
Some Algorithmi Problemsin Polytope TheoryVolker Kaibel? and Mar E. PfetshTU BerlinMA 6{2Stra�e des 17. Juni 13610623 BerlinGermanyfkaibel,pfetshg�math.tu-berlin.de1 IntrodutionConvex polyhedra, i.e., the intersetions of �nitely many losed aÆne half-spaes inRd, are important objets in various areas of mathematis and otherdisiplines. In partiular, the ompat ones among them (polytopes), whihequivalently an be de�ned as the onvex hulls of �nitely many points in Rd,have been studied sine anient times (e.g., the platoni solids). Polytopesappear as building bloks of more ompliated strutures, e.g., in (ombina-torial) topology, numerial mathematis, or omputer aided design. Even inphysis polytopes are relevant (e.g., in rystallography or string theory).Probably the most important reason for the tremendous growth of interestin the theory of onvex polyhedra in the seond half of the 20th entury wasthe fat that linear programming (i.e., optimizing a linear funtion over thesolutions of a system of linear inequalities) beame a widespread tool to solvepratial problems in industry (and military). Dantzig's Simplex Algorithm,developed in the late 40's, showed that geometri and ombinatorial know-ledge of polyhedra (as the domains of linear programming problems) is quitehelpful for �nding and analyzing solution proedures for linear programmingproblems.Sine the interest in the theory of onvex polyhedra to a large extentomes from algorithmi problems, it is not surprising that many algorithmiquestions on polyhedra arose in the past. But also inherently, onvex poly-hedra (in partiular: polytopes) give rise to algorithmi questions, beausethey an be treated as �nite objets by de�nition. This makes it possibleto investigate (the smaller ones among) them by omputer programs (likethe polymake-system written by Gawrilow and Joswig, see [26℄ and [27,28℄).One hosen to exploit this possibility, one immediately �nds oneself on-fronted with many algorithmi hallenges.This paper ontains desriptions of 35 algorithmi problems about poly-hedra. The goal is to ollet for eah problem the urrent knowledge about its? Supported by the Deutshe Forshungsgemeinshaft, FOR 413/1{1 (Zi 475/3{1).



2 Volker Kaibel and Mar E. Pfetshomputational omplexity. Consequently, our treatment is foused on theo-retial rather than on pratial subjets. We would, however, like to mentionthat for many of the problems omputer odes are available.Our hoie of problems to be inluded is de�nitely inuened by personalinterest. We have not spent partiular e�orts to demonstrate for eah problemwhy we onsider it to be relevant. It may well be that the reader �nds otherproblems at least as interesting as the ones we disuss. We would be very in-terested to learn about suh problems. The olletion of problem desriptionspresented in this paper is intended to be maintained as a (hopefully growing)list at http://www.math.tu-berlin.de/~pfetsh/polyomplex/.Almost all of the problems are questions about polytopes. In some asesthe orresponding questions on general polyhedra are interesting as well. Itan be tested in polynomial time whether a polyhedron spei�ed by linearinequalities is bounded or not. This an be done by applying Gaussian elim-ination and solving one linear program.Roughly, the problems an be divided into two types: problems for whihthe input are \geometrial" data and problems for whih the input is \om-binatorial" (see below). Atually, it turned out that it was rather onvenientto group the problems we have seleted into the �ve ategories \CoordinateDesriptions" (Set. 2), \Combinatorial Struture" (Set. 3), \Isomorphism"(Set. 4), \Optimization" (Set. 5), and \Realizability" (Set. 6). Sine theboundary omplex of a simpliial polytope is a simpliial omplex, studyingpolytopes leads to questions that are onerned with more general (polyhe-dral) strutures: simpliial omplexes. Therefore, we have added a ategory\Beyond Polytopes" (Set. 7), where a few problems onerned with general(abstrat) simpliial omplexes are olleted that are losely related to similarproblems on polytopes. We do not onsider other related areas like orientedmatroids.The problem desriptions proeed along the following sheme. First inputand output are spei�ed. Then a summary of the knowledge on the theoretialomplexity is given, e.g., it is stated that the omplexity is unknown (\Open")or that the problem isNP-hard. This is done for the ase where the dimension(usually of the input polytope) is part of the input as well as for the ase of�xed dimension; often the (knowledge on the) omplexity status di�ers forthe two versions. After that, omments on the problems are given togetherwith referenes. For eah problem we tried to report on the urrent stateof knowledge aording to the literature. Unless stated otherwise, all resultsmentioned without itations are either onsidered to be \folklore" or \easyto prove." At the end related problems in this paper are listed.For all notions in the theory of polytopes that we use without explanationwe refer to Ziegler's book [65℄. Similarly, for the onepts from the theoryof omputational omplexity that play a role here we refer to Garey andJohnson's lassial text [24℄. Whenever we talk about polynomial redutionsthis refers to polynomial time Turing-redutions. For some of the problems



Some Algorithmi Problems in Polytope Theory 3the output an be exponentially large in the input. For these problems theinteresting question is whether there is a polynomial total time algorithm,i.e., an algorithm whose running time an be bounded by a polynomial in thesizes of the input and the output (in ontrast to a polynomial time algorithmwhose running time would be bounded by a polynomial just in the inputsize). Note that the notion of \polynomial total time" only makes sense withrespet to problems whih expliitly require the output to be non-redundant.A very fundamental result in the theory of onvex polyhedra is due toMinkowski [46℄ and Weyl [64℄. For the speial ase of polytopes (to whih werestrit our attention from now on) it an be formulated as follows. Everypolytope P � Rd an be spei�ed by an H- or by a V-desription. Here,an H-desription onsists of a �nite set of linear inequalities (de�ning losedaÆne half-spaes of Rd) suh that P is the set of all simultaneous solutions tothese inequalities. A V-desription onsists of a �nite set of points inRd whoseonvex hull is P . If any of the two desriptions is rational, then the other onean be hosen to be rational as well. Furthermore, in this ase the numbers inthe seond desription an be hosen suh that their oding lengths dependonly polynomially on the oding lengths of the numbers in the �rst desription(see, e.g., Shrijver [55℄). In our ontext, H- and V-desriptions are usuallymeant to be rational. By linear programming, eah type of desription anbe made non-redundant in polynomial time (though it is unknown whetherthis is possible in strongly polynomial time, see Problem 24).One of the basi properties of a polytope is its dimension. If the polytopeis given by a V-desription, then it an easily be determined by Gaussianelimination (whih, arefully done, is a ubi algorithm; see, e.g., [55℄). If thepolyhedron is spei�ed by an H-desription, omputing its dimension an bedone by linear programming (atually, this is polynomial time equivalent tolinear programming).Furthermore, some of the problems may also be interesting in their po-lar formulations, i.e., with \the roles of H- and V-desriptions exhanged."Swithing to the polar requires to have a relative interior point at hand,whih is easy to obtain if a V-desription is available, while it needs linearprogramming if only an H-desription is spei�ed.We will espeially be onerned with the ombinatorial types of polytopes,i.e., with their fae latties (the sets of faes, ordered by inlusion). In partiu-lar, some problems will deal with the k-skeleton of a polytope, whih is the setof its faes of dimensions less than or equal to k, or with its f-vetor, i.e., thevetor (f0(P ); f1(P ); : : : ; fd(P )), where fi(P ) is the number of i-dimensionalfaes (i-faes) of the d-dimensional polytope P (d-polytope). Talking of thefae lattie LP of a polytope P will always refer to the lattie as an abstratobjet, i.e., to any lattie that is isomorphi to the fae lattie. In partiu-lar, the lattie does not ontain any information on oordinates. Similarly,the vertex-faet inidenes of P are given by any matrix (avf ) with entriesfrom f0; 1g, whose rows and olumns are indexed by the verties and faets



4 Volker Kaibel and Mar E. Pfetshof P , respetively, suh that avf = 1 if and only if vertex v is ontainedin faet f . Note that the vertex-faet inidenes of a polytope ompletelydetermine its fae lattie.A third important ombinatorial struture assoiated with a polytope P isits (abstrat) graph GP , i.e., any graph that is isomorphi to the graph havingthe verties of P as its nodes, where two of them are adjaent if and only iftheir onvex hull is a (one-dimensional) fae of P . For simple polytopes, the(abstrat) graph determines the entire fae lattie as well (see Problem 15).However, for general polytopes this is not true.Throughout the paper, n refers to the number of verties or points inthe given V-desription, respetively, depending on the ontext. Moreover,m refers to the number of faets or inequalities in the given H-desription,respetively, and d refers to the dimension of the polytope or the ambientspae, respetively.Aknowledgment: We thank the referee for many valuable omments andG�unter M. Ziegler for arefully reading the manusript.2 Coordinate DesriptionsIn this setion problems are olleted whose input are geometrial data, i.e.,the H- or V-desription of a polytope. Some problems whih are also givenby geometrial data appear in Setions 4 and 5.1. Vertex EnumerationInput: Polytope P in H-desriptionOutput: Non-redundant V-desription of PStatus (general): Open; polynomial total time if P is simple or simpliialStatus (�xed dim.): Polynomial timeLet d = dim(P ) and letm be the number of inequalities in the input. It is wellknown that the number of verties n an be exponential (
(mbd=2)) in thesize of the input (e.g., Cartesian produts of suitably hosen two-dimensionalpolytopes and prisms over them).Vertex Enumeration is strongly polynomially equivalent to Problem 3(see Avis, Bremner, and Seidel [1℄). Sine Problem 2 is strongly polynomiallyequivalent to Problem 3 as well, Vertex Enumeration is also stronglypolynomially equivalent to Problem 2.For �xed d, Chazelle [12℄ found an O�mbd=2� polynomial time algorithm,whih is optimal by the Upper Bound Theorem of MMullen [43℄. Thereexist algorithms whih are faster than Chazelle's algorithm for small n, e.g.,an O�m logn+ (mn)1�1=(bd=2+1) polylogm� algorithm of Chan [9℄.For general d, the reverse searh method of Avis and Fukuda [2℄ solves theproblem for simple polyhedra in polynomial total time, using working spae



Some Algorithmi Problems in Polytope Theory 5(without spae for output) bounded polynomially in the input size. An al-gorithm of Bremner, Fukuda, and Marzetta [8℄ solves the problem for sim-pliial polytopes. Note that these algorithms need a vertex of P to startfrom. Provan [52℄ gives a polynomial total time algorithm for enumeratingthe verties of polyhedra arising from networks.There are many more algorithms known for this problem { none of them isa polynomial total time algorithm for general polytopes. See the overviewartile of Seidel [57℄. Most of these algorithms an be generalized to diretlywork for unbounded polyhedra, too.Related problems: 2, 3, 5, 72. Faet EnumerationInput: Polytope P in V-desription with n pointsOutput: Non-redundant H-desription of PStatus (general): Open; polynomial total time if P is simple or simpliialStatus (�xed dim.): Polynomial timeIn [1℄ it is shown that Faet Enumeration is strongly polynomially equiv-alent to Problem 3 and thus to Problem 1 (see the omments there).For this problem, one an assume to have an interior point (e.g., the ver-tex baryenter). Faet Enumeration is sometimes alled the onvex hullproblem.Related problems: 1, 3, 53. Polytope VerifiationInput: Polytope P given inH-desription, polytope Q given in V-desriptionOutput: \Yes" if P = Q, \No" otherwiseStatus (general): Open; polynomial time if P is simple or simpliialStatus (�xed dim.): Polynomial timePolytope Verifiation is strongly polynomially equivalent to Problem 1and Problem 2 (see the omments there).Polytope Verifiation is ontained in oNP : we an prove Q * P byshowing that some vertex of Q violates one of the inequalities desribing P .If Q � P with Q 6= P then there exists a point p of P nQ with \small" o-ordinates (e.g., some vertex of P not ontained in Q) and a valid inequalityfor Q, whih has \small" oeÆients and is violated by p (e.g., an inequal-ity de�ning a faet of Q that separates p from Q). However, it is unknownwhether Polytope Verifiation is in NP.Sine it is easy to hek whether Q � P , Polytope Verifiation is Prob-lem 4 restrited to the ase that Q � P .Related problems: 1, 2, 4



6 Volker Kaibel and Mar E. Pfetsh4. Polytope ContainmentInput: Polytope P given inH-desription, polytope Q given in V-desriptionOutput: \Yes" if P � Q, \No" otherwiseStatus (general): oNP-ompleteStatus (�xed dim.): Polynomial timeFreund and Orlin [20℄ proved that this problem is oNP-omplete. Notethat the reverse question whether Q � P is trivial. The questions whereeither both P and Q are given in H-desription or both in V-desription anbe solved by linear programming (Problem 24), see Eaves and Freund [17℄.For �xed dimension, one an enumerate all verties of P in polynomial time(see Problem 1) and ompare the desriptions of P and Q (after removingredundant points).Related problems: 35. Fae Lattie of Geometri PolytopesInput: Polytope P in H-desriptionOutput: Hasse-diagram of the fae lattie of PStatus (general): Polynomial total timeStatus (�xed dim.): Polynomial timeSee omments on Problem 1. Many algorithms for the Vertex Enumer-ation Problem in fat ompute the whole fae lattie of the polytope.Swart [60℄, analyzing an algorithm of Chand and Kapur [10℄, proved thatthere exists a polynomial total time algorithm for this problem. For a fasteralgorithm see Seidel [56℄. Fukuda, Liebling, and Margot [22℄ gave an algo-rithm whih uses working spae (without spae for the output) boundedpolynomially in the input size, but it has to solve many linear programs.For �xed dimension, the size of the output is polynomial in the size of theinput; hene, a polynomial total time algorithm beomes a polynomial algo-rithm in this ase.The problem of enumerating the k-skeleton of P seems to be open, even ifk is �xed. Note that, for �xed k, the latter problem an be solved by linearprogramming (Problem 24) in polynomial time if the polytope is given inV-desription rather than in H-desription.Related problems: 1, 2, 3, 13, 146. Degeneray TestingInput: Polytope P in H-desriptionOutput: \Yes" if P not simple (degenerate), \No" otherwiseStatus (general): Strongly NP-ompleteStatus (�xed dim.): Polynomial time



Some Algorithmi Problems in Polytope Theory 7Independently proved to be NP-omplete in the papers of Chandrasekaran,Kabadi, and Murty [11℄ and Dyer [14℄. Fukuda, Liebling, and Margot [22℄proved that the problem is strongly NP-omplete. For �xed dimension, onean enumerate all verties in polynomial time (see Problem 1) and hekwhether they are simple or not.Bremner, Fukuda, and Marzetta [8℄ noted that if P is given in V-desriptionthe problem is polynomial time solvable: enumerate the edges (1-skeleton, seeProblem 5) and apply the Lower Bound Theorem.Erikson [19℄ showed that in the worst ase 
(mdd=2e�1 +m logm) sidenessqueries are required to test whether a polytope is simple. For odd d thismathes the upper bound. A sideness query is a question of the followingkind: given d + 1 points p0; : : : ;pd in Rd, does p0 lie \above", \below", oron the oriented hyperplane determined by p1;p2; : : : ;pd.Related problems: 1, 57. Number of VertiesInput: Polytope P in H-desriptionOutput: Number of verties of PStatus (general): #P-ompleteStatus (�xed dim.): Polynomial timeDyer [14℄ and Linial [40℄ independently proved that Number of Vertiesis #P-omplete. It follows that the problem of omputing the f -vetor of Pis #P-hard. Furthermore, Dyer [14℄ proved that the deision version (\Givena number k, does P have at least k verties?") is strongly NP-hard andremainsNP-hard when restrited to simple polytopes. It is unknown whetherthe deision problem is in NP.If the dimension is �xed, one an enumerate all verties in polynomial time(see Problem 1).Related problems: 1, 148. Feasible Basis ExtensionInput: Polytope P given as fx 2 Rs : Ax = b;x � 0g, a set S � f1; : : : ; sgOutput: \Yes" if there is a feasible basis with an index set ontaining S,\No" otherwiseStatus (general): NP-ompleteStatus (�xed dim.): Polynomial timeSee Murty [49℄ (Garey and Johnson [24℄, Problem [MP4℄). For �xed dimen-sion, one an enumerate all bases in polynomial time.The problem an be reformulated as follows. Let P be de�ned by a �nite setH of aÆne halfspaes and let S be a subset of H. Does TfH 2 H : H =2 Sgontain a vertex whih is also a vertex of P ?



8 Volker Kaibel and Mar E. Pfetsh9. Reognizing Integer PolyhedraInput: Polytope P in H-desriptionOutput: \Yes" if P has only integer verties, \No" otherwiseStatus (general): Strongly oNP-ompleteStatus (�xed dim.): Polynomial timeThe hardness-proof is by Papadimitriou and Yannakakis [51℄. For �xed di-mension, one an enumerate all verties (Problem 1) and hek whether theyare integral in polynomial time.10. DiameterInput: Polytope P in H-desriptionOutput: The diameter of PStatus (general): NP-hardStatus (�xed dim.): Polynomial timeFrieze and Teng [21℄ gave the proof of NP-hardness. For �xed dimension,one an enumerate all verties (Problem 1), onstrut the graph and thenompute the diameter in polynomial time.The omplexity status is unknown for simple polytopes. For simpliial poly-topes the problem an be solved in polynomial time: Sine simpliial poly-topes have at most as many verties as faets, one an enumerate their ver-ties (see Problem 1), and �nally ompute the graph (and hene the diameter)from the vertex-faet inidenes in polynomial time.If P is given in V-desription, one an ompute the graph (1-skeleton, seeProblem 5) and hene the diameter in polynomial time.11. Minimum TriangulationInput: Polytope P in V-desription, positive integer KOutput: \Yes" if P has a triangulation of size K or less, \No" otherwiseStatus (general): NP-ompleteStatus (�xed dim.): NP-ompleteA triangulation T of a d-polytope P is a olletion of d-simplies, whoseunion is P , their verties are verties of P , and any two simplies intersetin a ommon fae (whih might be empty). In partiular, T is a (pure) d-dimensional geometri simpliial omplex (see Setion 7). The size of T is thenumber of its d-simplies. Every (onvex) polytope admits a triangulation.Below, De Loera, and Rihter-Gebert [4,5℄ proved that Minimum Triangu-lation is NP-omplete for (�xed) d � 3. Furthermore, it is NP-hard toompute a triangulation of minimal size for (�xed) d � 3.



Some Algorithmi Problems in Polytope Theory 912. VolumeInput: Polytope P in H-desriptionOutput: The volume of PStatus (general): #P-hard, FPRASStatus (�xed dim.): Polynomial timeDyer and Frieze [15℄ showed that the general problem is #P-hard (and #P-easy as well). Dyer, Frieze, and Kannan [16℄ found a Fully Polynomial Ran-domized Approximation Sheme (FPRAS ) for the problem, i.e., a family(A")">0 of randomized algorithms, where, for eah " > 0, A" omputes anumber V" with the property that the probability of (1 � ") vol(P ) � V" �(1 + ") vol(P ) is at least 34 , and the running times of the algorithms A" arebounded by a polynomial in the input size and 1" .For �xed dimension, one an �rst ompute all verties of P (see Problem 1)and its fae lattie (see Problem 5) both in polynomial time. Then one anonstrut some triangulation (see Problem 11) of P (e.g., its baryentrisubdivision) in polynomial time and ompute the volume of P as the sum ofthe volumes of the (maximal) simplies in the triangulation.The omplexity status of the analogue problem with the polytope spei�edby a V-desription is the same.3 Combinatorial StrutureIn this setion we ollet problems that are onerned with omputing ertainombinatorial information from ompat desriptions of the ombinatorialstruture of a polytope. Suh ompat enodings might be the vertex-faetinidenes, or, for simple polytopes, the abstrat graphs. An example of suha problem is to ompute the dimension of a polytope from its vertex-faetinidenes. Initialize a set S by the vertex set of an arbitrary faet. For eahfaet F ompute the intersetion of S with the vertex set of F . Replae S bya maximal one among the proper intersetions and ontinue. The dimensionis the number of \rounds" performed until S beomes empty.All data is meant to be purely ombinatorial. For all problems in thissetion it is unknown if the \integrity" of the input data an be heked,proved, or disproved in polynomial time. For instane, it is rather unlikelythat one an eÆiently prove or disprove that a lattie is the fae lattie ofsome polytope (see Problems 29, 30).Sometimes, it might be worthwhile to exhange the roles of verties andfaets by duality of polytopes. Our hoies of view points have mainly beenguided by personal taste.Some orientations of the abstrat graph GP of a simple polytope P playimportant roles (although suh orientations an also be onsidered for non-simple polytopes, they have not yet proven to be useful in the more general



10 Volker Kaibel and Mar E. Pfetshontext). An orientation is alled a unique-sink orientation (US-orientation)if it indues a unique sink on every subgraph of GP orresponding to a non-empty fae of P . A US-orientation is alled an abstrat objetive funtion ori-entation (AOF-orientation) if it is ayli. General US-orientations of graphsof ubes have reently reeived some attention (Szab�o and Welzl [61℄). AOF-orientations were used, e.g., by Kalai [35℄. Sine their linear extensions arepreisely the shelling orders of the dual polytope, they have been onsideredmuh earlier.13. Fae Lattie of Combinatorial PolytopesInput: Vertex-faet inidene matrix of a polytope POutput: Hasse-diagram of the fae lattie of PStatus (general): Polynomial total timeStatus (�xed dim.): Polynomial timeSolvable in O(minfm;ng � � � ') time, where m is the number of faets, n isthe number of verties, � is the number of vertex-faet inidenes, and ' isthe size of the fae lattie [33℄. Note that ' is exponential in d (for �xed dit is polynomial in m and n). Without (asymptotially) inreasing the run-ning time it is also possible to label eah node in the Hasse diagram by thedimension and the vertex set of the orresponding fae.It follows from [33℄ that one an ompute the Hasse-diagram of the k-skeleton(i.e., all faes of dimensions at most k) of P in O�n � � � '�k� time, where '�kis the number of faes of dimensions at most k. Sine the latter number is inO�nk+1�, the k-skeleton an be omputed in polynomial time (in the inputsize) for �xed k.Related problems: 5, 1414. f-Vetor of Combinatorial PolytopesInput: Vertex-faet inidene matrix of a polytope POutput: f -vetor of PStatus (general): OpenStatus (�xed dim.): Polynomial timeBy the remarks on Problem 13, it is lear that the �rst k entries of thef -vetor an be omputed in polynomial time for every �xed k.If the polytope is simpliial and a shelling (or a partition) of its boundaryomplex is available (see Problems 17 and 18), then one an ompute theentire f -vetor in polynomial time [65, Chap. 8℄.Related problems: 7, 13, 17, 18, 32



Some Algorithmi Problems in Polytope Theory 1115. Reonstrution of Simple PolytopesInput: The (abstrat) graph GP of a simple polytope POutput: The family of the subsets of nodes of GP orresponding to the vertexsets of the faets of PStatus (general): OpenStatus (�xed dim.): OpenBlind and Mani [6℄ proved that the entire ombinatorial struture of a simplepolytope is determined by its graph. This is false for general polytopes (of di-mension at least four), whih is the main reason why we restrit our attentionto simple polytopes for the remaining problems in this setion. Kalai [35℄ gavea short, elegant, and onstrutive proof of Blind and Mani's result. However,the algorithm that an be derived from it has a worst-ase running time thatis exponential in the number of verties of the polytope.In [32℄ it is shown that the problem an be formulated as a ombinatorialoptimization problem for whih the problem to �nd an AOF-orientation of GP(see Problem 17) is strongly dual in the sense of ombinatorial optimization.In partiular, the vertex sets of the faets of P have a good haraterizationin terms of GP (in the sense of Edmonds [18℄). The problem is polynomialtime equivalent to omputing the yles in GP that orrespond to the 2-faesof P .The problem an be solved in polynomial time in dimension at most threeby omputing a planar embedding of the graph, whih an be done in lineartime (Hoproft and Tarjan [30℄, Mehlhorn and Mutzel [45℄).Related problems: 16, 17, 1816. Faet System Verifiation for Simple PolytopesInput: The (abstrat) graph GP of a simple polytope P and a family F ofsubsets of nodes of GPOutput: \Yes" if F is the family of subsets of nodes of GP that orrespondto the vertex sets of the faets of P , \No" otherwiseStatus (general): OpenStatus (�xed dim.): OpenIn [32℄ it is shown that both the \Yes"- as well as the \No"-answer anbe proved in polynomial time in the size of GP (provided that the integrityof the input data is guaranteed). Any polynomial time algorithm for theonstrution of an AOF- or US-orientation (see Problems 17 and 18) of GPwould yield a polynomial time algorithm for this problem (see [32℄).Up to dimension three the problem an be solved in polynomial time (see theomments to Problems 15 and 17).Related problems: 15, 17, 18, 30



12 Volker Kaibel and Mar E. Pfetsh17. AOF-OrientationInput: The (abstrat) graph GP of a simple polytope POutput: An AOF-orientation of GPStatus (general): OpenStatus (�xed dim.): Open(Simple) polytopes admit AOF-orientations beause every linear funtion ingeneral position indues an AOF-orientation.In [32℄ it is shown that one an formulate the problem as a ombinatorialoptimization problem, for whih a strongly dual problem in the sense ofombinatorial optimization exists (see the omments to Problem 15). Thus,the AOF-orientations of GP have a good haraterization (see Problem 16) interms of GP , i.e., there are polynomial size proofs for both ases an orientationbeing an AOF-orientation or not (provided that the integrity of the input datais guaranteed). However, it is unknown if it is possible to hek in polynomialtime if a given orientation is an AOF-orientation.In dimensions one and two the problem is trivial. For a three-dimensionalpolytope P the problem an be solved in polynomial time, e.g., by produinga plane drawing of GP with onvex faes (see Tutte [62℄) and sorting thenodes with respet to a linear funtion (in general position).A polynomial time algorithm would lead to a polynomial algorithm for Prob-lem 16 (see [32℄).By duality of polytopes, the problem is equivalent to the problem of �nding ashelling order of the faets of a simpliial polytope from the upper two layersof its fae lattie. It is unknown whether it is possible to �nd in polynomialtime a shelling order of the faets, even if the polytope is given by its en-tire fae lattie. With this larger input, however, it is possible to hek inpolynomial time whether a given ordering of the faets is a shelling order.Related problems: 16, 18, 3418. US-OrientationInput: The (abstrat) graph GP of a simple polytope POutput: A US-orientation of GPStatus (general): OpenStatus (�xed dim.): OpenSine AOF-orientations are US-orientations, it follows from the remarks onProblem 17 that (simple) polytopes admit US-orientations and that the prob-lem an be solved in polynomial time up to dimension three. By slight adap-tions of the arguments given in [32℄, one an prove that a polynomial timealgorithm for this problem would yield a polynomial time algorithm for Prob-lem 16 as well.In ontrast to Problem 17, no good haraterization of US-orientations isknown.



Some Algorithmi Problems in Polytope Theory 13It is not hard to see that, by duality of polytopes, the problem is equivalentto the problem of �nding from the upper two layers a partition of the faelattie of a simpliial polytope into intervals whose upper bounds are thefaets (i.e., a partition in the sense of Stanley [58℄). Similar to the situationwith shelling orders, it is even unknown whether suh a partition an befound in polynomial time if the polytope is spei�ed by its entire fae lattie.Again, with the entire fae lattie as input it an be heked in polynomialtime whether a family of subsets of the fae lattie is a partition in that sense.Related problems: 16, 17, 354 IsomorphismTwo polytopes P1 � Rd1 and P2 � Rd2 are aÆnely equivalent if there is aone-to-one aÆne map T : a�(P1) �! a�(P2) between the aÆne hulls of P1and P2 with T (P1) = P2. Two polytopes are ombinatorially equivalent (orisomorphi) if their fae latties are isomorphi. It is not hard to see thataÆne equivalene implies ombinatorial equivalene.As soon as one starts to investigate strutural properties of polytopes bymeans of omputer programs, algorithms for deiding whether two polytopesare isomorphi beome relevant.Some problems in this setion are known to be hard in the sense that thegraph isomorphism problem an polynomially be redued to them. Althoughthis problem is not known (and even not expeted) to be NP-omplete,all attempts to �nd a polynomial time algorithm for it have failed so far.Atually, the same holds for a lot of problems that an be polynomiallyredued to the graph isomorphism problem (see, e.g., Babai [3℄).19. Affine Equivalene of V-PolytopesInput: Two polytopes P and Q given in V-desriptionOutput: \Yes" if P is aÆnely equivalent to Q, \No" otherwiseStatus (general): Graph isomorphism hardStatus (�xed dim.): Polynomial timeThe graph isomorphism problem an polynomially be redued to the problemof heking the aÆne equivalene of two polytopes [34℄. The problem remainsgraph isomorphism hard if H-desriptions are additionally provided as inputdata and/or if one restrits the input to simple or simpliial polytopes.For polytopes of bounded dimension the problem an be solved in polynomialtime by mere enumeration of aÆne bases among the vertex sets.Related problems: 20



14 Volker Kaibel and Mar E. Pfetsh20. Combinatorial Equivalene of V-PolytopesInput: Two polytopes P and Q given in V-desriptionOutput: \Yes" if P is ombinatorially equivalent to Q, \No" otherwiseStatus (general): oNP-hardStatus (�xed dim.): Polynomial timeSwart [60℄ desribes a redution of the subset-sum problem to the negationof the problem.For polytopes of bounded dimension the problem an be solved in polynomialtime (see Problems 2 and 22).Related problems: 2, 19, 2221. Polytope IsomorphismInput: The fae latties LP and LQ of two polytopes P and Q, respetivelyOutput: \Yes" if LP is isomorphi to LQ, \No" otherwiseStatus (general): OpenStatus (�xed dim.): Polynomial timeThe problem an be solved in polynomial time in onstant dimension (seeProblem 22). In general, the problem an easily be redued to the graphisomorphism problemRelated problems: 22, 2322. Isomorphism of vertex-faet inidenesInput: Vertex-faet inidene matries AP and AQ of polytopes P and Q,respetivelyOutput: \Yes" if AP an be transformed into AQ by row and olumn per-mutations, \No" otherwiseStatus (general): Graph isomorphism ompleteStatus (�xed dim.): Polynomial timeThe problem remains graph isomorphism omplete even if V- andH-desript-ions of P and Q are part of the input data [34℄.In onstant dimension the problem an be solved in polynomial time bya redution [34℄ to the graph isomorphism problem for graphs of boundeddegree, for whih a polynomial time algorithm is known (Luks [41℄).Problem 21 an polynomially be redued to this problem. For polytopes ofbounded dimension both problems are polynomial time equivalent.Related problems: 21, 20



Some Algorithmi Problems in Polytope Theory 1523. Selfduality of PolytopesInput: Fae Lattie of a polytope POutput: \Yes" if P is isomorphi to its dual, \No" otherwiseStatus (general): OpenStatus (�xed dim.): Polynomial timeThis is a speial ase of problem 21. In partiular, it is solvable in polynomialtime in bounded dimensions.It is easy to see that deiding whether a general 0/1-matrixA (not neessarilya vertex-faet inidene matrix of a polytope) an be transformed into ATby permuting its rows and olumns is graph isomorphism omplete.Related problems: 215 OptimizationIn this setion, next to the original linear programming problem, we desribesome of its relatives. In partiular, ombinatorial abstrations of the problemare important with respet to polytope theory (and, more general, disretegeometry). We pik out the aspet of ombinatorial ube programming here(and leave aside abstrations like general ombinatorial linear programming,LP-type problems, and oriented matroid programming), sine it has reeivedonsiderable attention lately.24. Geometri Linear ProgrammingInput: H-desription of a polyhedron P � Qd,  2 QdOutput: inf �Tx jx 2 P	 2 Q [ f�1;1g and, if the in�mum is �nite, apoint where the in�mum is attained.Status (general): Polynomial time; no strongly polynomial time algorithmknownStatus (�xed dim.): Linear time in m (the number of inequalities)The �rst polynomial time algorithm was a variant of the ellipsoid algorithmdue to Khahiyan [38℄. Later, also interior point methods solving the problemin polynomial time were disovered (Karmarkar [37℄).Megiddo found an algorithm solving the problem for a �xed number d ofvariables in O(m) arithmeti operations (Megiddo [44℄).No strongly polynomial time algorithm (performing a number of arithmetioperations that is bounded polynomially in d and the number of half-spaesrather than in the oding lengths of the input oordinates) is known. Inpartiular, no polynomial time variant of the simplex algorithm is known.However, a randomized version of the simplex algorithm solves the prob-lem in (expeted) subexponential time (Kalai [36℄, Matou�sek, Sharir, andWelzl [42℄).Related problems: 25, 26, 27



16 Volker Kaibel and Mar E. Pfetsh25. Optimal VertexInput: H-desription of a polyhedron P � Qd,  2 QdOutput: inf �Tv jv vertex of P	 2 Q [ f1g and, if the in�mum is �nite,a vertex where the in�mum is attained.Status (general): Strongly NP-hardStatus (�xed dim.): Polynomial timeProved to be strongly NP-hard by Fukuda, Liebling, and Margot [22℄. Bylinear programming this problem an be solved in polynomial time if P is apolytope. In �xed dimension one an ompute all verties of P in polynomialtime (see Problem 1).Related problems: 1, 24, 2626. Vertex with speified objetive valueInput: H-desription of a polyhedron P � Qd,  2 Qd, C 2 QOutput: \Yes" if there is a vertex v of P with Tv = C; \No" otherwiseStatus (general): Strongly NP-ompleteStatus (�xed dim.): Polynomial timeProved to be NP-omplete by Chandrasekaran, Kabadi, and Murty [11℄ andstronglyNP-omplete by Fukuda, Liebling, and Margot [22℄. The problem re-mains strongly NP-omplete even if the input is restrited to polytopes [22℄.Related problems: 24, 2527. AOF Cube ProgrammingInput: An orale for a funtion � : f0; 1gd �! f+;�gd de�ning an AOF-orientation of the graph of the d-ubeOutput: The sink of the orientationStatus (general): OpenStatus (�xed dim.): Constant timeThe problem an be solved in a subexponential number of orale alls bythe random faet variant of the simplex algorithm due to Kalai [36℄. For aderivation of the expliit bound e2pd � 1 see G�artner [25℄.In �xed dimension the problem is trivial by mere enumeration.The problem generalizes linear programming problems whose sets of feasiblesolutions are ombinatorially equivalent to ubes.Related problems: 24, 28



Some Algorithmi Problems in Polytope Theory 1728. USO Cube ProgrammingInput: An orale for a funtion � : f0; 1gd �! f+;�gd de�ning a US-orientation of the graph of the d-ubeOutput: The sink of the orientationStatus (general): OpenStatus (�xed dim.): Constant timeSzab�o and Welzl [61℄ desribe a randomized algorithm solving the problemin an expeted number of O(�d) orale alls with � =p43=20 < 1:467 and adeterministi algorithm that needs O�1:61d� orale alls. Plugging an optimalalgorithm for the three-dimensional ase (found by G�unter Rote) into theiralgorithm, Szab�o and Welzl even obtain an O�1:438d� randomized algorithm.The problem not only generalizes Problem 27, but also ertain linear om-plementary problems and smallest enlosing ball problems.In �xed dimension the problem is trivial by mere enumeration.Related problems: 276 RealizabilityIn this setion problems are disussed whih bridge the gap from ombina-torial desriptions of polytopes to geometrial desriptions, i.e., it deals withquestions of the following kind: given ombinatorial data, does there exista polytope whih \realizes" this data? E.g., given a 0=1-matrix is this thematrix of vertex-faet inidenes of a polytope? The problems of omputingombinatorial from geometrial data is disussed in Setion 2.The problems listed in this setion are among the �rst ones asked in (mod-ern) polytope theory, going bak to the work of Steinitz and Radermaher inthe 1930's [59℄.29. Steinitz ProblemInput: Lattie LOutput: \Yes" if L is isomorphi to the fae lattie of a polytope, \No"otherwiseStatus (general): NP-hardStatus (�xed dim.): NP-hardIf L is isomorphi to the fae lattie of a polytope, it is ranked, atomi, andoatomi. These properties an be tested in polynomial time in the size of L.Furthermore, in this ase, the dimension d of a andidate polytope has to berankL � 1.The problem is trivial for dimension d � 2. Steinitz's Theorem allows to solved = 3 in polynomial time: onstrut the (abstrat) graph G, test if the faets



18 Volker Kaibel and Mar E. Pfetshan onsistently be embedded in the plane (linear time [30,45℄) and hek for3-onnetedness (in linear time, see Hoproft and Tarjan [29℄).Mn�ev proved that the Steinitz Problem for d-polytopes with d+4 verties isNP-hard [47℄. Even more, Rihter-Gebert [53℄ proved that for (�xed) d � 4the problem is NP-hard.For �xed d � 4 it is neither known whether the problem is in NP nor whetherit is in oNP . It seems unlikely to be in NP, sine there are 4-polytopeswhih annot be realized with rational oordinates of oding length whih isbounded by a polynomial in jLj (see Rihter-Gebert [53℄).Related problems: 3030. Simpliial Steinitz ProblemInput: Lattie LOutput: \Yes" if L is isomorphi to the fae lattie of a simpliial polytope,\No" otherwiseStatus (general): NP-hardStatus (�xed dim.): OpenAs for Problem 29, L is ranked, atomi, and oatomi if the answer is \Yes."In this ase, the dimension d of any mathed polytope is rankL� 1.As for general polytopes (Problem 29), this problem is polynomial time solv-able in dimension d � 3.The problem is NP-hard, whih follows from the above mentioned fat thatthe Steinitz problem for d-polytopes with d + 4 verties is NP-hard and aonstrution (Bokowski and Sturmfels [7℄) whih generalizes it to the sim-pliial ase (but inreases the dimension). It is, however, open whether theproblem is NP-hard for �xed dimension. For �xed d � 4, it is neither knownwhether the problem is in NP nor whether it is in oNP .The following question is interesting in onnetion with Problem 16 (see alsothe notes there): Given an (abstrat) graph G, is G the graph of a simplepolytope? If we do not restrit the question to simple polytopes the problemis also interesting.Related problems: 16, 297 Beyond PolytopesThis setion is onerned with problems on �nite abstrat simpliial om-plexes. Some of the problems listed are diret generalizations of problems onpolytopes. Most of the basi notions relevant in our ontext an be looked upin [65℄; for topologial onepts like homology we refer to Munkres' book [48℄.A �nite abstrat simpliial omplex � is a non-empty set of subsets (thesimplies or faes) of a �nite set of verties suh that F 2 � and G � F imply



Some Algorithmi Problems in Polytope Theory 19G 2 �. The dimension of a simplex F 2 � is jF j�1. The dimension dim(�)of � is the largest dimension of any of the simplies in �. If all its maximalsimplies with respet to inlusion (i.e., its faets) have the same ardinality,then � is pure. A pure d-dimensional �nite abstrat simpliial omplex whosedual graph (de�ned on the faets, where two faets are adjaent if they sharea ommon (d � 1)-fae) is onneted is a pseudo-manifold if every (d � 1)-dimensional simplex is ontained in at most two faets. The boundary ofa simpliial (d + 1)-dimensional polytope indues a d-dimensional pseudo-manifold.Throughout this setion a �nite abstrat simpliial omplex � is given byits list of faets or by the omplete list of all simplies. In the �rst ase, theinput size an be measured by n and m, the numbers of verties and faets.31. Euler CharateristiInput: Finite abstrat simpliial omplex � given by a list of faetsOutput: Euler harateristi �(�) 2 ZStatus (general): OpenStatus (�xed dim.): Polynomial timeIt is unknown whether the deision version \�(�) = 0?" of this problem isin NP . The problem is easy if � is given by a list of all of its simplies. For�xed dimension, one an enumerate all simplies of � and ompute the Eulerharateristi in polynomial time.Currently the fastest way to ompute the Euler harateristi is to determineV = fS : S is an intersetion of faets of �g and then ompute �(�) in timeO�jVj2� by a M�obius funtion approah, see Rota [54℄. Usually V is muhsmaller than the whole fae lattie of �. V an be listed lexiographially byan algorithm of Ganter [23℄, in time O(minfm;ng � � � jVj), where � is thenumber of vertex-faets inidenes.Related problems: 3232. f-Vetor of Simpliial ComplexesInput: Finite abstrat simpliial omplex � given by a list of faetsOutput: The f -vetor of �Status (general): #P-hardStatus (�xed dim.): Polynomial timeIf � is given by all of its simplies the problem is trivial. Clearly, for �xedk, the �rst k entries of the f -vetor an be omputed in polynomial time,sine the number of k-simplies in � is polynomial in n. Hene the problemis polynomial time solvable for �xed dimension dim(�).It is unknown whether the deision problem \Given the list of faets of �and some ' 2 N; is ' the total number of faes of �?" is ontained in NP .



20 Volker Kaibel and Mar E. PfetshThis problem is only known to be in NP for partitionable (see Problem 18)simpliial omplexes (see Kleinshmidt and Onn [39℄).To the best of our knowledge, no proof of #P-hardness of the general problemhas appeared in the literature. Therefore we inlude one here.Consider an instane of SAT, i.e., a formula in onjuntive normal form (CNF-formula) C1^� � �^Cm with variables x1; : : : ; xn (eah Ci ontains only disjun-tions of literals). It is well known (Valiant [63℄) that omputing the number ofsatisfying truth assignments is #P-omplete. De�ne E = ft1; f1; : : : ; tn; fng.Part I. First, let E be the vertex set of a simpliial omplex � de�ned by theminimal non-faes (iruits) C 01; : : : ; C 0m; P1; : : : ; Pn, where Pi = fti; fig forevery i. Here for any lause C, C 0 := ffj : xj literal in Cg [ ftj : xj literalin Cg, e.g., for C = x1 _ x2 _ x3 we have C 0 = ff1; f2; t3g. The idea is thatti orresponds to the assignment of a true-value and fi orresponds to theassignment of a false-value to variable xi. The iruits exlude subsets of Ewhih inlude both ti and fi for all variables xi and exlude truth-assignmentsto variables whih would not satisfy a lause Cj . It is, however, allowed thatfor some variable xi neither ti nor fi is inluded in a fae. But every (n� 1)-fae (n-subset of E) (if there exists any) orresponds to a truth-assignmentto the variables (whih uses exatly one value for eah variable) and satis�esthe formula. These subsets are ounted by fn�1(�). Hene omputing fn�1is #P-omplete and omputing the f -vetor of � is #P-hard. Moreover thisshows that omputing the dimension of a simpliial omplex given by theminimal non-faes is NP-hard.Part II. We now onstrut a simpliial omplex � (the dual omplex) whihis given by faets. De�ne � by the faets C 01; : : : ; C 0m; P1; : : : ; Pn, where forS � E, S := E n S. We have that a set S � E is a fae of � if and only if Sis not a fae of �. Hene, fn�1(�) + fn�1(�) = �2nn �. It follows that one aneÆiently ompute fn�1(�) from fn�1(�).Related problems: 14, 3133. HomologyInput: Finite abstrat simpliial omplex � given by a list of faets, i 2 NOutput: The i-th homology group of �, given by its rank and its torsionoeÆientsStatus (general): OpenStatus (�xed dim.): Polynomial timeThere exists a polynomial time algorithm if � is given by the list of allsimplies, sine the Smith normal form of an integer matrix an be omputedeÆiently (Iliopoulos [31℄). For �xed i or dim(�)�i, the sizes of the boundarymatries are polynomial in the size of� and the Smith normal form an againbe omputed eÆiently.Related problems: 31, 32



Some Algorithmi Problems in Polytope Theory 2134. ShellabilityInput: Finite abstrat pure simpliial omplex � given by a list of faetsOutput: \Yes" if � is shellable, \No" otherwiseStatus (general): OpenStatus (�xed dim.): OpenGiven an ordering of the faets of �, it an be tested in polynomial timewhether it is a shelling order. Hene, the problem in NP.The problem an be solved in polynomial time for one-dimensional omplexes,i.e., for graphs: a graph is shellable if and only if it is onneted. Even fordim(�) = 2, the status is open. In partiular, it is unlear if the problem anbe solved in polynomial time if � is given by a list of all simplies.For two-dimensional pseudo-manifolds the problem an be solved in lineartime (Danarj and Klee [13℄).Related problems: 17, 3535. PartitionabilityInput: Finite abstrat simpliial omplex � given by a list of faetsOutput: \Yes" if � is partionable, \No" otherwiseStatus (general): OpenStatus (�xed dim.): OpenAs in Problem 18, partitionability is meant in the sense of Stanley [58℄ (seealso [65℄). Noble [50℄ proved that the problem is in NP .Partitionability an be solved in polynomial time for one-dimensionalomplexes, i.e., for graphs: a graph is partitionable if and only if at most oneof its onneted omponents is a tree. For two-dimensional omplexes theomplexity status is open. In partiular, it is unlear if the problem an besolved in polynomial time if � is given by a list of all simplies.Related problems: 18, 34
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