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ABSTRACTErroneous string manipulations are a major soure of soft-ware defets in C programs yielding vulnerabilities whih areexploited by software viruses. We present C String StatiVerifyer (CSSV), a tool that statially unovers all stringmanipulation errors. Being a onservative tool, it reportsall suh errors at the expense of sometimes generating falsealarms. Fortunately, only a small number of false alarms arereported, thereby proving that statially reduing softwarevulnerability is ahievable. CSSV handles large programs byanalyzing eah proedure separately. For this, proedures'ontrats are allowed whih are veri�ed by the tool.We implemented a CSSV prototype and used it to ver-ify the absene of errors in real ode from EADS Airbus.When applied to another ommonly used string intensiveappliation, CSSV unovered real bugs with very few falsealarms.
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1. INTRODUCTIONString-manipulation errors are a ommon soure of soft-ware defets and lead to many seurity vulnerabilities. CERTadvisories report seurity holes resulting from bu�er over-ow, i.e., updates beyond the bounds of a bu�er [29℄. Fur-thermore, 60% of the UNIX failures reported in the 1995FUZZ study [23℄ are due to runtime string-manipulation er-rors, suh as bu�er overow, aess beyond the bounds of astring and misuse of the null-termination byte.Our goal is to perform stati analysis that detets allstring runtime errors with just a few false alarms. A falsealarm is a reported error that an never our at runtime.This goal is ambitious. Existing methods either: (i) misserrors (e.g., LCLint [18℄, Eau Claire[2℄, and [29℄); (ii) yieldmany false alarms (e.g., [18, 29℄); or (iii) annot handle om-



pliated aspets of C, suh as multilevel pointers and stru-tures (e.g., [9, 28℄). Moreover, the ost of stati analysis isonsidered prohibitive when it omes to large programs.This paper presents C String Stati Verifyer (CSSV forshort) | a tool that demonstrates that unovering all stringproblems in C is ahievable. CSSV is apable of analyzingrealisti proedures and produes rather preise results. Be-ing a onservative stati-analysis tool it an never miss aruntime string error. It therefore guarantees the abseneof all errors at the expense of sometimes generating falsealarms.For every proedure, CSSV allows the programmer toprovide a ontrat inluding (i) a preondition,(ii) a post-ondition, and (iii) the potential side-e�ets of the proe-dure. Contrats may refer to normal C expressions (inlud-ing pointers) and an also refer to properties, (suh as thenumber of alloated bytes) that are de�ned by an instru-mented onrete semantis.
1.1 Analysis of String Errors: CSSVFig. 1 shows how CSSV operates. Eah proedure is an-alyzed separately. In the �rst phase, a soure-to-souresemanti-preserving transformation is applied to the ana-lyzed proedure P. This transformation exposes the behav-ior of the proedures invoked by P by essentially inliningtheir ontrats. The generated program yields a runtimeerror when a ontrat is violated. In addition, the inlinernormalizes the C ode to only inlude statements in a Csubset alled CoreC [30℄ whih simpli�es the task of imple-menting CSSV.The seond phase of CSSV analyzes pointer interations.Conduting pointer analysis in a language like C is a non-trivial task. Moreover, it is diÆult for programmers to de-�ne ontrats regarding pointer behavior. Fortunately, sev-eral ow-insensitive algorithms have been shown to run onwhole appliations of onsiderable size, e.g., [4, 13℄. There-fore, CSSV does not require ontrat information above point-ers. Instead, CSSV applies a whole-program ow-insensitive

pointer analysis to detet statially whih pointers may point-to the same base address. CSSV then applies an algorithmthat extrats proedural points-to information for the an-alyzed proedure P. Our algorithm bene�ts from the fatthat memory loations not reahable from visible variablesof P annot e�et the postondition of P. In many asesthis allows subsequent analyses to perform strong updateswhen analyzing the proedure's body. We also omputeertain must-aliases to improve the preision of the globalow-insensitive pointer analysis. Proedural points-to infor-mation was also used to improve the ost and preision ofinterproedural analysis [21, 17, 6, 20℄.In the third phase, the proedure's ode and points-toinformation are fed into the C2IP transformer. C2IP gen-erates a proedure that manipulates integers. C2IP guaran-tees that if there is a runtime string-manipulation error ina proedure invoation then either (i) the proedure's pre-ondition did not hold on this invoation, or (ii) an assertstatement in the resultant integer program is violated on aorresponding input. In addition, C2IP heks pointer as-sertions if spei�ed in the ontrats.In the fourth phase, the resultant integer program is ana-lyzed using a onservative integer-analysis algorithm to de-termine all potential violations of assert statements. Be-ause the integer and pointer analyses are sound and beauseontrats are veri�ed both at all sites and at the proedu-ral level, all string errors are reported. In partiular, theinteger analysis reports an error when the spei�ed post-ondition is not guaranteed to hold. For minimizing thenumber of false alarms, CSSV uses a rather preise integeranalysis that represents linear relationships on integer vari-ables. The �nal result is a list of potential errors. For everyerror, a ounter-example is generated that an assist theprogrammer in determining if a message is a real error or afalse alarm. False alarms may our due to (i) erroneous oroverly weak ontrats, (ii) abstrations onduted by C2IP,or (iii) impreision of the pointer or integer analyses.As opposed to alternative interproedural program analy-
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q Figure 1: High-level struture of CSSV.sis tehniques, CSSV's approah has important advantages:(i) Eah potentially reursive proedure an be analyzedseparately, exatly one, i.e., the tool is appliable even ifnot all the soure ode is available (e.g., library funtions).(ii) Contrats o�er user ontrol in a way similar to \designby ontrat" [25℄. In partiular, it enables CSSV to moree�etively loate the atual soure loation in whih the er-ror ours. (iii) Contrats an improve the preision of theanalysis by providing information whih an be hard to stat-ially infer via an interproedural analysis. (iv) By using theontrats to analyze proedure alls, CSSV applies a ratherpreise intraproedural algorithm to redue false alarms.

1.2 The Burden of ContractsContrats exert additional burden on the programmer. Inthe ase of CSSV, this de�ieny is minimized beause thepre- and post-onditions need not desribe the proedure'somplete behavior. In partiular, pointer information is au-tomatially olleted by CSSV, and therefore ontrats usu-ally omit information about how pointers are used. More-over, unlike tools suh as Eau Claire and LCLint, CSSV doesnot require annotations within the ode itself suh as loopinvariants. Also, unlike these unsound approahes, sineCSSV is sound, with any given ontrat, runtime errors an-not go undeteted. Depending on the ontrats, errors willbe identi�ed when analyzing the body of the proedure orat the proedure invoations. Of ourse, when a proedure'sode is omitted suh as in the ase of library funtions, CSSVassume its ontrat is orret and an not verify it.Interproedural modi�ation side-e�et analysis algorithmsalready exist (e.g., [27℄). They an generate automatiallythe modify lause. Therefore, it is always possible to run

CSSV with vauous ontrats inluding only the side-e�etand a true pre- and post-ondition.This paper presents preliminary algorithms for automati-ally strengthening the pre- and post-onditions. The e�e-tiveness of these algorithms is measured by omparing thenumber of false alarms obtained: (i) with the vauous on-trats, (ii) when using automatially derived ontrats, and(iii) when using manually provided ontrats.The derivation proedure uses a forward sound integer-analysis algorithm alled ASPost to ompute an Approxi-mation to the Strongest Postondition of the integer pro-gram. Similarly, a bakward sound integer-analysis algo-rithm alled AWPre is used to ompute an Approximationto the Weakest liberal Preondition [7℄. The generated post-ondition (preondition) is not neessarily the strongest be-ause information is lost during the stati integer analysis.Both ASPost and AWPre yield integer onditions. There-fore, the proess an be repeated iteratively by running thederivation proess given the generated integer onditionsand further restriting the existing preondition (poston-dition).We also present a onservative method that uses the pro-edural points-to information to onvert an integer expres-sion for postondition (preondition) into a C expressionthat an be used to strengthen the initial ontrat.
1.3 Main ResultsThe ontributions of this paper are summarized as follows:� A onservative stati-analysis algorithm for detetingstring runtime errors is presented. The algorithm re-dues the problem of heking string manipulation tothat of heking integer manipulations|a problem for



whih well-known solutions exist. In omparison to ourprevious algorithm, presented in [9℄, it handles the fullspetrum of C language onstruts, inluding dynami-ally alloated strutures, multilevel arrays, multilevelpointers, funtion pointers, and asting. In addition,this algorithm is an order of magnitude better in itsasymptoti time and spae requirements.� Preliminary program-analysis algorithms for strength-ening pre- and post-onditions are presented. The al-gorithms redue the burden on the programmer. Theyanalyze the input proedure using existing (potentiallyvauous) ontrats and yield a new, more restritive,ontrat for this proedure.� We have implemented CSSV using the AST-Tooklit [22℄,CoreC, the Golf pointer analysis [4, 5℄, and the poly-hedra integer analysis of [3℄ from [14℄. We have ap-plied the implementation to real-life programs. CSSVveri�ed an intriate string library from EADS Air-bus yielding only 6 false alarms. In the appliation�xwrites, part of web2, CSSV unovered 8 errors with2 false alarms. Finally, we implemented the derivationalgorithms and applied them to automatially gener-ate pre- and post-onditions. The results show thatin some ases it derived ontrats equivalent to themanually spei�ed ones.
1.4 Outline of the Rest of this PaperThe rest of the paper is organized as follows: Setion 2introdues CoreC, a ontrat language, a running exam-ple, and an instrumented onrete semantis. Setion 3 de-sribes CSSV. Setion 4 desribes the ontrat derivationalgorithms. Setion 5 desribes the prototype implementa-tion and the experimental results. Setion 6 disusses re-lated work, and Setion 7 onludes the paper.
2. BACKGROUND

2.1 CoreC

CoreC is a subset of C with the following restritions:(i) Control-ow statements are either if, goto , break orontinue; (ii) expressions are side-e�et free and annot benested; (iii) all assignments are statements; (iv) delarationsdo not have initializations; (v) address-of formal variables isnot allowed. An algorithm for transforming C programs toCoreC is presented in [30℄. Given a C program, it generatesan equivalent CoreC program by adding new temporaries.CSSV is de�ned and implemented for CoreC. In the rest ofthis paper, CoreC is used instead of C.
2.2 ContractsContrats are used to desribe expeted inputs, side-e�ets,and expeted output of funtions. In this paper, we writeontrats in the style of Larh [19℄. Our implementation a-tually supports a more general exeutable language similarto [24℄, whih an inlude loops. Contrats are spei�ed inthe .h �le. Every prototype delaration of a funtion f hasthe form:htypei f (� � � ) requires heimodi�es hei; hei; : : : ; heiensures hei;de�ning the preondition required to hold whenever f is in-voked, the side-e�ets of the funtion f, i.e., the objets thatmay be modi�ed during invoations of f, and the poston-dition that is guaranteed to hold on the modi�ed objets.Here, hei is a C expression, without funtion alls, overglobal variables and the arguments of f. We allow attributesof the form de�ned in Table 1 and displayed in Fig. 2. Adesignated variable return value denotes the return valueof f. The speial syntax dheiepre denotes the value of heiwhen f is invoked. Although not required, the ontratmehanism enables speifying pointer values. In additiontwo shorthand expressions are allowed: (i) string(arg) |indiating that arg points to a null-terminated string, and(ii) is within bounds(arg) | indiating that arg pointswithin the bounds of a bu�er.



Attribute Intended Meaningexp.base The base address of expexp.o�set The o�set of exp, i.e., exp - exp.baseexp.is nullt Is exp pointing to a null-terminated string?exp.strlen The length of the string pointed-to by expexp.allo The number of bytes alloated from expTable 1: Attributes in the ontrat language.
... ... 0 ...

exp.offset exp.strlen
exp.alloc

exp.base

expFigure 2: Graphial representation of ontrat-language attributes.
2.3 Running ExampleThe CoreC version of funtion RTC Si SkipLine from EADSAirbus (SkipLine for short) is shown in Fig. 3. SkipLineinserts NbLine newline haraters starting at the loationpointed-to by *PtrEndText, appends a null-termination har-ater and sets *PtrEndText to point to the end of the string.A ontrat for SkipLine is shown in Fig. 4. The pre-ondition demands that upon entry: *PtrEndText points towithin the bounds of a bu�er; the alloation spae from theloation *PtrEndText is greater than NbLine; and, NbLineis at least zero. The funtion may modify the *PtrEndTextpointer and the bu�er pointed-to by *PtrEndText. Thepostondition indiates that *PtrEndText points to a null-terminated string of length zero, and its value is advanedby NbLine bytes.Due to multi-level pointer indiretions, destrutive up-dates, and pointer arithmeti, it is rather hallenging to ver-ify the absene of errors in this funtion. CSSV is able toverify statially the absene of string errors in this funtion,without reporting any false alarm.The toy main proedure, shown in Fig. 3, alls SkipLineto insert a newline harater, reads input from the stan-

void SkipLine(int NbLine, har** PtrEndText)f int indie;har* PtrEndLo;[1℄ indie=0;[2℄ begin loop:[3℄ if (indie>=NbLine) goto end loop;[4℄ PtrEndLo = *PtrEndText[5℄ *PtrEndLo = 'nn';[6℄ *PtrEndText = PtrEndLo + 1;[7℄ indie = indie + 1;[8℄ goto begin loop;[9℄ end loop:[10℄ PtrEndLo = *PtrEndText[11℄ *PtrEndLo = 'n0'; gvoid main()f har buf[SIZE℄; har *r, *s;[1℄ r = buf;[2℄ SkipLine(1,&r);[3℄ fgets(r,SIZE-1,stdin);[4℄ s = r + strlen(r);[5℄ SkipLine(1,&s); gFigure 3: SkipLine, a string manipulation funtionfrom EADS Airbus with a toy main funtion.dard input, and onatenates an additional newline by all-ing SkipLine again. This proedure has an o�-by-one error.In the ase of a user input of length SIZE-1, buf is full andthere is no spae for the additional newline. CSSV detetsthis error in main without reporting any false alarm.There is a strong orrelation between the ontrats andthe messages reported. However, errors do not go unde-teted. For example, omitting NbLine >= 0 from the pre-ondition yields an error message during the analysis ofSkipLine. The message indiates that the postondition*PtrEndText == d*PtrEndTextepre + NbLinemay not hold. Interestingly, the ounter-example produedby CSSV for this message shows that this postondition doesnot hold when the value of NbLine is negative.Providing a stronger preondition than the weakest pre-ondition an yield error messages on a proedure invoa-tion. For example, requiring that *PtrEndText points-to a



void SkipLine(int NbLine, har** PtrEndText)requires is within bounds(*PtrEndText) &&*PtrEndText.allo > NbLine && NbLine >= 0modi�es *PtrEndText.strlen,*PtrEndText.is nullt, *PtrEndTextensures *PtrEndText.is nullt &&*PtrEndText.strlen == 0 &&*PtrEndText == d*PtrEndTextepre + NbLine ;Figure 4: A ontrat for SkipLine.null-terminated string will ause an error message regardingthe all to SkipLine at line [2℄ of main.
2.4 Instrumented Concrete SemanticsThe C programming language does not de�ne semantisfor C programs. In the ANSI-C standard there is an infor-mal notion of de�ned and unde�ned behavior. However, theexat behavior an hange, and often does, from one imple-mentation of a ompiler to another. Due to the followingfeatures of the language, it is not trivial to de�ne semantisfor C:The address-of operation enables to hange a variable'svalue without assigning to the variable. It also endurespointers to invisible variables.Alloation (dynami and stati) routines of C provide anunformatted ontiguous memory loations, while fromthe semanti point of view there is a \hierarhy" ofobjets where one objet may ontain objets of dif-ferent types. Moreover, objets are type-less providingexibility, where a loation an be aessed aordingto di�erent types. However, this auses diÆultly inde�ning and heking the legitimay of aesses.\Big" L-values operations enables read and write ofa number of primitives aording to the type of anoperand.Pointer arithmeti is frequently used and has a de-�ned result. However, heking its validity is impossi-ble without additional instrumented information.

Cast operation is another well-de�ned feature but has manyunlear outomes. Moreover, a single loation an beaesses (read or written) aording to di�erent types.In this setion, we sketh an instrumented operational se-mantis for C that veri�es the absene of out-of-bound viola-tions while allowing pointer arithmeti, destrutive updatesand asting. The general idea is to de�ne a non-standardlow-level semantis that expliitly represents the base ad-dress of every memory loation and the alloated size start-ing from the base address. In [8℄, the soundness of CSSVis proved with respets to this operational semantis. Thissemantis provides the foundation of CSSV's abstrat inter-pretation.Definition 2.1. A onrete state at a proedure Pis a tuple: state\ = (L\;BA\; aSize\; lo\; st\; numBytes\; base\)where:� L\ is a �nite set of all stati, stak, and dynamiallyalloated loations.� BA\ � L\ is the set of base addresses in L\.� aSize\ : BA\ ! N de�nes the alloation size in bytes ofthe memory region starting at a base address.� lo\ : visvarP ! BA\ maps variables into their as-signed global or stak loations (whih is always a baseaddress).� st\ : L\ ! val de�nes the memory ontent, whereval = funinit ; unde�nedg [ primitive [ L\is the set of possible values. The value uninit repre-sents uninitialized values; unde�ned represents resultsfrom illegal memory aesses; primitive refers to theset of C primitive type values.� numBytes\ : L\ ! N de�nes for eah loation the num-ber of bytes of the value stored starting at the loation.� base\ : L\ ! BA\ maps every loation to its base ad-dress.
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whih is a four-byte value, and that the seond byte of bufontains the harater 'h'.The assoiation of the number of bytes with loations en-ables us to handle ases where a loation is aessed throughdi�erent types. Spei�ally, writing a loation as one typeand later reading it as a di�erent size type results in theunde�ned value.Definition 2.2. A onrete state (L\;BA\; aSize\; lo\; st\;numBytes\; base\) is admissible if for every loation l\ 2 L\suh that st\(l\) 6= unde�nedthen st\(l\ + i) = unde�ned ; 1 � i < numBytes\(l \) ^:9l0\ < l\ : st\(l0\) 6= unde�ned ^ l \ < l 0\ + numBytes\(l 0\)Thus an admissible state does not ontain any \overlapping"ontents. Our semantis only yields admissible states. Thisis ahieved by de�ning the semantis of assignments to setto unde�ned all mapping that are overwritten.L-values and R-values on C expressions an be de�nedby straightforward strutural indution. In partiular for apointer variable p, we de�ne the L-value and the R-value,denoted as lp and rp, respetively, as follows:lp(state\) def= lo\(p)rp(state\) def= st\(lp(state\))= st\(lo(p))We de�ne a funtion, index \, to reason about the displae-ment of a loation from its base. Formally,index \ : L\ ! Nindex \(l\) def= l\ � base\(l\)With the additional information of aSize\, base\, the R-valueof an attribute is easily de�ned. In partiular the R-valueof the attribute p.offset is index \(rp(state\)).Conrete states represent strutures using sets of base ad-dresses. Eah �eld is assoiated with a unique base, b\, and



aSize\(b\) is the size of the �eld. By abstrating this se-mantis, CSSV veri�es that there are no aesses that usepointer arithmeti to ross �eld bounds.
3. CSSVCSSV analyzes eah proedure separately. We refer to theanalyzed proedure as P . CSSV heks for three kinds of er-rors: (i) ANSI-C violations related to strings, suh an aessout of bounds. (ii) Violations of pre- and post-onditions ofproedures as required by the provided ontrats. When aproedure is invoked, the allee's preondition is heked.At the end of P , P 's postondition is heked. (iii) Ouranalysis heks ertain leanness onditions that orrespondto good programming style. In partiular, it validates thatall aesses are before the null-termination byte, if it exists.
3.1 Technical OverviewPointers and integers interat in a non-trivial way, espe-ially in the C programming language. For example, it isnon-trivial to hek the safety of the expression*PtrEndText = 'nn'in line [5℄ of SkipLine, i.e., that the pointer *PtrEndText iswithin bounds. CSSV infers the relationships between theo�set of *PtrEndText, the alloation size of its base address,and the integer variables indie and NbLine needed to ver-ify the safety of this destrutive update. As we shall see,our algorithm statially veri�es suh inequalities by om-bining a pointer-analysis algorithm that detets pointers tothe same base address, with an integer-analysis algorithmthat detets o�set relationships among pointers. The o�setof a pointer is the index of the loation it points to. Ofourse, in ontrast to the onrete semantis, the abstratsemantis summarizes many onrete loations by a singleabstrat loation. It also maintains the potential points-to-relationships between these addresses.CSSV applies a whole program ow-insensitive pointeranalysis to detet statially whih pointers may point to

the same base address. In partiular, for every funtion,it provides a summary of all of its alling ontexts. Inpriniple, a onservative analysis an utilize this informa-tion and analyze a funtion with all possible alling on-texts. However, this an yield many false alarms. For ex-ample, the whole-program analysis of SkipLine yields thatPtrEndText may point to either s or r. Conservatively an-alyzing the funtion's body with the two alling ontexts,requires treating updates to integer properties suh as theo�set of *PtrEndText as weak updates. Therefore, the anal-ysis will fail to show that the postondition holds. As aresult, a false alarm will be issued. CSSV avoids this falsealarm by performing strong updates in ertain ases. Themain idea is to preompute proedural points-to informa-tion that guarantees that strong updates to the o�set of*PtrEndText an be performed. In general, it guaranteesthat in well-behaved programs diret updates through theformal parameters an be interpreted as strong updates.The proedural points-to information is used by C2IP togenerate an integer program. Integer onstraint variablessummarize the semanti properties, (e.g., alloated size) ofthe represented loations. Finally, a onservative integeranalysis determines potential values of the semanti proper-ties and veri�es the onstraints upon them.The rest of this setion is organized as follows: Setion 3.2desribes the proedure that inlines ontrats in P . Se-tion 3.3 formalizes the proedural points-to information forP . Setion 3.4 desribes the C2IP transformation appliedto P . Setion 3.5 skethes the integer-analysis algorithm.
3.2 Exposing Procedures’ BehaviorThe �rst step of CSSV takes as input the C program andthe provided set of ontrats, and generates a new C pro-edure inline(P ) by exposing the ontrats of P and of theinvoked proedures. Sine inline(P ) ontains assert state-ments that verify ontrats, the behavior of inline(P ) di�ersfrom the behavior of P for inputs violating ontrats. Forother inputs inline(P ) and P behave the same.



Most of the C statements remain intat. Table 2 showsthe sheme for translating the a�eted statements. We addthe following syntati extensions to C: (i) The onstrutassume(hei) that indiates that hei holds after this state-ment, i.e., if hei does not hold the exeution is abortedwithout any message. It is used to reet ommitmentsof other proedures. (ii) Additional temporary variablesnamed \hei" used to store the value of a subexpressiondheiepre at the proedure entry. (iii) the ontrat-languageattributes whih have a well-de�ned meaning in our instru-mented onrete semantis.Proedure entry is enountered before the �rst exeutablestatement. In this ase, the additional variables are initial-ized and P 's preondition is veri�ed. The designated vari-able return value is set at every return statement. At everyexit point (inluding return), P 's postondition is veri�ed.On a all to g we verify that g's preondition holds andassume that the postondition holds. The original all tog is in the emitted ode. This is essential for inline(P ) tobehave the same as P .
3.3 Pointer AnalysisThe seond step of CSSV omputes an abstration of allpotential pointer relationships between loations in onretestates that may our during P 's exeution. However, onlyloations that an be aessed during the exeution of Pare of interest. Therefore, we de�ne the notion of reahableloations.Definition 3.1. In a onrete state, a loation l\ isreahable if there exists a visible variable whose store on-tents an (indiretly) inlude l\ (i.e., there is an expressionwhose L-value is l\).We infer the pointer relationships among reahable loa-tions by omputing a proedural pointer information thataims at representing the single loation a formal points-toat the proedure entry. This setion desribes the abstratstate representing pointer relationships and an algorithm toompute this state.

3.3.1 Procedural Points-to StateWe formalize an abstrat state that regards pointer rela-tionships among reahable loations of P as follows:Definition 3.2. A proedural abstrat points-to stateof P (PPT) is a quadruple stateP = (BAP ; loP ; ptP ; smP )where:� BAP is a set of abstrat loations that represent allreahable onrete base addresses.� loP : visvarP ! 2BAP maps variables into set of ab-strat loations representing the variable's global or stakloations.� ptP : BAP ! 2BAP abstrat the possible pointers. Aonrete pointer is represented by a ptP relationshipbetween the abstrat loations representing the base ad-dresses of the pointer's soure and target loation.� smP : BAP ! f1;1g is an abstrat ount on the num-ber of onrete base addresses represented by an ab-strat loation, i.e., sm(ba) = 1 when ba may repre-sent more than one base address in a given onretestore, and 1 when it is guaranteed to represent at mostone base address. An abstrat loation having sm =1is a summary abstrat loation. Summary abstratloations an be used to represent unbounded sets ofbase addresses.We say that a PPT (BAP ; loP ; ptP ; smP ) is a sound ap-proximation of a onrete state (L\;BA\; aSize\; lo\; st\;numBytes\; base\) in a proedure P if there exists a funtion� : BA\ ! BAP satisfying the following requirements:Base For all reahable b\ 2 BA\: �(b\) 2 BAP .Stak For all v 2 visvarp: �(lo\(v)) 2 lo(v).Pointer For all l1\; l2\ 2 L\ s.t., l1\ and l2\ are reah-able, and satisfying st\(l1\) = l2\: �(base\(l2\)) 2pt(�(base\(l1\))).



Event Emitted Codeentry of P (f1; f2; : : : ; fn) \heii" = heii; for every dheiiepre in post [P ℄assume(pre[P ℄(f1 ; f2 ; : : : ; fn));return hei return valueP = hei;exit P assert(post [P ℄(f1 ; f2 ; : : : ; fn));hei = g(a1; a2; : : : ; am) f \heii" = heii; for every dheiiepre in post [g ℄assert(pre[g ℄(a1 ; a2 ; : : : ; am));return valueg = g(a1; a2; : : : ; am);assume(post [g ℄(a1 ; a2 ; : : : ; am));hei = return valueg; gTable 2: The emitted C ode for e�eted statements. The notation pre[x ℄(e1 ; e2 ; : : : ; em) stands for the preon-dition of proedure x where formal fi is replaed with the expression ei. The expression post [x ℄ is obtainedsimilar to pre[x ℄, however eah of the dheiiepre expression is replaed with the variable \heii". return valuex isa designated variable representing the return value in the postondition of proedure x.Summary For all b 2 BAp, s.t., smP (b) = 1, and b1\; b2\ 2BA\ having �(b1\) = �(b2\) = b: b1\ = b2\.Definition 3.3. A stateP is a sound approximationof P if it is a sound approximation of all the onrete statesthat may arise during the exeution of P .L-values and R-values are generalized to return sets ofabstrat loations. In partiular for a visible pointer variableq: lq(state) def= loP (q)rq(state) def= Sl2lq(state) ptP (l)= Sl2loP (q) ptP (l)
3.3.2 Constructing Procedural InformationCSSV omputes a sound approximation statep in two stages:First, a whole-program analysis is applied to ompute aglobal abstrat points-to state of the whole programGstate =(BA; lo; pt; sm) where:� BA inludes all abstrat loations.� lo : var! 2BA.� pt : BA ! 2BA.� sm : BA ! f1;1g.This global state is guaranteed to be a sound approximationof all proedures. Seond, this global state is used to on-strut a sound approximation of P . Many possible solutions
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�� ��lPtrEndLooo(a) (b)Figure 6: The whole-program points-to informa-tion for the running example (a), and the PPT forSkipLine (b).exist. We deided to bias towards preise representationof formal parameters, with the intention to ondut strongupdates on their properties in many ases.Fig. 6 demonstrates the proess. When possible we denoteabstrat loations as either as L-values (e.g., ls) or as theR-value (e.g. rbuf ) of some pointer. We an see that anew abstrat loation rPtrEndText represents the (unique)onrete loation whih holds the value of *PtrEndText.Given a global abstrat pointer state of the whole pro-gram Gstate = (BA; lo; pt; sm), let us onstrut, a PPTfor P stateP = (BAP ; loP ; ptP ; smP ). The mapping loPis omputed by projeting lo to the visible variables of P .Similarly, BAP and smP are omputed by inluding abstratloations reahable from visible variables of P .An initial value for ptP is obtained by projetion. In ourrunning example, this yields the same state as the globalpoints-to information shown in Fig. 6(a) without the lbufabstrat loation. We aim at a potentially more preise



Boolean parameterizable( PPT stateP , formal f )f let stateP = (BAP ; loP ; ptP ; smP )let lf = loP (f) // the L-value of fif smP (lf ) =1 return falselet fl1; l2; : : : ; lmg = pt(lf ) // the R-values of ffor i = 1 to mif smP (ri) =1 return falseremove from pt edges from lf to lj where j 6= i,and let pt0 be the resultant points-to map.if exists a reahable node rj ; j 6= i in pt0 thenreturn false// at most one of the onrete loations pointed-to by f// is reahable in a onrete state represented by statePreturn true;gFigure 7: Algorithm to onservatively hek that atmost one onrete loation is represented by the setpointed-to by a formal parameter f .representation. A onservative algorithm to hek if it issound to merge the nodes l1; l2; : : : ; lm pointed-to by a for-mal f without reating a new summary node is presented inFig. 7. This algorithm heks that for every onrete storeat most one onrete loation is represented by rf (the setof abstrat loations pointed-to by a formal parameter f).The orretness of the algorithm is established in [8℄.When permitted, the merge is done by (i) replaing l1; l2; : : : ; lmby a single non-summary abstrat loation rf . (ii) settingpt(rf) to Smi=1 pt(li). This may improve the preision of de-strutive updates through f , but may derease the preisionof other updates.
3.4 C2IPThe C2IP transformation takes the inline(P ) proedurewith its PPT as input, and produes an integer program(IP for short) as output. The generated IP traks the stringand integer manipulations of P and of the invoked proe-dures. The IP is nondeterministi, reeting the fat thatnot all values are known. The symbol unknown stands foran undetermined value. In partiular, we use the followingexpressions:

x := unknown; Assigns any value to. xif (unknown) Either the true or the false branhan be taken.The semantis of the assume onstrut in the integer pro-gram is to restrit the behavior of nondeterministi pro-grams. Finally, for larity, we use mathematial onstrutsin the IP.The IP inludes onstraint variables used to denote in-teresting semanti properties suh as o�sets. C2IP gener-ates update statements assigning new values to onstraintvariables, reeting the hanges in the semanti properties.Assert statements over the onstraint variables are gener-ated for heking the safety of basi C expressions and forverifying ontrats. In addition, C2IP an validate pointerassertions if spei�ed in the ontrats. Due to the ow in-sensitivity of our pointer analysis, this apability is ratherweak in terms of preision. When a preondition may nothold, an error message is reported.
3.4.1 Constraint VariablesFor every abstrat loation, l, C2IP generates the follow-ing onstraint variables:� l:val to represent potential primitive values stored inthe loations represented by l.� l:o�set to represent potential o�sets of the pointersrepresented by l, i.e., l:o�set onservatively representsindex \(st\(l\)) for every loation l\ represented by l.� l:aSize, l:is nullt and l:len to desribe the alloationsize, whether the base address ontains a null termi-nated string, and the length of the string (exludingthe null byte) of all loations represented by l.
3.4.2 Translating StatementsTransforming C expressions involves querying the PPT toobtain the abstrat loations a pointer may point-to. Forsimpliity, in this subsetion we assume that every pointermay only point to a single non-summary abstrat loation.



C Exp. Generated IP Condition*p lp:o�set � 0^((rp:is nullt ^ lp :o�set � rp :len)_(:rp:is nullt ^ lp:o�set < rp :aSize))p + i lp:o�set + li:val � 0^lp:o�set + li:val � rp:aSizeTable 3: Asserted IP onditions for C expressions.Thus, lp (representing the global or stak loation of p), andrp (representing the loation pointed-to by p) are both sin-gletons for every pointer p. In Setion 3.4.2.3, the handlingof arbitrary PPT is disussed.
3.4.2.1 Safety Checks.For every basi C expression, there is a ondition that ver-i�es the validity of the expression. Table 3 lists the gener-ated assert expressions. On every dereferene to an address,a hek that the address is within bounds is generated. Theupper bound is heked depending on whether the bu�er isnull-terminated. If it is, the dereferened loation is hekedto be at or before the null-termination byte. CSSV follows[15, pp.205℄ and heks that the result of pointer arithmetiis either before or at the �rst loation beyond the upperbound.
3.4.2.2 Update Statements.C2IP generates statements to reet semanti hanges re-garding the properties traked. Table 4 displays the gener-ated statements from transforming CoreC statements andonditional expressions involving pointers to bu�ers, whihis the interesting part of C2IP.On alloation, the resultant pointer always points to thebase address. Therefore, its o�set is always zero. We setthe alloation size of the abstrat loation that representsthe newly alloated loation. Destrutive updates are sepa-rated into two ases: (i) The assignment of the null hara-ter, whih sets the bu�er to a null-terminated string. Thelength of the string is the loation of the �rst zero byte.C2IP generates a hek that all dereferenes are before thenull-termination byte (if it exists). Therefore, we an safely

assume that when assigning a null-termination byte it is the�rst one. (ii) In the assignment of a non-zero harater, itis heked if the null-termination byte was overwritten.The generated IP does not ontain funtion alls. BeauseC2IP transforms the inline(P ) proedure, the pre- and post-onditions of an invoked proedure g are transformed. How-ever, the all to a proedure needs to be analyzed onserva-tively. C2IP onverts the all to g with the modify lause ofg and substitutes atual for formal parameters. The mod-ify lause is interpreted as assignments of unknown to theonstraint variables of the abstrat loations that representpotentially modi�ed objets.To inrease preision, ertain program onditions are in-terpreted. The seond part of Table 4 shows the interpretedonditions. When heking for null-termination, C2IP re-plaes the ondition with a ondition over onstraint vari-ables that trak length and the existene of a null-harater.Pointer omparisons are replaed by expressions that om-pute the expression over the appropriate offset �eld.For ease of use, the ontrat language allows speifyingattributes on pointers instead of on base addresses. For ex-ample, p.allo represents the alloation size starting at theloation pointed to by p. The last part of Table 4 lists thetransformation of ontrat's attributes to onstraint vari-ables by referring to the abstrat loations pointed to bythe spei�ed pointer.
3.4.2.3 Other C Constructs.The points-to graph ontains may information, represent-ing the fat that a pointer may or may not point to a spei�loation. Furthermore, all pointers to a summary abstratloation are may pointers. To reet the fat that a baseaddress represented by l may or may not be modi�ed, C2IPgenerates every update statement (shown in Table 4 ) as anondeterministi assignment, under an if (unknown) state-ment. On the other hand, to be onservative, the analysismust take into aount all possible values of a pointer, andverify expressions on all possible pointer values. This is



done for all the generated assert statements and programonditions.To handle asting and unions, C2IP generates for an as-signment to one type of onstraint variable assignments ofunknown to the other onstraint variables. For example, anassignment of an integer to a onrete loation representedby abstrat loation l yields an assignment to l:val . In addi-tion, C2IP generates the assignment l.o�set := unknown. Inpartiular, a ast to and from pointer type is onservativelyhandled by an assignment to unknown.The pointer analysis determines whih funtions may beinvoked at a all statement via a funtion pointer. Then,CSSV generates a non-deterministi statement that seletsan arbitrary funtion all.It is diÆult to write general ontrats for the formatfuntions, suh as sprintf() and printf(). Therefore, forthe format funtions, C2IP generates automatially pre- andpost-ondition aording to the exat alling ontext. CSSVwarns in ases where the format parameter is not a onstant.
3.4.2.4 The Complexity of C2IP.The number of onstraint variables in the IP is O(V )where V is the number of variables and alloation sites inthe C program. Beause a pointer may point to V abstratloations, the translation of a C expression that ontains onepointer generates O(V ) IP statements. Therefore, the sizeof the IP is O(S � V ); where S is the number of C expres-sions. This is an order-of-magnitude improvement over thetransformation in [9℄, whih generates O(V 2) variables andO(S � V 2) statements.
3.5 Integer AnalysisThe �nal step of CSSV analyzes the IP and reports poten-tial assert violations. In theory, any sound integer analysisan be used. Beause many of the traked semanti proper-ties are external to the proedure, and sometimes, even tothe whole appliation, it is essential to trak relationshipsbetween onstraint variables and not just possible values.Furthermore, many of the onditions to infer involve three

C Construt IP Statementsp = Allo(i); lp:o�set := 0;rp:aSize := li :val ;rp:is nullt := false;p = q + i; lp:o�set := lq:o�set + li:val ;*p = ; if  = 0 then frp:len := lp :o�set ;rp:is nullt := true; gelseif rp:is nullt ^ lp :o�set = rp :len thenlp:is nullt := unknown ; = *p; if rp:is nullt ^ lp :o�set = rp :len thenl:val := 0;else l:val := unknown ;g(a1; a2; : : : ; am); mod[g℄(a1; a2; : : : ; am);*p == 0 rp:is nullt ^ rp:len = lp:o�setp > q lp:o�set > lq:o�setp.allo rp:aSize � lp :o�setp.o�set lp:o�setp.is nullt rp:is nulltp.strlen rp:len � lp:o�setTable 4: The generated transformation for C state-ments, onditional expressions and ontrats' at-tributes. p and q are variables of type pointer tohar. i and  are variables of int type. Allo is amemory alloation routine, e.g., mallo and alloa.and more properties, e.g., the postondition of SkipLine re-garding the new o�set of *PtrEndText. Therefore, beauseour goal is as few as possible false messages, we apply thelinear-relation-analysis algorithm [3, 12℄ whih disovers lin-ear inequalities among numerial variables. This methodidenti�es linear inequalities of the form: �ni=1ixi + b � 0,where xi is an integer variable and i and b are onstants. Inour ase, xi are the onstraint variables. Upon terminationof the integer analysis, the information at every ontrol-ownode onservatively represents the inequalities that are guar-anteed to hold whenever the ontrol reahes the respetivepoint. The reader is referred to [3, 12, 9℄ for informationabout integer analysis.
3.5.1 Assert checkingDuring integer analysis, eah assert statement is veri-�ed. This is done by heking if the asserted integer expres-sion is implied by the linear inequalities that hold at theorresponding ontrol-ow node. If it is not implied then



rbuf :aSize = SIZErbuf :len � 1rbuf :aSize � rbuf :len + 1ls:o�set = rbuf :len(a)[5℄ SkipLine(1,&s);require(rbuf :aSize � ls :o�set > 1 )error: the require may be violated when:rbuf :aSize = rbuf :len + 1(b)Figure 8: A report on the error in line [5℄ of main.The derived inequalities before exeution of line [5℄of main (a), and a ounter example (b).a ounter-example is generated. The ounter-example de-sribes the values of the onstraint variables where a stringerror in the C program may arise.Fig. 8 demonstrates how the stati integer-analysis algo-rithm identi�es the error in the all to SkipLine in line [5℄of main. The algorithm yields that the inequalities shownin Fig. 8 (a) hold before the exeution of line [5℄, and thatwhen the equality shown in Fig. 8 (b) holds a violation ofSkipLine's preondition ours.
4. DERIVING CONTRACTSThis setion presents integer-analysis algorithms to strengthenpre- and post-onditions. The following proess is appliedto a proedure P :1. Compute side-e�et information for P.2. Run the inliner and C2IP with vauous true pre- andpost-ondition whih produes an integer program IP0.3. Run ASPost, a forward integer analysis of [3℄ on IP0whih omputes a safe approximation of the strongestpostondition. Obtain a new IP program IP1 by strength-ening the postondition with the set of linear inequali-ties generated by the integer analysis at the proedureexit.4. Run AWPre, a bakward integer analysis on IP1 whihomputes an approximation to the weakest liberal pre-ondition. Obtain a new IP program IP2 by strength-

ening the preondition with a set of linear inequalitiesgenerated by the analysis at the proedure entry.
5. Writebak | by using the PPT, onvert the pre- andthe post-onditions of IP2 to C expressions over theformal parameters and global variables of P .The derivation proess an also start with manually givenontrats. For appliations with ayli all graphs, theabove proess an be automatially applied in a bottom-upfashion, starting with the leaf proedures.

4.1 Integer AnalysisThe ASPost algorithm is essentially the algorithm of Se-tion 3.5 without reporting false alarms. It omputes linearinequalities that hold at the exit point. Loal variables areeliminated. The resulting inequalities are added to the inputpostondition.To improve the e�etiveness of the derivation, the inlinerphase is allowed to add designated variables to reord valuesof properties that may be modi�ed by P. For every poten-tially modi�ed integer property expressed as a C expressionhei, the inline(P ) proedure inludes a new variable \hei"with an additional C statementassume(\hei" == hei);During the writebak proess, this variable is replaed byan appropriate dheiepre expression in the postondition. Inthis example, sine *PtrEndText may be modi�ed, variablesare used to reord all its properties. In partiular, a vari-able \rPtrEndText:o�set" reords the value of the expressionrPtrEndText:o�set at the entry.The linear relationships obtained by ASPost when appliedto SkipLine in the running example with a true preondi-tion are:



N:is nullt = trueN:len = rPtrEndText :o�setrPtrEndText:o�set � \rPtrEndText:o�set" + lNbLine:val(1)The existene of a null-termination byte and the newlength of the base address points to-by *PtrEndText is om-puted by ASPost preisely. ASPost �nds a relationship be-tween the old and new o�sets of *PtrEndText. However,this relationship is weaker than the manually provided oneon whih the inequality is an equality. Both ASPost andAWPre may lose information due to joins of ontrol-owpaths and due to the widening operation.AWPre is similar to the forward algorithm in the sensethat it uses the same abstrat domain and abstrat opera-tions. The main di�erene is the treatment of assignments,whih are handled by substitutions.
4.2 Write BackThe pre- and post-onditions generated by AWPre andASPost are onverted into C expressions over the formalparameters and global variables of P . These expressions areadded to the input ontrats using logial-and operator.
4.2.1 Obtaining PostconditionsReall that the integer analysis omputes properties of ab-strat loations. Eah suh abstrat loation orresponds toa set of L-value expressions over global and formal variablesof P. Consider an abstrat loation l and assume, for simpli-ity, that there is a unique expression, say e, whose L-value isl. In this ase, every onstraint variable in the inequalitiesthat our in the exit are replaed by substituting e for a.Eah ourrene of a designated formal parameter \hei" isreplaed by dheiepre. Finally, the semanti properties areonverted to the ontrat-language attributes.For the equations in (1), the writebak algorithm yields:**PtrEndText.is nullt &&**PtrEndText.strlen = 0 &&

*PtrEndText.o�set >= d*PtrEndText.offsetepre + NbLineWhen an abstrat loation orresponds to a set of L-value expressions, we generate a weaker postondition usinglogial-or operator. An alternative would be to ignore someof these expressions, whih may lead to false alarms whenthe proedure is analyzed by CSSV.
4.2.2 Obtaining PreconditionsGenerating C expressions for preonditions from the entryinequalities is similar to the proess of generating postondi-tion. The main di�erene is that we use logial-and insteadof logial-or when multiple expressions orrespond to thesame abstrat loation.
5. EMPIRICAL RESULTSImplementing the CSSV tool is non-trivial beause of theompliated aspets of C and program analysis. We haveimplemented a prototype of CSSV with signi�ant help fromthe Semantis Based Tools group at Mirosoft Researh andfrom Greta Yorsh from Tel-Aviv university. The ompilerfrom C to CoreC is built upon the AST-Toolkit. CSSV usesGolf, a ow-insensitive ontext-sensitive points-to analysistehnique, as the underlying whole program pointer analysis.Golf uses ow edges to represent assignments. Partial mustinformation on pointer aliases is extrated from these edges.Both the integer analysis and the automati derivation ofpre- and post-ondition were implemented using the Polylibrary.We applied CSSV to proedures from the following: (i) Astring-manipulation library from EADS Airbus with a totalof 400 lines and 11 proedures. (ii) �xwrites | part of web2a onverter from TeX, Metafont, and other related WEBprograms to C. fixwrites onsist of 460 lines and eightproedures. We have manually written ontrats for theanalyzed proedures.Table 5 desribes the benhmark harateristis and theanalysis results. The olumn LOC displays the numberof soure lines in the original soure. Column SLOC dis-



plays the number of soure lines after the soure-to-souretransformation. The Contrat olumn investigates the dif-�ulty of manually providing a ontrat. We use the har-aters `S',`B' and `I' as follows: (S) for simple spei�ation,suh as string and is within bounds, (B) for speifyingthe boundaries of bu�ers, and (I) for other integer relations.There was no need to provide pointer spei�ation for theanalyzed ode.Columns IP Vars and IP size report the number of vari-ables and statements in the integer program produed byC2IP. Columns CPU and Spae display the running timeand total alloated spae of CSSV. The measurements weredone using a 900 MHz Intel Pentium-III CPU with 512MBof memory, running Windows 2000.TheMsg olumns lassify the messages reported by CSSV.Messages are lassi�ed as errors for ases where there is aninput to the appliation on whih the error ours. Theerrors deteted are due to unsafe alls to library funtions,suh as strpy(), unsafe assumptions that an input ontainsa spei� harater, or unsafe pointer arithmeti.There are six false messages on Airbus's ode. The pro-gram destrutively assigns a non-zero harater to a ertainplae in a bu�er. CSSV fails to infer that this harater isnon zero. The funtion skip balaned safely assumes thatthe input parameter ontains a balaned number of paren-theses. This is veri�ed by the whole funtion whih is alledprior to skip balaned. This example demonstrates that insome ases it is hard to separate safety from orretness.To show that this funtion is safe, we need to verify or-retness, i.e., that the implementation orretly heks thatthe input string ontains a balaned number of parentheses.Fortunately, in most of the analyzed examples, this is notthe ase, i.e., the safety does not depend on orretness.The Deriving olumns provides information about thee�etiveness of the AWPre and ASPost algorithms. It isnot trivial to measure the result in terms of preision. Anew ontrat for a funtion P an hange the result of theanalysis of P itself and of proedures invoking P . We pro-

vide a simple measurement that is independent of the all-ing ontext. We run ASPost to generate a postondition,AWPre to generate a preondition, and then run CSSV.Columns CPU and Spae display the running time andtotal alloated spae of both ASPost and AWPre. ColumnVauous displays the number of false-alarm messages re-ported by CSSV when a vauous ontrat for the analyzedproedure is provided. Column Auto displays the numberof false alarms reported by CSSV when using the automati-ally derived ontrats. On average, the manually providedontrats redue the number of false alarms by 93% as om-pared to the vauous ontrats' false alarms, while the au-tomati derivation algorithm redues the number of mes-sage by 25%. The derived preonditions are in many asesweaker than the manually provided ones. Our initial studyindiates that this happens when the integer analysis joinstwo di�erent proedure behaviors. One potential remedy tothis impreision is by using sets of linear inequalities thatallow to preisely represent logial-or.
6. RELATED WORK

6.1 Static Detection of String ErrorsAlthough the problem of string-manipulation safety hek-ing is to verify that aesses are within bounds [16, 1, 26℄,the domain of string programs requires that the analysis beapable of traking the following features of the C program-ming language: (i) handling standard C funtions, suh asstrpy() and strlen(), whih perform an unbounded num-ber of loop iterations; (ii) statially estimating the length ofstrings (in addition to the sizes of alloated base addresses);this length is dynamially hanged based on the index ofthe �rst null harater; and (iii) simultaneously analyzingpointer and integer values is required whih preisely han-dle pointer arithmeti and destrutive updates.Many aademi projets produe unsound tools to stat-ially detet string-manipulation errors. In [18℄ an exten-sion to LCLint is presented. It uses unsound lightweight



App. Funtion Soure Code CSSV Msg DerivingLOC SLOC Contrat IPVars IPSize CPUse SpaeMB False Errors CPUse SpaeMB Vauous Auto
EADSAirbus RTC Si SkipLine 13 260 SBI 39 109 2.6 12 0 0 0.3 3 5 5RTC Se CopieEtFiltre 66 773 SB 127 812 206 347 6 0 95 433 24 24RTC Si FiltrerCarNonImp 19 114 S 13 151 0.3 2 0 0 0.2 2 4 4RTC Si Find 26 820 SI 108 476 2.7 24 0 0 1.4 54 4 1RTC Si StrNCat 8 299 SBI 54 182 0.9 6 0 0 0.2 3 2 0RTC Si CalulerStringTime 33 567 SBI 86 529 76 127 0 0 131 173 21 4RTC Si FormatMduTo- 18 273 SB 58 323 6.9 28 0 0 6.8 27 9 9FormatprinterRTC Si StoreIntInBu�er 35 222 SBI 59 346 9.8 43 0 0 3.3 22 15 15RTC Se ComposerEntete 10 550 SI 77 352 3.4 23 0 0 1.3 12 2 0�xwrites remove newline 12 260 S 35 203 0.1 2 0 0 0.61 1 1 0insert long 14 367 SB 138 571 13 99 0 2 23.4 86 5 0join 15 701 SB 95 443 2.1 23 0 2 6.7 15 2 2whole 30 423 S 46 352 1.2 20 0 1 0.6 4 9 9skip balaned 20 258 SB 29 215 0.3 5 2 0 0.6 3 6 6bare 26 333 S 41 319 0.6 12 0 3 0.4 9 11 11Table 5: The experimental results.tehniques, heuristis, and in-ode annotations are used tohek for bu�er overow vulnerabilities. Eau laire [2℄, atool based on ESC-Java, hek for seurity holes in C pro-grams by translating a subset of C to guarded ommands.It's annotation language is similar in sense to CSSV. In [29℄Wagner et al. present an algorithm that statially identi�esstring errors by performing a ow insensitive unsound anal-ysis. The main disadvantage of all of these unsound tools isthat they miss errors while CSSV does not miss any error.Furthermore, none of them an trak e�ets of pointer arith-meti, a widely used method for string manipulation. Soundalgorithm for statially deteting string errors are presentedin [9, 28℄. However, they an not handle all C, in partiu-lar multi-level pointers and strutures. As far as we know,CSSV is the �rst sound tool to handle all C and in a ratherpreise manner.

6.2 The Automatic Derivation ProcessThe Houdini annotation-derivation tool [10℄ tries ESC/Javawith di�erent annotations. Suh an approah is inadequatein our ase beause the number of potential annotations isunbounded. In ontrast, we derive a ontrat by forwardand bakward analyses of the integer program [11℄.

7. CONCLUSIONSBu�er overow is one of the most harmful soure of defetsin C programs. Moreover, it makes software vulnerable tohaker attaks. We believe that CSSV provides evidenethat sound analysis an be applied to verify statially theabsene of all string errors in realisti appliations.
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