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tionConvex polyhedra, i.e., the interse
tions of �nitely many 
losed aÆne half-spa
es inRd, are important obje
ts in various areas of mathemati
s and otherdis
iplines. In parti
ular, the 
ompa
t ones among them (polytopes), whi
hequivalently 
an be de�ned as the 
onvex hulls of �nitely many points in Rd,have been studied sin
e an
ient times (e.g., the platoni
 solids). Polytopesappear as building blo
ks of more 
ompli
ated stru
tures, e.g., in (
ombina-torial) topology, numeri
al mathemati
s, or 
omputer aided design. Even inphysi
s polytopes are relevant (e.g., in 
rystallography or string theory).Probably the most important reason for the tremendous growth of interestin the theory of 
onvex polyhedra in the se
ond half of the 20th 
entury wasthe fa
t that linear programming (i.e., optimizing a linear fun
tion over thesolutions of a system of linear inequalities) be
ame a widespread tool to solvepra
ti
al problems in industry (and military). Dantzig's Simplex Algorithm,developed in the late 40's, showed that geometri
 and 
ombinatorial know-ledge of polyhedra (as the domains of linear programming problems) is quitehelpful for �nding and analyzing solution pro
edures for linear programmingproblems.Sin
e the interest in the theory of 
onvex polyhedra to a large extent
omes from algorithmi
 problems, it is not surprising that many algorithmi
questions on polyhedra arose in the past. But also inherently, 
onvex poly-hedra (in parti
ular: polytopes) give rise to algorithmi
 questions, be
ausethey 
an be treated as �nite obje
ts by de�nition. This makes it possibleto investigate (the smaller ones among) them by 
omputer programs (likethe polymake-system written by Gawrilow and Joswig, see [26℄ and [27,28℄).On
e 
hosen to exploit this possibility, one immediately �nds oneself 
on-fronted with many algorithmi
 
hallenges.This paper 
ontains des
riptions of 35 algorithmi
 problems about poly-hedra. The goal is to 
olle
t for ea
h problem the 
urrent knowledge about its? Supported by the Deuts
he Fors
hungsgemeins
haft, FOR 413/1{1 (Zi 475/3{1).
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h
omputational 
omplexity. Consequently, our treatment is fo
used on theo-reti
al rather than on pra
ti
al subje
ts. We would, however, like to mentionthat for many of the problems 
omputer 
odes are available.Our 
hoi
e of problems to be in
luded is de�nitely in
uen
ed by personalinterest. We have not spent parti
ular e�orts to demonstrate for ea
h problemwhy we 
onsider it to be relevant. It may well be that the reader �nds otherproblems at least as interesting as the ones we dis
uss. We would be very in-terested to learn about su
h problems. The 
olle
tion of problem des
riptionspresented in this paper is intended to be maintained as a (hopefully growing)list at http://www.math.tu-berlin.de/~pfets
h/poly
omplex/.Almost all of the problems are questions about polytopes. In some 
asesthe 
orresponding questions on general polyhedra are interesting as well. It
an be tested in polynomial time whether a polyhedron spe
i�ed by linearinequalities is bounded or not. This 
an be done by applying Gaussian elim-ination and solving one linear program.Roughly, the problems 
an be divided into two types: problems for whi
hthe input are \geometri
al" data and problems for whi
h the input is \
om-binatorial" (see below). A
tually, it turned out that it was rather 
onvenientto group the problems we have sele
ted into the �ve 
ategories \CoordinateDes
riptions" (Se
t. 2), \Combinatorial Stru
ture" (Se
t. 3), \Isomorphism"(Se
t. 4), \Optimization" (Se
t. 5), and \Realizability" (Se
t. 6). Sin
e theboundary 
omplex of a simpli
ial polytope is a simpli
ial 
omplex, studyingpolytopes leads to questions that are 
on
erned with more general (polyhe-dral) stru
tures: simpli
ial 
omplexes. Therefore, we have added a 
ategory\Beyond Polytopes" (Se
t. 7), where a few problems 
on
erned with general(abstra
t) simpli
ial 
omplexes are 
olle
ted that are 
losely related to similarproblems on polytopes. We do not 
onsider other related areas like orientedmatroids.The problem des
riptions pro
eed along the following s
heme. First inputand output are spe
i�ed. Then a summary of the knowledge on the theoreti
al
omplexity is given, e.g., it is stated that the 
omplexity is unknown (\Open")or that the problem isNP-hard. This is done for the 
ase where the dimension(usually of the input polytope) is part of the input as well as for the 
ase of�xed dimension; often the (knowledge on the) 
omplexity status di�ers forthe two versions. After that, 
omments on the problems are given togetherwith referen
es. For ea
h problem we tried to report on the 
urrent stateof knowledge a

ording to the literature. Unless stated otherwise, all resultsmentioned without 
itations are either 
onsidered to be \folklore" or \easyto prove." At the end related problems in this paper are listed.For all notions in the theory of polytopes that we use without explanationwe refer to Ziegler's book [65℄. Similarly, for the 
on
epts from the theoryof 
omputational 
omplexity that play a role here we refer to Garey andJohnson's 
lassi
al text [24℄. Whenever we talk about polynomial redu
tionsthis refers to polynomial time Turing-redu
tions. For some of the problems
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an be exponentially large in the input. For these problems theinteresting question is whether there is a polynomial total time algorithm,i.e., an algorithm whose running time 
an be bounded by a polynomial in thesizes of the input and the output (in 
ontrast to a polynomial time algorithmwhose running time would be bounded by a polynomial just in the inputsize). Note that the notion of \polynomial total time" only makes sense withrespe
t to problems whi
h expli
itly require the output to be non-redundant.A very fundamental result in the theory of 
onvex polyhedra is due toMinkowski [46℄ and Weyl [64℄. For the spe
ial 
ase of polytopes (to whi
h werestri
t our attention from now on) it 
an be formulated as follows. Everypolytope P � Rd 
an be spe
i�ed by an H- or by a V-des
ription. Here,an H-des
ription 
onsists of a �nite set of linear inequalities (de�ning 
losedaÆne half-spa
es of Rd) su
h that P is the set of all simultaneous solutions tothese inequalities. A V-des
ription 
onsists of a �nite set of points inRd whose
onvex hull is P . If any of the two des
riptions is rational, then the other one
an be 
hosen to be rational as well. Furthermore, in this 
ase the numbers inthe se
ond des
ription 
an be 
hosen su
h that their 
oding lengths dependonly polynomially on the 
oding lengths of the numbers in the �rst des
ription(see, e.g., S
hrijver [55℄). In our 
ontext, H- and V-des
riptions are usuallymeant to be rational. By linear programming, ea
h type of des
ription 
anbe made non-redundant in polynomial time (though it is unknown whetherthis is possible in strongly polynomial time, see Problem 24).One of the basi
 properties of a polytope is its dimension. If the polytopeis given by a V-des
ription, then it 
an easily be determined by Gaussianelimination (whi
h, 
arefully done, is a 
ubi
 algorithm; see, e.g., [55℄). If thepolyhedron is spe
i�ed by an H-des
ription, 
omputing its dimension 
an bedone by linear programming (a
tually, this is polynomial time equivalent tolinear programming).Furthermore, some of the problems may also be interesting in their po-lar formulations, i.e., with \the roles of H- and V-des
riptions ex
hanged."Swit
hing to the polar requires to have a relative interior point at hand,whi
h is easy to obtain if a V-des
ription is available, while it needs linearprogramming if only an H-des
ription is spe
i�ed.We will espe
ially be 
on
erned with the 
ombinatorial types of polytopes,i.e., with their fa
e latti
es (the sets of fa
es, ordered by in
lusion). In parti
u-lar, some problems will deal with the k-skeleton of a polytope, whi
h is the setof its fa
es of dimensions less than or equal to k, or with its f-ve
tor, i.e., theve
tor (f0(P ); f1(P ); : : : ; fd(P )), where fi(P ) is the number of i-dimensionalfa
es (i-fa
es) of the d-dimensional polytope P (d-polytope). Talking of thefa
e latti
e LP of a polytope P will always refer to the latti
e as an abstra
tobje
t, i.e., to any latti
e that is isomorphi
 to the fa
e latti
e. In parti
u-lar, the latti
e does not 
ontain any information on 
oordinates. Similarly,the vertex-fa
et in
iden
es of P are given by any matrix (avf ) with entriesfrom f0; 1g, whose rows and 
olumns are indexed by the verti
es and fa
ets
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hof P , respe
tively, su
h that avf = 1 if and only if vertex v is 
ontainedin fa
et f . Note that the vertex-fa
et in
iden
es of a polytope 
ompletelydetermine its fa
e latti
e.A third important 
ombinatorial stru
ture asso
iated with a polytope P isits (abstra
t) graph GP , i.e., any graph that is isomorphi
 to the graph havingthe verti
es of P as its nodes, where two of them are adja
ent if and only iftheir 
onvex hull is a (one-dimensional) fa
e of P . For simple polytopes, the(abstra
t) graph determines the entire fa
e latti
e as well (see Problem 15).However, for general polytopes this is not true.Throughout the paper, n refers to the number of verti
es or points inthe given V-des
ription, respe
tively, depending on the 
ontext. Moreover,m refers to the number of fa
ets or inequalities in the given H-des
ription,respe
tively, and d refers to the dimension of the polytope or the ambientspa
e, respe
tively.A
knowledgment: We thank the referee for many valuable 
omments andG�unter M. Ziegler for 
arefully reading the manus
ript.2 Coordinate Des
riptionsIn this se
tion problems are 
olle
ted whose input are geometri
al data, i.e.,the H- or V-des
ription of a polytope. Some problems whi
h are also givenby geometri
al data appear in Se
tions 4 and 5.1. Vertex EnumerationInput: Polytope P in H-des
riptionOutput: Non-redundant V-des
ription of PStatus (general): Open; polynomial total time if P is simple or simpli
ialStatus (�xed dim.): Polynomial timeLet d = dim(P ) and letm be the number of inequalities in the input. It is wellknown that the number of verti
es n 
an be exponential (
(mbd=2
)) in thesize of the input (e.g., Cartesian produ
ts of suitably 
hosen two-dimensionalpolytopes and prisms over them).Vertex Enumeration is strongly polynomially equivalent to Problem 3(see Avis, Bremner, and Seidel [1℄). Sin
e Problem 2 is strongly polynomiallyequivalent to Problem 3 as well, Vertex Enumeration is also stronglypolynomially equivalent to Problem 2.For �xed d, Chazelle [12℄ found an O�mbd=2
� polynomial time algorithm,whi
h is optimal by the Upper Bound Theorem of M
Mullen [43℄. Thereexist algorithms whi
h are faster than Chazelle's algorithm for small n, e.g.,an O�m logn+ (mn)1�1=(bd=2
+1) polylogm� algorithm of Chan [9℄.For general d, the reverse sear
h method of Avis and Fukuda [2℄ solves theproblem for simple polyhedra in polynomial total time, using working spa
e
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e for output) bounded polynomially in the input size. An al-gorithm of Bremner, Fukuda, and Marzetta [8℄ solves the problem for sim-pli
ial polytopes. Note that these algorithms need a vertex of P to startfrom. Provan [52℄ gives a polynomial total time algorithm for enumeratingthe verti
es of polyhedra arising from networks.There are many more algorithms known for this problem { none of them isa polynomial total time algorithm for general polytopes. See the overviewarti
le of Seidel [57℄. Most of these algorithms 
an be generalized to dire
tlywork for unbounded polyhedra, too.Related problems: 2, 3, 5, 72. Fa
et EnumerationInput: Polytope P in V-des
ription with n pointsOutput: Non-redundant H-des
ription of PStatus (general): Open; polynomial total time if P is simple or simpli
ialStatus (�xed dim.): Polynomial timeIn [1℄ it is shown that Fa
et Enumeration is strongly polynomially equiv-alent to Problem 3 and thus to Problem 1 (see the 
omments there).For this problem, one 
an assume to have an interior point (e.g., the ver-tex bary
enter). Fa
et Enumeration is sometimes 
alled the 
onvex hullproblem.Related problems: 1, 3, 53. Polytope Verifi
ationInput: Polytope P given inH-des
ription, polytope Q given in V-des
riptionOutput: \Yes" if P = Q, \No" otherwiseStatus (general): Open; polynomial time if P is simple or simpli
ialStatus (�xed dim.): Polynomial timePolytope Verifi
ation is strongly polynomially equivalent to Problem 1and Problem 2 (see the 
omments there).Polytope Verifi
ation is 
ontained in 
oNP : we 
an prove Q * P byshowing that some vertex of Q violates one of the inequalities des
ribing P .If Q � P with Q 6= P then there exists a point p of P nQ with \small" 
o-ordinates (e.g., some vertex of P not 
ontained in Q) and a valid inequalityfor Q, whi
h has \small" 
oeÆ
ients and is violated by p (e.g., an inequal-ity de�ning a fa
et of Q that separates p from Q). However, it is unknownwhether Polytope Verifi
ation is in NP.Sin
e it is easy to 
he
k whether Q � P , Polytope Verifi
ation is Prob-lem 4 restri
ted to the 
ase that Q � P .Related problems: 1, 2, 4
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h4. Polytope ContainmentInput: Polytope P given inH-des
ription, polytope Q given in V-des
riptionOutput: \Yes" if P � Q, \No" otherwiseStatus (general): 
oNP-
ompleteStatus (�xed dim.): Polynomial timeFreund and Orlin [20℄ proved that this problem is 
oNP-
omplete. Notethat the reverse question whether Q � P is trivial. The questions whereeither both P and Q are given in H-des
ription or both in V-des
ription 
anbe solved by linear programming (Problem 24), see Eaves and Freund [17℄.For �xed dimension, one 
an enumerate all verti
es of P in polynomial time(see Problem 1) and 
ompare the des
riptions of P and Q (after removingredundant points).Related problems: 35. Fa
e Latti
e of Geometri
 PolytopesInput: Polytope P in H-des
riptionOutput: Hasse-diagram of the fa
e latti
e of PStatus (general): Polynomial total timeStatus (�xed dim.): Polynomial timeSee 
omments on Problem 1. Many algorithms for the Vertex Enumer-ation Problem in fa
t 
ompute the whole fa
e latti
e of the polytope.Swart [60℄, analyzing an algorithm of Chand and Kapur [10℄, proved thatthere exists a polynomial total time algorithm for this problem. For a fasteralgorithm see Seidel [56℄. Fukuda, Liebling, and Margot [22℄ gave an algo-rithm whi
h uses working spa
e (without spa
e for the output) boundedpolynomially in the input size, but it has to solve many linear programs.For �xed dimension, the size of the output is polynomial in the size of theinput; hen
e, a polynomial total time algorithm be
omes a polynomial algo-rithm in this 
ase.The problem of enumerating the k-skeleton of P seems to be open, even ifk is �xed. Note that, for �xed k, the latter problem 
an be solved by linearprogramming (Problem 24) in polynomial time if the polytope is given inV-des
ription rather than in H-des
ription.Related problems: 1, 2, 3, 13, 146. Degenera
y TestingInput: Polytope P in H-des
riptionOutput: \Yes" if P not simple (degenerate), \No" otherwiseStatus (general): Strongly NP-
ompleteStatus (�xed dim.): Polynomial time
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 Problems in Polytope Theory 7Independently proved to be NP-
omplete in the papers of Chandrasekaran,Kabadi, and Murty [11℄ and Dyer [14℄. Fukuda, Liebling, and Margot [22℄proved that the problem is strongly NP-
omplete. For �xed dimension, one
an enumerate all verti
es in polynomial time (see Problem 1) and 
he
kwhether they are simple or not.Bremner, Fukuda, and Marzetta [8℄ noted that if P is given in V-des
riptionthe problem is polynomial time solvable: enumerate the edges (1-skeleton, seeProblem 5) and apply the Lower Bound Theorem.Eri
kson [19℄ showed that in the worst 
ase 
(mdd=2e�1 +m logm) sidenessqueries are required to test whether a polytope is simple. For odd d thismat
hes the upper bound. A sideness query is a question of the followingkind: given d + 1 points p0; : : : ;pd in Rd, does p0 lie \above", \below", oron the oriented hyperplane determined by p1;p2; : : : ;pd.Related problems: 1, 57. Number of Verti
esInput: Polytope P in H-des
riptionOutput: Number of verti
es of PStatus (general): #P-
ompleteStatus (�xed dim.): Polynomial timeDyer [14℄ and Linial [40℄ independently proved that Number of Verti
esis #P-
omplete. It follows that the problem of 
omputing the f -ve
tor of Pis #P-hard. Furthermore, Dyer [14℄ proved that the de
ision version (\Givena number k, does P have at least k verti
es?") is strongly NP-hard andremainsNP-hard when restri
ted to simple polytopes. It is unknown whetherthe de
ision problem is in NP.If the dimension is �xed, one 
an enumerate all verti
es in polynomial time(see Problem 1).Related problems: 1, 148. Feasible Basis ExtensionInput: Polytope P given as fx 2 Rs : Ax = b;x � 0g, a set S � f1; : : : ; sgOutput: \Yes" if there is a feasible basis with an index set 
ontaining S,\No" otherwiseStatus (general): NP-
ompleteStatus (�xed dim.): Polynomial timeSee Murty [49℄ (Garey and Johnson [24℄, Problem [MP4℄). For �xed dimen-sion, one 
an enumerate all bases in polynomial time.The problem 
an be reformulated as follows. Let P be de�ned by a �nite setH of aÆne halfspa
es and let S be a subset of H. Does TfH 2 H : H =2 Sg
ontain a vertex whi
h is also a vertex of P ?
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h9. Re
ognizing Integer PolyhedraInput: Polytope P in H-des
riptionOutput: \Yes" if P has only integer verti
es, \No" otherwiseStatus (general): Strongly 
oNP-
ompleteStatus (�xed dim.): Polynomial timeThe hardness-proof is by Papadimitriou and Yannakakis [51℄. For �xed di-mension, one 
an enumerate all verti
es (Problem 1) and 
he
k whether theyare integral in polynomial time.10. DiameterInput: Polytope P in H-des
riptionOutput: The diameter of PStatus (general): NP-hardStatus (�xed dim.): Polynomial timeFrieze and Teng [21℄ gave the proof of NP-hardness. For �xed dimension,one 
an enumerate all verti
es (Problem 1), 
onstru
t the graph and then
ompute the diameter in polynomial time.The 
omplexity status is unknown for simple polytopes. For simpli
ial poly-topes the problem 
an be solved in polynomial time: Sin
e simpli
ial poly-topes have at most as many verti
es as fa
ets, one 
an enumerate their ver-ti
es (see Problem 1), and �nally 
ompute the graph (and hen
e the diameter)from the vertex-fa
et in
iden
es in polynomial time.If P is given in V-des
ription, one 
an 
ompute the graph (1-skeleton, seeProblem 5) and hen
e the diameter in polynomial time.11. Minimum TriangulationInput: Polytope P in V-des
ription, positive integer KOutput: \Yes" if P has a triangulation of size K or less, \No" otherwiseStatus (general): NP-
ompleteStatus (�xed dim.): NP-
ompleteA triangulation T of a d-polytope P is a 
olle
tion of d-simpli
es, whoseunion is P , their verti
es are verti
es of P , and any two simpli
es interse
tin a 
ommon fa
e (whi
h might be empty). In parti
ular, T is a (pure) d-dimensional geometri
 simpli
ial 
omplex (see Se
tion 7). The size of T is thenumber of its d-simpli
es. Every (
onvex) polytope admits a triangulation.Below, De Loera, and Ri
hter-Gebert [4,5℄ proved that Minimum Triangu-lation is NP-
omplete for (�xed) d � 3. Furthermore, it is NP-hard to
ompute a triangulation of minimal size for (�xed) d � 3.
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 Problems in Polytope Theory 912. VolumeInput: Polytope P in H-des
riptionOutput: The volume of PStatus (general): #P-hard, FPRASStatus (�xed dim.): Polynomial timeDyer and Frieze [15℄ showed that the general problem is #P-hard (and #P-easy as well). Dyer, Frieze, and Kannan [16℄ found a Fully Polynomial Ran-domized Approximation S
heme (FPRAS ) for the problem, i.e., a family(A")">0 of randomized algorithms, where, for ea
h " > 0, A" 
omputes anumber V" with the property that the probability of (1 � ") vol(P ) � V" �(1 + ") vol(P ) is at least 34 , and the running times of the algorithms A" arebounded by a polynomial in the input size and 1" .For �xed dimension, one 
an �rst 
ompute all verti
es of P (see Problem 1)and its fa
e latti
e (see Problem 5) both in polynomial time. Then one 
an
onstru
t some triangulation (see Problem 11) of P (e.g., its bary
entri
subdivision) in polynomial time and 
ompute the volume of P as the sum ofthe volumes of the (maximal) simpli
es in the triangulation.The 
omplexity status of the analogue problem with the polytope spe
i�edby a V-des
ription is the same.3 Combinatorial Stru
tureIn this se
tion we 
olle
t problems that are 
on
erned with 
omputing 
ertain
ombinatorial information from 
ompa
t des
riptions of the 
ombinatorialstru
ture of a polytope. Su
h 
ompa
t en
odings might be the vertex-fa
etin
iden
es, or, for simple polytopes, the abstra
t graphs. An example of su
ha problem is to 
ompute the dimension of a polytope from its vertex-fa
etin
iden
es. Initialize a set S by the vertex set of an arbitrary fa
et. For ea
hfa
et F 
ompute the interse
tion of S with the vertex set of F . Repla
e S bya maximal one among the proper interse
tions and 
ontinue. The dimensionis the number of \rounds" performed until S be
omes empty.All data is meant to be purely 
ombinatorial. For all problems in thisse
tion it is unknown if the \integrity" of the input data 
an be 
he
ked,proved, or disproved in polynomial time. For instan
e, it is rather unlikelythat one 
an eÆ
iently prove or disprove that a latti
e is the fa
e latti
e ofsome polytope (see Problems 29, 30).Sometimes, it might be worthwhile to ex
hange the roles of verti
es andfa
ets by duality of polytopes. Our 
hoi
es of view points have mainly beenguided by personal taste.Some orientations of the abstra
t graph GP of a simple polytope P playimportant roles (although su
h orientations 
an also be 
onsidered for non-simple polytopes, they have not yet proven to be useful in the more general
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ontext). An orientation is 
alled a unique-sink orientation (US-orientation)if it indu
es a unique sink on every subgraph of GP 
orresponding to a non-empty fa
e of P . A US-orientation is 
alled an abstra
t obje
tive fun
tion ori-entation (AOF-orientation) if it is a
y
li
. General US-orientations of graphsof 
ubes have re
ently re
eived some attention (Szab�o and Welzl [61℄). AOF-orientations were used, e.g., by Kalai [35℄. Sin
e their linear extensions arepre
isely the shelling orders of the dual polytope, they have been 
onsideredmu
h earlier.13. Fa
e Latti
e of Combinatorial PolytopesInput: Vertex-fa
et in
iden
e matrix of a polytope POutput: Hasse-diagram of the fa
e latti
e of PStatus (general): Polynomial total timeStatus (�xed dim.): Polynomial timeSolvable in O(minfm;ng � � � ') time, where m is the number of fa
ets, n isthe number of verti
es, � is the number of vertex-fa
et in
iden
es, and ' isthe size of the fa
e latti
e [33℄. Note that ' is exponential in d (for �xed dit is polynomial in m and n). Without (asymptoti
ally) in
reasing the run-ning time it is also possible to label ea
h node in the Hasse diagram by thedimension and the vertex set of the 
orresponding fa
e.It follows from [33℄ that one 
an 
ompute the Hasse-diagram of the k-skeleton(i.e., all fa
es of dimensions at most k) of P in O�n � � � '�k� time, where '�kis the number of fa
es of dimensions at most k. Sin
e the latter number is inO�nk+1�, the k-skeleton 
an be 
omputed in polynomial time (in the inputsize) for �xed k.Related problems: 5, 1414. f-Ve
tor of Combinatorial PolytopesInput: Vertex-fa
et in
iden
e matrix of a polytope POutput: f -ve
tor of PStatus (general): OpenStatus (�xed dim.): Polynomial timeBy the remarks on Problem 13, it is 
lear that the �rst k entries of thef -ve
tor 
an be 
omputed in polynomial time for every �xed k.If the polytope is simpli
ial and a shelling (or a partition) of its boundary
omplex is available (see Problems 17 and 18), then one 
an 
ompute theentire f -ve
tor in polynomial time [65, Chap. 8℄.Related problems: 7, 13, 17, 18, 32
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onstru
tion of Simple PolytopesInput: The (abstra
t) graph GP of a simple polytope POutput: The family of the subsets of nodes of GP 
orresponding to the vertexsets of the fa
ets of PStatus (general): OpenStatus (�xed dim.): OpenBlind and Mani [6℄ proved that the entire 
ombinatorial stru
ture of a simplepolytope is determined by its graph. This is false for general polytopes (of di-mension at least four), whi
h is the main reason why we restri
t our attentionto simple polytopes for the remaining problems in this se
tion. Kalai [35℄ gavea short, elegant, and 
onstru
tive proof of Blind and Mani's result. However,the algorithm that 
an be derived from it has a worst-
ase running time thatis exponential in the number of verti
es of the polytope.In [32℄ it is shown that the problem 
an be formulated as a 
ombinatorialoptimization problem for whi
h the problem to �nd an AOF-orientation of GP(see Problem 17) is strongly dual in the sense of 
ombinatorial optimization.In parti
ular, the vertex sets of the fa
ets of P have a good 
hara
terizationin terms of GP (in the sense of Edmonds [18℄). The problem is polynomialtime equivalent to 
omputing the 
y
les in GP that 
orrespond to the 2-fa
esof P .The problem 
an be solved in polynomial time in dimension at most threeby 
omputing a planar embedding of the graph, whi
h 
an be done in lineartime (Hop
roft and Tarjan [30℄, Mehlhorn and Mutzel [45℄).Related problems: 16, 17, 1816. Fa
et System Verifi
ation for Simple PolytopesInput: The (abstra
t) graph GP of a simple polytope P and a family F ofsubsets of nodes of GPOutput: \Yes" if F is the family of subsets of nodes of GP that 
orrespondto the vertex sets of the fa
ets of P , \No" otherwiseStatus (general): OpenStatus (�xed dim.): OpenIn [32℄ it is shown that both the \Yes"- as well as the \No"-answer 
anbe proved in polynomial time in the size of GP (provided that the integrityof the input data is guaranteed). Any polynomial time algorithm for the
onstru
tion of an AOF- or US-orientation (see Problems 17 and 18) of GPwould yield a polynomial time algorithm for this problem (see [32℄).Up to dimension three the problem 
an be solved in polynomial time (see the
omments to Problems 15 and 17).Related problems: 15, 17, 18, 30
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h17. AOF-OrientationInput: The (abstra
t) graph GP of a simple polytope POutput: An AOF-orientation of GPStatus (general): OpenStatus (�xed dim.): Open(Simple) polytopes admit AOF-orientations be
ause every linear fun
tion ingeneral position indu
es an AOF-orientation.In [32℄ it is shown that one 
an formulate the problem as a 
ombinatorialoptimization problem, for whi
h a strongly dual problem in the sense of
ombinatorial optimization exists (see the 
omments to Problem 15). Thus,the AOF-orientations of GP have a good 
hara
terization (see Problem 16) interms of GP , i.e., there are polynomial size proofs for both 
ases an orientationbeing an AOF-orientation or not (provided that the integrity of the input datais guaranteed). However, it is unknown if it is possible to 
he
k in polynomialtime if a given orientation is an AOF-orientation.In dimensions one and two the problem is trivial. For a three-dimensionalpolytope P the problem 
an be solved in polynomial time, e.g., by produ
inga plane drawing of GP with 
onvex fa
es (see Tutte [62℄) and sorting thenodes with respe
t to a linear fun
tion (in general position).A polynomial time algorithm would lead to a polynomial algorithm for Prob-lem 16 (see [32℄).By duality of polytopes, the problem is equivalent to the problem of �nding ashelling order of the fa
ets of a simpli
ial polytope from the upper two layersof its fa
e latti
e. It is unknown whether it is possible to �nd in polynomialtime a shelling order of the fa
ets, even if the polytope is given by its en-tire fa
e latti
e. With this larger input, however, it is possible to 
he
k inpolynomial time whether a given ordering of the fa
ets is a shelling order.Related problems: 16, 18, 3418. US-OrientationInput: The (abstra
t) graph GP of a simple polytope POutput: A US-orientation of GPStatus (general): OpenStatus (�xed dim.): OpenSin
e AOF-orientations are US-orientations, it follows from the remarks onProblem 17 that (simple) polytopes admit US-orientations and that the prob-lem 
an be solved in polynomial time up to dimension three. By slight adap-tions of the arguments given in [32℄, one 
an prove that a polynomial timealgorithm for this problem would yield a polynomial time algorithm for Prob-lem 16 as well.In 
ontrast to Problem 17, no good 
hara
terization of US-orientations isknown.



Some Algorithmi
 Problems in Polytope Theory 13It is not hard to see that, by duality of polytopes, the problem is equivalentto the problem of �nding from the upper two layers a partition of the fa
elatti
e of a simpli
ial polytope into intervals whose upper bounds are thefa
ets (i.e., a partition in the sense of Stanley [58℄). Similar to the situationwith shelling orders, it is even unknown whether su
h a partition 
an befound in polynomial time if the polytope is spe
i�ed by its entire fa
e latti
e.Again, with the entire fa
e latti
e as input it 
an be 
he
ked in polynomialtime whether a family of subsets of the fa
e latti
e is a partition in that sense.Related problems: 16, 17, 354 IsomorphismTwo polytopes P1 � Rd1 and P2 � Rd2 are aÆnely equivalent if there is aone-to-one aÆne map T : a�(P1) �! a�(P2) between the aÆne hulls of P1and P2 with T (P1) = P2. Two polytopes are 
ombinatorially equivalent (orisomorphi
) if their fa
e latti
es are isomorphi
. It is not hard to see thataÆne equivalen
e implies 
ombinatorial equivalen
e.As soon as one starts to investigate stru
tural properties of polytopes bymeans of 
omputer programs, algorithms for de
iding whether two polytopesare isomorphi
 be
ome relevant.Some problems in this se
tion are known to be hard in the sense that thegraph isomorphism problem 
an polynomially be redu
ed to them. Althoughthis problem is not known (and even not expe
ted) to be NP-
omplete,all attempts to �nd a polynomial time algorithm for it have failed so far.A
tually, the same holds for a lot of problems that 
an be polynomiallyredu
ed to the graph isomorphism problem (see, e.g., Babai [3℄).19. Affine Equivalen
e of V-PolytopesInput: Two polytopes P and Q given in V-des
riptionOutput: \Yes" if P is aÆnely equivalent to Q, \No" otherwiseStatus (general): Graph isomorphism hardStatus (�xed dim.): Polynomial timeThe graph isomorphism problem 
an polynomially be redu
ed to the problemof 
he
king the aÆne equivalen
e of two polytopes [34℄. The problem remainsgraph isomorphism hard if H-des
riptions are additionally provided as inputdata and/or if one restri
ts the input to simple or simpli
ial polytopes.For polytopes of bounded dimension the problem 
an be solved in polynomialtime by mere enumeration of aÆne bases among the vertex sets.Related problems: 20
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h20. Combinatorial Equivalen
e of V-PolytopesInput: Two polytopes P and Q given in V-des
riptionOutput: \Yes" if P is 
ombinatorially equivalent to Q, \No" otherwiseStatus (general): 
oNP-hardStatus (�xed dim.): Polynomial timeSwart [60℄ des
ribes a redu
tion of the subset-sum problem to the negationof the problem.For polytopes of bounded dimension the problem 
an be solved in polynomialtime (see Problems 2 and 22).Related problems: 2, 19, 2221. Polytope IsomorphismInput: The fa
e latti
es LP and LQ of two polytopes P and Q, respe
tivelyOutput: \Yes" if LP is isomorphi
 to LQ, \No" otherwiseStatus (general): OpenStatus (�xed dim.): Polynomial timeThe problem 
an be solved in polynomial time in 
onstant dimension (seeProblem 22). In general, the problem 
an easily be redu
ed to the graphisomorphism problemRelated problems: 22, 2322. Isomorphism of vertex-fa
et in
iden
esInput: Vertex-fa
et in
iden
e matri
es AP and AQ of polytopes P and Q,respe
tivelyOutput: \Yes" if AP 
an be transformed into AQ by row and 
olumn per-mutations, \No" otherwiseStatus (general): Graph isomorphism 
ompleteStatus (�xed dim.): Polynomial timeThe problem remains graph isomorphism 
omplete even if V- andH-des
ript-ions of P and Q are part of the input data [34℄.In 
onstant dimension the problem 
an be solved in polynomial time bya redu
tion [34℄ to the graph isomorphism problem for graphs of boundeddegree, for whi
h a polynomial time algorithm is known (Luks [41℄).Problem 21 
an polynomially be redu
ed to this problem. For polytopes ofbounded dimension both problems are polynomial time equivalent.Related problems: 21, 20
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 Problems in Polytope Theory 1523. Selfduality of PolytopesInput: Fa
e Latti
e of a polytope POutput: \Yes" if P is isomorphi
 to its dual, \No" otherwiseStatus (general): OpenStatus (�xed dim.): Polynomial timeThis is a spe
ial 
ase of problem 21. In parti
ular, it is solvable in polynomialtime in bounded dimensions.It is easy to see that de
iding whether a general 0/1-matrixA (not ne
essarilya vertex-fa
et in
iden
e matrix of a polytope) 
an be transformed into ATby permuting its rows and 
olumns is graph isomorphism 
omplete.Related problems: 215 OptimizationIn this se
tion, next to the original linear programming problem, we des
ribesome of its relatives. In parti
ular, 
ombinatorial abstra
tions of the problemare important with respe
t to polytope theory (and, more general, dis
retegeometry). We pi
k out the aspe
t of 
ombinatorial 
ube programming here(and leave aside abstra
tions like general 
ombinatorial linear programming,LP-type problems, and oriented matroid programming), sin
e it has re
eived
onsiderable attention lately.24. Geometri
 Linear ProgrammingInput: H-des
ription of a polyhedron P � Qd, 
 2 QdOutput: inf �
Tx jx 2 P	 2 Q [ f�1;1g and, if the in�mum is �nite, apoint where the in�mum is attained.Status (general): Polynomial time; no strongly polynomial time algorithmknownStatus (�xed dim.): Linear time in m (the number of inequalities)The �rst polynomial time algorithm was a variant of the ellipsoid algorithmdue to Kha
hiyan [38℄. Later, also interior point methods solving the problemin polynomial time were dis
overed (Karmarkar [37℄).Megiddo found an algorithm solving the problem for a �xed number d ofvariables in O(m) arithmeti
 operations (Megiddo [44℄).No strongly polynomial time algorithm (performing a number of arithmeti
operations that is bounded polynomially in d and the number of half-spa
esrather than in the 
oding lengths of the input 
oordinates) is known. Inparti
ular, no polynomial time variant of the simplex algorithm is known.However, a randomized version of the simplex algorithm solves the prob-lem in (expe
ted) subexponential time (Kalai [36℄, Matou�sek, Sharir, andWelzl [42℄).Related problems: 25, 26, 27
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h25. Optimal VertexInput: H-des
ription of a polyhedron P � Qd, 
 2 QdOutput: inf �
Tv jv vertex of P	 2 Q [ f1g and, if the in�mum is �nite,a vertex where the in�mum is attained.Status (general): Strongly NP-hardStatus (�xed dim.): Polynomial timeProved to be strongly NP-hard by Fukuda, Liebling, and Margot [22℄. Bylinear programming this problem 
an be solved in polynomial time if P is apolytope. In �xed dimension one 
an 
ompute all verti
es of P in polynomialtime (see Problem 1).Related problems: 1, 24, 2626. Vertex with spe
ified obje
tive valueInput: H-des
ription of a polyhedron P � Qd, 
 2 Qd, C 2 QOutput: \Yes" if there is a vertex v of P with 
Tv = C; \No" otherwiseStatus (general): Strongly NP-
ompleteStatus (�xed dim.): Polynomial timeProved to be NP-
omplete by Chandrasekaran, Kabadi, and Murty [11℄ andstronglyNP-
omplete by Fukuda, Liebling, and Margot [22℄. The problem re-mains strongly NP-
omplete even if the input is restri
ted to polytopes [22℄.Related problems: 24, 2527. AOF Cube ProgrammingInput: An ora
le for a fun
tion � : f0; 1gd �! f+;�gd de�ning an AOF-orientation of the graph of the d-
ubeOutput: The sink of the orientationStatus (general): OpenStatus (�xed dim.): Constant timeThe problem 
an be solved in a subexponential number of ora
le 
alls bythe random fa
et variant of the simplex algorithm due to Kalai [36℄. For aderivation of the expli
it bound e2pd � 1 see G�artner [25℄.In �xed dimension the problem is trivial by mere enumeration.The problem generalizes linear programming problems whose sets of feasiblesolutions are 
ombinatorially equivalent to 
ubes.Related problems: 24, 28
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 Problems in Polytope Theory 1728. USO Cube ProgrammingInput: An ora
le for a fun
tion � : f0; 1gd �! f+;�gd de�ning a US-orientation of the graph of the d-
ubeOutput: The sink of the orientationStatus (general): OpenStatus (�xed dim.): Constant timeSzab�o and Welzl [61℄ des
ribe a randomized algorithm solving the problemin an expe
ted number of O(�d) ora
le 
alls with � =p43=20 < 1:467 and adeterministi
 algorithm that needs O�1:61d� ora
le 
alls. Plugging an optimalalgorithm for the three-dimensional 
ase (found by G�unter Rote) into theiralgorithm, Szab�o and Welzl even obtain an O�1:438d� randomized algorithm.The problem not only generalizes Problem 27, but also 
ertain linear 
om-plementary problems and smallest en
losing ball problems.In �xed dimension the problem is trivial by mere enumeration.Related problems: 276 RealizabilityIn this se
tion problems are dis
ussed whi
h bridge the gap from 
ombina-torial des
riptions of polytopes to geometri
al des
riptions, i.e., it deals withquestions of the following kind: given 
ombinatorial data, does there exista polytope whi
h \realizes" this data? E.g., given a 0=1-matrix is this thematrix of vertex-fa
et in
iden
es of a polytope? The problems of 
omputing
ombinatorial from geometri
al data is dis
ussed in Se
tion 2.The problems listed in this se
tion are among the �rst ones asked in (mod-ern) polytope theory, going ba
k to the work of Steinitz and Raderma
her inthe 1930's [59℄.29. Steinitz ProblemInput: Latti
e LOutput: \Yes" if L is isomorphi
 to the fa
e latti
e of a polytope, \No"otherwiseStatus (general): NP-hardStatus (�xed dim.): NP-hardIf L is isomorphi
 to the fa
e latti
e of a polytope, it is ranked, atomi
, and
oatomi
. These properties 
an be tested in polynomial time in the size of L.Furthermore, in this 
ase, the dimension d of a 
andidate polytope has to berankL � 1.The problem is trivial for dimension d � 2. Steinitz's Theorem allows to solved = 3 in polynomial time: 
onstru
t the (abstra
t) graph G, test if the fa
ets



18 Volker Kaibel and Mar
 E. Pfets
h
an 
onsistently be embedded in the plane (linear time [30,45℄) and 
he
k for3-
onne
tedness (in linear time, see Hop
roft and Tarjan [29℄).Mn�ev proved that the Steinitz Problem for d-polytopes with d+4 verti
es isNP-hard [47℄. Even more, Ri
hter-Gebert [53℄ proved that for (�xed) d � 4the problem is NP-hard.For �xed d � 4 it is neither known whether the problem is in NP nor whetherit is in 
oNP . It seems unlikely to be in NP, sin
e there are 4-polytopeswhi
h 
annot be realized with rational 
oordinates of 
oding length whi
h isbounded by a polynomial in jLj (see Ri
hter-Gebert [53℄).Related problems: 3030. Simpli
ial Steinitz ProblemInput: Latti
e LOutput: \Yes" if L is isomorphi
 to the fa
e latti
e of a simpli
ial polytope,\No" otherwiseStatus (general): NP-hardStatus (�xed dim.): OpenAs for Problem 29, L is ranked, atomi
, and 
oatomi
 if the answer is \Yes."In this 
ase, the dimension d of any mat
hed polytope is rankL� 1.As for general polytopes (Problem 29), this problem is polynomial time solv-able in dimension d � 3.The problem is NP-hard, whi
h follows from the above mentioned fa
t thatthe Steinitz problem for d-polytopes with d + 4 verti
es is NP-hard and a
onstru
tion (Bokowski and Sturmfels [7℄) whi
h generalizes it to the sim-pli
ial 
ase (but in
reases the dimension). It is, however, open whether theproblem is NP-hard for �xed dimension. For �xed d � 4, it is neither knownwhether the problem is in NP nor whether it is in 
oNP .The following question is interesting in 
onne
tion with Problem 16 (see alsothe notes there): Given an (abstra
t) graph G, is G the graph of a simplepolytope? If we do not restri
t the question to simple polytopes the problemis also interesting.Related problems: 16, 297 Beyond PolytopesThis se
tion is 
on
erned with problems on �nite abstra
t simpli
ial 
om-plexes. Some of the problems listed are dire
t generalizations of problems onpolytopes. Most of the basi
 notions relevant in our 
ontext 
an be looked upin [65℄; for topologi
al 
on
epts like homology we refer to Munkres' book [48℄.A �nite abstra
t simpli
ial 
omplex � is a non-empty set of subsets (thesimpli
es or fa
es) of a �nite set of verti
es su
h that F 2 � and G � F imply
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 Problems in Polytope Theory 19G 2 �. The dimension of a simplex F 2 � is jF j�1. The dimension dim(�)of � is the largest dimension of any of the simpli
es in �. If all its maximalsimpli
es with respe
t to in
lusion (i.e., its fa
ets) have the same 
ardinality,then � is pure. A pure d-dimensional �nite abstra
t simpli
ial 
omplex whosedual graph (de�ned on the fa
ets, where two fa
ets are adja
ent if they sharea 
ommon (d � 1)-fa
e) is 
onne
ted is a pseudo-manifold if every (d � 1)-dimensional simplex is 
ontained in at most two fa
ets. The boundary ofa simpli
ial (d + 1)-dimensional polytope indu
es a d-dimensional pseudo-manifold.Throughout this se
tion a �nite abstra
t simpli
ial 
omplex � is given byits list of fa
ets or by the 
omplete list of all simpli
es. In the �rst 
ase, theinput size 
an be measured by n and m, the numbers of verti
es and fa
ets.31. Euler Chara
teristi
Input: Finite abstra
t simpli
ial 
omplex � given by a list of fa
etsOutput: Euler 
hara
teristi
 �(�) 2 ZStatus (general): OpenStatus (�xed dim.): Polynomial timeIt is unknown whether the de
ision version \�(�) = 0?" of this problem isin NP . The problem is easy if � is given by a list of all of its simpli
es. For�xed dimension, one 
an enumerate all simpli
es of � and 
ompute the Euler
hara
teristi
 in polynomial time.Currently the fastest way to 
ompute the Euler 
hara
teristi
 is to determineV = fS : S is an interse
tion of fa
ets of �g and then 
ompute �(�) in timeO�jVj2� by a M�obius fun
tion approa
h, see Rota [54℄. Usually V is mu
hsmaller than the whole fa
e latti
e of �. V 
an be listed lexi
ographi
ally byan algorithm of Ganter [23℄, in time O(minfm;ng � � � jVj), where � is thenumber of vertex-fa
ets in
iden
es.Related problems: 3232. f-Ve
tor of Simpli
ial ComplexesInput: Finite abstra
t simpli
ial 
omplex � given by a list of fa
etsOutput: The f -ve
tor of �Status (general): #P-hardStatus (�xed dim.): Polynomial timeIf � is given by all of its simpli
es the problem is trivial. Clearly, for �xedk, the �rst k entries of the f -ve
tor 
an be 
omputed in polynomial time,sin
e the number of k-simpli
es in � is polynomial in n. Hen
e the problemis polynomial time solvable for �xed dimension dim(�).It is unknown whether the de
ision problem \Given the list of fa
ets of �and some ' 2 N; is ' the total number of fa
es of �?" is 
ontained in NP .
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hThis problem is only known to be in NP for partitionable (see Problem 18)simpli
ial 
omplexes (see Kleins
hmidt and Onn [39℄).To the best of our knowledge, no proof of #P-hardness of the general problemhas appeared in the literature. Therefore we in
lude one here.Consider an instan
e of SAT, i.e., a formula in 
onjun
tive normal form (CNF-formula) C1^� � �^Cm with variables x1; : : : ; xn (ea
h Ci 
ontains only disjun
-tions of literals). It is well known (Valiant [63℄) that 
omputing the number ofsatisfying truth assignments is #P-
omplete. De�ne E = ft1; f1; : : : ; tn; fng.Part I. First, let E be the vertex set of a simpli
ial 
omplex � de�ned by theminimal non-fa
es (
ir
uits) C 01; : : : ; C 0m; P1; : : : ; Pn, where Pi = fti; fig forevery i. Here for any 
lause C, C 0 := ffj : xj literal in Cg [ ftj : xj literalin Cg, e.g., for C = x1 _ x2 _ x3 we have C 0 = ff1; f2; t3g. The idea is thatti 
orresponds to the assignment of a true-value and fi 
orresponds to theassignment of a false-value to variable xi. The 
ir
uits ex
lude subsets of Ewhi
h in
lude both ti and fi for all variables xi and ex
lude truth-assignmentsto variables whi
h would not satisfy a 
lause Cj . It is, however, allowed thatfor some variable xi neither ti nor fi is in
luded in a fa
e. But every (n� 1)-fa
e (n-subset of E) (if there exists any) 
orresponds to a truth-assignmentto the variables (whi
h uses exa
tly one value for ea
h variable) and satis�esthe formula. These subsets are 
ounted by fn�1(�). Hen
e 
omputing fn�1is #P-
omplete and 
omputing the f -ve
tor of � is #P-hard. Moreover thisshows that 
omputing the dimension of a simpli
ial 
omplex given by theminimal non-fa
es is NP-hard.Part II. We now 
onstru
t a simpli
ial 
omplex � (the dual 
omplex) whi
his given by fa
ets. De�ne � by the fa
ets C 01; : : : ; C 0m; P1; : : : ; Pn, where forS � E, S := E n S. We have that a set S � E is a fa
e of � if and only if Sis not a fa
e of �. Hen
e, fn�1(�) + fn�1(�) = �2nn �. It follows that one 
aneÆ
iently 
ompute fn�1(�) from fn�1(�).Related problems: 14, 3133. HomologyInput: Finite abstra
t simpli
ial 
omplex � given by a list of fa
ets, i 2 NOutput: The i-th homology group of �, given by its rank and its torsion
oeÆ
ientsStatus (general): OpenStatus (�xed dim.): Polynomial timeThere exists a polynomial time algorithm if � is given by the list of allsimpli
es, sin
e the Smith normal form of an integer matrix 
an be 
omputedeÆ
iently (Iliopoulos [31℄). For �xed i or dim(�)�i, the sizes of the boundarymatri
es are polynomial in the size of� and the Smith normal form 
an againbe 
omputed eÆ
iently.Related problems: 31, 32
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 Problems in Polytope Theory 2134. ShellabilityInput: Finite abstra
t pure simpli
ial 
omplex � given by a list of fa
etsOutput: \Yes" if � is shellable, \No" otherwiseStatus (general): OpenStatus (�xed dim.): OpenGiven an ordering of the fa
ets of �, it 
an be tested in polynomial timewhether it is a shelling order. Hen
e, the problem in NP.The problem 
an be solved in polynomial time for one-dimensional 
omplexes,i.e., for graphs: a graph is shellable if and only if it is 
onne
ted. Even fordim(�) = 2, the status is open. In parti
ular, it is un
lear if the problem 
anbe solved in polynomial time if � is given by a list of all simpli
es.For two-dimensional pseudo-manifolds the problem 
an be solved in lineartime (Danarj and Klee [13℄).Related problems: 17, 3535. PartitionabilityInput: Finite abstra
t simpli
ial 
omplex � given by a list of fa
etsOutput: \Yes" if � is partionable, \No" otherwiseStatus (general): OpenStatus (�xed dim.): OpenAs in Problem 18, partitionability is meant in the sense of Stanley [58℄ (seealso [65℄). Noble [50℄ proved that the problem is in NP .Partitionability 
an be solved in polynomial time for one-dimensional
omplexes, i.e., for graphs: a graph is partitionable if and only if at most oneof its 
onne
ted 
omponents is a tree. For two-dimensional 
omplexes the
omplexity status is open. In parti
ular, it is un
lear if the problem 
an besolved in polynomial time if � is given by a list of all simpli
es.Related problems: 18, 34
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