
Aepted for publiation in J. Funtional Programming. () 2003 Cambridge University Press 1Grammatial FrameworkA Type-Theoretial Grammar FormalismAARNE RANTA�Department of Computing SieneChalmers University of Tehnology and the University of Gothenburg41296 Gothenburg, Sweden.(e-mail: aarne�s.halmers.se)AbstratGrammatial Framework (GF) is a speial-purpose funtional language for de�ning gram-mars. It uses a Logial Framework (LF) for a desription of abstrat syntax, and adds tothis a notation for de�ning onrete syntax. GF grammars themselves are purely delara-tive, but an be used both for linearizing syntax trees and parsing strings. GF an desribeboth formal and natural languages. The key notion of this desription is a grammatialobjet, whih is not just a string, but a reord that ontains all information on inetionand inherent grammatial features suh as number and gender in natural languages, orpreedene in formal languages. Grammatial objets have a type system, whih helps toeliminate run-time errors in language proessing.In the same way as a LF, GF uses dependent types in abstrat syntax to expresssemanti onditions, suh as well-typedness and proof obligations. Multilingual grammars,where one abstrat syntax has many parallel onrete syntaxes, an be used for reliableand meaning-preserving translation. They an also be used in authoring systems, wheresyntax trees are onstruted in an interative editor similar to proof editors based on LF.While being edited, the trees an simultaneously be viewed in di�erent languages.The paper starts with a gradual introdution to GF, going through a sequene of simplerformalisms till the full power is reahed. The introdution is followed by a systemati pre-sentation of the GF formalism and outlines of the main algorithms: partial evaluation andparser generation. The paper onludes by brief disussions of the Haskell implementationof GF, existing appliations, and related work.1 Introdution: the goals of GFThe Grammatial Framework (GF) is a grammar formalism, i.e. a language forde�ning grammars. The development of GF started as a notation for type-theoretialgrammars (Ranta, 1994), whih use Martin-L�of's type theory (1984) to express thesemantis of natural language. The �rst implementation was released in 1998 at� Thanks to Markus Forsberg, Reiner H�ahnle, Kristofer Johannisson, Bengt Nordstr�om, and ananonymous referee for areful reading and valuable omments on this paper. GF itself hasbene�tted from ontributions by many people at XRCE Grenoble, at Chalmers and GothenburgUniversity, at CAMS in Paris, and in the European TYPES Community. The work has beensupported by the VINNOVA foundation within the projet \Interative Language Tehnology"(2001-06340).

2 A. RantaXerox Researh Centre Europe in Grenoble, with fous on multilingual authoringvia a type-theoretial pivot language. After the �rst publiation (M�aenp�a�a & Ranta,1999), GF has developed into a funtional programming language, whereby itsnotation has been ompletely revised, but it has preserved downward ompatibility.The fous of GF has thus shifted from an initial theoretial idea to pratialappliations. In this paper, we try to make expliit the theory that has proveduseful for pratial appliations. The goal of GF is to serve both linguists, whowant a high-level and reliable grammar formalism, and programmers, who want anelegant and eÆient tool for building natural-language appliations.1.1 A Logial Framework with onrete syntaxWhen desribing or implementing a language, it is ustomary to distinguish betweenits abstrat syntax, i.e. the hierarhial struture of the language, and its onretesyntax, i.e. what the language looks like as it is read and written. The idea isthat notions suh as type heking and semantis are better de�ned on the level ofabstrat syntax, without the lutter of onrete syntax details.In programming language design, onrete syntax is usually kept as simple aspossible, with some onessions allowed to tradition, e.g. to inlude standard math-ematial notations. In linguistis, the situation is di�erent: the linguist has to takea natural language as it is, and desribe it the best she an. It is not ommonto reah a level at whih one an make a neat distintion between abstrat andonrete syntax, or to disuss questions like type heking and semantis with thesame preision as in programming languages.GF was born from a synthesis between the omputer siene and linguistis waysof thinking: what about if we take an abstrat syntax, with all type heking andsemantis, and try to de�ne a onrete syntax that looks exatly as we want, inlud-ing natural languages? We took a powerful formalism for abstrat syntax, a LogialFramework (LF)1, and extended it with a notation for onrete syntax. With thisformalism, it beame possible to de�ne all aspets of a language at one, whih isan advantage for language implementation. At the same time, it gives a new per-spetive on natural languages, sine it makes preise semantial notions appliableto those fragments of natural language that are reognized by GF grammars.The pratial issue of adding onrete syntax to LF was already addressed in theMathematial Vernaular projet of de Bruijn (1994). The goal was to make LFproof systems more aessible to users. An early implementation of this idea is aprogram that translates proofs in the logial framework Coq into an English-likenotation (Cosoy et al., 1995). However, the translation is part of the implemen-tation of Coq itself: thus, even though the abstrat syntax of new mathematialonepts is user-de�nable in Coq, their onrete syntax is not.A step towards user-de�ned onrete syntax is taken in Isabelle (Paulson, 2002),whih has a mix�x notation to de�ne the onrete syntax of funtions. Mix�x is1 The logial framework of GF is a version onstrutive type theory, as are LF (Harper et al.,1993), ALF (Magnusson & Nordstr�om, 1994), and Coq (The Coq Development Team, 1999).

Grammatial Framework 3a generalization of in�x delarations|whih of ourse are rudimentary onrete-syntax de�nitions|into full ontext-free rules. To some extent, mix�x notation isenough even for natural language. For instane, if we want to de�ne an Englishnotation for the length funtion, whose abstrat syntax is given by the funtiondelaration length : (A : Set) ! List A ! Intit is enough to write:2length x = "the" ++"length" ++"of" ++ xHowever, if we want to express length in orret German, we need to inet it indi�erent ases, put its argument into the dative ase pre�xed by the prepositionvon, and tell what gender it has. All this is done by a GF de�nitionlength = f1 "L�ange" Femwhere f1 is a onrete syntax funtion taking are of the details of inetion andargument ase. Of ourse, f1 itself is user-de�ned,f1 : Str ! Gen ! fs : Cas) Str ; g : Geng ! fs : Cas) Str ; g : Geng =�F;G; x ! fs = table f) der SgG++F ++"von" ++x:s ! Datg ; g = GgThis rule uses another user-de�ned funtion, der, whih gives the inetional formsof the German de�nite artile.Rules like the ones for length are typially written by persons who work in LF andare experts in the mathematial theories that they are working with. Funtions likef1 and der require expertise in linguistis and German grammar. A good divisionof labour is that funtions of the latter kind are provided in resoure grammarswritten by linguists and an be taken for granted by those who write appliations.This requires a powerful notation permitting high levels of abstration.1.2 A grammar formalism with the linearization perspetiveBoth omputer sientists and linguists have developed grammar formalisms|dela-rative desriptions of language from whih language-proessing algorithms an beautomatially generated. The best-known algorithm is parsing, whih takes stringsinto syntax trees (in the ase of GF: to funtional terms). Many grammar formalismsare designed to permit easy generation of parsers. The rules of GF, however, havetheir most diret readings in the diretion of linearization, whih takes funtionalterms into strings. To show that also a parser an be derived from every GF gram-mar requires a ompliated argument.In omputer siene, the best-known grammar formalisms are ontext-free gram-mars (=BNF) and attribute grammars (Knuth, 1968). BNF is used for desribinglanguages in reports, but language implementations use extensions of the delarativeformat with semanti ations written in a general-purpose programming language.2 We use GF notation; Isabelle mix�x does not support argument suppression.

4 A. RantaYACC (Johnson, 1975) is the lassial model for suh formalisms. Beause of se-manti ations, YACC grammars annot generally be used for linearization. BNFdoes not over the type-heking aspet of languages, whereas attribute grammarsare able to do some of it. In YACC, some type heking an be performed in seman-ti ations, but this easily beomes a mess, and separate phases are reommendedinstead. In logial frameworks, type heking an be neatly inluded in abstratsyntax de�nitions, but there are not yet any tools for doing so in pratial languageimplementations.In linguistis, the tradition losest to GF is Montague grammar (Montague,1974), whih uses simple type theory to express abstrat syntax. In a way, GFis just a generi framework for implementing Montague-style grammars extendedwith dependent types3. Another point of referene are the grammar formalismsbased on uni�ation. These formalisms inlude DCG (Pereira & Warren, 1980) andPATR (Shieber, 1986), whih are, like GF, pure frameworks, and HPSG (Pollard& Sag, 1994) and LFG (Bresnan, 1982), whih have elements of built-in linguistitheory. While postponing the disussion of related work to Setion 10, it an beuseful to point out the major ways in whih GF di�ers from uni�ation grammarformalisms:� GF has separate rules for abstrat and onrete syntax.� The primary perspetive in GF is linearization.� GF has a strong type system.� GF is a funtional language.� GF an integrate semantis with abstrat syntax.� GF supports multilingual grammars.A ommon feature between GF and formalisms like PATR and HPSG is the use ofreords to model omplex grammatial objets,1.3 A multilingual authoring systemGF an be used in bath mode for linearization, parsing, and translation. A newkind of appliation is inherited from type-theoretial proof editors: syntax editingnatural language. This is the appliation that explains Xerox's interest in the GFprojet: with a multilingual grammar, the user of GF an edit a doument in alanguage that she does not know, while at the same time seeing how it evolves inher own language. This ativity is alled multilingual authoring (Power & Sott,1998; Dymetman et al., 2000). For instane, a letter being edited in Swedish maylook like this:K�ara [Reipient℄,jag har �aran att meddela dig att du har blivit befordrad till [Position℄.3 The semanti aspets of this extension are studied in (Ranta, 1994). A strong appliation ofdependent types is the analysis of pronominal referene.

Grammatial Framework 5The expressions in brakets are plaeholders, yet to be �lled in to omplete the letter.The possible �llings are either hoies from menus (generated from the grammar)or strings of English or Swedish text (parsable by the grammar). In parallel withSwedish, an English version may be generated from the same abstrat soure:Dear [Reipient℄,I have the honour to inform you that you have been promoted to [Position℄.The author an be sure that both letters ome out grammatially orret and onveythe same message. The type-theoretial representation works as a pivot language,whih ontrols the onsisteny of the doument, and guarantees that all translationshave the same meaning. Interation eliminates a notorious problem of automatitranslation, whih is that a soure text written in natural language generally doesnot fully determine the semanti ontent (f. Kay (1997)).A multilingual GF grammar is a simple and eÆient way to implement transla-tion, whih works surprisingly well, due to the long distane from onrete-syntaxdetails that is possible in abstrat syntax. Most other systems use separate transferrules to translate between languages. The obvious disadvantage of transfer rulesis that n(n � 1) transfer modules are needed to translate between n languages,whereas GF only needs n + 1 grammar modules. The disadvantage of GF's pivotlanguage method is that translation is limited to be struture-preserving. Even ifthere is no GF notation to express transfer rules, GF does not prelude them: theAPI module (Setion 8.4) gives support for de�ning transfer rules in Haskell.2 Context-free rewrite grammarsThis setion starts a series of more and more powerful fragments of GF. Most GFonepts and appliations already make sense in this �rst fragment, but only alimited lass of GF grammars an be written in it. Setions 3 and 4 extend theabstrat syntax part of GF, whereas Setion 5 independently extends the onretesyntax part.2.1 From ontext-free grammars to ontext-free rewrite grammarsContext-free rewrite grammars are a generalization of ontext-free grammars, aris-ing from a distintion between two aspets: abstrat syntax and onrete syntax.Consider a ontext-free rule f: C ::= t1 : : : tmwhere f is the rule label, C is a ategory symbol, and eah ti is either a ategorysymbol (a nonterminal) or a string (a terminal). The abstrat syntax aspet of thisrule is a a funtion delaration, delaring f as a funtion whose value type is C andargument types are the nonterminals C1 : : : Cn among t1 : : : tm:fun f : C1 ! � � � ! Cn ! C

6 A. RantaThe onrete syntax aspet is a linearization rule, whih assigns a linear pattern tothe funtion f : pattern f x1 : : : xn = t1 ++ : : :++tmEah ti is either one of the variables xj (a nonterminal) or a string (a terminal).As an example of splitting a ontext-free rule into a funtion delaration and alinearization rule, onsider the ruleDiv: Prop ::= Exp "is" "divisible" "by" ExpSplitting gives the rule pairfun Div : Exp ! Exp ! Proppattern Div x y = x++"is" ++"divisible" ++"by" ++yAbstrat syntax rules alone de�ne a system of syntax trees, i.e. funtional termsformed by using rule labels as onstants. Given two more funtion delarations,fun two : Expsum : Exp ! Exp ! Expwe an form the syntax tree Div (sum two two)twowhose type is Prop. Given the linearization rulespattern sum x y = "the" ++"sum" ++"of" ++x++"and" ++ytwo = "two"we have a orrespondene between this tree and the stringthe sum of two and two is divisible by two2.2 Permutation, suppression, and redupliationTo represent ontext-free rules in ontext-free rewrite grammar, the full expres-sive power of linear patterns is not needed, but only the speial ase in whihthe sequene of nonterminals in the linear pattern orresponds one-to-one to thearguments of the funtion. The full format extends this speial ase in three ways:� Permutation: onstituent order may be hanged.� Suppression: onstituents may be hidden.� Redupliation: onstituents may be repeated.Permutation is important if we want to have onrete syntaxes sharing an abstratsyntax. For instane, it permits giving the same abstrat syntax to pre�x and in-�x notation, or to adjetival modi�ation in English (pre�x: even number) andFrenh (post�x: nombre pair). Suppression is needed if we want a syntax tree toarry more information than the orresponding string, as in proof-arrying dou-ments (Setion 4.3). Redupliation shows that the formalism is more powerful than

Grammatial Framework 7ontext-free grammars: for instane, the opy language of the universal language U(over some alphabet) fxxjx 2 Ugis ontext-sensitive, but it is enoded by the ontext-free rewrite grammarfun f : U ! S ; pattern f x = x ++x2.3 LinearizationTo linearize a syntax tree f a1 : : : anthe linearization algorithm reads the linear pattern given in the rulepattern f x1 : : : xn = t1 ++ : : :++tmand sans the sequene t1 ++ : : :++tm from left to right:(f a1 : : : an)o = s1 ++ : : : ++ smwhere si = � aoj if ti = xj (the j'th argument)s if ti = s (string)The algorithm assumes that expressions are in the full appliation form, i.e. fun-tions are endowed by all their arguments: otherwise it is in general not possible to�ll the linear pattern in a meaningful way. To express funtions, lambda abstrationmust be used (Setion 3).42.4 Type heking and syntax editingThe type heker uses abstrat syntax to look up the types of funtions and veri�esthat they are used in aordane with their types. Rather than formulating thealgorithm expliitly, we give the typing rule of syntax trees:f : C1 ! : : :! Cn ! C a1 : C1 : : : an : Cnf a1 : : : an : CThis is of ourse the same as the full appliation rule of typed lambda alulus.Syntax editing takes plae in a state, whih onsists of a tree being edited andthe subtree that is the urrent fous. The tree may be inomplete, that is, ontainplaeholders (also alled metavariables), whih are yet to be �lled by subtrees. Anexample is the following arithmetial proposition, where the fous is marked by anasterisk (�) and plaeholders by question marks (?):Div (sum two �?) ?4 Full appliation is usually required in all funtional languages whenever other kinds of funtionsare used than pre�xes: one annot write (if b then 5 else) to replae (nx -> if b then 5else x), and omitting two arguments would lead to the ompletely bizarre (if b then else).One of the rare exeptions are Haskell's in�x setions, suh as (4+) (equal to (nx -> 4 + x))

8 A. RantaThe linearization of this tree isthe sum of two and (� ?) is divisible by ?An important aspet of editing in GF is that it is possible to swith between thetree representation and its linearizations, even when the tree is inomplete.For an eÆient implementation of editing ommands, we represent trees in a formin whih the types of all subtrees are shown. The above tree is then representedDiv : Propsum : Exptwo : Exp* ? : Exp? : ExpThe editor uses the typing rule for full appliations to annotate eah subtree withthe value type of its funtion head.The most important editing ommand is re�nement, whih replaes the metavari-able in fous with a funtion. If the funtion takes arguments, like sum, re�nementintrodues new metavariables:the sum of two and (� the sum of ? and ?) is divisible by ?The value type of the funtion must of ourse math the type of the fous metavari-able. The editor guarantees this by maintaining a menu of type-orret re�nementsextrated from the grammar.The editor fous is analogous to the ursor in a string editor: it marks the plae towhih editing ommands apply. The analogue of ursor movements are navigationommands, whih shift the fous without hanging the tree. GF uses a zipper (Huet,1997) to represent the editor state. As shown by Huet, navigation ommands anbe implemented eÆiently for the zipper. Editing ommands are eÆient, as well,if the nodes loally ontain all information that is needed when exeuting them|inpartiular, the types of all subtrees.Re�nement is a purely top-down editing ommand, inherited to GF from theproof editor ALF (Magnusson & Nordstr�om, 1994). The zipper implementationhas made it easy to add a generalized bottom-up ommand, the loal wrap. The loalwrap embeds the fous subtree, whih need not be a metavariable, in a funtionappliation. If the fous is a tree t : Athen any funtion f : � � � ! A ! � � � ! Aan be used to replae t with (f ? : : : t : : :?); i.e. one argument plae of f is �lled byt, and the other plaes by metavariables. For instane, wrapping the fous term ofDiv two (�one)in the �rst argument plae of sum : Exp ! Exp ! Exp results in the treeDiv two (�sum one ?)

Grammatial Framework 9In the orresponding English sentene, the word one gets embedded in the phrasethe sum of one and ?. Suh an insertion is of ourse trivial in a text editor workingon strings, but not available in most tree-based struture editors. Yet it is a fun-tionality that doument authors expet from an editor: they want to make loalmodi�ations in a doument without having to destroy and rebuild parts of it.The wrap operation is similar to tree adjoining in the grammar formalism TAG(Tree Adjoining Grammars) (Joshi, 1985). A speial ase is wrapping the top node,whih is pure bottom-up editing: there we an relax the requirement that the valuetype of the funtion be the same as the type of the fous.2.5 ParsingWhile linearization in ontext-free rewrite grammars is straightforward, parsing isa searh problem. We redue it to parsing in ontext-free grammars, whih has aomplete solution by e.g. the Earley algorithm (Earley, 1970). Context-free parsingis ompleted by postproessing that involves a rearrangement of subtrees.Translation into ontext-free rules. To eah pair of a typing judgement anda linearization rule� fun f : C1 ! : : :! Cn ! Cpattern f x1 : : : xn = t1 ++ : : : ++ tmwe assign the ontext-free rule fp: C ::= 1 : : : mwhere i = � Cj if ti = xj (nonterminal)s if ti = s (terminal)The funtion f is indexed by a pro�le p, whih is a list of lists of integers[p1; : : : ; pn℄where pi = [j j j 2 f1; : : : ; kg; t0j = xi℄where t01 : : : t0k is the sequene of nonterminals in the pattern lause. In otherwords, eah item pi in the pro�le tells what plaes the ith argument oupies in thelinear pattern. For instane, the pair of rulesfun f : A ! B ! C ! D ; pattern f x y z = y++"kuin"++y++"on"++zgenerates the rule f[[℄;[1;2℄;[3℄℄: D ::= B "kuin" B "on" CPostproessing ontext-free parse trees. A parse tree produed by theontext-free parser may have a wrong number of arguments in wrong plaes andeven in inonsistent ways (beause of redupliation). The transformation R of parsetrees into proper funtional terms is performed by referene to the pro�le of the

10 A. Rantafuntion head5: (fp 1 : : : m)R = f a1 : : : anwhere ai = � Rk if k 2 pi and xi is onsistently represented? if pi is emptyIf an argument is suppressed in linearization, this operation thus introdues ametavariable to represent it. If di�erent ourrenes of an argument are not repre-sented onsistently6, the operation of rearrangement fails.Context-free parsing. The hoie of ontext-free parsing algorithm is often themain eÆieny issue when proessing a language. Sine GF grammars are imple-mented as �rst-lass data objets in Haskell, well-known analyses and transforma-tions (Hoproft & Ullman, 1979) an be applied to them. For instane, even thoughthe Earley algorithm is appliable to all grammars, some grammars may turn outto permit deterministi LR(1) parsing (Knuth, 1965), whih an then be hosen foreÆieny.Some pathologial rules ause problems for all ontext-free parsing algorithms.A yli rule f: C ::= Cgenerates the in�nite sequene of parse treest; f t; f (f t); f (f (f t)); : : :for any tree t of type C. Cyli rules are sometimes generated from innoent-lookingGF rules, suh as fun f : A ! C ! C ; pattern f x y = ywhere the argument x is suppressed in linearization.2.6 Semanti de�nitions and omputationThe abstrat syntax of a GF grammar an be thought of as a semanti model ofthe language, espeially in those ases where GF is used as a syntati annotationlanguage for a logial framework. In suh a model, we often want not only to delarefuntions but also to de�ne them. To this end, GF has the form of judgementdef f x1 : : : xn = twhere f : C1 ! � � � ! Cn ! C and t : C in the ontext x1 : C1; : : : ; xn : Cn.An example is def double x = sum x x5 In ontext-free rewrite grammar, pro�les are an optimization that make it possible to avoidlookups in the grammar at the postproessing stage. In full GF, pro�les are indispensable (f.Setion 7.2).6 Consistent means here that the trees are the same. In a more general setting, it means thatthey are uni�able; f. Setion 7.2.

Grammatial Framework 11De�nitions are used for omputing trees, and they de�ne thereby a notion of equalitybetween trees. This equality is alled semanti equality, sine it does not a�etlinearization: even though the terms two and double one are equal by de�nition,they are linearized as two di�erent strings. We say that strings resulting fromsemantially equal trees are paraphrases of eah other.3 Variable bindingsMany interesting languages have variable-binding operations. For instane, predi-ate alulus has the universal quanti�er 8 forming propositions suh as8x:x+ 0 = xwhere the variable x is bound in the subformula x+0 = x. The ontext-free syntaxof universally quanti�ed propositions isProp ::= "8" Var ":" PropThis rule, however, does not apture the fat that the variable is bound in thesubformula. The two parts of the struture, Var and Prop, are not onstituentsin the same sense: the Prop is an argument, whereas the Var is a binding. Thedistintion between arguments and bindings is fundamental for abstrat syntaxoperations, suh as type heking and omputation|and in partiular for syntaxediting|and has to be stated somewhere, either by separate rules, or by usinghigher-order abstrat syntax instead of ontext-free syntax. We will now explain howGF implements higher-order abstrat syntax and orresponding onrete syntax.3.1 The abstrat syntax of bindingsIn higher-order abstrat syntax, variable-binding operators are treated as funtionsthat take funtions as arguments. For instane, the universal quanti�er has just oneargument: a funtion from expressions to propositions:fun Univ : (Exp ! Prop) ! PropThis funtion has a seond-order type. The general form of a type is nowA1 ! � � � ! An ! Cwhere eah Ai is a type and C is a ategory7. Objets of funtion types an beformed by �-abstration, of the form�x1; : : : ; xn ! bWe require that the number of �-bound variables be the same as the number ofargument types; this is known as the � long normal form of �-terms.7 We ould say: C is a type, but the resulting notion of type would be equivalent. As we formulateit now, we emphasize that eah type has a basi type as its value type.

12 A. RantaFor example, the formula 8x:x+ 0 = x has the syntax treeUniv(�x ! Eq (sum x Zero) x)3.2 The onrete syntax of bindingsIn the � long normal form, every subtree whose type is a funtion type has a boundvariable for eah of its argument types. We ollet the variable symbols x1; : : : ; xnand the linearization b of the body into a reordfv1 = x1 ; : : : ; ; vn = xn ; s = bgwhih is the linearization of the whole tree. We use the reord label s for the body,and the labels v1; v2; v; : : : for the variables; if there is just one variable, we use v.For example, the linearization of �x ! Eq (sum x Zero) x isfv = "x" ; s = "x" ++"+" ++"0" ++"=" ++"x"gThe linearization rule of the funtion Univ islin UnivP = fs = "8" ++ P:v ++ ":" ++ P:sgThe general form of a linearization rule is nowlin f x1 : : : xn = fs = t1 ++ : : :++ tmgwhere eah ti has one of the forms "foo" (terminal string), xj :s (nonterminal body),xj :vk (nonterminal variable). The linearization algorithm distinguishes three ases:appliation: (f a1 : : : an)o = t(x1 := ao1; : : : ; xn := aon)if lin f x1 : : : xn = tabstration: (�z1 ! � � � ! �zn ! b)o = fv1 = `z1'; : : : ; vn = `zn'g �� bovariable: xo = fs = `x'gThis de�nition uses an operation �� for onjoining reords, and a substitution oper-ation (x := a). It also presupposes a symbol-printing operation produing a string`x' from a variable symbol x.8 The full normal form of linearization is obtained bythese rules, substitutions, and the reord projetion rulef: : : ; r = t; : : :g:r = tUsing reords instead of strings as values of linearization is ruial for maintain-ing the ompositionality of linearization: for eah funtion f , the linearization ruleassigns a onrete-syntax funtion f 0 suh that(f a1 : : : an)o = f 0 ao1 : : : aon8 One ase is missing from this de�nition: variable applied to arguments. This ase is needed if theabstrat syntax uses third- or higher-order funtions. GF then produes an ad ho linearizationwhere the symbol x is pre�xed to the linearizations of the arguments in parentheses. In pratie,funtions of higher order than the seond are rare in abstrat syntax; stritly speaking, how-ever, one should onlude that GF only supports user-de�ned onrete syntax for seond-orderabstrat syntax.

Grammatial Framework 13where we denote the linearization of a tree t by to. Thus the linearization of a treedepends only on the linearizations of its subtrees, not on the subtrees themselves.Compositionality guarantees a natural orrespondene between abstrat and on-rete syntax. It also helps to make the implementation of GF eÆient (Setion 5.4).The pattern format used for ontext-free rewrite grammars is a speial ase ofthe lin format, as de�ned in Setion 6.4.2.3.3 Parsing bindingsFrom the ontext-free point of view, variable bindings are onstituents: the parserreading the input looks for items of a ertain shape (e.g. \x") that math a partiularnonterminal Var. The ontext-free rule generated from Univ looks as follows:Univ[([[1℄℄;[2℄)℄ Prop ::= "8" Var ":" PropThe right-hand-side is as expeted. The pro�le now ontains information aboutwhere in the parse tree the bound variables are found: we extend the pro�les ofSetion 2.5 to lists of pairs (b;) where is a pro�le item in the old sense, tellingwhat plaes the onstituent oupies, and b is a list of items telling what plaeseah of the bound variables oupy.When produing ontext-free grammars. we introdue a ategory Var distintfrom all ategories in the ontext-free grammar, with some rules for reognizingvariables. We add a rule varC : C ::= Varfor eah ategory C. Finally, when postproessing the parse tree, a suppressedbinding (i.e. one with the pro�le item [℄) is not replaed by a metavariable (?), butby a fresh ordinary variable. Notie that the uni�ation phase of postproessing is�rst-order, sine variables in bindings are treated as ordinary arguments.3.4 Type heking and syntax editing bindingsType heking syntax trees with bindings is the same thing as monomorphi typeheking in simply typed lambda alulus. In addition to the full appliation ruleof Setion 2.4, we have the full abstration rule(x1 : A1; : : : ; xn : An) : C�x1; : : : ; xn ! : A1 ! : : :! An ! CFor syntax editing, we ontinue to use the zipper. Nodes are extended to ontainthe atual bindings. Eah binding shows the type of the variable, whih makes iteasy to look up the type. For instane, a tree for the logial formula8x:x = xlooks as follows:

14 A. RantaUniv : Prop(x : Exp) Equal : Propx : Expx : Exp4 Dependent typesDependent types are types that depend on objets. We will give examples of twouses of them: �rst a grammar that de�nes the type heker of a small programminglanguage, and seondly a grammar of proofs, whih leads to the notion of proof-arrying douments. 4.1 Typed expressionsThe following judgements de�ne a ategory Typ of datatypes, and the ategoryExp of expressions, whih depends on Typ.at TypExp TypExamples of datatypes are integers, booleans, and lists:fun Int, Bool : TypList : Typ ! TypTo de�ne expressions, we use generalized funtion types where the value type de-pends on the argument9:fun Zero : Exp IntTrue : ExpBoolNil : (A : Typ) ! ExpACons : (A : Typ) ! ExpA ! Exp (ListA) ! Exp (ListA)append : (A : Typ) ! (; : Exp (ListA)) ! Exp (ListA)For example, Cons Int Zero (Nil Int)is a valid syntax tree of type Exp (List Int), whereasCons Int Zero (Cons Bool True (Nil Int))is not a valid tree of any type. The grammar thus expresses not only the syntatiwell-formedness of the language but also its well-typedness.Notie how dependent types de�ne the funtions Nil, Cons, and append as poly-morphi: their Exp arguments an be expressions of any types, in virtue of the9 In all variable-binding onstrutions of GF, the wildard an serve as a bound variable, if thevariable is not used.

Grammatial Framework 15Typ argument. The same tehnique is used in monomorphi type theory (Nord-str�om et al., 1990) and in the dependently typed programming language Cayenne(Augustsson, 1998). Polymorphism in onrete syntax results from argument sup-pression: for instane, the Haskell notation for lists is de�ned by the ruleslin Nil = fs = "[℄"gCons x y = fs = x:s++":" ++y:sgappend x y = fs = "(" ++x:s++"++" ++y:s++")"gWhen ompleted with semanti de�nitions,def append (Nil) y = yappendA (Cons a x) y = ConsAa (appendAxy)the grammar de�nes a omplete parser, pretty-printer, type heker, interpreter,and syntax editor for this little language10.4.2 Curry-Howard isomorphismThe de�nition of type-orret expressions in abstrat syntax is a fairly simple appli-ation of dependent types. A more involved one, and originally the main motivationof logial frameworks, is to de�ne logial aluli by formulating inferene rules asdelarations of proof funtions. The struture is the same as with types and expres-sions: we have a basi type Prop of propositions and the dependent type ProofAof proofs of a proposition A. The idea to treat propositions as types of proofs isknown as the Curry-Howard isomorphism. An example is impliation �a la Martin-L�of (1984): the formation, introdution, and elimination rules ome out as follows:fun Impl : Prop ! Prop ! PropImplI : (A;B : Prop) ! (ProofA ! ProofB) ! Proof (ImplAB)ImplE : (A;B : Prop) ! Proof (ImplAB) ! ProofA ! ProofBIf we now want to express formal proofs in natural language, we simply give lin-earization rules that produe texts, e.g.lin ImplI AB b = fs = "assume" ++A:s++":"++b:s++":" ++"Hene" ++"if" ++A:s++"then" ++B:sgOn the top level of mathematial texts, we use a ategory Text for textual unitssuh as theorems with or without proofs:fun ThmProof, ThmOmit : (A : Prop) ! ProofA ! Textlin ThmProof Aa = fs = "Theorem:" ++A:s++"Proof:" ++a:s++"QED"gThOmit A = fs = "Theorem:" ++A:s++"Proof:" ++"Omitted:"g10 In GF's parameter system (Setion 5), we ould moreover de�ne a preedene parameter toregulate the use of parentheses.

16 A. RantaThe typing of these funtions fores the proof in ThmProof really to prove thetheorem; in ThmOmit, a proof must exist even though it is not shown. Thus anyonewho uses the GF syntax editor to build proof texts is fored to making them orret.4.3 Proof-arrying doumentsBesides mathematial texts, dependent types and the Curry-Howard isomorphismare useful for other kinds of texts, to guarantee semanti properties. Consider, forinstane, texts desribing train onnetions:To get from Gothenburg to Hamburg, �rst take train 487 to Copenhagen and then hangeto train 36.The semanti well-formedness onditions for this text are that train 487 runs fromGothenburg to Copenhagen, that train 36 runs from Copenhagen to Hamburg, andthat train 487 arrives at Copenhagen before train 36 leaves. All of these onditionsan be onisely expressed by a grammar with a dependent type TrainAB of trainonnetions from the ity A to the ity B, and a type of proofs of the fat that onetrain arrives before another train leaves. New onnetions are generated by the rulefun Connet : (A;B;C : City) ! (a : TrainAB) ! (b : TrainBC) !BeforeABC a b ! TrainACIt is easy to write a linearization rule for Connet generating texts like the exampleabove. Linearization hides the proof of the Before ondition, but anyone who usesthe GF syntax editor to build the text is obliged to give a proof in order for thetext to be omplete. We all this idea proof-arrying douments, with a refereneto proof-arrying ode (Neula, 1997).4.4 Conrete syntax and dependent typesLittle need be said about the onrete syntax of dependent types, sine linearizationrules look preisely the same as without them. In parsing rules, the arguments ofdependent ategories are just ignored. The ontext-free parsing phase thus ignorestype dependenies. It aepts ill-formed expressions suh as \0 : True : [℄", whihthe subsequent type heking phase rejets.It is possible to improve the performane of the GF parser by integrating parsingand type heking: errors are then deteted at an earlier stage. Some amount ofintegration is neessary if the grammar has syntatially dummy oerion rules likefun oere : Exp Int ! ExpFloat ; lin oerex = x:The orresponding ontext-free rule is yli,oere: Exp ::= Exp;and produes an in�nity of parse trees, at most one of whih is type-orret11.11 Luo and Callaghan (1999) investigate oerion as a entral phenomenon of informal mathemat-ial language and suggest an algorithm for resolving it

Grammatial Framework 174.5 Type heking and syntax editing dependent typesType heking with dependent types is harder than without them, sine it involvesomputation of expressions. For instane, a proof that 2 is even is also a proof that1 + 1 is even. In the presene of variables and metavariables, moreover, it annotalways be deided if an expression has a given type: whether a proof of Even 2 isalso a proof of Even (1+?) depends on the value of ?. Therefore, what the typeheker returns is not a boolean value but a set of onstraints, whih are equalitiesbetween terms. The value True orresponds to the empty set of onstraints. Thevalue False orresponds to the situation where some of the onstraints is impossible,e.g. 1 = 0 (f. (Magnusson & Nordstr�om, 1994)).In general, onstraints ontain metavariables that appear in di�erent positionsin the tree. Beause of this, metavariables have to arry unique identi�ers; we usesubindexed question marks for this. For instane, parsing the expression0 : 1 : [℄in the grammar of Setion 4.1 reates an inomplete term of an inomplete type:Cons ?0 Zero (Cons ?1One (Nil ?2)) : Exp ?3The type heker an easily �nd out the following onstraints:?0 = ?1 = ?2 = Int; ?3 = List ?0In this example, a simple onstraint-solving mehanism is enough to automatiallyinstantiate all the metavariables. Suh is usually the ase for hidden type argumentsorresponding to polymorphism: the user of an editor does not need to �ll in thesearguments.Even if onstraints remain unsolved, they an be helpful in syntax editing. sinethey narrow down available hoies. For instane, in a menu of re�nements for? : ExpBool, funtions whose value type is Exp Int are not shown.Formal rules for dependent types are given in Setion 6.2. As type hekingalgorithm, we have used the one in (Coquand, 1996), whih we have modi�ed sothat it type-annotates terms into trees used by the zipper editor. In addition tobindings, funtion body, and value type, as in Setion 3.4, the information storedin a node inludes the onstraints reated when type heking that node.5 Extending onrete syntaxThe values returned by linearization have so far been strings and reords of strings.In this setion, we generalize this to reords that may also ontain string-valued�nite funtions, tables, as well as parameters. Di�erent onrete syntaxes may usedi�erent reord types for one and the same type in the abstrat syntax. This exten-sion is essential to keep abstrat syntax independent of language-dependent featuressuh as inetion.

18 A. Ranta5.1 Parameters, tables, and reordsA parameter type is a �nite set of parameter values, on whih the linearizationof an expression may depend. For example, the type of grammatial numbers inEnglish has two values: the singular and the plural. Expressions linearized as Englishommon nouns have two forms: e.g. Int has the singular form integer and the pluralform integers.We write param Num = Sg j Plto de�ne the parameter type Num. The typeNum) Stris the type of string-valued tables on Num, and the expressiontable fSg) "integer" ; Pl) "integers"ggives suh a table in expliit form. The seletion operation (!) is used for applyingtables to arguments:table fSg) "integer" ; Pl) "integers"g ! Pl = "integers"Conrete syntax assigns to every ategory in abstrat syntax a linearization type:for instane, the linearization type of CN is given by the judgementlinat CN = fs : Num) StrgLinearization rules for expressions of the ategory CN must have this value type.An example of suh a rule islin Int = fs = table fSg) "integer" ; Pl) "integers"ggIn German, ommon nouns do not only depend on number, but also on ase(Nominative, Ausative, Genitive, Dative). The linearization type thus has a two-argument table, whih we \urry" into a table of tables:linat CN = fs : Num) Case) StrgIn yet other languages, there may be three numbers (Arabi has the dual) or �fteenases (Finnish has|well. . .). In ontext-free (rewrite) grammars, all this variationwould have to be expressed by unrelated rules, whih would make it impossible touse a ommon abstrat syntax.In addition to parameters that produe di�erent forms, expressions may haveparameters as inherent features. For instane, German ommon nouns have a gender(Masuline, Feminine, Neuter) assoiated to them, but not as inetion forms: anynoun inherently has just one gender. Inherent features are expressed by reord �eldsin linearization types. Here is an amended rule for German ommon nouns:linat CN = fs : Num) Case) Str ; g : GengThe reord linearizing a tree ontains all linguisti information onerning theexpression: its inetion table and its inherent features. Suh information is what

Grammatial Framework 19we normally �nd in ditionaries. In grammar, this information is not only neededfor individual words, but for arbitrarily omplex phrases. For instane, in English,when a ommon noun is modi�ed by an adjetive, the resulting omplex ommonnoun an still be ineted in number:fun Mod : Adj ! CN ! CNlin Mod F A = fs = table fSg) F:s++A:s ! Sg ; Pl) F:s++A:s ! PlggAll fun rules must have lin rules of mathing linearization types. This an beheked at ompile time, before the grammar is used. It is also easy to hek thatthe rules are omplete|essentially, that all tables have values for all elements oftheir argument types. Using a type system to prevent run-time errors is one of thekey ideas that GF has inherited from funtional programming languages.5.2 Hierarhial parametersParameter types are like data types in Haskell and other funtional languages,with the restrition that they must be �nite. Hierarhial parameter types arepermitted, and they are, in fat, often very appropriate. To give an example, Frenhverbs, as presented in the authoritative Besherelle (1997), have three persons,two numbers, two genders, four (non-omposite) tenses, and six modes. But theinetion tables display only 51 (non-omposite) verb forms, not 288, whih wouldbe the ase if the forms were simply ross-produts of all parameters. The reason isthat many ombinations do not exist. A natural way of desribing this parametersystem is by using parameter types whose onstrutors have arguments from otherparameter types. The following system is a straightforward GF formalization of theBesherelle:12param Nombre = Sg j PlPersonne = P1 j P2 j P3Genre = Mas j FemTemps = Pres j Imparf j Passe j FuturTSubj = SPres j SImparfTPart = PPres j PPasse Genre NombreNImper = SgP2 j PlP1 j PlP2VForm = Inf j IndiTempsNombrePersonne j CondNombrePersonnej Subj TSubj Nombre Personne j Imper NImper j Part TPart12 We have used this type system in a omplete GF implementation of the Besherelle onjugations;see GF Homepage (Ranta, 2002). Huet (2000) uses CAML datatypes in the same way in hismorphology of Sanskrit.

20 A. Ranta5.3 Disontinuous onstituentsIn all examples so far, the linearization of a tree has been a reord with one prinipalstring or string-valued table, stored in a �eld labelled s. Now we onsider aseswhere the linearization onsists of separate parts, whih an hange order and getother expressions inserted between them. Suh expressions are alled disontinuousonstituents.A famous example of disontinuous onstituents is German verb phrases. A verbphrase is a omplex expression onsisting of a verb and its omplements, in Englishe.g. loves Mary in John loves Mary. The analysis of a sentene into a noun phrase(the subjet) and a verb phrase (the prediate) is motivated both by logi (Aris-totelian or modern) and by linguisti fats suh as the onjuntion John loves Maryand hates Bill. In German, however, the verb phrase (liebt Maria) annot be foundin all uses of the sentene (Johann liebt Maria). For instane, in the onditionalwenn Johann Maria liebt, liebt Johann Mariathe verb phrase is used with a reverse word order in the anteedent, and dissolvedinto two parts in the suedent. Those linguists who still believe that liebt Maria isa onstituent of the sentene, have to treat it as a disontinuous onstituent.In GF, disontinuous onstituents are reords with more than one string-valued�elds. The German linearization type of verb phrases an be de�ned aslinat VP = fs1 : Agr) Str ; s2 : Strgonsisting of the verb part s1 and the omplement part s2. The verb part depends onagreement features, suh as number and person. It reeives them from the subjet ofthe sentene, whih has them as inherent features. The sentene-forming prediationrule fun Pred : NP ! VP ! Sis linearized under a three-valued parameter that produes di�erent strings fordiret, inverse, and subordinate sentenes:lin PredN V = fs = table fDir) N:s++V:s1 ! N:a++V:s2 ;Inv) V:s1 ! N:a++N:s++V:s2 ;Sub) N:s++V:s2 ++V:s1 ! N:aggThe omplementation rule forms a verb phrase from a transitive verb (TV) and anoun phrase: fun Compl : TV ! NP ! VPlin Compl V N = fs1 = V:s ; s2 = N:s ! AgGiven the noun phrases Johann and Maria and the transitive verb Lieben, we anform the syntax tree Pred Johann (Compl LiebenMaria)whih has a linearization produing three forms: Johann liebt Maria, liebt JohannMaria, and Johann Maria liebt.

Grammatial Framework 21Parsing disontinuous onstituents will be explained as a part of the full GFparsing algorithm (Setion 7.2). We just notie that disontinuous onstituentsmake it possible to de�ne intriate non-ontext-free languages, suh asfanbnn j n = 1; 2; : : :gThis language is de�ned by the ategory S of the following GF grammar:at S ; Auxfun exp : Aux ! S ; �rst : Aux ; next : Aux ! Auxlinat Aux = fs1 : Str ; s2 : Str ; s3 : Strglin expx = fs = x:s1 ++x:s2 ++x:s3g�rst = fs1 = "a" ; s2 = "b" ; s3 = ""gnextx = fs1 = "a" ++x:s1 ; s2 = "b" ++x:s2 ; s3 = "" ++x:s3g5.4 Canonial GFWe have extended ontext-free grammars into grammars where linearizations ofsyntax trees are reords of tables of grammatial objets. The operational seman-tis of these grammars will be explained in terms of omputation rules for tableseletions and reord projetions in Setion 6.3. From this perspetive, linearizationis similar to evaluation in a funtional programming language.However, GF has a omputational model that is simpler than evaluation in fun-tional language, sine it does not involve substitutions for variables. The only vari-ables that are present in the right-hand-side t of a linearization rulelin f x1 : : : xn = tare x1 : : : xn, whih stand for the linearizations of the arguments of f . The substi-tution of values for these variables an be performed in the same way as seletionsand projetions: as look-up followed by simple replaement. Linearization as a wholeis a single inorder traversal of the syntax tree.We will refer to the GF onrete-syntax notation so far introdued as anonialGF. In the next setion, we will go far beyond anonial GF by adding funtionsand pattern mathing. This extension is important for the usability of GF. Forthe implementation, however, the important thing is that the rih notation an beompiled bak into anonial GF. Even though linearization ould be performeddiretly as evaluation on the rih notation, it is muh more eÆient to performpartial evaluation on the grammar and use anonial GF at runtime. Moreover, itis from anonial GF that parsers are derived. Partial evaluation and parsing willbe explained in Setion 7.5.5 Abstration mehanismsLinguists, just like funtional programmers, like to work with strong generalizationsand on a high level of abstration. GF makes aessible to linguists two abstrationmehanisms of funtional programming: funtion de�nitions and pattern mathing.

22 A. RantaFuntion de�nitions in GF are alled operation de�nitions to distinguish themfrom the fun judgements of abstrat syntax. An example is the operation thatprodues regular ommon nouns in English:oper regCN : Tok ! fs : Num) Strg = � ! fs = Sg) ; Pl) +"s"g13The linearization rule of the datatype expression Int an now be onisely writtenlin Int = regCN "integer"Pattern mathing is used in tables: branhes an be de�ned not only for onstru-tor expressions, but also for patterns, whih may ontain variables and wildards(). For instane, the following table de�nes the English adjetival modi�ation ruleby using a pattern variable n for number:lin Mod F A = fs = table fn) F:s++A:s ! nggIt is possible to expand this table into the fully expliit form shown in Setion 5.1;using patterns, however, aptures the generalization that it is the noun part thatreeives the number of the whole phrase.Funtion types (A ! B) and table types (A) B) have many ommon proper-ties: both allow urrying, full and partial appliation, and formation by abstration.There are important di�erenes, however:� Tables, but not funtions, are restrited to �nite argument types.� Tables, but not funtions, an be formed by ase analysis.14� Tables, but not funtions, are values in anonial GF.The partial evaluation algorithm (Setion 7.1) shows in fat that� Funtions an always be eliminated from linearization rules.5.6 Resoure grammarsThe intended use of GF is to build natural-language fragments on top of semantimodels, suh as mathematial theories. This makes it possible to minimize the sizeof grammars and avoid many irrelevant linguisti problems. For instane, a Frenhgrammar for mathematis does not need to de�ne all the 51 Frenh verb forms, buttwo is often enough.However, the ad ho way of de�ning grammars may lead to dupliation of work: ifdi�erent parts of verb onjugation are needed in di�erent appliations, one annotuse the onjugation de�ned for one grammar as a resoure for another grammar.And, of ourse, this style of grammar-writing favours linguistially unmotivatedsolutions.The idea of resoure grammars is to de�ne ommon and unproblemati parts ofonrete syntax|suh as inetion tables|independently of abstrat syntax. Using13 We use + instead of ++ between strings to say that they belong to the same token (Tok).14 If the argument type of a funtion f is a parameter type, ase analysis is of ourse possible inthe form f = �x ! table f: : :g ! x.

Grammatial Framework 23a resoure grammar needs some are, however: a grammar enoding 51 forms ofone thousand verbs is a heavy tool for atually dealing with two forms of ten verbs.When used in a na��ve way, it produes enormous runtime systems. What makesresoure grammars pratial is type-driven partial evaluation (Setion 7.1). Supposewe only need two forms of Frenh verbs|say, the indiative and subjuntive of thirdperson singular present tense. The linearization type of verbs is thenlinat Verb = fs : Mode) StrgAssume that we have a resoure grammar with omplete forms of onjugation �a laBesherelle, in a form likeoper tenir : VForm) Str = twhere VForm is the parameter type with 51 values. When evaluated, t yields thefull table for the verb tenir (f. Setion 5.2). Now, to use objets of this type aslinearizations of verbs in the ategory Verb, all we need is an interfae operationoper useVerb : (VForm) Str) ! fs : Mode) Strg = �t !fs = table fInd) t ! (Indi Pres SgP3) ; Sub) t ! (Subj Pres SgP3)ggLinearizations an then be de�ned ompatly, for instane,lin Tenir = useVerb tenirand the result is a two-element table with the forms tient, tienne, sine the termis �-expanded with respet to the expeted linearization type and then evaluated.If some other set of forms is needed, all that has to be hanged is the de�nition ofthe interfae operation useVerb.Resoure grammars are an obvious way to de�ne morphology and lexion, andthey an often be ompiled from existing resoures or reated by using general-purpose programming languages. But the idea also makes sense for syntax. Forinstane, the German linearization types for sentenes, noun phrases, verb phrases,and transitive verbs, and the prediation and omplement rules (Setion 5.3) anbe written as operations:15oper S : Type = fs : Ord) StrgNP : Type = fs : Case) Str ; n : AgrgVP : Type = fs1 : Agr) Str ; s2 : StrgTV : Type = fs : Agr) StrgPred : NP ! VP ! S = : : :Compl : TV ! NP ! VP = : : :15 If the linguist prefers to write her grammar using fun, at, lin, and linat, as in Setion 5.3,the oper de�nitions an be extrated automatially from them.

24 A. RantaMore funtions an be de�ned in terms of these basi operations:Pred1 : VP ! NP ! S = �F; x ! Pred x FPred2 : VP ! NP ! NP ! S = �F; x; y ! Pred x (Compl F y)The writer of an appliation grammar for e.g. mathematis an use these operationswithout knowing anything about German word order and agreement. If she hasdeided that propositions are linearized as S, one-plae prediates as VP, and two-plae prediates as TV, all she has to know is whih verbs (from the resouregrammar) are used for eah prediate16. For instane, to linearize the one-plaeonvergene prediate and the two-plae intersetion prediate, she writeslin Converge = Pred1 konvergierenInterset = Pred2 shneidenIn this way, a division of labour is ahieved between authors of resoure grammars,who are experts in linguisti rules, and authors of appliation grammars, who areexperts in the domain of appliation.6 The GF languageThis setion gives a onise de�nition of the GF formalism. The framework-levelnotions of type heking and evaluation are spei�ed by inferene rules. The nota-tion we use is exatly the same as the notation reognized by the GF parser, withthe exeption of a handful of non-ASCII symbols: in ASCII-written GF soure ode,we replae � by \, ! by ->, and) by =>.176.1 Grammars and judgementsA GF grammar is a sequene of judgements. Judgements are divided into two sorts:those of abstrat syntax and those of onrete syntax. Figure 1 shows the forms ofjudgement used in GF grammars, together with their verbal readings.Every form of judgement has a keyword (suh as at, param). Every judgementends with a semiolon (;), whih we usually omit in typeset text, where we haveaess to layout. Using the semiolon (or layout) makes it possible to omit keywords:one a keyword appears in the ode, it is read as the �rst word of every semiolon-separated judgement, until a keyword is enountered again.The forms of judgement shown in Figure 1 are the ones that may appear in GFgrammars. On the metalevel, we also use judgements of the formsA : Type A is a typea : A a is an objet of type Aa = b a is de�nitionally equal to b16 Inluding adjetives as possible linearizations of prediates would not be a problem: theadjetive-verb distintion ould be hidden in slightly more general linearization types.17 Some GF strutures that are supported by the atual implementation are left out, sine weonsider them experimental; we refer to doumentation in (Ranta, 2002) for suh features.

Grammatial Framework 25Abstrat syntax.at C � C is a ategory depending on the ontext �fun f : A f is a funtion of type Adef a = b a is de�ned as bdata C = f1 j : : : j fn C has the onstrutors f1; : : : ; fnConrete syntax.param P = C1 �1 j : : : j Cn �n P is a parameter type with the onstrutorsC1 with ontext �1, . . . , Cn with ontext �nlinat C = L C has the linearization type Llindef C = t C has the default linearization tlin f = t f has the linearization funtion toper h : T = t h is an operation of type T , de�ned as tSyntati sugar: omitting keywords.key J ; : : : ; K �� key J ; : : : ; key KFig. 1. Forms of judgement in GF.with their usual Logial Framework meanings (in e.g. (Nordstr�om et al., 1990)).6.2 Abstrat syntax6.2.1 Categories, types, and funtionsJudgements of at and fun forms are used for building basi types and objets.The at judgement at C �presupposes that � is a ontext, i.e. a sequene of variable delarations(x1 : A1) � � � (xn : An)where Ai : Type (x1 : A1) � � � (xi�1 : Ai�1) for every i = 1; : : : ; n. The ruleof basi type formation (Figure 2) tells how types are formed from a ategory byinstantiating the ontext. If n = 0, the ontext is empty, and C is itself a type.The fun judgement fun f : Apresupposes that A is a type. It generates an objet f of type A, to whih the rulesof appliation and abstration apply in aordane with the type A, as well as the� and � onversion rules. These rules are shown in Figure 2. They are more or lessthe standard rules of logial frameworks with dependent types, suh as (Nordstr�omet al., 1990).Syntati sugar in Figure 3 is of two opposite kinds: variable elimination and typefatorization. As usual in dependently typed languages, variables an be eliminatedfrom ontexts and funtion types whenever there are no dependenies on them.The resulting notation is similar to simply typed languages, suh as Haskell. On

26 A. RantaBasi type formation.at C (x1 : A1) � � � (xn : An) a1 : A1 : : : an : An(x1 := a1; : : : ; xn�1 := an�1)C a1 : : : an : TypeBasi objet formation. fun f : Af : AFuntion type formation, appliation, and abstration.A : Type (x : A)B : Type(x : A)! B : Type f : (x : A)! B a : Af a : B(x := a) (x : A)b : B�x! b : (x : A)! B� and � onversion. (�x! b)a = b(x := a) : (x : A) ! B = �x! (x)De�nition expansion.f a1 : : : an = t1 : : : nfor the �rst def f p1 : : : pn = t suh that p1<1>a1; : : : ; pn<n>anFig. 2. Rules for types and objets in abstrat syntax.
Variable elimination.(: A)� �� (x : A)� if � does not depend on xA � �� (: A)�(: A)! B �� (x : A)! B if B does not depend on xA! B �� (: A)! B� ! b �� �x! b if b does not depend on xFatorization. fun f; : : : ; g : A �� fun f : A ; : : : ; g : A(x; : : : ; y : A) �� (x : A) � � � (y : A)(x; : : : ; y : A)! B �� (x : A)! � � � ! (y : A)! B�x; : : : ; y ! b �� �x! � � � ! �y ! bFig. 3. Syntati sugar for abstrat syntax.the other hand, the use of variables allows type fatorizations that are not possiblein Haskell. For instane, the following abbreviation is useful if A is omplex:(; ; : A)! B �� A! A! A! B:

Grammatial Framework 276.2.2 Normal forms of abstrat syntax types and objetsThe type of any fun funtion f has the form(x1 : A1)! � � � ! (xn : An)! Awhere A is a basi type C t1 : : : tm where C is a ategory. With referene to thisform, we say that A1; : : : ; An are the argument types of f , that A is its value type,and that C is its value ategory. The full appliation of f has the formf a1 : : : anwhose type is A(x1 := a1 : : : xn := an). A term of a funtion type is in �� normalform, if it is an abstration �z1 ! � � � ! �zn ! band b is an appliation of a onstant or a variable or a metavariable, with allarguments in �� normal form. We an use the � and � onversion rules to bringany well-typed term into this form.186.2.3 MetavariablesThere is an in�nite supply of metavariables?0; ?1; ?2; : : :whih an be terms of any type. Metavariables are generated in parsing and ininterative editing, and they do not appear in GF grammars. Sine they are gen-erated diretly in �-expanded form �x1; : : : ; xm ! ?k, the metavariable ?k itselfhas always a basi type C a1 : : : an.6.2.4 De�nitionsA judgement of the form data C = f1 j : : : j fnpresupposes that C is a ategory and that f1; : : : ; fn are fun funtions, suh thatthe value ategory of eah fi is C. What the judgement says is that f1; : : : ; fnare onstrutors of the ategory C. Like in ALF (Magnusson & Nordstr�om, 1994),onstrutors an be added inrementally, by new data judgements.A judgement of the form def f p1 : : : pm = dpresupposes that f is a fun funtion but not a onstrutor, and that d is an objetof type determined by the types of f and p1; : : : ; pm19. The arguments p1; : : : ; pm18 Thus a funtion f alone is a term in normal form only if its type is a basi type: in the generalase, the normal form of the term f is �z1 ! � � � ! �zn ! f z1 : : : zn.19 Cf. the de�nition of pattern ontexts in Figure 6, modi�ed for dependent types.

28 A. Rantaare patterns, i.e. terms formed from variables, the wildard , and onstrutors.Those def judgements that have one and the same f form the impliit de�nitionof that f . They determine how appliations of f are omputed by using patternmathing. Mathing is performed in the order in whih the equations appear in thegrammar, and the patterns may overlap; the pattern-mathing rules are the sameas the ones for onrete syntax in Figure 6.Funtions f that are neither onstrutors nor de�ned impliitly are primitivenotions. The lexial rules of GF make no distintion between onstrutors, de�nedfuntions, and primitive notions.6.3 Conrete syntax types and expressions6.3.1 Tokens and stringsThe type Str, informally alled \strings", is atually a type of lists of tokens, whihare objets of type Tok. Tokens in normal form are quoted strings ("foo"). Theagglutination t + u of two tokens is also a token. Token lists are built from theempty list [℄ and from tokens by means of onatenation ++ (Table 4).We treat Tok and Str as abstrat types, whih an be instantiated by any typesthat support the aforementioned methods. A simple model is one in whih tokensare strings and token lists are lists of strings. In this model, + is string onatenationand ++ is list onatenation. Expressions for tokens an also be used as expressionsfor singleton token lists, and are thus overloaded. 206.3.2 Parameters and parameter typesA parameter type (PType) P is de�ned by a parameter delarationparam P = C1 �1 j : : : j Cn �nwhere eah �i is a parameter ontext, i.e. a sequene P1 : : : Pm of parameter types.The parameter delaration introdues the parameter onstrutors C1; : : : ; Cn, whihan be used as funtions from their parameter ontexts to P .The parameter delarations of a grammar may not be reursive, nor mutuallyreursive. As a onsequene, every parameter type P is �nite, and we an form thelist of all parameter values of type P ,VP = [1P ; 2P ; : : : ; np℄generated by a left-to-right enumeration of the parameter values of type P 21.20 Another model of tokens are word desriptions obtained from a morphologial analyser, e.g.\point+Noun+Pl" instead of \points". This demands separate morphology passes before parsingand after linearization, but is an eÆient way to implement parsing when the lexion is large.21 This is similar to the derivation of Enum lass instanes in Haskell, but more powerful, sine itapplies not only to enumerated types but also to disjuntive and onjuntive types.

Grammatial Framework 29The types of tokens and strings and parameter types.Tok; Str; PType : TypeTokens, the empty string, tokens as strings, agglutination, and onatenation."foo" : Tok [℄ : Str t : Tokt : Str t; u : Tokt+ u : Tok s; t : Strs++t : StrParameter types and onstrutors.param P = : : :P : PType P : PTypeP : Type param P = : : : j C P1 : : : Pn j : : :C : P1 ! : : : ! Pn ! PReord type formation. T1; : : : ; Tn : Typefr1 : T1 ; : : : ; rn : Tng : TypeReord formation and projetion.t1 : T1 : : : tn : Tnfr1 = t1 ; : : : ; rn = tng : fr1 : T1 ; : : : ; rn : Tng : f: : : ; r : T ; : : :g:r : TProjetion omputation. f: : : ; r = t; : : :g:r = tTable type formation. P : PType T : TypeP) T : TypeTable formation and seletion.t1 : T �P p1 : : : tn : T �P pn [p1; : : : ; pn exhaustive for P ℄table fp1) t1 ; : : : ; pn) tng : P) T : P) T p : P ! p : TSeletion omputation.table f: : : ; p) t; : : :g ! v = t for the �rst p suh that p<>vLoal de�nition. t : T (x : T)e : Elet fx : T = tg in e : E let fx : t = Tg in e = e(x := t)Global de�nition. oper h : T = th : T oper h : T = th = tFig. 4. Types and objets of onrete syntax

30 A. RantaConatenation of tokens.["foo : : : bar"℄ �� "foo" ++ : : :++"bar"Fatorization.f: : : ; r; : : : ; s : T ; : : :g �� f: : : ; r : T ; : : : ; s : T ; : : :gf: : : ; r; : : : ; s = t; : : :g �� f: : : ; r = t; : : : ; s = t; : : :glet fx1 : T1 = t1; : : : ;xn : Tn = tng in e �� let fx1 : T1 = t1gin: : : let fxn : Tn = tng in eCase expression. ase e of f� � � g �� table f� � � g ! eFig. 5. Syntati sugar for onrete syntax.6.3.3 Reord types and reordsThe rules for labelled reords in Figure 4 are ompletely standard. Reord labelshave loal sopes, and their name spae is distint from identi�ers. For a reord r tobe of the type R, it is enough that every label of R is given a value of appropriatetype in r. The order of �elds does not matter, nor do superuous �elds in r. Innotation, �elds in reord types and reords an be fatorized.6.3.4 Table types, tables, and pattern mathingTables of type P) T are �nite funtions from P to T . The argument type Pmust be a parameter type. The normal form of a table is a omplete enumerationof argument-value pairs:table f1P) t1 ; : : : ; nP) tngFor onveniene, and to apture generalizations, the use of patterns is permittedas well.22 There are three kinds of patterns, as shown in Figure 6. The mathingrelation p<>v\the pattern p mathes the value v with the substitution ", is used in Figure 6 tode�ne the omputation of seletions from tables with patterns. To test whether alist of patterns is exhaustive for a given type P , we just test whether all values oftype P are mathed by them.Patterns are mathed from left to right, and they are allowed to overlap, like inHaskell. Nonlinear patterns are forbidden (i.e. patterns where a variable x oursmore than one). It is in virtue of this that pattern ontexts and substitutions anbe simply onatenated.22 Tables with patterns are syntatially similar to fn expressions in ML.

Grammatial Framework 31Patterns: wildard, variable, and onstrutor.x C p1 : : : pnPattern ontexts. �P = () �Px = (x : P)�P (C p1 : : : pn) = �A1p1 � � ��Anpn if C : A1 ! : : : ! An ! APattern mathing rules.<>v x<(x := v)>v p1<1>v1 : : : pn<n>vnC p1 : : : pn<1 : : : n>C v1 : : : vnFig. 6. Patterns and pattern mathing.If the argument type P of a table t is known, the table an be expanded toeliminate patterns, by going through the list of all parameter values of P :t = table f1P) t ! 1P ; : : : ; nP) t ! nP gIt is often handy to use ase expressions as syntati sugar for seletions, asshown in Figure 5.6.3.5 Funtions, operation de�nitions, and loal de�nitionsConrete syntax uses the same rules for funtions and funtion types as abstratsyntax (Figure 2). Sine funtions are not part of anonial GF (Setion 5.4), the�� normal form plays no role in onrete syntax.Funtions are mostly introdued in operation de�nitions, judgements of the formoper h : T = twhere T is any type (in the sense of onrete syntax) and t : T . Loal de�nitions(let expressions) have a similar syntax, but they are loal to expressions.The oper de�nitions of a grammar may not be (mutually) reursive. A on-sequene of this is that a de�ned operation h an always be eliminated from agrammar by replaing it with its de�nition t; this proedure is known as inlining.6.3.6 Type variablesGF does not have polymorphism. Expliit type variables and dependent types areused instead. The type of these variables is Type; there is for the time being nostrati�ation. An example is the ip funtion (familiar from Haskell):oper ip : (a; b; : Type)! (a! b!)! b! a! = � ; ; ; f; x; y ! fyxAnother example is a loal type de�nition, whih is not possible in Haskell:let fS : Type = fs : Strgg in S ! S ! S ! S

32 A. Ranta6.4 Conrete syntax for abstrat syntaxA mathematial view of a GF grammar is that the abstrat syntax de�nes a freealgebra of syntax trees, and the onrete syntax de�nes a homomorphism fromthis algebra into a system of onrete-syntax objets. Mainly for the purpose ofderiving parsers, we restrit onrete-syntax objets to ertain speial forms ofreords, aptured by the notion of a linearization type.6.4.1 Linearization typesA linearization type L is a reord type usable as value type of linearization. It musthave one or more �elds whose types are Str-valued tables, the other �elds havingparameter types. More preisely,� A string type is either Str or P) S where S is a string type.� If S is a string type, fs : Sg is a linearization type.� If L is a linearization type, so is the type resulting from adding a �eld r : Twhere T is a parameter type or a string type.To simplify the generation of a parser, we require that all and only the string typevalued �elds are labelled s1; s2; : : :, or s23.When giving a linearization rule to a funtion whose arguments have funtiontypes, we need to know what the linearization type of suh a type is. The followinglauses de�ne this notion indutively for all types:(C a1 : : : an)o = L, if linat C = L((x1 : A1)! (xn : An)! A)o = fv1 : Str; : : : ; vn : Strg �� AoIn the latter lause, we assume that the funtion type is in normal form, i.e. thatA is a basi type. To form the linearization type of a funtion type, we thus addto the linearization type of the value type one �eld of type Str for eah argumenttype. The idea is to introdue a �eld for eah variable symbol. If n = 1, we followthe onvention of adding v : Str without a subsript. To avoid lashes with thesystem-generated labels v; v1; v2; : : :, for bound variables, these labels are forbiddenin user-de�ned reord types.6.4.2 Linearization type de�nitions and linearization rulesA linearization type de�nition for a ategory C is a judgement of the formlinat C = Lwhih presupposes that L is a linearization type. A notational onvention allows usto omit the linat judgement of a ategory C if the linearization type is fs : Strg.A linearization rule for a funtionfun f : (x1 : A1)! (xn : An)! A23 An alternative would be to type-annotate the reord �elds.

Grammatial Framework 33Pattern variables in linearization rules.lin f x1 : : : xm = t �� lin f = �x1; : : : ; xm ! tThe pattern rule format.pattern f x1 : : : xn = t1 ++ : : : ++ tm �� lin f x1 : : : xn = fs = t01 ++ : : : ++ t0mgwhere "foo"0 = "foo" and x0i = xi:s.Fig. 7. Syntati sugar for linearization.is a judgement of the form lin f = twhih presupposes that t : Ao1 ! : : : ! Aon ! AoA onrete syntax is omplete w.r.t. an abstrat syntax, if it ontains a linat judge-ment for every at judgement, and a lin judgement for every fun judgement.The pattern notation for linearization rules (Setion 2) an be used if the ar-gument and value types of f all have the linearization type fs : Strg. A patternelement ti is then either a token or one of the variables xj (see Figure 7).6.4.3 Default linearizationTo linearize symbols not de�ned in the grammar (variables and metavariables),GF uses default linearization. It is a funtion that takes a string to an objet ofa linearization type. The default linearization of a ategory C is de�ned by thejudgement lindef C = twhih presupposes t : Str! Co:If the grammar does not ontain a judgement of this form, a default default lin-earization is used: for a string t, it is a reord where every �eld of a string type hasuniformly the value t, and every parameter �eld of type P has as its value 1P , i.e.the �rst value of type P .7 Partial evaluation and parsingWhile the linearization and typeheking algorithms follow straightforwardly fromthe semantis of GF, there are two other algorithms that are ruial for most pra-tial appliations of GF, and whih are nontrivial: partial evaluation and parsing.Partial evaluation takes a GF grammar into a form by whih linearization an beperformed with the minimum of interpretational overhead. The same form is thebasis of parsing, sine it permits the derivation of a �nite set of ontext-free rules.

34 A. Ranta7.1 Partial evaluationPartial evaluation is evaluation at ompile time, leaving evaluation at runtime lesswork to do (Jones et al., 1993). A partial evaluator takes a program and omputes itas far as it an. In general, the result is not fully evaluated, sine some input of theprogram is unknown. Moreover, partial evaluation an be performed in di�erentways, e.g. optimizing either the time needed to run the runtime program or thespae needed to store it.What we do in GF is evaluate linearization rules into the anonial form ofSetion 5.4. This operation does not always optimize spae: although it sometimesdoes redue spae, it may also do quite the ontrary. However, the result is alwaysa time-optimized runtime grammar.Given a rule pairfun f : (x1 : A1)! : : :! (xn : An)! A ; lin f = twe �-expand the term t with respet to a sequene of argument variables, that is,variables standing for arguments of the funtion f . We denote argument variablesby pairs <C; i> , where C is the value ategory C of the argument type Ai, andi tells that it is the i'th argument. Showing the ategory will be useful in parsergeneration. The result is a linearization rulelin f = �<C1; 1>; : : : ; <Cn; n> ! fr1 = t1 ; : : : ; rm = tmgwhere further �-expansions w.r.t. the linearization type of A have produed thereord form. Eah tj (j = 1; : : : ;m) is either an expression of a basi type (Str ora parameter type) or a fully expanded tabletable f1P) u ! 1P ; : : : ; nP) u ! nP gwhere eah term u ! kP is evaluated further by inlining oper and let onstants,�-expanding reords and tables, and applying the evaluation rules for projetions,seletions, and funtion appliations. Sometimes we also need transformations anal-ogous to the elimination of maximal segments in proof theory (Prawitz, 1965). Themost important suh transformation is(table fp) f ; : : : ; q) gg ! e) a B table fp) f a ; : : : ; q) g ag ! epushing an appliation inside a table. The transformation is needed if the sele-tion annot be omputed: suh is the ase if e depends on an argument variable.There are similar rules for projetion and seletion. The eliminability of funtionappliations is analogous to the subformula property of intuitionisti propositionalalulus: sine the type of the linearization term onsists solely of reords, tables,strings, and parameters, no terms of funtion types need appear in it.After partial evaluation, the only remaining unknown input in linearization rulesare the argument variables. Beause of ompositionality, they an be treated aspointers to the linearizations of subtrees.

Grammatial Framework 357.2 ParsingIn Setions 2.5 and 3.3, the parsing problem of simpli�ed versions of GF wereredued to parsing in ontext-free grammars. We will now do the same to full GF.We use the partially evaluated form of linearization funtions, and onsider the�elds that are of string types. Eah �eld is an n-plae table (n � 0) that has�nitely many possible values u of type Str. We all these values u the produtionsof the funtion f . We derive a �nite set of ontext-free rules from every prodution:starting from a linearization rulelin f = �<C1; 1>; : : : ; <Cn; n> ! ronsider an sk-labelled (and thus Str-valued) �eld of r. Let u be a produtionoming from this �eld. The ontext-free rules generated from u have the formfp: Ck ::= where the value ategory Ck stands for the k'th part of C, and the right-hand side is a sequene of ontext-free items. The sequene is onstruted from elementsof the set u�, whih is de�ned indutively on the struture of the prodution u:Terminal: s� = fsgNonterminal: (<C; i> :sj)� = fCji gBinding: (<C; i> :vj)� = fVarjigConatenation: (a++b)� = f0 j 2 a�; 0 2 b�gSeletion: (a ! p)� = a�Table: (table fp1) b1; : : : ; pk) bkg)� = k[i=1 b�iNow, eah sequene in the set u� has the form1 : : : mwhere eah l is either a terminal s or a ategory symbol Cji indexed by the argu-ment position i and the disontinuous-part number j. This is not yet a sequene ofontext-free items, beause of the presene of the position numbers: these numbersare needed for pro�les. However, the formation of ontext-free items01 : : : 0mis just simpli�ation of nonterminals: eah Varjj beomes Var, and eah Cji beomesCj . The pro�le p is onstruted by olleting, from the subsequene of nonterminalsin 1 : : : m, the list of positions for eah argument plae of f , in the same way asin Setion 3.3.Pro�les p in rule labels fp were earlier just an optimization removing the needto look up f in the grammar when postproessing parse trees. When parametrivariation is introdued, pro�les beome indispensable: the arguments of f may beplaed to di�erent positions when the tree is linearized under di�erent parameters.Thus it would not be enough to look up f to restore the order of onstituents.When restoring syntax trees from parse trees, we do the same as in Setions 2.5

36 A. Rantaand 3.3. Disontinuous onstituents bring nothing new to this, sine they an betreated as redupliations. What typially happens in these redupliation instanes isthat di�erent parts have metavariables in di�erent plaes, so that no onits arisewhen the �nal result is formed by unifying the parts. For example, the Germangrammar of Setion 5.3 generates the ontext-free grammar (with pro�les thatignore bindings, whih are empty)Pred[[1℄;[2;3℄℄: S ::= NP VP1 VP2Pred[[2℄;[1;3℄℄: S ::= VP1 NP VP2Pred[[1℄;[2;3℄℄: S ::= NP VP2 VP3Compl[[1℄;[℄℄: VP1 ::= TVCompl[[℄;[1℄℄: VP2 ::= NPThe sentene Johann liebt Maria has the initial parse treePred[[1℄;[2;3℄℄ Johann (Compl lieben ?) (Compl ? Maria)whih uni�es to the �nal treePred Johann (Compl lieben Maria)Sine the formation of ontext-free rules suppresses all parameters, the parseris over-tolerant. It ould, for instane, reognize they walks as a valid English sen-tene. A strit parser is obtained by �ltering away all those parse trees whoselinearization does not math the input string. This arrangement of parsing has thedisadvantage of being potentially ineÆient: the number of rejetable parses anbe exponential24. Its advantages are the simpliity of implementation and that itgives, as by-produt, grammar orretion: we an use tolerant parsing followed bylinearization to orret they walks into they walk. Parsing via ontext-free grammarsis known as o�-line parsing in the ontext of uni�ation grammars: the alternativeis to perform uni�ation at eah onstrution step of the syntax tree.7.3 The expressive power of GFThe expressive power of a grammar formalism is often haraterized by its weakgenerative apaity|the lass of sets of strings (in Chomsky hierarhy) it is apableof generating. Even though the fous in GF is on strong generative apaity (thetrees it assigns to strings), its plae in Chomsky hierarhy is a meaningful question.In a trivial sense, GF is in the lass 0 of unlimited languages, sine we ande�ne the universal language U of strings over any �nite alphabet and enode anyprediate P on U in the abstrat syntax as a type of proofs. The rule pairfun f : (x : U)! P x! S ; lin f x y = xde�nes a string language S whih is undeidable if P is. This onstrution is based24 Or even in�nite, if yli rules are present.

Grammatial Framework 37on the suppression of an argument in linearization. However, sine parsing of sup-pressed arguments is solved by introduing metavariables, it remains a meaningfulquestion what happens if we onsider GF without suppression. We have already seenthat GF is more powerful than the lass 2 of ontext-free languages (Setion 2).GF is not just mildly ontext-sensitive like e.g. TAG (Joshi, 1985), sine GF ande�ne the double opy language fw ew ew j w 2 fa; bg�g: The preise loation ofGF-without-suppression is an open question.8 The implementation of GFAbove we have desribed GF as a language of its own, independently of implemen-tation. This desription is partly an abstration from earlier implementation work,partly a spei�ation followed in later work. In this setion, we will give an outlineof the implementation and some problems that we have enountered in it.8.1 Overview of the odeThe Haskell implementation of GF (Version 1.0) has 12k lines of soure ode in 95modules. The main parts of the ode are the following:� Grammar ompiler: lexer, parser, type heker, partial evaluator, parser gen-erator.� Command line interpreter: funtions to read grammar �les and use grammarsin bath mode.� Syntax editor: funtions to edit GF objets interatively.The syntax editor is based on an abstrat ommand language built upon a zipper,and it an be used through di�erent user interfaes: we have a line-based editor, agraphial editor written in Fudgets (Carlsson & Hallgren, 1998), an experimentalspeeh-based editor (Ranta & Cooper, 2001), and a Java GUI lient ommuniatingwith a GF server via an XML-based protool.8.2 The use of HaskellHaskell was hosen as implementation language for two reasons: we found it to be agood general-purpose programming language (partiularly good for implementingompilers for funtional languages), and we wanted to onnet smoothly with someother programs written in Haskell, in partiular, the proof editor Alfa (Hallgren,2000). Some of the ode was translated from earlier SML programs; in general, wedid not want to exploit the laziness of Haskell in any essential way25. Neither did weuse Haskell's impure features suh as stritness ags. Monads (IO, error, state) areused heavily, and some lasses are de�ned to simplify funtion names. GF onforms25 There is one single point where laziness would be useful: to treat in�nite lists of parse treesarising in yli grammars (Setion 2.5).

38 A. Rantato the Haskell 98 standard (Peyton Jones & Hughes, 1999), and an be ompiledwith all standard ompilers and interpreters, on all major operating systems26.8.3 PerformaneThere are two demanding omponents in GF: grammar ompilation and objet-language parsing. The parser of grammars was reated using the Happy parsergenerator (Marlow, 2001), and it performs well. If the grammar is lose to anonialform, type heking and partial evaluation together take less time than parsing27.However, if the grammar makes heavy use of funtions and pattern mathing, partialevaluation may take ten times longer than parsing. Some heuristis have helpedonsiderably, suh as topologially sorting all oper de�nitions and ompiling themin dependeny order, ignoring unused operations. Of ourse, one a grammar isready, the ompiled version an be saved in a �le for rapid reuse.The ineÆieny of objet-language parsing is partly due to the inherent om-plexity of general-purpose ontext-free parsing algorithms28. This an be helped inthe speial ase of LALR(1) by using Happy parsers, whih an be automatiallygenerated from GF. More often, however, the bottlenek is postproessing. To solvethis problem, postproessing would have to be integrated in the �rst parsing phase,using e.g. the semanti ations of Happy or some form of attribute or uni�ationgrammar. This is a researh problem rather than an implementation issue.8.4 Aessing GFUsers who do not write grammars themselves typially use GF via the graphialinterative editor. For grammar developers, and writers of bath programs, there isa ommand language and a shell, also permitting sripts. For instane, the followingsript imports an English and a Frenh grammar, reads the �le enter.txt, parsesit as an English text, and linearizes the resulting tree in Frenh:i alarm.Eng.gfi alarm.Fra.gfrf enter.txt | p -lang=Eng | l -lang=FraHaskell programmers an aess GF through an API (Appliation Programmer'sInterfae) module. It ontains both default and ustomizable versions of parsing,linearization, and translation funtions. This makes it possible to inlude GF fun-tionalities and use GF grammars in other Haskell programs.A library of maros is provided for reating GF grammars by Haskell programs.One way of using these maros is to de�ne translations from other grammar formats26 Sine the Fudgets library (Carlsson & Hallgren, 1998) requires the X window system, the JavaGUI is the only graphial interfae that works on Mirosoft Windows.27 Parsing a 22k-line grammar with a Swedish resoure lexion takes 4 seonds on a 1.5 GHzPentium 4 with RedHat Linux 7.1; the rest of the ompilation of this lose-to-anonial grammartakes 3 seonds.28 The time they take is ubi in the length of the input string.

Grammatial Framework 39to GF. For instane, BNF and EBNF an be used as input formats. Another use ofode generation is to bypass the partial evaluator of GF: make all generalizationsand abstrations in the Haskell ode, and generate anonial GF diretly. The nextstep from this idea would be to de�ne GF as an embedded language (Hudak, 1996).However, we prefer to see GF as a language of its own, whih an be used andreasoned about independently of implementation language. Moreover, sine GFhas dependent types, it is not possible to rely on ode generated from Haskell: atleast a type heker would in any ase have to be written.9 Some appliations of GFGF grammars have been written for fragments of at least 20 natural languages andmany formal languages. Most of these grammars serve the theoretial purpose ofverifying that GF an express a partiularly intriate grammatial rule, or formalizethe semantis of some spei� appliation. The following list mentions some appli-ations that have passed the level of �rst experiments and beome independentprojets.Proof text editors. These are systems in whih formal proofs are interativelyonstruted in type theory and at the same time viewed as texts in natural lan-guage. Via a parser, natural language input is also possible. The system is extensibleto user-de�ned onstants by means of user-de�ned linearization rules; if a rule isnot given, a default linearization is generated. Users an also extend it to newnew natural languages by writing GF grammars for the onrete syntax. Two im-plementations of proof text editors have been made in GF: one that works as aplug-in in the proof editor Alfa (Hallgren & Ranta, 2000), with support for En-glish, Frenh, and Swedish, and another one using the generi GF interfae, alsosupporting Finnish, Italian, and Russian.Software spei�ations. Formal and semi-formal software spei�ation lan-guages, suh as OCL (Warmer & Kleppe, 1999), are widely used in industry, butstill wider is the use of informal spei�ations in natural language. A projet isgoing on to bridge this gap by building an abstrat spei�ation language in GF,with onrete syntaxes for OCL and English (H�ahnle et al., 2002). The goal is toenable simultaneous prodution of formal and informal spei�ations. The editor isbeing integrated in an industrial CASE tool.Controlled language. This is the next step from mathematial proofs via soft-ware spei�ations towards non-mathematial language. Controlled languages aresubsets of natural languages used for tehnial purposes suh as instrution manualsfor airraft maintenane. Today's ontrolled languages (e.g. (The Boeing Company,2001)) have neither formal grammars nor automati hekers. But GF has beenused to de�ne prototypes where formal veri�ation is applied to douments writtenin natural language. An example is a set of instrutions for using an alarm system,generated in English, Frenh, German, and Swedish, and equipped with a formalproof that the instrutions preserve the system in a legal state (Johannisson &Ranta, 2001).

40 A. RantaDialogue systems. This is human-mahine interation where information isgathered by questions and answers. For instane, in a travel-ageny dialogue systemthe mahine asks where and when the ustomer wants to travel. The human answersall questions till enough information has been gathered to omplete the booking.In order for the dialogue not to be too monotonous, the dialogue system shouldbe exible and e.g. aept answers to many questions at one. Several suh riteriaare identi�ed in (Bohlin et al., 1999). Somewhat surprisingly, it turned out that themetavariable-based model of interation in proof editors readily ful�ls most of theseriteria, even adding extra funtionality, e.g. a better ontrol of the ontinuation ofa dialogue via dependent types (Ranta & Cooper, 2001).10 Related work10.1 Montague grammar and ategorial grammarsFrom the linguisti point of view, GF belongs to the tradition ofMontague grammar(Montague, 1974). For Montague, a grammar was a set of rules linearizing logiallyinterpreted analysis trees into strings of a natural language. The fous was onsemantis rather than onrete syntax. A well-known problem in Montague's syntaxis the use of so-alled \quantifying in" rules to linearize variable-binding operations.Unlike other parts of Montague grammars, these rules annot be diretly formalizedin GF, sine they are not ompositional. The rules an be irumsribed, however,partly by using ombinators instead of variable binding (as suggested by Steedman(1988)), partly by means of disontinuous onstituents.The distintion between abstrat and onrete syntax is seldom made by lin-guists. It was suggested, however, by the logiian Haskell B. Curry, under the head-ings of tetogrammati and phenogrammati struture (Curry, 1963). For Curry, atetogrammati struture is similar to a term in ombinatory logi, and it an showup as di�erent phenogrammati strutures in di�erent languages. Neither Currynor Montague pursued the multilingual aspet, but there is a mahine translationprojet, Rosetta (1994), based on Montague grammar.Categorial grammar shares with Montague grammar the use of a type system toexplain syntati well-formedness. However, the idea is to explain not only abstratbut also onrete syntax in terms of funtion appliation. To this end, Bar-Hillel(1953) made a distintion between pre�x and post�x funtion types, �=� vs. �n�.His idea was developed further by Lambek (1958), resulting in a alulus thatovered an impressive fragment of English, and was eventually proved equivalent toontext-free grammars (Pentus, 1993). Extensions of Lambek alulus use riher setsof onnetives (Morrill, 1994), or treat it as nonommutative linear logi (Abrusi,1990).In funtional programming, some e�orts have been made to implement logialand ategorial grammars. A parser for a Montague-style grammar was implementedas a part of a database query system by Frost and Launhbury (1989), in Lazy ML.The grammar used in the system an also be de�ned in GF. A parser for theategorial grammar of Shaumyan was implemented by Jones and Hudak (1995) in

Grammatial Framework 41Haskell. This theory shares with Lambek alulus the use of typing rules to de�neonrete syntax. 10.2 Uni�ation grammarsUni�ation grammars (Shieber, 1986) are a family of grammar formalisms whereontext-free ategories are made dependent on features, whih the parser tries tounify. Many grammar formalisms in omputational linguistis belong to this family.De�nite Clause Grammar (DCG) (Pereira & Warren, 1980) is perhaps the purestand simplest of them, and it has a built-in implementation in the Prolog program-ming language. It is also the most widely known, beause it works well in eduation.The biggest grammars, however, have been written in Head Driven Phrase StrutureGrammar (HPSG) (Pollard & Sag, 1994).A typial example of DCG is the English prediation rule,S �! NP(n) VP(n)This rule expresses the ondition that the subjet and the verb must have the samenumber, n. In GF, the natural way to express the prediation rule would befun Pred : NP ! VP ! S ; lin PredN V = fs = N:s++V:s ! N:ngThe traditional grammar view is loser to GF than to DCG: the subjet and theverb are not in symmetri relation, but the verb depends on the subjet. The subjethas a number (as inherent feature), whih it gives to the verb (as parameter).The advantage of treating inherent features and parameters on a par is om-putational: it allows a diret implementation of parsing as uni�ation. From thedesriptive point of view, DCG appears as a low-level language, whih moreoverdoes not have types. A suggestive way of parsing in GF grammars would be toompile them into a DCG, and use loal uni�ation instead of o�-line parsing andpostproessing.HPSG inherits from PATR (Shieber, 1986) the use of reords to express omplexgrammatial objets. In HPSG, these reords ontain both syntati and semantiinformation. For instane, the English noun form integers ould be desribed bythe reord (in GF notation)fat = CN ; sem = Int ; phon = "integers" ; n = Pl ; g = NeutgReords like this are alled signs in HPSG. The information ontained in a signbelongs partly to funtion delarations and partly to linearization rules in GF. Weome lose to a sign if we take a linearization reord and add �elds for the type andthe syntax tree. However, the result is not quite the same: for Int, we getfat = CN ; sem = Int ; s = table fSg) "integer";Pl) "integers"g ; g = NeutgThe di�erene reets the harateristi fat that HPSG reords are obtained byanalysing strings, whereas GF reords are obtained by linearizing trees. The HPSGreord is, in a sense, an instane of the GF reord: it shows one branh of a tableinstead of the whole table.

42 A. RantaAnother interesting feature of HPSG is that it has a type system, whih helpsto detet errors at ompile time. As regards reords, the type system has muhin ommon with GF. But there are no funtion types and thus no higher-orderabstrations available for grammar writers.10.3 Syntax editorsAs a syntax editor, GF belongs to the tradition starting from Mentor (Donzeau-Gouge et al., 1975) and the Cornell Program Synthesizer (Teitelbaum & Reps,1981). These systems were initially not frameworks but had a hard-wired objetlanguage. Later on, the Cornell system used attribute grammars (Knuth, 1968)in the same rôle as the GF formalism is used in the GF editor, and Mentor wasextended by the formalism framework Metal (Kahn et al., 1983). As for onretesyntax, these systems of ourse only support unambiguous programming languages,one at a time. On the abstrat level, they have advaned omputational features,suh as stepwise forward and bakward exeution of ode.Proof editors are a desendant of syntax editors, and the losest to GF are thosethat use dependent types. GF has inherited its type theory from ALF (Magnusson& Nordstr�om, 1994), whih uses metavariables, whereas NuPRL (Constable, 1986),Coq (The Coq Development Team, 1999), and LEGO (Luo & Pollak, 1992) usetatis. All these systems support some amount of user-de�ned syntati sugar, suhas in�x delarations, but are of ourse far from natural language syntax. For Coq, anatural-language interfae exists (Cosoy et al., 1995). It works in the diretion oflinearization only and annot be extended by the user; however, it has some built-in optimizations that are not possible in ompositional linearization. Even more inthis diretion is the proof explanation system PRex (Fiedler, 2001), whih uses AImethods to adapt proof texts for individual users.WYSIWYM (\What you see is what you mean") is a multilingual authoringsystem for software manuals (Power & Sott, 1998). The user edits an abstratobjet whih is reeted by \feedbak texts" in English, Frenh, and Italian. Thegrammars are hard-wired in the system and work in the diretion of linearizationonly; the researh emphasis is learly on interation rather than on grammars.11 ConlusionWe have de�ned a grammar formalism GF on top of a logial framework with depen-dent types. The formalism is a speial-purpose funtional programming language,whih adds the known advantages of funtional languages (type heking, high ab-stration level, suintness of expression) to a simple omputational model. GFgrammars an be used for both parsing and generation of languages. The formalismis able to desribe semanti onditions and intriate natural-language strutures. Itdi�ers from earlier grammar formalisms by being based on funtional programmingand by having a powerful type system. The most important remaining problem isthe ineÆieny of the parsers generated from some GF grammars.The main appliations of GF are in domain-spei� fragments of natural lan-

Grammatial Framework 43guage, whih have a semanti model that an be desribed in type theory. GFgrammars provide natural-language interfaes to suh models and make it possibleto translate domain-spei� language reliably via the model. GF supports intera-tion: it an be used as a multilingual authoring system in whih texts are reatedin many languages simultaneously. For future developments, an important task isto develop libraries of domain-independent resoure grammars.GF has been implemented in the funtional language Haskell. The implementa-tion follows the Haskell 98 standard and is portable to di�erent operating systems.In addition to the separate program, GF funtionalities an be aessed from otherHaskell programs through an API module.ReferenesAbrusi, M. (1990). Nonommutative Intuitionisti Linear Propositional Logi. Zeitshriftf�ur Mathematishe Logik und Grundlagen der Mathematik, 36, 297{398.Augustsson, L. (1998). Cayenne|a language with dependent types. Pro. of ICFP'98.ACM Press.Bar-Hillel, Y. (1953). A quasi-arithmetial notation for syntati desription. Language,29, 27{58.Besherelle. (1997). La onjugaison pour tous. Hatier.Bohlin, P., Bos, J., Larsson, S., Lewin, I., Matheson, C., & Milward, D. (1999). Survey ofexisting interative systems. Trindi deliverable D1.3, Gothenburg University.Bresnan, J. (ed). (1982). The Mental Representation of Grammatial Relations. MITPress.Carlsson, M., & Hallgren, T. (1998). Fudgets|Purely Funtional Proesses with applia-tions to Graphial User Interfaes. Ph.D. thesis, Department of Computing Siene,Chalmers University of Tehnology.Constable, R. L. (1986). Implementing Mathematis with the NuPRL Proof DevelopmentSystem. Prentie-Hall.Coquand, T. (1996). An algorithm for type heking dependent types. Siene of ComputerProgramming, 26, 167{177.Cosoy, Y., Kahn, G., & Thery, L. (1995). Extrating text from proofs. Pages 109{123 of:Dezani-Cianaglini, M., & Plotkin, G. (eds), Pro. Seond Int. Conf. on Typed LambdaCaluli and Appliations. LNCS, vol. 902.Curry, H. B. (1963). Some logial aspets of grammatial struture. Pages 56{68 of:Jakobson, Roman (ed), Struture of Language and its Mathematial Aspets: Proeedingsof the Twelfth Symposium in Applied Mathematis. Amerian Mathematial Soiety.de Bruijn, N. G. (1994). Mathematial Vernaular: a Language for Mathematis withTyped Sets. Pages 865{935 of: Nederpelt, R. (ed), Seleted Papers on Automath. North-Holland Publishing Company.Donzeau-Gouge, V., Huet, G., Kahn, G., Lang, B., & Levy, J. J. (1975). A struture-oriented program editor: a �rst step towards omputer assisted programming. Interna-tional Computing Symposium (ICS'75).Dymetman, M. Lux, V. & Ranta, A._(2000). XML and multilingual doument authoring:Convergent trends. Pages 243{249 of: COLING, Saarbr�uken, Germany.Earley, J. (1970). An eÆient ontext-free parsing algorithm. Communiations of theACM, 13(2), 94{102.

44 A. RantaFiedler, A. (2001). User-Adaptive Proof Explanation. Ph.D. thesis, Universit�at des Saar-landes.Frost, R., & Launhbury, J. (1989). Construting natural language interpreters in a lazyfuntional language. The Computer Journal, 32(2), 108{121.Hallgren, T. (2000). Home Page of the Proof Editor Alfa.http://www.s.halmers.se/~hallgren/Alfa/Hallgren, T. & Ranta, A._(2000). An extensible proof text editor. Pages 70{84 of: Parigot,M., & Voronkov, A. (eds), LPAR-2000. LNCS/LNAI, vol. 1955. Springer.Harper, R., Honsell, F., & Plotkin, G. (1993). A Framework for De�ning Logis. JACM,40(1), 143{184.H�ahnle, R. Johannisson, K. & Ranta, A._(2002). An authoring tool for informal andformal requirements spei�ations. Pages 233{248 of: Kutshe, R.-D., & Weber, H.(eds), Fundamental Approahes to Software Engineering. LNCS, vol. 2306. Springer.Hoproft, J., & Ullman, J. (1979). Introdution to Automata Theory, Languages, andComputation. Addison-Wesley.Hudak, P. (1996). Building domain-spei� embedded languages. ACM Computing Sur-veys, 28(4).Huet, G. (1997). The Zipper. Journal of Funtional Programming, 7(5), 549{554.Huet, G. (2000). Sanskrit site. Program and doumentation,http://pauilla.inria.fr/~huet/SKT/.Johannisson, K., & Ranta, A. (2001). Formal veri�ation of multilingual instrutions.The joint winter meeting of omputing siene and omputer engineering. ChalmersUniversity of Tehnology.Johnson, S. C. (1975). Ya | yet another ompiler ompiler. Teh. rept. CSTR-32. AT& T Bell Laboratories, Murray Hill, NJ.Jones, M., & Hudak, P. (1995). Using types to parse natural language. Proeedings of theGlasgow Workshop on Funtional Programming. LNCS.Jones, N.D., Gomard, C.K., & Sestoft, P. (1993). Partial Evaluation and AutomatiProgram Generation. Prentie-Hall.Joshi, A. (1985). Tree-adjoining grammars: How muh ontext-sensitivity is required toprovide reasonable strutural desriptions. Pages 206{250 of: Dowty, D., Karttunen,L., & Zwiky, A. (eds), Natural Language Parsing. Cambridge University Press.Kahn, G., Lang, B., M�el�ese, B., & Moros, E. (1983). Metal: a formalism to speifyformalisms. Siene of Computer Programming, 3, 151{188.Kay, M. (1997). The Proper Plae of Men and Mahines in Language Translation. MahineTranslation, 12(1{2), 3{23.Knuth, D. (1965). On the translation of languages from left to right. Information andControl, 8, 607{639.Knuth, D. (1968). Semantis of ontext-free languages. Mathematial Systems Theory, 2,127{145.Lambek, J. (1958). The mathematis of sentene struture. Amerian MathematialMonthly, 65, 154{170.Luo, Z., & Callaghan, P. (1999). Mathematial vernaular and oneptual well-formednessin mathematial language. Pages 231{250 of: Leomte, A., Lamarhe, F., & Perrier, G.(eds), Logial Aspets of Computational Linguistis (LACL). LNCS/LNAI, vol. 1582.Luo, Z., & Pollak, R. (1992). LEGO Proof Development System. Teh. rept. Universityof Edinburgh.

Grammatial Framework 45Magnusson, L., & Nordstr�om, B. (1994). The ALF proof editor and its proof engine. Pages213{237 of: Types for Proofs and Programs. LNCS 806. Springer.Marlow, S. (2001). Happy, The Parser Generator for Haskell.http://www.haskell.org/happy/.Martin-L�of, P. (1984). Intuitionisti Type Theory. Napoli: Bibliopolis.M�aenp�a�a, P., & Ranta, A. (1999). The type theory and type heker of GF. PLI-1999:Workshop on Logial Frameworks and Meta-languages, Paris, Frane.Montague, R._(1974). Formal Philosophy. New Haven: Yale University Press. Colletedpapers edited by R. Thomason.Morrill, G. (1994). Type Logial Grammar. Kluwer.Neula, G. C. (1997). Proof-Carrying Code. Pages 106{119 of: Pro. 24th ACM Sympo-sium on Priniples of Programming Languages, Paris, Frane. ACM Press.Nordstr�om, B., Petersson, K., & Smith, J. M. (1990). Programming in Martin-L�of's TypeTheory. An Introdution. Oxford University Press.Paulson, L. (2002). The Isabelle Referene Manual. Available at the Isabelle homepagehttp://www.l.am.a.uk/Researh/HVG/Isabelle/ With ontributions by T. Nip-kow and M. Wenzel.Pentus, M. (1993). Lambek grammars are ontext-free. Pages 35{42 of: LICS, Utreht,The Netherlands.Pereira, F., & Warren, D. (1980). De�nite lause grammars for language analysis|asurvey of the formalism and a omparison with augmented transition networks. Arti�ialIntelligene, 13, 231{278.Peyton Jones, S., & Hughes, J. 1999 (February). Report on the ProgrammingLanguage Haskell 98, a Non-strit, Purely Funtional Language. Available fromhttp://www.haskell.orgPollard, C., & Sag, I. (1994). Head-Driven Phrase Struture Grammar. University ofChiago Press.Power, R., & Sott, D. (1998). Multilingual authoring using feedbak texts. COLING-ACL.Prawitz, D. (1965). Natural Dedution. Stokholm: Almqvist & Wiksell.Ranta, A. (1994). Type Theoretial Grammar. Oxford University Press.Ranta, A. (2002). Grammatial Framework Homepage. www.s.halmers.se/~aarne/GF/.Ranta, A., & Cooper, R. (2001). Dialogue systems as proof editors. IJCAR/ICoS-3.Rosetta, M. T. (1994). Compositional translation. Dordreht: Kluwer.Shieber, S. (1986). An Introdution to Uni�ation-Based Approahes to Grammars. Uni-versity of Chiago Press.Steedman, M. (1988). Combinators and grammars. Pages 417{442 of:Oehrle, R., Bah, E.,&Wheeler, D. (eds), Categorial Grammars and Natural Language Strutures. Dordreht:D. Reidel.Teitelbaum, T., & Reps, T. (1981). The Cornell Program Synthesizer: a syntax-diretedprogramming environment. Commun. ACM, 24(9), 563{573.The Boeing Company. (2001). Boeing Simpli�ed English Cheker.http://www.boeing.om/assoproduts/seheker/The Coq Development Team. (1999). The Coq Proof Assistant Referene Manual.pauilla.inria.fr/oq/.Warmer, J., & Kleppe, A. (1999). The Objet Constraint Language: Preise Modellingwith UML. Addison-Wesley.

