�iNow, ea
h sequen
e in the set u� has the form
1 : : :
mwhere ea
h
l is either a terminal s or a
ategory symbol Cji indexed by the argu-ment position i and the dis
ontinuous-part number j. This is not yet a sequen
e of
ontext-free items, be
ause of the presen
e of the position numbers: these numbersare needed for pro�les. However, the formation of
ontext-free items
01 : : :
0mis just simpli�
ation of nonterminals: ea
h Varjj be
omes Var, and ea
h Cji be
omesCj . The pro�le p is
onstru
ted by
olle
ting, from the subsequen
e of nonterminalsin
1 : : :
m, the list of positions for ea
h argument pla
e of f , in the same way asin Se
tion 3.3.Pro�les p in rule labels fp were earlier just an optimization removing the needto look up f in the grammar when postpro
essing parse trees. When parametri
variation is introdu
ed, pro�les be
ome indispensable: the arguments of f may bepla
ed to di�erent positions when the tree is linearized under di�erent parameters.Thus it would not be enough to look up f to restore the order of
onstituents.When restoring syntax trees from parse trees, we do the same as in Se
tions 2.5

36 A. Rantaand 3.3. Dis
ontinuous
onstituents bring nothing new to this, sin
e they
an betreated as redupli
ations. What typi
ally happens in these redupli
ation instan
es isthat di�erent parts have metavariables in di�erent pla
es, so that no
on
i
ts arisewhen the �nal result is formed by unifying the parts. For example, the Germangrammar of Se
tion 5.3 generates the
ontext-free grammar (with pro�les thatignore bindings, whi
h are empty)Pred[[1℄;[2;3℄℄: S ::= NP VP1 VP2Pred[[2℄;[1;3℄℄: S ::= VP1 NP VP2Pred[[1℄;[2;3℄℄: S ::= NP VP2 VP3Compl[[1℄;[℄℄: VP1 ::= TVCompl[[℄;[1℄℄: VP2 ::= NPThe senten
e Johann liebt Maria has the initial parse treePred[[1℄;[2;3℄℄ Johann (Compl lieben ?) (Compl ? Maria)whi
h uni�es to the �nal treePred Johann (Compl lieben Maria)Sin
e the formation of
ontext-free rules suppresses all parameters, the parseris over-tolerant. It
ould, for instan
e, re
ognize they walks as a valid English sen-ten
e. A stri
t parser is obtained by �ltering away all those parse trees whoselinearization does not mat
h the input string. This arrangement of parsing has thedisadvantage of being potentially ineÆ
ient: the number of reje
table parses
anbe exponential24. Its advantages are the simpli
ity of implementation and that itgives, as by-produ
t, grammar
orre
tion: we
an use tolerant parsing followed bylinearization to
orre
t they walks into they walk. Parsing via
ontext-free grammarsis known as o�-line parsing in the
ontext of uni�
ation grammars: the alternativeis to perform uni�
ation at ea
h
onstru
tion step of the syntax tree.7.3 The expressive power of GFThe expressive power of a grammar formalism is often
hara
terized by its weakgenerative
apa
ity|the
lass of sets of strings (in Chomsky hierar
hy) it is
apableof generating. Even though the fo
us in GF is on strong generative
apa
ity (thetrees it assigns to strings), its pla
e in Chomsky hierar
hy is a meaningful question.In a trivial sense, GF is in the
lass 0 of unlimited languages, sin
e we
ande�ne the universal language U of strings over any �nite alphabet and en
ode anypredi
ate P on U in the abstra
t syntax as a type of proofs. The rule pairfun f : (x : U)! P x! S ; lin f x y = xde�nes a string language S whi
h is unde
idable if P is. This
onstru
tion is based24 Or even in�nite, if
y
li
 rules are present.

Grammati
al Framework 37on the suppression of an argument in linearization. However, sin
e parsing of sup-pressed arguments is solved by introdu
ing metavariables, it remains a meaningfulquestion what happens if we
onsider GF without suppression. We have already seenthat GF is more powerful than the
lass 2 of
ontext-free languages (Se
tion 2).GF is not just mildly
ontext-sensitive like e.g. TAG (Joshi, 1985), sin
e GF
ande�ne the double
opy language fw ew ew j w 2 fa; bg�g: The pre
ise lo
ation ofGF-without-suppression is an open question.8 The implementation of GFAbove we have des
ribed GF as a language of its own, independently of implemen-tation. This des
ription is partly an abstra
tion from earlier implementation work,partly a spe
i�
ation followed in later work. In this se
tion, we will give an outlineof the implementation and some problems that we have en
ountered in it.8.1 Overview of the
odeThe Haskell implementation of GF (Version 1.0) has 12k lines of sour
e
ode in 95modules. The main parts of the
ode are the following:� Grammar
ompiler: lexer, parser, type
he
ker, partial evaluator, parser gen-erator.� Command line interpreter: fun
tions to read grammar �les and use grammarsin bat
h mode.� Syntax editor: fun
tions to edit GF obje
ts intera
tively.The syntax editor is based on an abstra
t
ommand language built upon a zipper,and it
an be used through di�erent user interfa
es: we have a line-based editor, agraphi
al editor written in Fudgets (Carlsson & Hallgren, 1998), an experimentalspee
h-based editor (Ranta & Cooper, 2001), and a Java GUI
lient
ommuni
atingwith a GF server via an XML-based proto
ol.8.2 The use of HaskellHaskell was
hosen as implementation language for two reasons: we found it to be agood general-purpose programming language (parti
ularly good for implementing
ompilers for fun
tional languages), and we wanted to
onne
t smoothly with someother programs written in Haskell, in parti
ular, the proof editor Alfa (Hallgren,2000). Some of the
ode was translated from earlier SML programs; in general, wedid not want to exploit the laziness of Haskell in any essential way25. Neither did weuse Haskell's impure features su
h as stri
tness
ags. Monads (IO, error, state) areused heavily, and some
lasses are de�ned to simplify fun
tion names. GF
onforms25 There is one single point where laziness would be useful: to treat in�nite lists of parse treesarising in
y
li
 grammars (Se
tion 2.5).

38 A. Rantato the Haskell 98 standard (Peyton Jones & Hughes, 1999), and
an be
ompiledwith all standard
ompilers and interpreters, on all major operating systems26.8.3 Performan
eThere are two demanding
omponents in GF: grammar
ompilation and obje
t-language parsing. The parser of grammars was
reated using the Happy parsergenerator (Marlow, 2001), and it performs well. If the grammar is
lose to
anoni
alform, type
he
king and partial evaluation together take less time than parsing27.However, if the grammar makes heavy use of fun
tions and pattern mat
hing, partialevaluation may take ten times longer than parsing. Some heuristi
s have helped
onsiderably, su
h as topologi
ally sorting all oper de�nitions and
ompiling themin dependen
y order, ignoring unused operations. Of
ourse, on
e a grammar isready, the
ompiled version
an be saved in a �le for rapid reuse.The ineÆ
ien
y of obje
t-language parsing is partly due to the inherent
om-plexity of general-purpose
ontext-free parsing algorithms28. This
an be helped inthe spe
ial
ase of LALR(1) by using Happy parsers, whi
h
an be automati
allygenerated from GF. More often, however, the bottlene
k is postpro
essing. To solvethis problem, postpro
essing would have to be integrated in the �rst parsing phase,using e.g. the semanti
 a
tions of Happy or some form of attribute or uni�
ationgrammar. This is a resear
h problem rather than an implementation issue.8.4 A

essing GFUsers who do not write grammars themselves typi
ally use GF via the graphi
alintera
tive editor. For grammar developers, and writers of bat
h programs, there isa
ommand language and a shell, also permitting s
ripts. For instan
e, the followings
ript imports an English and a Fren
h grammar, reads the �le enter.txt, parsesit as an English text, and linearizes the resulting tree in Fren
h:i alarm.Eng.gfi alarm.Fra.gfrf enter.txt | p -lang=Eng | l -lang=FraHaskell programmers
an a

ess GF through an API (Appli
ation Programmer'sInterfa
e) module. It
ontains both default and
ustomizable versions of parsing,linearization, and translation fun
tions. This makes it possible to in
lude GF fun
-tionalities and use GF grammars in other Haskell programs.A library of ma
ros is provided for
reating GF grammars by Haskell programs.One way of using these ma
ros is to de�ne translations from other grammar formats26 Sin
e the Fudgets library (Carlsson & Hallgren, 1998) requires the X window system, the JavaGUI is the only graphi
al interfa
e that works on Mi
rosoft Windows.27 Parsing a 22k-line grammar with a Swedish resour
e lexi
on takes 4 se
onds on a 1.5 GHzPentium 4 with RedHat Linux 7.1; the rest of the
ompilation of this
lose-to-
anoni
al grammartakes 3 se
onds.28 The time they take is
ubi
 in the length of the input string.

Grammati
al Framework 39to GF. For instan
e, BNF and EBNF
an be used as input formats. Another use of
ode generation is to bypass the partial evaluator of GF: make all generalizationsand abstra
tions in the Haskell
ode, and generate
anoni
al GF dire
tly. The nextstep from this idea would be to de�ne GF as an embedded language (Hudak, 1996).However, we prefer to see GF as a language of its own, whi
h
an be used andreasoned about independently of implementation language. Moreover, sin
e GFhas dependent types, it is not possible to rely on
ode generated from Haskell: atleast a type
he
ker would in any
ase have to be written.9 Some appli
ations of GFGF grammars have been written for fragments of at least 20 natural languages andmany formal languages. Most of these grammars serve the theoreti
al purpose ofverifying that GF
an express a parti
ularly intri
ate grammati
al rule, or formalizethe semanti
s of some spe
i�
 appli
ation. The following list mentions some appli-
ations that have passed the level of �rst experiments and be
ome independentproje
ts.Proof text editors. These are systems in whi
h formal proofs are intera
tively
onstru
ted in type theory and at the same time viewed as texts in natural lan-guage. Via a parser, natural language input is also possible. The system is extensibleto user-de�ned
onstants by means of user-de�ned linearization rules; if a rule isnot given, a default linearization is generated. Users
an also extend it to newnew natural languages by writing GF grammars for the
on
rete syntax. Two im-plementations of proof text editors have been made in GF: one that works as aplug-in in the proof editor Alfa (Hallgren & Ranta, 2000), with support for En-glish, Fren
h, and Swedish, and another one using the generi
 GF interfa
e, alsosupporting Finnish, Italian, and Russian.Software spe
i�
ations. Formal and semi-formal software spe
i�
ation lan-guages, su
h as OCL (Warmer & Kleppe, 1999), are widely used in industry, butstill wider is the use of informal spe
i�
ations in natural language. A proje
t isgoing on to bridge this gap by building an abstra
t spe
i�
ation language in GF,with
on
rete syntaxes for OCL and English (H�ahnle et al., 2002). The goal is toenable simultaneous produ
tion of formal and informal spe
i�
ations. The editor isbeing integrated in an industrial CASE tool.Controlled language. This is the next step from mathemati
al proofs via soft-ware spe
i�
ations towards non-mathemati
al language. Controlled languages aresubsets of natural languages used for te
hni
al purposes su
h as instru
tion manualsfor air
raft maintenan
e. Today's
ontrolled languages (e.g. (The Boeing Company,2001)) have neither formal grammars nor automati

he
kers. But GF has beenused to de�ne prototypes where formal veri�
ation is applied to do
uments writtenin natural language. An example is a set of instru
tions for using an alarm system,generated in English, Fren
h, German, and Swedish, and equipped with a formalproof that the instru
tions preserve the system in a legal state (Johannisson &Ranta, 2001).

40 A. RantaDialogue systems. This is human-ma
hine intera
tion where information isgathered by questions and answers. For instan
e, in a travel-agen
y dialogue systemthe ma
hine asks where and when the
ustomer wants to travel. The human answersall questions till enough information has been gathered to
omplete the booking.In order for the dialogue not to be too monotonous, the dialogue system shouldbe
exible and e.g. a

ept answers to many questions at on
e. Several su
h
riteriaare identi�ed in (Bohlin et al., 1999). Somewhat surprisingly, it turned out that themetavariable-based model of intera
tion in proof editors readily ful�ls most of these
riteria, even adding extra fun
tionality, e.g. a better
ontrol of the
ontinuation ofa dialogue via dependent types (Ranta & Cooper, 2001).10 Related work10.1 Montague grammar and
ategorial grammarsFrom the linguisti
 point of view, GF belongs to the tradition ofMontague grammar(Montague, 1974). For Montague, a grammar was a set of rules linearizing logi
allyinterpreted analysis trees into strings of a natural language. The fo
us was onsemanti
s rather than
on
rete syntax. A well-known problem in Montague's syntaxis the use of so-
alled \quantifying in" rules to linearize variable-binding operations.Unlike other parts of Montague grammars, these rules
annot be dire
tly formalizedin GF, sin
e they are not
ompositional. The rules
an be
ir
ums
ribed, however,partly by using
ombinators instead of variable binding (as suggested by Steedman(1988)), partly by means of dis
ontinuous
onstituents.The distin
tion between abstra
t and
on
rete syntax is seldom made by lin-guists. It was suggested, however, by the logi
ian Haskell B. Curry, under the head-ings of te
togrammati
 and phenogrammati
 stru
ture (Curry, 1963). For Curry, ate
togrammati
 stru
ture is similar to a term in
ombinatory logi
, and it
an showup as di�erent phenogrammati
 stru
tures in di�erent languages. Neither Currynor Montague pursued the multilingual aspe
t, but there is a ma
hine translationproje
t, Rosetta (1994), based on Montague grammar.Categorial grammar shares with Montague grammar the use of a type system toexplain synta
ti
 well-formedness. However, the idea is to explain not only abstra
tbut also
on
rete syntax in terms of fun
tion appli
ation. To this end, Bar-Hillel(1953) made a distin
tion between pre�x and post�x fun
tion types, �=� vs. �n�.His idea was developed further by Lambek (1958), resulting in a
al
ulus that
overed an impressive fragment of English, and was eventually proved equivalent to
ontext-free grammars (Pentus, 1993). Extensions of Lambek
al
ulus use ri
her setsof
onne
tives (Morrill, 1994), or treat it as non
ommutative linear logi
 (Abrus
i,1990).In fun
tional programming, some e�orts have been made to implement logi
aland
ategorial grammars. A parser for a Montague-style grammar was implementedas a part of a database query system by Frost and Laun
hbury (1989), in Lazy ML.The grammar used in the system
an also be de�ned in GF. A parser for the
ategorial grammar of Shaumyan was implemented by Jones and Hudak (1995) in

Grammati
al Framework 41Haskell. This theory shares with Lambek
al
ulus the use of typing rules to de�ne
on
rete syntax. 10.2 Uni�
ation grammarsUni�
ation grammars (Shieber, 1986) are a family of grammar formalisms where
ontext-free
ategories are made dependent on features, whi
h the parser tries tounify. Many grammar formalisms in
omputational linguisti
s belong to this family.De�nite Clause Grammar (DCG) (Pereira & Warren, 1980) is perhaps the purestand simplest of them, and it has a built-in implementation in the Prolog program-ming language. It is also the most widely known, be
ause it works well in edu
ation.The biggest grammars, however, have been written in Head Driven Phrase Stru
tureGrammar (HPSG) (Pollard & Sag, 1994).A typi
al example of DCG is the English predi
ation rule,S �! NP(n) VP(n)This rule expresses the
ondition that the subje
t and the verb must have the samenumber, n. In GF, the natural way to express the predi
ation rule would befun Pred : NP ! VP ! S ; lin PredN V = fs = N:s++V:s ! N:ngThe traditional grammar view is
loser to GF than to DCG: the subje
t and theverb are not in symmetri
 relation, but the verb depends on the subje
t. The subje
thas a number (as inherent feature), whi
h it gives to the verb (as parameter).The advantage of treating inherent features and parameters on a par is
om-putational: it allows a dire
t implementation of parsing as uni�
ation. From thedes
riptive point of view, DCG appears as a low-level language, whi
h moreoverdoes not have types. A suggestive way of parsing in GF grammars would be to
ompile them into a DCG, and use lo
al uni�
ation instead of o�-line parsing andpostpro
essing.HPSG inherits from PATR (Shieber, 1986) the use of re
ords to express
omplexgrammati
al obje
ts. In HPSG, these re
ords
ontain both synta
ti
 and semanti
information. For instan
e, the English noun form integers
ould be des
ribed bythe re
ord (in GF notation)f
at = CN ; sem = Int ; phon = "integers" ; n = Pl ; g = NeutgRe
ords like this are
alled signs in HPSG. The information
ontained in a signbelongs partly to fun
tion de
larations and partly to linearization rules in GF. We
ome
lose to a sign if we take a linearization re
ord and add �elds for the type andthe syntax tree. However, the result is not quite the same: for Int, we getf
at = CN ; sem = Int ; s = table fSg) "integer";Pl) "integers"g ; g = NeutgThe di�eren
e re
e
ts the
hara
teristi
 fa
t that HPSG re
ords are obtained byanalysing strings, whereas GF re
ords are obtained by linearizing trees. The HPSGre
ord is, in a sense, an instan
e of the GF re
ord: it shows one bran
h of a tableinstead of the whole table.

42 A. RantaAnother interesting feature of HPSG is that it has a type system, whi
h helpsto dete
t errors at
ompile time. As regards re
ords, the type system has mu
hin
ommon with GF. But there are no fun
tion types and thus no higher-orderabstra
tions available for grammar writers.10.3 Syntax editorsAs a syntax editor, GF belongs to the tradition starting from Mentor (Donzeau-Gouge et al., 1975) and the Cornell Program Synthesizer (Teitelbaum & Reps,1981). These systems were initially not frameworks but had a hard-wired obje
tlanguage. Later on, the Cornell system used attribute grammars (Knuth, 1968)in the same rôle as the GF formalism is used in the GF editor, and Mentor wasextended by the formalism framework Metal (Kahn et al., 1983). As for
on
retesyntax, these systems of
ourse only support unambiguous programming languages,one at a time. On the abstra
t level, they have advan
ed
omputational features,su
h as stepwise forward and ba
kward exe
ution of
ode.Proof editors are a des
endant of syntax editors, and the
losest to GF are thosethat use dependent types. GF has inherited its type theory from ALF (Magnusson& Nordstr�om, 1994), whi
h uses metavariables, whereas NuPRL (Constable, 1986),Coq (The Coq Development Team, 1999), and LEGO (Luo & Polla
k, 1992) useta
ti
s. All these systems support some amount of user-de�ned synta
ti
 sugar, su
has in�x de
larations, but are of
ourse far from natural language syntax. For Coq, anatural-language interfa
e exists (Cos
oy et al., 1995). It works in the dire
tion oflinearization only and
annot be extended by the user; however, it has some built-in optimizations that are not possible in
ompositional linearization. Even more inthis dire
tion is the proof explanation system PRex (Fiedler, 2001), whi
h uses AImethods to adapt proof texts for individual users.WYSIWYM (\What you see is what you mean") is a multilingual authoringsystem for software manuals (Power & S
ott, 1998). The user edits an abstra
tobje
t whi
h is re
e
ted by \feedba
k texts" in English, Fren
h, and Italian. Thegrammars are hard-wired in the system and work in the dire
tion of linearizationonly; the resear
h emphasis is
learly on intera
tion rather than on grammars.11 Con
lusionWe have de�ned a grammar formalism GF on top of a logi
al framework with depen-dent types. The formalism is a spe
ial-purpose fun
tional programming language,whi
h adds the known advantages of fun
tional languages (type
he
king, high ab-stra
tion level, su

in
tness of expression) to a simple
omputational model. GFgrammars
an be used for both parsing and generation of languages. The formalismis able to des
ribe semanti

onditions and intri
ate natural-language stru
tures. Itdi�ers from earlier grammar formalisms by being based on fun
tional programmingand by having a powerful type system. The most important remaining problem isthe ineÆ
ien
y of the parsers generated from some GF grammars.The main appli
ations of GF are in domain-spe
i�
 fragments of natural lan-

Grammati
al Framework 43guage, whi
h have a semanti
 model that
an be des
ribed in type theory. GFgrammars provide natural-language interfa
es to su
h models and make it possibleto translate domain-spe
i�
 language reliably via the model. GF supports intera
-tion: it
an be used as a multilingual authoring system in whi
h texts are
reatedin many languages simultaneously. For future developments, an important task isto develop libraries of domain-independent resour
e grammars.GF has been implemented in the fun
tional language Haskell. The implementa-tion follows the Haskell 98 standard and is portable to di�erent operating systems.In addition to the separate program, GF fun
tionalities
an be a

essed from otherHaskell programs through an API module.Referen
esAbrus
i, M. (1990). Non
ommutative Intuitionisti
 Linear Propositional Logi
. Zeits
hriftf�ur Mathematis
he Logik und Grundlagen der Mathematik, 36, 297{398.Augustsson, L. (1998). Cayenne|a language with dependent types. Pro
. of ICFP'98.ACM Press.Bar-Hillel, Y. (1953). A quasi-arithmeti
al notation for synta
ti
 des
ription. Language,29, 27{58.Bes
herelle. (1997). La
onjugaison pour tous. Hatier.Bohlin, P., Bos, J., Larsson, S., Lewin, I., Matheson, C., & Milward, D. (1999). Survey ofexisting intera
tive systems. Trindi deliverable D1.3, Gothenburg University.Bresnan, J. (ed). (1982). The Mental Representation of Grammati
al Relations. MITPress.Carlsson, M., & Hallgren, T. (1998). Fudgets|Purely Fun
tional Pro
esses with appli
a-tions to Graphi
al User Interfa
es. Ph.D. thesis, Department of Computing S
ien
e,Chalmers University of Te
hnology.Constable, R. L. (1986). Implementing Mathemati
s with the NuPRL Proof DevelopmentSystem. Prenti
e-Hall.Coquand, T. (1996). An algorithm for type
he
king dependent types. S
ien
e of ComputerProgramming, 26, 167{177.Cos
oy, Y., Kahn, G., & Thery, L. (1995). Extra
ting text from proofs. Pages 109{123 of:Dezani-Cian
aglini, M., & Plotkin, G. (eds), Pro
. Se
ond Int. Conf. on Typed LambdaCal
uli and Appli
ations. LNCS, vol. 902.Curry, H. B. (1963). Some logi
al aspe
ts of grammati
al stru
ture. Pages 56{68 of:Jakobson, Roman (ed), Stru
ture of Language and its Mathemati
al Aspe
ts: Pro
eedingsof the Twelfth Symposium in Applied Mathemati
s. Ameri
an Mathemati
al So
iety.de Bruijn, N. G. (1994). Mathemati
al Verna
ular: a Language for Mathemati
s withTyped Sets. Pages 865{935 of: Nederpelt, R. (ed), Sele
ted Papers on Automath. North-Holland Publishing Company.Donzeau-Gouge, V., Huet, G., Kahn, G., Lang, B., & Levy, J. J. (1975). A stru
ture-oriented program editor: a �rst step towards
omputer assisted programming. Interna-tional Computing Symposium (ICS'75).Dymetman, M. Lux, V. & Ranta, A._(2000). XML and multilingual do
ument authoring:Convergent trends. Pages 243{249 of: COLING, Saarbr�u
ken, Germany.Earley, J. (1970). An eÆ
ient
ontext-free parsing algorithm. Communi
ations of theACM, 13(2), 94{102.

44 A. RantaFiedler, A. (2001). User-Adaptive Proof Explanation. Ph.D. thesis, Universit�at des Saar-landes.Frost, R., & Laun
hbury, J. (1989). Constru
ting natural language interpreters in a lazyfun
tional language. The Computer Journal, 32(2), 108{121.Hallgren, T. (2000). Home Page of the Proof Editor Alfa.http://www.
s.
halmers.se/~hallgren/Alfa/Hallgren, T. & Ranta, A._(2000). An extensible proof text editor. Pages 70{84 of: Parigot,M., & Voronkov, A. (eds), LPAR-2000. LNCS/LNAI, vol. 1955. Springer.Harper, R., Honsell, F., & Plotkin, G. (1993). A Framework for De�ning Logi
s. JACM,40(1), 143{184.H�ahnle, R. Johannisson, K. & Ranta, A._(2002). An authoring tool for informal andformal requirements spe
i�
ations. Pages 233{248 of: Kuts
he, R.-D., & Weber, H.(eds), Fundamental Approa
hes to Software Engineering. LNCS, vol. 2306. Springer.Hop
roft, J., & Ullman, J. (1979). Introdu
tion to Automata Theory, Languages, andComputation. Addison-Wesley.Hudak, P. (1996). Building domain-spe
i�
 embedded languages. ACM Computing Sur-veys, 28(4).Huet, G. (1997). The Zipper. Journal of Fun
tional Programming, 7(5), 549{554.Huet, G. (2000). Sanskrit site. Program and do
umentation,http://pauilla
.inria.fr/~huet/SKT/.Johannisson, K., & Ranta, A. (2001). Formal veri�
ation of multilingual instru
tions.The joint winter meeting of
omputing s
ien
e and
omputer engineering. ChalmersUniversity of Te
hnology.Johnson, S. C. (1975). Ya

 | yet another
ompiler
ompiler. Te
h. rept. CSTR-32. AT& T Bell Laboratories, Murray Hill, NJ.Jones, M., & Hudak, P. (1995). Using types to parse natural language. Pro
eedings of theGlasgow Workshop on Fun
tional Programming. LNCS.Jones, N.D., Gomard, C.K., & Sestoft, P. (1993). Partial Evaluation and Automati
Program Generation. Prenti
e-Hall.Joshi, A. (1985). Tree-adjoining grammars: How mu
h
ontext-sensitivity is required toprovide reasonable stru
tural des
riptions. Pages 206{250 of: Dowty, D., Karttunen,L., & Zwi
ky, A. (eds), Natural Language Parsing. Cambridge University Press.Kahn, G., Lang, B., M�el�ese, B., & Mor
os, E. (1983). Metal: a formalism to spe
ifyformalisms. S
ien
e of Computer Programming, 3, 151{188.Kay, M. (1997). The Proper Pla
e of Men and Ma
hines in Language Translation. Ma
hineTranslation, 12(1{2), 3{23.Knuth, D. (1965). On the translation of languages from left to right. Information andControl, 8, 607{639.Knuth, D. (1968). Semanti
s of
ontext-free languages. Mathemati
al Systems Theory, 2,127{145.Lambek, J. (1958). The mathemati
s of senten
e stru
ture. Ameri
an Mathemati
alMonthly, 65, 154{170.Luo, Z., & Callaghan, P. (1999). Mathemati
al verna
ular and
on
eptual well-formednessin mathemati
al language. Pages 231{250 of: Le
omte, A., Lamar
he, F., & Perrier, G.(eds), Logi
al Aspe
ts of Computational Linguisti
s (LACL). LNCS/LNAI, vol. 1582.Luo, Z., & Polla
k, R. (1992). LEGO Proof Development System. Te
h. rept. Universityof Edinburgh.

Grammati
al Framework 45Magnusson, L., & Nordstr�om, B. (1994). The ALF proof editor and its proof engine. Pages213{237 of: Types for Proofs and Programs. LNCS 806. Springer.Marlow, S. (2001). Happy, The Parser Generator for Haskell.http://www.haskell.org/happy/.Martin-L�of, P. (1984). Intuitionisti
 Type Theory. Napoli: Bibliopolis.M�aenp�a�a, P., & Ranta, A. (1999). The type theory and type
he
ker of GF. PLI-1999:Workshop on Logi
al Frameworks and Meta-languages, Paris, Fran
e.Montague, R._(1974). Formal Philosophy. New Haven: Yale University Press. Colle
tedpapers edited by R. Thomason.Morrill, G. (1994). Type Logi
al Grammar. Kluwer.Ne
ula, G. C. (1997). Proof-Carrying Code. Pages 106{119 of: Pro
. 24th ACM Sympo-sium on Prin
iples of Programming Languages, Paris, Fran
e. ACM Press.Nordstr�om, B., Petersson, K., & Smith, J. M. (1990). Programming in Martin-L�of's TypeTheory. An Introdu
tion. Oxford University Press.Paulson, L. (2002). The Isabelle Referen
e Manual. Available at the Isabelle homepagehttp://www.
l.
am.a
.uk/Resear
h/HVG/Isabelle/ With
ontributions by T. Nip-kow and M. Wenzel.Pentus, M. (1993). Lambek grammars are
ontext-free. Pages 35{42 of: LICS, Utre
ht,The Netherlands.Pereira, F., & Warren, D. (1980). De�nite
lause grammars for language analysis|asurvey of the formalism and a
omparison with augmented transition networks. Arti�
ialIntelligen
e, 13, 231{278.Peyton Jones, S., & Hughes, J. 1999 (February). Report on the ProgrammingLanguage Haskell 98, a Non-stri
t, Purely Fun
tional Language. Available fromhttp://www.haskell.orgPollard, C., & Sag, I. (1994). Head-Driven Phrase Stru
ture Grammar. University ofChi
ago Press.Power, R., & S
ott, D. (1998). Multilingual authoring using feedba
k texts. COLING-ACL.Prawitz, D. (1965). Natural Dedu
tion. Sto
kholm: Almqvist & Wiksell.Ranta, A. (1994). Type Theoreti
al Grammar. Oxford University Press.Ranta, A. (2002). Grammati
al Framework Homepage. www.
s.
halmers.se/~aarne/GF/.Ranta, A., & Cooper, R. (2001). Dialogue systems as proof editors. IJCAR/ICoS-3.Rosetta, M. T. (1994). Compositional translation. Dordre
ht: Kluwer.Shieber, S. (1986). An Introdu
tion to Uni�
ation-Based Approa
hes to Grammars. Uni-versity of Chi
ago Press.Steedman, M. (1988). Combinators and grammars. Pages 417{442 of:Oehrle, R., Ba
h, E.,&Wheeler, D. (eds), Categorial Grammars and Natural Language Stru
tures. Dordre
ht:D. Reidel.Teitelbaum, T., & Reps, T. (1981). The Cornell Program Synthesizer: a syntax-dire
tedprogramming environment. Commun. ACM, 24(9), 563{573.The Boeing Company. (2001). Boeing Simpli�ed English Che
ker.http://www.boeing.
om/asso
produ
ts/se
he
ker/The Coq Development Team. (1999). The Coq Proof Assistant Referen
e Manual.pauilla
.inria.fr/
oq/.Warmer, J., & Kleppe, A. (1999). The Obje
t Constraint Language: Pre
ise Modellingwith UML. Addison-Wesley.

