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Towards Improved Ranking MetricsNicu Sebe Michael S. Lew Dionysius P. HuijsmansLeiden Institute of Advanced Computer ScienceNiels Bohrweg 1, 2333 CA, Leiden, The Netherlandsfnicu mlew huijsmang@liacs.nlKeywords: maximum likelihood, ranking metrics, content-based retrieval, color indexing,stereo matching, motion tracking AbstractIn many computer vision algorithms, a metric or similarity measure is used to determinethe distance between two features. The Euclidean or SSD (sum of the squared di�erences)metric is prevalent and justi�ed from a maximum likelihood perspective when the additivenoise distribution is Gaussian. Based on real noise distributions measured from internationaltest sets, we have found that the Gaussian noise distribution assumption is often invalid.This implies that other metrics, which have distributions closer to the real noise distribution,should be used. In this paper we consider three di�erent applications: content-based retrievalin image databases, stereo matching, and motion tracking. In each of them, we experimentwith di�erent modeling functions for the noise distribution and compute the accuracy of themethods using the corresponding distance measures. In our experiments, we compared theSSD metric, the SAD (sum of the absolute di�erences) metric, the Cauchy metric, and theKullback relative information. For several algorithms from the research literature which usedthe SSD or SAD, we showed that greater accuracy could be obtained by using the Cauchymetric instead.1 IntroductionAt the core of many algorithms in computer vision is the metric or similarity measure used todetermine the distance between two features. The SSD (sum of the squared di�erences) and2



SAD (sum of the absolute di�erences) are the most commonly used metrics. This brings tomind several questions. First, under what conditions should one use the SSD versus the SAD?From a maximum likelihood perspective, it is well known that the SSD is justi�ed when theadditive noise distribution is Gaussian. The SAD is justi�ed when the additive noise distributionis Exponential (double or two-sided exponential). Therefore, one can determine which metricto use by checking if the real noise distribution is closer to the Gaussian or the Exponential.This leads to the second question: What distance measure do we use in comparing the real noisedistribution to the best �t Gaussian or Exponential distributions? This is not an easy questionto answer because the choice of the distance measure will bias the comparison. In practice, theChi-square test is frequently used and, since we have not found a better solution, we used it forcomparing the distributions.The common assumption is that the real noise distribution should �t either the Gaussian orthe Exponential, but what if this assumption is invalid? What if there is another distributionwhich �ts the real noise distribution better than the Gaussian or the Exponential? It is pre-cisely this question which we examined in this paper. Toward answering this question, we haveendeavored to use international test sets and promising algorithms from the research literature.Furthermore, one of the canonical measures of similarity from the �eld of information theory,the Kullback relative information, was also implemented and compared to the metrics based onmaximum likelihood.In general, image retrieval by content requires algorithms for extracting and comparingfeatures. Extracted features from the imagery may be associated with entire digital images, orperhaps with speci�c regions of interest that are identi�ed interactively, semi-automatically, orin a completely automatic manner. The QBIC e�ort is one project that has developed severalmethods for doing this. For example, the authors [7] represent the texture in an image bya feature vector and compute the distance between feature vectors using the SSD. Retrievalof similar images is accomplished by �nding the N database images which have the shortestdistance between feature vectors. Another approach similar to QBIC is described in [28]. Thistechnique matches a pattern against equal-sized identically-oriented regions of a larger imageand applies two criteria that roughly correspond to the color and texture criteria of QBIC.3



The authors consider the di�erence between the pattern and the image in a particular relativeposition as being the SSD between the pattern and the intensity image.Color indexing is one of the most prevalent retrieval methods in content based image retrieval.Given a query image, the goal is to retrieve all the images whose color compositions are similarto the color composition of the query image. Typically, the color content is described usinga histogram [29]. In general, color histograms are computed and the histogram intersectioncriterion is used to compare them. In [26], e�cient techniques for comparing histograms usingquadratic measures of similarity have been proposed. Hafner, et al. [11] suggest the usage ofa more sophisticated quadratic form of distance measure which tries to capture the perceptualsimilarity between any two colors. In all of these works, most of the attention has been focussedon the color model with little or no consideration of the noise models.A method for calculating the similarity between two digital images using a global signaturewhich includes texture, shape, and color content is described in [17] and [19]. A normalizeddistance between probability density functions of feature vectors is used to match signatures.The authors present four possible distance measures that can be used to compare signatures,without discussing how each of these distances in
uences the retrieval results.Stereo matching implies �nding correspondences between two or more images. If these corre-spondences can be found accurately and the camera geometry is known, then a 3D model of theenvironment can be reconstructed [23], [2]. Several algorithms have been developed to computethe disparity between images, e.g. the correlation methods [22] or correspondence methods [10].In [8], pixel correspondences are found by adaptive, multi-window template matching. The tem-plates are compared using the SSD. Recent research by [3] concluded that the SSD is sensitiveto outliers and therefore robust M-estimators should be used for stereo matching. However, theauthors [3] did not consider metrics based on similarity distributions. They considered ordinalmetrics, where an ordinal metric is based on relative ordering of intensity values in windows- rank permutations. Cox, et al. [6] presented a stereo algorithm that optimizes a maximumlikelihood cost function. This function assumes that corresponding features in the left and rightimages are normally distributed about a common true value. However, the authors [6] noticedthat the normal distribution assumption used to compare corresponding intensity values is vi-4



olated for some of their test sets. They altered the stereo pair so that the noise distributionwould be closer to a Gaussian. In our approach, we attempt to �nd a better model for the realnoise distribution instead of altering the stereo pair.Boie and Cox [5] consider a model of camera noise comprised of stationary direction-dependent electronic noises combined with 
uctuations due to signal statistics. These 
uc-tuations enter as a multiplicative noise and are non-stationary and vary over the scene. Asubstantial simpli�cation appears if the noise can be modeled as Gaussian distributed and sta-tionary. This work is complementary to ours. They try to model the imaging noise. We try tomodel the noise between two images which are di�erent due to di�ering handling and storageconditions of the original photographs, varying orientation, motion, or printer noise.Section 2 describes the mathematical support for the maximum likelihood approach. Thesetup of our experiments is given in Section 3. In Section 4 we apply the theoretical results fromSection 2 to determine the in
uence of the real noise model on the accuracy of retrieval methodsin image databases. In Section 5 we study the real noise model to be chosen in stereo matchingapplications. The same approach is then applied on a video sequence in Section 6. Conclusionsare given in Section 7.2 Maximum Likelihood ApproachMaximum likelihood theory [14] [12] [25] allows us to relate a noise distribution to a metric.Speci�cally, if we are given the noise distribution then the metric which maximizes the similarityprobability [27] is MXi=1 �(ni) (1)where ni represents the ith bin of the discretized noise distribution and � is the maximum likeli-hood estimate of the negative logarithm of the probability density of the noise. In practice, thenoise distribution is typically represented by the di�erence between the corresponding elementsgiven by the ground truth.To analyze the behavior of the estimate we take the approach described in [12] and [25]5



based on in
uence function. The in
uence function characterizes the bias that a particularmeasurement has on the solution and is proportional to the derivative,  , of the estimate [4]: (z) � d�(z)dz (2)In case the noise is Gaussian distributed:Probfnig � exp(�ni2) (3)then �(z) = z2  (z) = z (4)If the errors are distributed as a double or two-sided exponential, namelyProbfnig � exp(�jnij) (5)then, by contrast, �(z) = jzj  (z) = sgn(z) (6)In this case, using equation (1), we minimize the mean absolute deviation, rather than themean square deviation. Here the tails of the distribution, although exponentially decreasing, areasymptotically much larger than any corresponding Gaussian.A distribution with even more extensive - therefore sometimes even more realistic - tails isthe Cauchy distribution, Probfnig � 1a2 + ni2 (7)where a is a parameter which determines the height and the tails of the distribution.This implies �(z) = log(a2 + z2)  (z) = za2 + z2 (8)For normally distributed errors, equation (4) says that the more deviant the points, thegreater the weight (Figure 1). By contrast, when tails are somewhat more prominent, as in (5),6



then (6) says that all deviant points get the same relative weight, with only the sign informationused (Figure 2). Finally, when the tail are even larger, (8) says that  increases with deviation,then starts decreasing, so that very deviant points - the true outliers - are not counted at all(Figure 3).
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(a) (b)Figure 1: Quadratic estimator. (a) Estimate, (b)  -function
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(a) (b)Figure 2: Exponential estimator. (a) Estimate, (b)  -function
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(a) (b)Figure 3: Cauchy estimator. (a) Estimate, (b)  -functionThe estimates are plotted along with their  -functions in Figures 1, 2 and 3.The additive noise model is the dominant model used in computer vision regarding maximum7



likelihood estimate. Haralick and Shapiro [13] consider this model in de�ning the M-estimate:"any estimate Tk de�ned by a minimization problem of the form minPi �(xi � Tk) is called anM-estimate". Note that the operation "-" between the estimate and the real data implies anadditive model.In summation, one can note that equation (4) resembles the L2 metric, while equations(6) and (8) resemble the L1 and Lc metrics, respectively. Thus, maximum likelihood gives adirect connection between the noise distribution and the comparison metrics. Considering � asthe negative logarithm of the probability density of the noise then, the corresponding metric isgiven by equation (1).3 Experimental Setup
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Figure 4: An overview of a similarity matching algorithmThe setup of our experiments is the following. First, we assume that representative groundtruth is provided. The ground truth is split into two non-overlapping sets: the training setand the test set, as shown in Figure 4. Note that Lk is a notation for all possible metrics thatcan be used, e.g. L1, L2, Lc. Second, the training set is converted to a histogram which isthen normalized to what we denote the real noise distribution. The Gaussian, Exponential,and Cauchy distributions are �tted to the real distribution. The Chi-square test is used to �ndthe �t between each of the model distributions and the real distribution. We select the modeldistribution which has the best �t and its corresponding metric (Lk) is used in ranking. Theranking is done using only the test set.For benchmarking purposes we also investigate the performance of other distance measures8



in matching. In all of the experiments we compare our results with the ones obtained using theKullback relative information (K) [20]. Let u and v be two discrete distributions thenK =Xi ui log uivi (9)where the sum is over all bins.Note that the Kullback relative information is an asymmetric similarity measure between nor-malized probability density functions. In content based retrieval where normalized histogramsare used as feature vectors, K was computed using (9) where u was the feature vector corre-sponding to the query and v was the feature vector corresponding to a candidate match. Instereo matching and motion tracking where template matching is performed, suppose we aresearching for a match for an intensity vector U from the left image. In the right image therewill be many possible matching vectors and let V be one of them. Each of the intensity vectorsare normalized to have the sum equal to 1 by dividing each component by the total intensitywithin the vector, i.e. ui = Ui=Pi Ui. This results in two normalized vectors u and v and (9)can be applied for computing K.We chose the Kullback relative information as a benchmark because it is the most frequentlyused information theoretic similarity measure. Furthermore, Rissanen [24] showed that it servesas the foundation for other minimum description length measures such as the Akaike's [1] infor-mation criterion. Regarding the relationship between the Kullback relative information and themaximum likelihood approach, Akaike [1] showed that maximizing the expected log likelihoodratio in maximum likelihood estimation is equivalent to maximizing the Kullback relative infor-mation. Another interesting aspect of using the Kullback relative information as a benchmarkis that it gives an example of using a logarithmically weighted function, instead of u-v it iscomputing a weighted version of log u� log v = log(u=v).It is important to note that for real applications, the parameter in the Cauchy distributionis found when �tting this distribution to the real distribution. This parameter setting would beused for the test set and any future comparisons in that application. The parameter setting canbe generalized beyond the ground truth if the ground truth is representative.9



For our image retrieval experiments we considered the applications of image retrieval ina black&white image database, printer-scanner copy location, and object recognition by colorinvariance. In the �rst experiment, the images have varying kinds of degradation due to di�erentstorage conditions, scratches, and writings on the images. In the printer-scanner application, animage is printed to paper and then scanned back into the computer. This task involves noisedue to the dithering patterns of the printer and scanner noise. In object recognition, multiplepictures are taken of a single object at di�erent orientations. Therefore, the correct match foran image is known by the creator of the ground truth.In stereo matching and motion tracking, the ground truth is typically generated manually.A set of reference points are de�ned in the images and then a person �nds the correspondencesfor the stereo pair or video sequence.In summary, our algorithm can be described as follows:Step 1 Compute the feature vectors from the training setStep 2 Compute the real noise distribution from the di�erences between corresponding elementsof the feature vectorsStep 3 Compare each of the model distributionsM to the real noise distribution R using theChi-square test �2 =Xi (Ri �Mi)2Mi (10)where the sum is over all bins.Step 3.1 For a parameterized metric such as Lc compute the value a of the parameterthat minimizes the Chi-square testStep 4 Select the corresponding Lk of the best �t model distributionStep 4.1 Use the value a found from Step 3.1 in the parameterized metricsStep 5 Apply the Lk metric in ranking4 Similarity Noise in Image DatabasesThe image retrieval problem is the following: Let D be an image database and Q be the queryimage. Obtain a permutation of the images in D based on Q, i.e assign rank(I) 2 [jDj] foreach I 2 D, using some notion of similarity to Q. The problem is usually solved by sorting the10



images Q0 2 D according to jf(Q0)�f(Q)j, where f(�) is a function computing feature vectorsof images and j � j is some distance measure de�ned on feature vectors.One of the problems with query information retrieval systems is that the result of a queryis simply a group of items that are hopefully interesting to the user (a group of images that aresimilar to the query image). Some additional information, such as similarity scores produced bythe comparison process, might also be returned to allow a user to gauge the correctness of theresult. It is therefore reasonable for a user to pose a question such as, "Why do these imageslook similar ?" Using a probability density function approach one can give an objective answerto this question [18].We applied the theoretical results described in Section 2 in two experiments. First, wedetermined the in
uence of the similarity noise model on the similar image retrieval performancein a black&white image database: the Leiden 19th Century Portrait Database (LCPD). Second,in order to have a broader range of test data, we used two color image databases. The �rst onewas the Corel Photo database and the second one consisted of 500 reference images of domesticobjects, tools, toys, food cans, art artifacts, etc.4.1 Experiments Using LCPDThe LCPD is currently composed of 16,384 images taken during the 19th century and will becontinually expanded until at least 50,000 images are in the database. Some images are copiesof each other. However, due to di�erent storage conditions, the copies have varying kinds anddi�ering amounts of degradation. The degradation varies from intensity and moisture damageto scratches and writing on the images as shown in Figure 5.Our ground truth consisted of 292 copy pairs. We used 100 image pairs from the groundtruth as the training set and then calculated the real noise distribution as the normalized his-togram of di�erences between corresponding image elements. In the next step, we comparedthe real distribution with each of the known distributions: Gaussian, Exponential, and Cauchy.Furthermore, for each of the 192 copy pairs in the test set, we queried the database using thecorresponding metric and inspected how it a�ected the retrieval results.For comparing the retrieval results we used the performance measures given in [16]. We11



Figure 5: Two examples of copy pairs from LCPDwanted the performance measures to be some function of the database size. Therefore, we chosea visible window size of length L = [log2 n], with n = database size, which ensures a reasonablenumber of images displayed to the user. This means that for our present database size of 16,384images, the number of displayed images was 14. For a database consisting of 1 million images,no more than 20 images would have to be shown.Let T represent the total number of test pairs and Tv be the number of copies which appearin the top L = [log2 n] ranks. The visible fraction (Fv) is de�ned as the fraction of correctcopies seen by the user, Fv = Tv=T (11)and is normalized to lie within [0,1]. Fv indicates how often copies can be found in the �rst viewshown after a search has been speci�ed.A second performance measure is the visible position (Pv) which is de�ned as the rankingaccuracy within the display window.Pv = (L�Rv)=(L� 1) (12)where Rv is the average rank for visible test-pairs. Pv lies within [0,1]: 0 when Rv = L andis 1 when Rv = 1 (all visible test-pairs on top). Pv acts as a �ne tuning measure within thedisplay window. This measure is mainly used to discriminate between methods that have thesame number of test-pairs visible (they have the same Fv). Consider for example that two12



methods have all test-pairs visible (Fv=1) but one has the average rank in the display window(Rv) smaller than the other, meaning that its Pv is greater. In this case, Pv indicates that thismethod performs better than the other.Finally as a global measure we used the combined retrieval quality Qr:Qr = Pv � Fv (13)In the LCPD experiments, we used the projection features introduced in [15]. This featureproved to be one of the best features for copy location. We used average row- and columnintensity values (line integrals) as a feature vector.
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(a) Gauss (b) Exponential (c) Cauchy (a=14.20)Figure 6: Real noise distribution in feature space modeled by three theoretical distributions (theapproximation error is: (a) 0.031; (b) 0.015; (c) 0.013)In Figure 6 we displayed the real noise distribution (with dots) along with the three distri-butions. The approximation error between the real noise distribution and each of the knowndistributions was calculated using a Chi-square test.The tails of the real distribution are prominent, so the Gaussian distribution cannot be agood match. Instead, the Exponential and Cauchy distributions are more suitable as approxima-tions. These observations are in accordance with the theory described in Section 2. Therefore,one expects to obtain better overall retrieval results using Lc or L1 than using L2, which iscorroborated by the experiments in Table 1. The retrieval quality obtained with L1 and Lc issigni�cantly greater than the one obtained with L2. Note that the Kullback relative informationperforms better than L2 and L1, but worse than Lc.The in
uence of the parameter a in the retrieval quality is shown in Figure 7. For a wide13



ProjMethods L2 L1 Lc (a=14.2) KFv 0.842 0.865 0.876 0.869Pv 0.875 0.879 0.881 0.879Qr 0.737 0.761 0.772 0.764Table 1: Similar image retrieval performance in LCPD
12 14 16

a

0.74

0.76

0.78

Qr

Lc

L1

L2

K

Figure 7: Retrieval quality in LCPDscale of values for a the results using Lc are better than the ones using L2. Furthermore, aroundthe optimum value of the parameter the results are better than the ones obtained using L1or K. It should be noted that our method for �nding the parameter a is only e�ective whenrepresentative ground truth is available.4.2 Experiments with Color DatabasesThe �rst experiments were done using 11,000 images from the Corel database. We used thisdatabase because it represents a widely used set of photos by both amateur and professionalgraphical designers. Furthermore, it is available on the Web at http://www.corel.com.Before we can measure the accuracy of particular methods, we �rst had to �nd a challengingand objective ground truth for our tests. The idea of our experiments was to measure thee�ectiveness of a retrieval method when trying to �nd a copy of an image in a magazine ornewspaper. In order to create the ground truth we printed 110 images using an Epson Stylus800 color printer at 720 dots per inch and then scanned each of them at 400 pixels per inchusing an HP IIci color scanner. Note that we purposely chose a hard test set. The query imageis typically very di�erent from the target image. The copy pairs typically di�er by color shifts,quantization artifacts, and dithering noise. 14
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(a) Gauss (b) Exponential (c) Cauchy (a=4.32)Figure 8: Noise distribution in Corel database compared with the best �t Gaussian (a) (ap-proximation error is 0.106), best �t Exponential (b) (approximation error is 0.082) and best �tCauchy (c) (approximation error is 0.068)We used the HSV color model and quantized H using 4 bits, S using 2 bits, and V using2 bits. The �rst question we asked was, "Which distribution is a good approximation for thereal color model noise?" To answer this we needed to measure the noise with respect to thecolor model. The real noise distribution was obtained as the normalized histogram of di�erencesbetween the elements of color histograms corresponding to copy-pair images from the trainingset (50 image pairs).
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Figure 9: Retrieval accuracy in Corel database for the top 100; for Lc, a=4.32The best �t Exponential had a better �t to the noise distribution than the Gaussian (Fig-ure 8). Consequently, this implies that L1 should have better retrieval accuracy than L2. TheCauchy distribution is the best �t overall, and the results obtained with Lc re
ect this. For theretrieval accuracy we chose to display the percentage of correct copies found within the top nmatches. From the tests, as shown in Figure 9, it is clear that Lc gives a signi�cant improvementin retrieval accuracy as compared to L2 and L1. The Kullback relative information gives slightlybetter results than L2 or L1. Note that we could have simpli�ed the test by reducing the size of15



the database from 11,000 images to 1,100 images, but then the di�erences between the distancemeasures might not have been apparent.In the second experiment we used a database consisting of 500 images of domestic objects,tools, toys, food cans, etc. As ground truth we used 48 images of 8 objects taken from di�erentcamera viewpoints (6 images for a single object). For this experiment we chose to implementa method designed for indexing by color invariants. Our goal was to study the in
uence of thesimilarity noise on the retrieval results.Gevers, et al. [9] analyzed and evaluated various color features for the purpose of imageretrieval by color-metric histogram matching under varying illumination environments. Theyintroduced a new color model l and showed that it is invariant for both matte and shiny surfaces:l1(R;G;B) = (R�G)2(R�G)2 + (R�B)2 + (G�B)2 (14)l2(R;G;B) = (R�B)2(R�G)2 + (R�B)2 + (G�B)2 (15)l3(R;G;B) = (G�B)2(R�G)2 + (R�B)2 + (G�B)2 (16)where R, G, B are the color values in the RGB color space.The authors [9] concluded that this color model is the most appropriate color model to beused for image retrieval by color-metric histogram matching under the constraint of a white illu-mination source. This conclusion was drawn using histogram intersection (L1) as the comparisonmetric between the color histograms.Using 24 images with varying viewpoint as the training set, we calculated the real noisedistribution and studied the in
uence of di�erent distance measures on the retrieval results.We used the l color model introduced before and we quantized each color component with 3bits resulting in color histograms with 512 bins. The problem is formulated as follows: LetQ1; � � � ;Qn be the query images and for the i-th query Qi, I(i)1 ; � � � ;I(i)m be the images similarwith Qi according to the ground truth. The retrieval method will return this set of answers withvarious ranks. As an evaluation measure of the performance of the retrieval method we usedrecall vs. precision at di�erent scopes: For a query Qi and a scope s > 0, the recall r is de�ned16



as jfI(i)j jrank(I(i)j ) � sgj=m, and the precision p is de�ned as jfI(i)j jrank(I(i)j ) � sgj=s.Methods Precision RecallScope 5 10 25 5 10 25L2 0.425 0.2583 0.1283 0.425 0.5166 0.6416L1 0.45 0.2708 0.135 0.45 0.5416 0.675K 0.466 0.2791 0.1383 0.466 0.5583 0.6916Lc (a=7.5) 0.525 0.2958 0.146 0.525 0.5916 0.733Table 2: Recall/Precision vs ScopeThe Cauchy distribution was the best match for the measured noise distribution. TheExponential distribution was a better match than the Gaussian. Table 2 shows the precisionand recall values at various scopes. The results obtained with Lc were consistently better thanthe ones obtained with the other measures.
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Figure 10: Precision/Recall for color objects database; for Lc, a=4.32Figure 10 shows the precision-recall graphs. The curve corresponding to Lc is above theothers showing that the method using Lc is more e�ective. Note that the Kullback relativeinformation performs better than L1 or L2.In summary, Lc performed better than all of the other measures. It is interesting thatthe Kullback relative information performs consistently better than the well-known histogramintersection (L1).5 Similarity Noise in Stereo Matching ApplicationsStereo matching is the process of �nding correspondences between entities in images with over-lapping scene content. The images are typically taken from cameras at di�erent viewpoints17



which implies that the intensity of corresponding pixels may not be the same.In the �rst experiments we used two standard stereo data sets (Castle set and Tower set)provided by Carnegie Mellon University. These datasets contain multiple images of static sceneswith accurate information about object locations in 3D. The images were taken with a scienti�ccamera in an indoor setting at the Calibrated Imaging Laboratory at CMU. The 3D locationsare given in X-Y-Z coordinates with a simple text description (at best accurate to 0.3 mm) andthe corresponding image coordinates (the ground truth) are provided for all eleven images takenfor each scene. For each image there are provided 28 points as ground truth in the Castle setand 18 points in the Tower set. An example of two stereo images from the Castle data set isgiven in Figure 11.

Figure 11: A stereo image pair from the Castle data setLet I1 and I2 represent intensities in two templates i.e. there exist n tuples (I11 ;I12 ); � � � ;(In1 ;In2 ), n depending on the size of the template used. The quantitySSD = nXi=1(Ii1 � Ii2)2 (17)measures the squared Euclidean distance (L2) between (I1;I2) and a value close to zero indicatesa strong match. The other metrics L1 and Lc can be de�ned similarly.In each image we considered the templates around points which were given by the groundtruth. We wanted to �nd the model for the real noise distribution which assured the bestaccuracy in �nding the corresponding templates in the other image. As a measure of performancewe computed the accuracy of �nding the corresponding points in the neighborhood of one pixel18



around the points provided by the test set. In searching for the corresponding pixel, we examineda band of height 7 pixels and width equal to the image dimension centered at the row coordinateof the pixel provided by the test set.In this application we used a template size of n=25, i.e. a 5 � 5 window around the centralpoint. For the training sets, we placed templates around 10 points which were obtained fromthe ground truth.
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(a) Gauss (b) Exponential (c) Cauchy (a=7.47)Figure 12: Noise distribution in the stereo matcher using Castle datasetImage set Gauss Exponential CauchyCastle 0.0486 0.0286 0.0246Tower 0.049 0.045 0.043Table 3: The approximation error for the corresponding point noise distribution in stereo match-ing for three distribution modelsWe present the real noise distribution in Figure 12. As one can see from Table 3 the Cauchydistribution has the best �t to the measured distribution. Therefore, one expects the accuracyto be the greatest when using Lc (Table 4). In all cases (Figure 13) the results obtained with L2are the worst. Furthermore, Lc has the best accuracy relative to the other similarity measuresfor both test sets. Image set L2 L1 K LcCastle 91.05 92.43 92.12 93.71 (a=7.47)Tower 91.11 93.32 92.84 94.26 (a=5.23)Table 4: The accuracy (%) of the stereo matcherIn addition, we investigated the in
uence of similarity noise using two promising stereo19
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(a) Castle dataset (b) Tower datasetFigure 13: The accuracy of the stereo matcheralgorithms and another stereo pair from the research literature. Our intention was to try otherdistance measures than SSD (which was used in the original algorithms) in calculating thedisparity map.The �rst algorithm [8] is an adaptive, multi-window scheme using left-right consistency tocompute disparity. For each pixel the correlation with nine di�erent windows (Figure 14) isperformed and the disparity with the smallest SSD (L2) error value is retained. The authorsconclude that the adaptive, multi-window scheme clearly outperforms �xed window schemes.Moreover, the left-right consistency check proves to be e�ective in eliminating false matches andidentifying occluded regions.
Figure 14: The nine asymmetric correlation windowsThe second algorithm we implemented and tested was introduced by Cox, et al. [6]. Theiralgorithm optimizes a maximum likelihood cost function. This function assumes that corre-sponding features in the left and right images are normally distributed about a common truevalue and consists of a weighted squared error term if two features are matched or a (�xed) costif a feature is determined to be occluded. Their interesting idea was to perform matching on theindividual pixel intensity, instead of using an adaptive window as in the area-based correlationmethods. 20



Figure 15: ROBOTS stereo pairIn order to evaluate the performance of the stereo matching algorithms under di�cult match-ing conditions we also used the Robots stereo pair [21]. This stereo pair is more di�cult due tovarying levels of depth and occlusions (Figure 15). This fact is illustrated in the shape of thereal noise distribution (Figure 16). Note that the distribution in this case has wider spread andis less smooth. For this stereo pair, the ground truth consists of 1276 point pairs, given withone pixel accuracy.
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(a) Gauss (b) Exponential (c) Cauchy (a=26.26)Figure 16: Noise distribution for the ROBOTS stereo pair compared with the best �t Gaussian(a) (approximation error is 0.0267), best �t Exponential (b) (approximation error is 0.0156) andbest �t Cauchy (c) (approximation error is 0.0147)Consider a point in the left image given by the ground truth. The displacement of thecorresponding point position in the right image is given by the disparity map. The accuracy isgiven by the percentage of pixels in the test set which are matched correctly by the algorithm.Figures 17 and 18 show the accuracy of the algorithms when di�erent distance measureswere used. Regarding the multiple window algorithm, the usage of Lc provided an improvementin accuracy of about 4% compared with L1 and 6% compared with L2. For the algorithm byCox, et al., using Lc instead of L2 gave an 8% improvement in accuracy and 6% compared with21



L1. The Kullback relative information had higher accuracy than L1 and L2.
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Figure 17: The accuracy of the stereo matcher for the ROBOTS stereo pair using multiplewindow stereo algorithm
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Figure 18: The accuracy of the stereo matcher for the ROBOTS stereo pair using maximumlikelihood stereo algorithmIn Tables 5 and 6 the results using di�erent distance measures are presented. For all of thestereo sets Lc had the highest accuracy, and L2 had the lowest. Note that the accuracy waslower using the ROBOTS stereo pair showing that in this case the matching conditions weremore di�cult. Image set L2 L1 K LcCastle 92.27 92.92 92.76 94.82 (a=7.47)Tower 91.79 93.67 93.14 95.28 (a=5.23)ROBOTS 72.15 73.74 75.87 77.69 (a=26.2)Table 5: The accuracy (%) of the stereo matcher using multiple window stereo algorithm
22



Image set L2 L1 K LcCastle 93.45 94.72 94.53 95.72 (a=7.47)Tower 93.18 95.07 94.74 96.18 (a=5.23)ROBOTS 74.81 76.76 78.15 82.51 (a=26.2)Table 6: The accuracy (%) of the stereo matcher using maximum likelihood stereo algorithm6 Similarity Noise in Motion TrackingWe used a video sequence containing 19 images on a talking head in a static background [30].An example of three images from this video sequence is given in Figure 19. For each image inthis video sequence there are 14 points given as ground truth. The motion tracking algorithmbetween the test frame and another frame performed template matching to �nd the best matchin a 5 � 5 template around a central pixel. In searching for the corresponding pixel, we examineda region of width and height of 7 pixels centered at the position of the pixel in the test frame.The idea of this experiment was to trace moving facial expressions. Therefore, the groundtruth points were provided around the lips and eyes which are moving through the sequence.This movement causes the templates around the ground truth points to di�er more when far-o�frames are considered. This is illustrated in Figure 20.

Figure 19: Video sequence of a talking headBetween the �rst frame and a later frame, the tracking error represents the average displace-ment (in pixels) between the ground truth and the corresponding pixels found by the matchingalgorithm. Note that regardless of the frame di�erence, Lc had the least error and L2 had thegreatest error. 23
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(a) Gauss (b) Exponential (c) Cauchy (a=2.03)Figure 21: Real noise distribution in the video sequence modeled by three theoretical distribu-tions using sequential frames (the approximation error is: (a) 0.083 ; (b) 0.069 ; (c) 0.063)In Figure 21 we display the �t between the real noise distribution and the three distributions.The real noise distribution was calculated using templates around points in the training set (6points for each frame) considering sequential frames. The best �t is the Cauchy distribution,and the Exponential distribution is a better match than the Gaussian distribution. Therefore,it is expected that the accuracy is greater when using Lc than when using L1 and L2 (Table 7).For Lc, the greatest accuracy was obtained around the values of the parameter a which gave thebest �t between the Cauchy distribution and the real distribution (Figure 22).In addition, we considered the situation of motion tracking between non-adjacent frames. InTable 7, the results are shown for tracking pixels between frames located at interframe distancesof 1, 3, and 5. Note that as the interframe distance increases, the accuracy decreases and theerror increases (Figure 20). Overall, Lc gave better results as compared with the other distancemeasures.
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Interframe Distance L2 L1 K Lc1 84.11 84.91 85.74 87.43 (a=2.03)3 74.23 75.36 76.03 78.15 (a=13.45)5 65.98 67.79 68.56 70.14 (a=21.15)Table 7: The accuracy (%) of the matching process in video sequence
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Figure 22: The accuracy of the matching process in video sequence using sequential frames7 Conclusions and DiscussionIn summary, we examined three topic areas from computer vision which were content basedretrieval, stereo matching, and motion tracking. Regarding content based retrieval, the �rstapplication we examined was �nding copies of historical images which had su�ered di�erenthandling and storage conditions. Previous research had shown that row and column projectionswere an e�ective method for copy location. The second application was �nding copies of imageswhich had been printed and then scanned. For this application we used the Corel stock photodatabase and a color histogram method for �nding the copies. The third application dealt withobject recognition using color invariance. Both the ground truth and the algorithm came fromthe work by Gevers, et al. [9]. Note that in their work, they used the SAD metric.The second topic area we examined was stereo matching. We implemented a template match-ing algorithm, an adaptive, multi-window algorithm by Fusiello [8], and a maximum likelihoodmethod using pixel intensities by Cox, et al. [6]. Note that the SSD was used in the work byFusiello [8] and in the work by Cox [6].Motion tracking was the third topic area. In these experiments, we implemented a templatematching algorithm to track pixels on a moving object in a video sequence. We examined the25



tracking error and accuracy between adjacent and non-adjacent frames.For all of the topic areas and applications in our experiments, better accuracy was obtainedwhen the Cauchy metric was substituted for the SSD, SAD, or Kullback relative information.Minimizing the Cauchy metric is optimal with respect to maximizing the likelihood of thedi�erence between image elements when the real noise distribution is equivalent to a Cauchydistribution. Therefore, the breaking points occur when there is no ground truth, the groundtruth is not representative or when the real noise distribution is not a Cauchy distribution. Wealso make the assumption that one can measure the �t between the real distribution and amodel distribution, and that the model distribution which has the best �t should be selected.We used the Chi-square test as the measure of �t between the distributions, and found in ourexperiments that it served as a reliable indicator for distribution selection.The �rst problem addressed in this paper is whether the SSD is appropriate to use forcomputer vision applications in content based retrieval, stereo matching, and motion tracking.From our experiments, the SSD is typically not justi�ed because the real noise distribution isnot Gaussian.There appear to be two methods of applying maximum likelihood toward improving theaccuracy of matching algorithms. The �rst method recommends altering the images so thatthe measured noise distribution is closer to the Gaussian and then using the SSD. The secondmethod is to �nd a metric which has a distribution close to the real noise distribution. Ourexperiments suggest that real noise distributions can be modeled using the Cauchy distributionbetter than with the Gaussian or Exponential. Furthermore, the Kullback relative informationalso appears to be more accurate in our experiments than the SSD, but not as accurate as theCauchy metric. Either method has the potential to improve the accuracy of a wide range ofvision algorithms (such as content-based retrieval, stereo matching, and motion tracking).Therefore, our main contributions are in showing that the prevalent Gaussian distributionassumption is often invalid, and in proposing the Cauchy metric as an alternative to both theSAD and Kullback relative information. Furthermore, in the case where representative groundtruth can be obtained for an application, we provide a method for selecting the appropriate met-ric. Overall, it is our recommendation that one should determine whether the model distribution26



�ts the real distribution before using the metric.In future work we intend to examine the in
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