
CSSV: Towards a Realistic Tool for Statically Detecting All
Buffer Overflows in C

Nurit Dor�
Tel-Aviv University

nurr@post.tau.ac.il

Michael Rodeh

IBM Research Lab in Haifa

rodeh@il.ibm.com

Mooly Sagiv

Tel-Aviv University

msagiv@post.tau.ac.il

ABSTRACTErroneous string manipulations are a major sour
e of soft-ware defe
ts in C programs yielding vulnerabilities whi
h areexploited by software viruses. We present C String Stati
Verifyer (CSSV), a tool that stati
ally un
overs all stringmanipulation errors. Being a
onservative tool, it reportsall su
h errors at the expense of sometimes generating falsealarms. Fortunately, only a small number of false alarms arereported, thereby proving that stati
ally redu
ing softwarevulnerability is a
hievable. CSSV handles large programs byanalyzing ea
h pro
edure separately. For this, pro
edures'
ontra
ts are allowed whi
h are veri�ed by the tool.We implemented a CSSV prototype and used it to ver-ify the absen
e of errors in real
ode from EADS Airbus.When applied to another
ommonly used string intensiveappli
ation, CSSV un
overed real bugs with very few falsealarms.
Categories and Subject DescriptorsD.2.4 [Software Engineering℄: Software/Program Veri-�Partially supported by a grant from the Ministry ofS
ien
e, Israel and by the RTD proje
t IST-1999-20527\DAEDALUS" of the european FP5 programme.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLDI’03, June 9–11, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-662-5/03/0006 ...$5.00.

�
ation|Assertion
he
kers, Reliability, Validation; F.3.1[Logi
s and Meanings of Programs℄: Spe
ifying andVerifying and Reasoning about Programs|Assertions, Pre-and post-
onditions; F.3.2 [Logi
s and Meanings of Pro-grams℄: Semanti
s of Programming Languages|Operationalsemanti
s, Program analysis
General TermsAlgorithms, Reliability, Experimentation, Se
urity, Languages,Veri�
ation
KeywordsError dete
tion, abstra
t interpretation, stati
 analysis, bu�erover
ow,
ontra
ts
1. INTRODUCTIONString-manipulation errors are a
ommon sour
e of soft-ware defe
ts and lead to many se
urity vulnerabilities. CERTadvisories report se
urity holes resulting from bu�er over-
ow, i.e., updates beyond the bounds of a bu�er [29℄. Fur-thermore, 60% of the UNIX failures reported in the 1995FUZZ study [23℄ are due to runtime string-manipulation er-rors, su
h as bu�er over
ow, a

ess beyond the bounds of astring and misuse of the null-termination byte.Our goal is to perform stati
 analysis that dete
ts allstring runtime errors with just a few false alarms. A falsealarm is a reported error that
an never o

ur at runtime.This goal is ambitious. Existing methods either: (i) misserrors (e.g., LCLint [18℄, Eau Claire[2℄, and [29℄); (ii) yieldmany false alarms (e.g., [18, 29℄); or (iii)
annot handle
om-

pli
ated aspe
ts of C, su
h as multilevel pointers and stru
-tures (e.g., [9, 28℄). Moreover, the
ost of stati
 analysis is
onsidered prohibitive when it
omes to large programs.This paper presents C String Stati
 Verifyer (CSSV forshort) | a tool that demonstrates that un
overing all stringproblems in C is a
hievable. CSSV is
apable of analyzingrealisti
 pro
edures and produ
es rather pre
ise results. Be-ing a
onservative stati
-analysis tool it
an never miss aruntime string error. It therefore guarantees the absen
eof all errors at the expense of sometimes generating falsealarms.For every pro
edure, CSSV allows the programmer toprovide a
ontra
t in
luding (i) a pre
ondition,(ii) a post-
ondition, and (iii) the potential side-e�e
ts of the pro
e-dure. Contra
ts may refer to normal C expressions (in
lud-ing pointers) and
an also refer to properties, (su
h as thenumber of allo
ated bytes) that are de�ned by an instru-mented
on
rete semanti
s.
1.1 Analysis of String Errors: CSSVFig. 1 shows how CSSV operates. Ea
h pro
edure is an-alyzed separately. In the �rst phase, a sour
e-to-sour
esemanti
-preserving transformation is applied to the ana-lyzed pro
edure P. This transformation exposes the behav-ior of the pro
edures invoked by P by essentially inliningtheir
ontra
ts. The generated program yields a runtimeerror when a
ontra
t is violated. In addition, the inlinernormalizes the C
ode to only in
lude statements in a Csubset
alled CoreC [30℄ whi
h simpli�es the task of imple-menting CSSV.The se
ond phase of CSSV analyzes pointer intera
tions.Condu
ting pointer analysis in a language like C is a non-trivial task. Moreover, it is diÆ
ult for programmers to de-�ne
ontra
ts regarding pointer behavior. Fortunately, sev-eral
ow-insensitive algorithms have been shown to run onwhole appli
ations of
onsiderable size, e.g., [4, 13℄. There-fore, CSSV does not require
ontra
t information above point-ers. Instead, CSSV applies a whole-program
ow-insensitive

pointer analysis to dete
t stati
ally whi
h pointers may point-to the same base address. CSSV then applies an algorithmthat extra
ts pro
edural points-to information for the an-alyzed pro
edure P. Our algorithm bene�ts from the fa
tthat memory lo
ations not rea
hable from visible variablesof P
annot e�e
t the post
ondition of P. In many
asesthis allows subsequent analyses to perform strong updateswhen analyzing the pro
edure's body. We also
ompute
ertain must-aliases to improve the pre
ision of the global
ow-insensitive pointer analysis. Pro
edural points-to infor-mation was also used to improve the
ost and pre
ision ofinterpro
edural analysis [21, 17, 6, 20℄.In the third phase, the pro
edure's
ode and points-toinformation are fed into the C2IP transformer. C2IP gen-erates a pro
edure that manipulates integers. C2IP guaran-tees that if there is a runtime string-manipulation error ina pro
edure invo
ation then either (i) the pro
edure's pre-
ondition did not hold on this invo
ation, or (ii) an assertstatement in the resultant integer program is violated on a
orresponding input. In addition, C2IP
he
ks pointer as-sertions if spe
i�ed in the
ontra
ts.In the fourth phase, the resultant integer program is ana-lyzed using a
onservative integer-analysis algorithm to de-termine all potential violations of assert statements. Be-
ause the integer and pointer analyses are sound and be
ause
ontra
ts are veri�ed both at
all sites and at the pro
edu-ral level, all string errors are reported. In parti
ular, theinteger analysis reports an error when the spe
i�ed post-
ondition is not guaranteed to hold. For minimizing thenumber of false alarms, CSSV uses a rather pre
ise integeranalysis that represents linear relationships on integer vari-ables. The �nal result is a list of potential errors. For everyerror, a
ounter-example is generated that
an assist theprogrammer in determining if a message is a real error or afalse alarm. False alarms may o

ur due to (i) erroneous oroverly weak
ontra
ts, (ii) abstra
tions
ondu
ted by C2IP,or (iii) impre
ision of the pointer or integer analyses.As opposed to alternative interpro
edural program analy-

program // inliner // annotatedprogram //
66

PointerAnalysis // pro
eduralpoints-to // C2IP ////

66

integerprogram // IntegerAnalysis // potentialerrors
ontra
ts 88
q

q
q

q
q

q
q Figure 1: High-level stru
ture of CSSV.sis te
hniques, CSSV's approa
h has important advantages:(i) Ea
h potentially re
ursive pro
edure
an be analyzedseparately, exa
tly on
e, i.e., the tool is appli
able even ifnot all the sour
e
ode is available (e.g., library fun
tions).(ii) Contra
ts o�er user
ontrol in a way similar to \designby
ontra
t" [25℄. In parti
ular, it enables CSSV to moree�e
tively lo
ate the a
tual sour
e lo
ation in whi
h the er-ror o

urs. (iii) Contra
ts
an improve the pre
ision of theanalysis by providing information whi
h
an be hard to stat-i
ally infer via an interpro
edural analysis. (iv) By using the
ontra
ts to analyze pro
edure
alls, CSSV applies a ratherpre
ise intrapro
edural algorithm to redu
e false alarms.

1.2 The Burden of ContractsContra
ts exert additional burden on the programmer. Inthe
ase of CSSV, this de�
ien
y is minimized be
ause thepre- and post-
onditions need not des
ribe the pro
edure's
omplete behavior. In parti
ular, pointer information is au-tomati
ally
olle
ted by CSSV, and therefore
ontra
ts usu-ally omit information about how pointers are used. More-over, unlike tools su
h as Eau Claire and LCLint, CSSV doesnot require annotations within the
ode itself su
h as loopinvariants. Also, unlike these unsound approa
hes, sin
eCSSV is sound, with any given
ontra
t, runtime errors
an-not go undete
ted. Depending on the
ontra
ts, errors willbe identi�ed when analyzing the body of the pro
edure orat the pro
edure invo
ations. Of
ourse, when a pro
edure's
ode is omitted su
h as in the
ase of library fun
tions, CSSVassume its
ontra
t is
orre
t and
an not verify it.Interpro
edural modi�
ation side-e�e
t analysis algorithmsalready exist (e.g., [27℄). They
an generate automati
allythe modify
lause. Therefore, it is always possible to run

CSSV with va
uous
ontra
ts in
luding only the side-e�e
tand a true pre- and post-
ondition.This paper presents preliminary algorithms for automati-
ally strengthening the pre- and post-
onditions. The e�e
-tiveness of these algorithms is measured by
omparing thenumber of false alarms obtained: (i) with the va
uous
on-tra
ts, (ii) when using automati
ally derived
ontra
ts, and(iii) when using manually provided
ontra
ts.The derivation pro
edure uses a forward sound integer-analysis algorithm
alled ASPost to
ompute an Approxi-mation to the Strongest Post
ondition of the integer pro-gram. Similarly, a ba
kward sound integer-analysis algo-rithm
alled AWPre is used to
ompute an Approximationto the Weakest liberal Pre
ondition [7℄. The generated post-
ondition (pre
ondition) is not ne
essarily the strongest be-
ause information is lost during the stati
 integer analysis.Both ASPost and AWPre yield integer
onditions. There-fore, the pro
ess
an be repeated iteratively by running thederivation pro
ess given the generated integer
onditionsand further restri
ting the existing pre
ondition (post
on-dition).We also present a
onservative method that uses the pro-
edural points-to information to
onvert an integer expres-sion for post
ondition (pre
ondition) into a C expressionthat
an be used to strengthen the initial
ontra
t.
1.3 Main ResultsThe
ontributions of this paper are summarized as follows:� A
onservative stati
-analysis algorithm for dete
tingstring runtime errors is presented. The algorithm re-du
es the problem of
he
king string manipulation tothat of
he
king integer manipulations|a problem for

whi
h well-known solutions exist. In
omparison to ourprevious algorithm, presented in [9℄, it handles the fullspe
trum of C language
onstru
ts, in
luding dynami-
ally allo
ated stru
tures, multilevel arrays, multilevelpointers, fun
tion pointers, and
asting. In addition,this algorithm is an order of magnitude better in itsasymptoti
 time and spa
e requirements.� Preliminary program-analysis algorithms for strength-ening pre- and post-
onditions are presented. The al-gorithms redu
e the burden on the programmer. Theyanalyze the input pro
edure using existing (potentiallyva
uous)
ontra
ts and yield a new, more restri
tive,
ontra
t for this pro
edure.� We have implemented CSSV using the AST-Tooklit [22℄,CoreC, the Golf pointer analysis [4, 5℄, and the poly-hedra integer analysis of [3℄ from [14℄. We have ap-plied the implementation to real-life programs. CSSVveri�ed an intri
ate string library from EADS Air-bus yielding only 6 false alarms. In the appli
ation�xwrites, part of web2
, CSSV un
overed 8 errors with2 false alarms. Finally, we implemented the derivationalgorithms and applied them to automati
ally gener-ate pre- and post-
onditions. The results show thatin some
ases it derived
ontra
ts equivalent to themanually spe
i�ed ones.
1.4 Outline of the Rest of this PaperThe rest of the paper is organized as follows: Se
tion 2introdu
es CoreC, a
ontra
t language, a running exam-ple, and an instrumented
on
rete semanti
s. Se
tion 3 de-s
ribes CSSV. Se
tion 4 des
ribes the
ontra
t derivationalgorithms. Se
tion 5 des
ribes the prototype implementa-tion and the experimental results. Se
tion 6 dis
usses re-lated work, and Se
tion 7
on
ludes the paper.
2. BACKGROUND

2.1 CoreC

CoreC is a subset of C with the following restri
tions:(i) Control-
ow statements are either if, goto , break or
ontinue; (ii) expressions are side-e�e
t free and
annot benested; (iii) all assignments are statements; (iv) de
larationsdo not have initializations; (v) address-of formal variables isnot allowed. An algorithm for transforming C programs toCoreC is presented in [30℄. Given a C program, it generatesan equivalent CoreC program by adding new temporaries.CSSV is de�ned and implemented for CoreC. In the rest ofthis paper, CoreC is used instead of C.
2.2 ContractsContra
ts are used to des
ribe expe
ted inputs, side-e�e
ts,and expe
ted output of fun
tions. In this paper, we write
ontra
ts in the style of Lar
h [19℄. Our implementation a
-tually supports a more general exe
utable language similarto [24℄, whi
h
an in
lude loops. Contra
ts are spe
i�ed inthe .h �le. Every prototype de
laration of a fun
tion f hasthe form:htypei f (� � �) requires heimodi�es hei; hei; : : : ; heiensures hei;de�ning the pre
ondition required to hold whenever f is in-voked, the side-e�e
ts of the fun
tion f, i.e., the obje
ts thatmay be modi�ed during invo
ations of f, and the post
on-dition that is guaranteed to hold on the modi�ed obje
ts.Here, hei is a C expression, without fun
tion
alls, overglobal variables and the arguments of f. We allow attributesof the form de�ned in Table 1 and displayed in Fig. 2. Adesignated variable return value denotes the return valueof f. The spe
ial syntax dheiepre denotes the value of heiwhen f is invoked. Although not required, the
ontra
tme
hanism enables spe
ifying pointer values. In additiontwo shorthand expressions are allowed: (i) string(arg) |indi
ating that arg points to a null-terminated string, and(ii) is within bounds(arg) | indi
ating that arg pointswithin the bounds of a bu�er.

Attribute Intended Meaningexp.base The base address of expexp.o�set The o�set of exp, i.e., exp - exp.baseexp.is nullt Is exp pointing to a null-terminated string?exp.strlen The length of the string pointed-to by expexp.allo
 The number of bytes allo
ated from expTable 1: Attributes in the
ontra
t language.
...
 ...
 0
 ...

exp
.
offset
 exp
.
strlen

exp
.
alloc

exp
.
base

exp
Figure 2: Graphi
al representation of
ontra
t-language attributes.
2.3 Running ExampleThe CoreC version of fun
tion RTC Si SkipLine from EADSAirbus (SkipLine for short) is shown in Fig. 3. SkipLineinserts NbLine newline
hara
ters starting at the lo
ationpointed-to by *PtrEndText, appends a null-termination
har-a
ter and sets *PtrEndText to point to the end of the string.A
ontra
t for SkipLine is shown in Fig. 4. The pre-
ondition demands that upon entry: *PtrEndText points towithin the bounds of a bu�er; the allo
ation spa
e from thelo
ation *PtrEndText is greater than NbLine; and, NbLineis at least zero. The fun
tion may modify the *PtrEndTextpointer and the bu�er pointed-to by *PtrEndText. Thepost
ondition indi
ates that *PtrEndText points to a null-terminated string of length zero, and its value is advan
edby NbLine bytes.Due to multi-level pointer indire
tions, destru
tive up-dates, and pointer arithmeti
, it is rather
hallenging to ver-ify the absen
e of errors in this fun
tion. CSSV is able toverify stati
ally the absen
e of string errors in this fun
tion,without reporting any false alarm.The toy main pro
edure, shown in Fig. 3,
alls SkipLineto insert a newline
hara
ter, reads input from the stan-

void SkipLine(int NbLine,
har** PtrEndText)f int indi
e;
har* PtrEndLo
;[1℄ indi
e=0;[2℄ begin loop:[3℄ if (indi
e>=NbLine) goto end loop;[4℄ PtrEndLo
 = *PtrEndText[5℄ *PtrEndLo
 = 'nn';[6℄ *PtrEndText = PtrEndLo
 + 1;[7℄ indi
e = indi
e + 1;[8℄ goto begin loop;[9℄ end loop:[10℄ PtrEndLo
 = *PtrEndText[11℄ *PtrEndLo
 = 'n0'; gvoid main()f
har buf[SIZE℄;
har *r, *s;[1℄ r = buf;[2℄ SkipLine(1,&r);[3℄ fgets(r,SIZE-1,stdin);[4℄ s = r + strlen(r);[5℄ SkipLine(1,&s); gFigure 3: SkipLine, a string manipulation fun
tionfrom EADS Airbus with a toy main fun
tion.dard input, and
on
atenates an additional newline by
all-ing SkipLine again. This pro
edure has an o�-by-one error.In the
ase of a user input of length SIZE-1, buf is full andthere is no spa
e for the additional newline. CSSV dete
tsthis error in main without reporting any false alarm.There is a strong
orrelation between the
ontra
ts andthe messages reported. However, errors do not go unde-te
ted. For example, omitting NbLine >= 0 from the pre-
ondition yields an error message during the analysis ofSkipLine. The message indi
ates that the post
ondition*PtrEndText == d*PtrEndTextepre + NbLinemay not hold. Interestingly, the
ounter-example produ
edby CSSV for this message shows that this post
ondition doesnot hold when the value of NbLine is negative.Providing a stronger pre
ondition than the weakest pre-
ondition
an yield error messages on a pro
edure invo
a-tion. For example, requiring that *PtrEndText points-to a

void SkipLine(int NbLine,
har** PtrEndText)requires is within bounds(*PtrEndText) &&*PtrEndText.allo
 > NbLine && NbLine >= 0modi�es *PtrEndText.strlen,*PtrEndText.is nullt, *PtrEndTextensures *PtrEndText.is nullt &&*PtrEndText.strlen == 0 &&*PtrEndText == d*PtrEndTextepre + NbLine ;Figure 4: A
ontra
t for SkipLine.null-terminated string will
ause an error message regardingthe
all to SkipLine at line [2℄ of main.
2.4 Instrumented Concrete SemanticsThe C programming language does not de�ne semanti
sfor C programs. In the ANSI-C standard there is an infor-mal notion of de�ned and unde�ned behavior. However, theexa
t behavior
an
hange, and often does, from one imple-mentation of a
ompiler to another. Due to the followingfeatures of the language, it is not trivial to de�ne semanti
sfor C:The address-of operation enables to
hange a variable'svalue without assigning to the variable. It also endurespointers to invisible variables.Allo
ation (dynami
 and stati
) routines of C provide anunformatted
ontiguous memory lo
ations, while fromthe semanti
 point of view there is a \hierar
hy" ofobje
ts where one obje
t may
ontain obje
ts of dif-ferent types. Moreover, obje
ts are type-less providing
exibility, where a lo
ation
an be a

essed a

ordingto di�erent types. However, this
auses diÆ
ultly inde�ning and
he
king the legitima
y of a

esses.\Big" L-values operations enables read and write ofa number of primitives a

ording to the type of anoperand.Pointer arithmeti
 is frequently used and has a de-�ned result. However,
he
king its validity is impossi-ble without additional instrumented information.

Cast operation is another well-de�ned feature but has manyun
lear out
omes. Moreover, a single lo
ation
an bea

esses (read or written) a

ording to di�erent types.In this se
tion, we sket
h an instrumented operational se-manti
s for C that veri�es the absen
e of out-of-bound viola-tions while allowing pointer arithmeti
, destru
tive updatesand
asting. The general idea is to de�ne a non-standardlow-level semanti
s that expli
itly represents the base ad-dress of every memory lo
ation and the allo
ated size start-ing from the base address. In [8℄, the soundness of CSSVis proved with respe
ts to this operational semanti
s. Thissemanti
s provides the foundation of CSSV's abstra
t inter-pretation.Definition 2.1. A
on
rete state at a pro
edure Pis a tuple: state\ = (L\;BA\; aSize\; lo
\; st\; numBytes\; base\)where:� L\ is a �nite set of all stati
, sta
k, and dynami
allyallo
ated lo
ations.� BA\ � L\ is the set of base addresses in L\.� aSize\ : BA\ ! N de�nes the allo
ation size in bytes ofthe memory region starting at a base address.� lo
\ : visvarP ! BA\ maps variables into their as-signed global or sta
k lo
ations (whi
h is always a baseaddress).� st\ : L\ ! val de�nes the memory
ontent, whereval = funinit ; unde�nedg [primitive [L\is the set of possible values. The value uninit repre-sents uninitialized values; unde�ned represents resultsfrom illegal memory a

esses; primitive refers to theset of C primitive type values.� numBytes\ : L\ ! N de�nes for ea
h lo
ation the num-ber of bytes of the value stored starting at the lo
ation.� base\ : L\ ! BA\ maps every lo
ation to its base ad-dress.

indice

0

4

PtrEndLoc

uninit

4

s
PtrEndText
NbLine

1

4
4
4

...
\
0
o
l
l
e
h
\
n

buf

SIZE

r

4
Figure 5: A
on
rete state arising at entry toSkipLine invoked by the se
ond
all from main. For
larity, the allo
ation size of buf is only shown sym-boli
ally.A
on
rete state that arises at entry to SkipLine when in-voked by the se
ond
all in main is shown in Fig. 5. Ea
h boxrepresents an allo
ated memory region starting at a base-address. We draw
ontiguous memory lo
ations as boxesand display their allo
ation sizes underneath the boxes. Here,we assume that integers and pointers are four-byte long anda
hara
ter is one-byte long. We draw a variable v abovea box whose base address is lo
\(v). The value inside ea
hbox shows the
orresponding store
ontent. Pointer valuesare drawn as edges.Intuitively, the state keeps tra
k of the set of allo
atedlo
ations (L\). The origin lo
ation of ea
h memory regionthat is guaranteed to be
ontiguous is in BA\. The use of theaSize\ and base\ mappings allows the semanti
s to validatethat pointer arithmeti
 and dereferen
es are within bounds.In order to handle destru
tive update to a variable via theaddress-of operation, lo
\ represents the address of variables,and st\ maps lo
ations into their values. For example, thepointer to s is des
ribed as a pointer to a lo
ation whi
h islo
\(s). Our
on
rete example
ontains, among others, thefollowing interesting mappings:st\(lo
\(PtrEndText)) = lo
\(s)numBytes\(lo
\(PtrEndText)) = 4st\(lo
\(buf) + 1) = 'h'numBytes\(lo
\(buf) + 1) = 1indi
ating that PtrEndText points-to the sta
k lo
ation of s

whi
h is a four-byte value, and that the se
ond byte of buf
ontains the
hara
ter 'h'.The asso
iation of the number of bytes with lo
ations en-ables us to handle
ases where a lo
ation is a

essed throughdi�erent types. Spe
i�
ally, writing a lo
ation as one typeand later reading it as a di�erent size type results in theunde�ned value.Definition 2.2. A
on
rete state (L\;BA\; aSize\; lo
\; st\;numBytes\; base\) is admissible if for every lo
ation l\ 2 L\su
h that st\(l\) 6= unde�nedthen st\(l\ + i) = unde�ned ; 1 � i < numBytes\(l \) ^:9l0\ < l\ : st\(l0\) 6= unde�ned ^ l \ < l 0\ + numBytes\(l 0\)Thus an admissible state does not
ontain any \overlapping"
ontents. Our semanti
s only yields admissible states. Thisis a
hieved by de�ning the semanti
s of assignments to setto unde�ned all mapping that are overwritten.L-values and R-values on C expressions
an be de�nedby straightforward stru
tural indu
tion. In parti
ular for apointer variable p, we de�ne the L-value and the R-value,denoted as lp and rp, respe
tively, as follows:lp(state\) def= lo
\(p)rp(state\) def= st\(lp(state\))= st\(lo
(p))We de�ne a fun
tion, index \, to reason about the displa
e-ment of a lo
ation from its base. Formally,index \ : L\ ! Nindex \(l\) def= l\ � base\(l\)With the additional information of aSize\, base\, the R-valueof an attribute is easily de�ned. In parti
ular the R-valueof the attribute p.offset is index \(rp(state\)).Con
rete states represent stru
tures using sets of base ad-dresses. Ea
h �eld is asso
iated with a unique base, b\, and

aSize\(b\) is the size of the �eld. By abstra
ting this se-manti
s, CSSV veri�es that there are no a

esses that usepointer arithmeti
 to
ross �eld bounds.
3. CSSVCSSV analyzes ea
h pro
edure separately. We refer to theanalyzed pro
edure as P . CSSV
he
ks for three kinds of er-rors: (i) ANSI-C violations related to strings, su
h an a

essout of bounds. (ii) Violations of pre- and post-
onditions ofpro
edures as required by the provided
ontra
ts. When apro
edure is invoked, the
allee's pre
ondition is
he
ked.At the end of P , P 's post
ondition is
he
ked. (iii) Ouranalysis
he
ks
ertain
leanness
onditions that
orrespondto good programming style. In parti
ular, it validates thatall a

esses are before the null-termination byte, if it exists.
3.1 Technical OverviewPointers and integers intera
t in a non-trivial way, espe-
ially in the C programming language. For example, it isnon-trivial to
he
k the safety of the expression*PtrEndText = 'nn'in line [5℄ of SkipLine, i.e., that the pointer *PtrEndText iswithin bounds. CSSV infers the relationships between theo�set of *PtrEndText, the allo
ation size of its base address,and the integer variables indi
e and NbLine needed to ver-ify the safety of this destru
tive update. As we shall see,our algorithm stati
ally veri�es su
h inequalities by
om-bining a pointer-analysis algorithm that dete
ts pointers tothe same base address, with an integer-analysis algorithmthat dete
ts o�set relationships among pointers. The o�setof a pointer is the index of the lo
ation it points to. Of
ourse, in
ontrast to the
on
rete semanti
s, the abstra
tsemanti
s summarizes many
on
rete lo
ations by a singleabstra
t lo
ation. It also maintains the potential points-to-relationships between these addresses.CSSV applies a whole program
ow-insensitive pointeranalysis to dete
t stati
ally whi
h pointers may point to

the same base address. In parti
ular, for every fun
tion,it provides a summary of all of its
alling
ontexts. Inprin
iple, a
onservative analysis
an utilize this informa-tion and analyze a fun
tion with all possible
alling
on-texts. However, this
an yield many false alarms. For ex-ample, the whole-program analysis of SkipLine yields thatPtrEndText may point to either s or r. Conservatively an-alyzing the fun
tion's body with the two
alling
ontexts,requires treating updates to integer properties su
h as theo�set of *PtrEndText as weak updates. Therefore, the anal-ysis will fail to show that the post
ondition holds. As aresult, a false alarm will be issued. CSSV avoids this falsealarm by performing strong updates in
ertain
ases. Themain idea is to pre
ompute pro
edural points-to informa-tion that guarantees that strong updates to the o�set of*PtrEndText
an be performed. In general, it guaranteesthat in well-behaved programs dire
t updates through theformal parameters
an be interpreted as strong updates.The pro
edural points-to information is used by C2IP togenerate an integer program. Integer
onstraint variablessummarize the semanti
 properties, (e.g., allo
ated size) ofthe represented lo
ations. Finally, a
onservative integeranalysis determines potential values of the semanti
 proper-ties and veri�es the
onstraints upon them.The rest of this se
tion is organized as follows: Se
tion 3.2des
ribes the pro
edure that inlines
ontra
ts in P . Se
-tion 3.3 formalizes the pro
edural points-to information forP . Se
tion 3.4 des
ribes the C2IP transformation appliedto P . Se
tion 3.5 sket
hes the integer-analysis algorithm.
3.2 Exposing Procedures’ BehaviorThe �rst step of CSSV takes as input the C program andthe provided set of
ontra
ts, and generates a new C pro-
edure inline(P) by exposing the
ontra
ts of P and of theinvoked pro
edures. Sin
e inline(P)
ontains assert state-ments that verify
ontra
ts, the behavior of inline(P) di�ersfrom the behavior of P for inputs violating
ontra
ts. Forother inputs inline(P) and P behave the same.

Most of the C statements remain inta
t. Table 2 showsthe s
heme for translating the a�e
ted statements. We addthe following synta
ti
 extensions to C: (i) The
onstru
tassume(hei) that indi
ates that hei holds after this state-ment, i.e., if hei does not hold the exe
ution is abortedwithout any message. It is used to re
e
t
ommitmentsof other pro
edures. (ii) Additional temporary variablesnamed \hei" used to store the value of a subexpressiondheiepre at the pro
edure entry. (iii) the
ontra
t-languageattributes whi
h have a well-de�ned meaning in our instru-mented
on
rete semanti
s.Pro
edure entry is en
ountered before the �rst exe
utablestatement. In this
ase, the additional variables are initial-ized and P 's pre
ondition is veri�ed. The designated vari-able return value is set at every return statement. At everyexit point (in
luding return), P 's post
ondition is veri�ed.On a
all to g we verify that g's pre
ondition holds andassume that the post
ondition holds. The original
all tog is in the emitted
ode. This is essential for inline(P) tobehave the same as P .
3.3 Pointer AnalysisThe se
ond step of CSSV
omputes an abstra
tion of allpotential pointer relationships between lo
ations in
on
retestates that may o

ur during P 's exe
ution. However, onlylo
ations that
an be a

essed during the exe
ution of Pare of interest. Therefore, we de�ne the notion of rea
hablelo
ations.Definition 3.1. In a
on
rete state, a lo
ation l\ isrea
hable if there exists a visible variable whose store
on-tents
an (indire
tly) in
lude l\ (i.e., there is an expressionwhose L-value is l\).We infer the pointer relationships among rea
hable lo
a-tions by
omputing a pro
edural pointer information thataims at representing the single lo
ation a formal points-toat the pro
edure entry. This se
tion des
ribes the abstra
tstate representing pointer relationships and an algorithm to
ompute this state.

3.3.1 Procedural Points-to StateWe formalize an abstra
t state that regards pointer rela-tionships among rea
hable lo
ations of P as follows:Definition 3.2. A pro
edural abstra
t points-to stateof P (PPT) is a quadruple stateP = (BAP ; lo
P ; ptP ; smP)where:� BAP is a set of abstra
t lo
ations that represent allrea
hable
on
rete base addresses.� lo
P : visvarP ! 2BAP maps variables into set of ab-stra
t lo
ations representing the variable's global or sta
klo
ations.� ptP : BAP ! 2BAP abstra
t the possible pointers. A
on
rete pointer is represented by a ptP relationshipbetween the abstra
t lo
ations representing the base ad-dresses of the pointer's sour
e and target lo
ation.� smP : BAP ! f1;1g is an abstra
t
ount on the num-ber of
on
rete base addresses represented by an ab-stra
t lo
ation, i.e., sm(ba) = 1 when ba may repre-sent more than one base address in a given
on
retestore, and 1 when it is guaranteed to represent at mostone base address. An abstra
t lo
ation having sm =1is a summary abstra
t lo
ation. Summary abstra
tlo
ations
an be used to represent unbounded sets ofbase addresses.We say that a PPT (BAP ; lo
P ; ptP ; smP) is a sound ap-proximation of a
on
rete state (L\;BA\; aSize\; lo
\; st\;numBytes\; base\) in a pro
edure P if there exists a fun
tion� : BA\ ! BAP satisfying the following requirements:Base For all rea
hable b\ 2 BA\: �(b\) 2 BAP .Sta
k For all v 2 visvarp: �(lo
\(v)) 2 lo
(v).Pointer For all l1\; l2\ 2 L\ s.t., l1\ and l2\ are rea
h-able, and satisfying st\(l1\) = l2\: �(base\(l2\)) 2pt(�(base\(l1\))).

Event Emitted Codeentry of P (f1; f2; : : : ; fn) \heii" = heii; for every dheiiepre in post [P ℄assume(pre[P ℄(f1 ; f2 ; : : : ; fn));return hei return valueP = hei;exit P assert(post [P ℄(f1 ; f2 ; : : : ; fn));hei = g(a1; a2; : : : ; am) f \heii" = heii; for every dheiiepre in post [g ℄assert(pre[g ℄(a1 ; a2 ; : : : ; am));return valueg = g(a1; a2; : : : ; am);assume(post [g ℄(a1 ; a2 ; : : : ; am));hei = return valueg; gTable 2: The emitted C
ode for e�e
ted statements. The notation pre[x ℄(e1 ; e2 ; : : : ; em) stands for the pre
on-dition of pro
edure x where formal fi is repla
ed with the expression ei. The expression post [x ℄ is obtainedsimilar to pre[x ℄, however ea
h of the dheiiepre expression is repla
ed with the variable \heii". return valuex isa designated variable representing the return value in the post
ondition of pro
edure x.Summary For all b 2 BAp, s.t., smP (b) = 1, and b1\; b2\ 2BA\ having �(b1\) = �(b2\) = b: b1\ = b2\.Definition 3.3. A stateP is a sound approximationof P if it is a sound approximation of all the
on
rete statesthat may arise during the exe
ution of P .L-values and R-values are generalized to return sets ofabstra
t lo
ations. In parti
ular for a visible pointer variableq: lq(state) def= lo
P (q)rq(state) def= Sl2lq(state) ptP (l)= Sl2lo
P (q) ptP (l)
3.3.2 Constructing Procedural InformationCSSV
omputes a sound approximation statep in two stages:First, a whole-program analysis is applied to
ompute aglobal abstra
t points-to state of the whole programGstate =(BA; lo
; pt; sm) where:� BA in
ludes all abstra
t lo
ations.� lo
 : var! 2BA.� pt : BA ! 2BA.� sm : BA ! f1;1g.This global state is guaranteed to be a sound approximationof all pro
edures. Se
ond, this global state is used to
on-stru
t a sound approximation of P . Many possible solutions

�� ��

�� ��lPtrEndText
{{ &&�� ��

�� ��lr
""

�� ��

�� ��ls
xx�� ��

�� ��
lbuf //�� ��

�� ��N �� ��

�� ��lPtrEndLo
oo

�� ��

�� ��lPtrEndText
��

�� ��

�� ��rPtrEndText
��

�� ��

�� ��N �� ��

�� ��lPtrEndLo
oo(a) (b)Figure 6: The whole-program points-to informa-tion for the running example (a), and the PPT forSkipLine (b).exist. We de
ided to bias towards pre
ise representationof formal parameters, with the intention to
ondu
t strongupdates on their properties in many
ases.Fig. 6 demonstrates the pro
ess. When possible we denoteabstra
t lo
ations as either as L-values (e.g., ls) or as theR-value (e.g. rbuf) of some pointer. We
an see that anew abstra
t lo
ation rPtrEndText represents the (unique)
on
rete lo
ation whi
h holds the value of *PtrEndText.Given a global abstra
t pointer state of the whole pro-gram Gstate = (BA; lo
; pt; sm), let us
onstru
t, a PPTfor P stateP = (BAP ; lo
P ; ptP ; smP). The mapping lo
Pis
omputed by proje
ting lo
 to the visible variables of P .Similarly, BAP and smP are
omputed by in
luding abstra
tlo
ations rea
hable from visible variables of P .An initial value for ptP is obtained by proje
tion. In ourrunning example, this yields the same state as the globalpoints-to information shown in Fig. 6(a) without the lbufabstra
t lo
ation. We aim at a potentially more pre
ise

Boolean parameterizable(PPT stateP , formal f)f let stateP = (BAP ; lo
P ; ptP ; smP)let lf = lo
P (f) // the L-value of fif smP (lf) =1 return falselet fl1; l2; : : : ; lmg = pt(lf) // the R-values of ffor i = 1 to mif smP (ri) =1 return falseremove from pt edges from lf to lj where j 6= i,and let pt0 be the resultant points-to map.if exists a rea
hable node rj ; j 6= i in pt0 thenreturn false// at most one of the
on
rete lo
ations pointed-to by f// is rea
hable in a
on
rete state represented by statePreturn true;gFigure 7: Algorithm to
onservatively
he
k that atmost one
on
rete lo
ation is represented by the setpointed-to by a formal parameter f .representation. A
onservative algorithm to
he
k if it issound to merge the nodes l1; l2; : : : ; lm pointed-to by a for-mal f without
reating a new summary node is presented inFig. 7. This algorithm
he
ks that for every
on
rete storeat most one
on
rete lo
ation is represented by rf (the setof abstra
t lo
ations pointed-to by a formal parameter f).The
orre
tness of the algorithm is established in [8℄.When permitted, the merge is done by (i) repla
ing l1; l2; : : : ; lmby a single non-summary abstra
t lo
ation rf . (ii) settingpt(rf) to Smi=1 pt(li). This may improve the pre
ision of de-stru
tive updates through f , but may de
rease the pre
isionof other updates.
3.4 C2IPThe C2IP transformation takes the inline(P) pro
edurewith its PPT as input, and produ
es an integer program(IP for short) as output. The generated IP tra
ks the stringand integer manipulations of P and of the invoked pro
e-dures. The IP is nondeterministi
, re
e
ting the fa
t thatnot all values are known. The symbol unknown stands foran undetermined value. In parti
ular, we use the followingexpressions:

x := unknown; Assigns any value to. xif (unknown) Either the true or the false bran
h
an be taken.The semanti
s of the assume
onstru
t in the integer pro-gram is to restri
t the behavior of nondeterministi
 pro-grams. Finally, for
larity, we use mathemati
al
onstru
tsin the IP.The IP in
ludes
onstraint variables used to denote in-teresting semanti
 properties su
h as o�sets. C2IP gener-ates update statements assigning new values to
onstraintvariables, re
e
ting the
hanges in the semanti
 properties.Assert statements over the
onstraint variables are gener-ated for
he
king the safety of basi
 C expressions and forverifying
ontra
ts. In addition, C2IP
an validate pointerassertions if spe
i�ed in the
ontra
ts. Due to the
ow in-sensitivity of our pointer analysis, this
apability is ratherweak in terms of pre
ision. When a pre
ondition may nothold, an error message is reported.
3.4.1 Constraint VariablesFor every abstra
t lo
ation, l, C2IP generates the follow-ing
onstraint variables:� l:val to represent potential primitive values stored inthe lo
ations represented by l.� l:o�set to represent potential o�sets of the pointersrepresented by l, i.e., l:o�set
onservatively representsindex \(st\(l\)) for every lo
ation l\ represented by l.� l:aSize, l:is nullt and l:len to des
ribe the allo
ationsize, whether the base address
ontains a null termi-nated string, and the length of the string (ex
ludingthe null byte) of all lo
ations represented by l.
3.4.2 Translating StatementsTransforming C expressions involves querying the PPT toobtain the abstra
t lo
ations a pointer may point-to. Forsimpli
ity, in this subse
tion we assume that every pointermay only point to a single non-summary abstra
t lo
ation.

C Exp. Generated IP Condition*p lp:o�set � 0^((rp:is nullt ^ lp :o�set � rp :len)_(:rp:is nullt ^ lp:o�set < rp :aSize))p + i lp:o�set + li:val � 0^lp:o�set + li:val � rp:aSizeTable 3: Asserted IP
onditions for C expressions.Thus, lp (representing the global or sta
k lo
ation of p), andrp (representing the lo
ation pointed-to by p) are both sin-gletons for every pointer p. In Se
tion 3.4.2.3, the handlingof arbitrary PPT is dis
ussed.
3.4.2.1 Safety Checks.For every basi
 C expression, there is a
ondition that ver-i�es the validity of the expression. Table 3 lists the gener-ated assert expressions. On every dereferen
e to an address,a
he
k that the address is within bounds is generated. Theupper bound is
he
ked depending on whether the bu�er isnull-terminated. If it is, the dereferen
ed lo
ation is
he
kedto be at or before the null-termination byte. CSSV follows[15, pp.205℄ and
he
ks that the result of pointer arithmeti
is either before or at the �rst lo
ation beyond the upperbound.
3.4.2.2 Update Statements.C2IP generates statements to re
e
t semanti

hanges re-garding the properties tra
ked. Table 4 displays the gener-ated statements from transforming CoreC statements and
onditional expressions involving pointers to bu�ers, whi
his the interesting part of C2IP.On allo
ation, the resultant pointer always points to thebase address. Therefore, its o�set is always zero. We setthe allo
ation size of the abstra
t lo
ation that representsthe newly allo
ated lo
ation. Destru
tive updates are sepa-rated into two
ases: (i) The assignment of the null
hara
-ter, whi
h sets the bu�er to a null-terminated string. Thelength of the string is the lo
ation of the �rst zero byte.C2IP generates a
he
k that all dereferen
es are before thenull-termination byte (if it exists). Therefore, we
an safely

assume that when assigning a null-termination byte it is the�rst one. (ii) In the assignment of a non-zero
hara
ter, itis
he
ked if the null-termination byte was overwritten.The generated IP does not
ontain fun
tion
alls. Be
auseC2IP transforms the inline(P) pro
edure, the pre- and post-
onditions of an invoked pro
edure g are transformed. How-ever, the
all to a pro
edure needs to be analyzed
onserva-tively. C2IP
onverts the
all to g with the modify
lause ofg and substitutes a
tual for formal parameters. The mod-ify
lause is interpreted as assignments of unknown to the
onstraint variables of the abstra
t lo
ations that representpotentially modi�ed obje
ts.To in
rease pre
ision,
ertain program
onditions are in-terpreted. The se
ond part of Table 4 shows the interpreted
onditions. When
he
king for null-termination, C2IP re-pla
es the
ondition with a
ondition over
onstraint vari-ables that tra
k length and the existen
e of a null-
hara
ter.Pointer
omparisons are repla
ed by expressions that
om-pute the expression over the appropriate offset �eld.For ease of use, the
ontra
t language allows spe
ifyingattributes on pointers instead of on base addresses. For ex-ample, p.allo
 represents the allo
ation size starting at thelo
ation pointed to by p. The last part of Table 4 lists thetransformation of
ontra
t's attributes to
onstraint vari-ables by referring to the abstra
t lo
ations pointed to bythe spe
i�ed pointer.
3.4.2.3 Other C Constructs.The points-to graph
ontains may information, represent-ing the fa
t that a pointer may or may not point to a spe
i�
lo
ation. Furthermore, all pointers to a summary abstra
tlo
ation are may pointers. To re
e
t the fa
t that a baseaddress represented by l may or may not be modi�ed, C2IPgenerates every update statement (shown in Table 4) as anondeterministi
 assignment, under an if (unknown) state-ment. On the other hand, to be
onservative, the analysismust take into a

ount all possible values of a pointer, andverify expressions on all possible pointer values. This is

done for all the generated assert statements and program
onditions.To handle
asting and unions, C2IP generates for an as-signment to one type of
onstraint variable assignments ofunknown to the other
onstraint variables. For example, anassignment of an integer to a
on
rete lo
ation representedby abstra
t lo
ation l yields an assignment to l:val . In addi-tion, C2IP generates the assignment l.o�set := unknown. Inparti
ular, a
ast to and from pointer type is
onservativelyhandled by an assignment to unknown.The pointer analysis determines whi
h fun
tions may beinvoked at a
all statement via a fun
tion pointer. Then,CSSV generates a non-deterministi
 statement that sele
tsan arbitrary fun
tion
all.It is diÆ
ult to write general
ontra
ts for the formatfun
tions, su
h as sprintf() and printf(). Therefore, forthe format fun
tions, C2IP generates automati
ally pre- andpost-
ondition a

ording to the exa
t
alling
ontext. CSSVwarns in
ases where the format parameter is not a
onstant.
3.4.2.4 The Complexity of C2IP.The number of
onstraint variables in the IP is O(V)where V is the number of variables and allo
ation sites inthe C program. Be
ause a pointer may point to V abstra
tlo
ations, the translation of a C expression that
ontains onepointer generates O(V) IP statements. Therefore, the sizeof the IP is O(S � V); where S is the number of C expres-sions. This is an order-of-magnitude improvement over thetransformation in [9℄, whi
h generates O(V 2) variables andO(S � V 2) statements.
3.5 Integer AnalysisThe �nal step of CSSV analyzes the IP and reports poten-tial assert violations. In theory, any sound integer analysis
an be used. Be
ause many of the tra
ked semanti
 proper-ties are external to the pro
edure, and sometimes, even tothe whole appli
ation, it is essential to tra
k relationshipsbetween
onstraint variables and not just possible values.Furthermore, many of the
onditions to infer involve three

C Constru
t IP Statementsp = Allo
(i); lp:o�set := 0;rp:aSize := li :val ;rp:is nullt := false;p = q + i; lp:o�set := lq:o�set + li:val ;*p =
; if
 = 0 then frp:len := lp :o�set ;rp:is nullt := true; gelseif rp:is nullt ^ lp :o�set = rp :len thenlp:is nullt := unknown ;
 = *p; if rp:is nullt ^ lp :o�set = rp :len thenl
:val := 0;else l
:val := unknown ;g(a1; a2; : : : ; am); mod[g℄(a1; a2; : : : ; am);*p == 0 rp:is nullt ^ rp:len = lp:o�setp > q lp:o�set > lq:o�setp.allo
 rp:aSize � lp :o�setp.o�set lp:o�setp.is nullt rp:is nulltp.strlen rp:len � lp:o�setTable 4: The generated transformation for C state-ments,
onditional expressions and
ontra
ts' at-tributes. p and q are variables of type pointer to
har. i and
 are variables of int type. Allo
 is amemory allo
ation routine, e.g., mallo
 and allo
a.and more properties, e.g., the post
ondition of SkipLine re-garding the new o�set of *PtrEndText. Therefore, be
auseour goal is as few as possible false messages, we apply thelinear-relation-analysis algorithm [3, 12℄ whi
h dis
overs lin-ear inequalities among numeri
al variables. This methodidenti�es linear inequalities of the form: �ni=1
ixi + b � 0,where xi is an integer variable and
i and b are
onstants. Inour
ase, xi are the
onstraint variables. Upon terminationof the integer analysis, the information at every
ontrol-
ownode
onservatively represents the inequalities that are guar-anteed to hold whenever the
ontrol rea
hes the respe
tivepoint. The reader is referred to [3, 12, 9℄ for informationabout integer analysis.
3.5.1 Assert checkingDuring integer analysis, ea
h assert statement is veri-�ed. This is done by
he
king if the asserted integer expres-sion is implied by the linear inequalities that hold at the
orresponding
ontrol-
ow node. If it is not implied then

rbuf :aSize = SIZErbuf :len � 1rbuf :aSize � rbuf :len + 1ls:o�set = rbuf :len(a)[5℄ SkipLine(1,&s);require(rbuf :aSize � ls :o�set > 1)error: the require may be violated when:rbuf :aSize = rbuf :len + 1(b)Figure 8: A report on the error in line [5℄ of main.The derived inequalities before exe
ution of line [5℄of main (a), and a
ounter example (b).a
ounter-example is generated. The
ounter-example de-s
ribes the values of the
onstraint variables where a stringerror in the C program may arise.Fig. 8 demonstrates how the stati
 integer-analysis algo-rithm identi�es the error in the
all to SkipLine in line [5℄of main. The algorithm yields that the inequalities shownin Fig. 8 (a) hold before the exe
ution of line [5℄, and thatwhen the equality shown in Fig. 8 (b) holds a violation ofSkipLine's pre
ondition o

urs.
4. DERIVING CONTRACTSThis se
tion presents integer-analysis algorithms to strengthenpre- and post-
onditions. The following pro
ess is appliedto a pro
edure P :1. Compute side-e�e
t information for P.2. Run the inliner and C2IP with va
uous true pre- andpost-
ondition whi
h produ
es an integer program IP0.3. Run ASPost, a forward integer analysis of [3℄ on IP0whi
h
omputes a safe approximation of the strongestpost
ondition. Obtain a new IP program IP1 by strength-ening the post
ondition with the set of linear inequali-ties generated by the integer analysis at the pro
edureexit.4. Run AWPre, a ba
kward integer analysis on IP1 whi
h
omputes an approximation to the weakest liberal pre-
ondition. Obtain a new IP program IP2 by strength-

ening the pre
ondition with a set of linear inequalitiesgenerated by the analysis at the pro
edure entry.
5. Writeba
k | by using the PPT,
onvert the pre- andthe post-
onditions of IP2 to C expressions over theformal parameters and global variables of P .The derivation pro
ess
an also start with manually given
ontra
ts. For appli
ations with a
y
li

all graphs, theabove pro
ess
an be automati
ally applied in a bottom-upfashion, starting with the leaf pro
edures.

4.1 Integer AnalysisThe ASPost algorithm is essentially the algorithm of Se
-tion 3.5 without reporting false alarms. It
omputes linearinequalities that hold at the exit point. Lo
al variables areeliminated. The resulting inequalities are added to the inputpost
ondition.To improve the e�e
tiveness of the derivation, the inlinerphase is allowed to add designated variables to re
ord valuesof properties that may be modi�ed by P. For every poten-tially modi�ed integer property expressed as a C expressionhei, the inline(P) pro
edure in
ludes a new variable \hei"with an additional C statementassume(\hei" == hei);During the writeba
k pro
ess, this variable is repla
ed byan appropriate dheiepre expression in the post
ondition. Inthis example, sin
e *PtrEndText may be modi�ed, variablesare used to re
ord all its properties. In parti
ular, a vari-able \rPtrEndText:o�set" re
ords the value of the expressionrPtrEndText:o�set at the entry.The linear relationships obtained by ASPost when appliedto SkipLine in the running example with a true pre
ondi-tion are:

N:is nullt = trueN:len = rPtrEndText :o�setrPtrEndText:o�set � \rPtrEndText:o�set" + lNbLine:val(1)The existen
e of a null-termination byte and the newlength of the base address points to-by *PtrEndText is
om-puted by ASPost pre
isely. ASPost �nds a relationship be-tween the old and new o�sets of *PtrEndText. However,this relationship is weaker than the manually provided oneon whi
h the inequality is an equality. Both ASPost andAWPre may lose information due to joins of
ontrol-
owpaths and due to the widening operation.AWPre is similar to the forward algorithm in the sensethat it uses the same abstra
t domain and abstra
t opera-tions. The main di�eren
e is the treatment of assignments,whi
h are handled by substitutions.
4.2 Write BackThe pre- and post-
onditions generated by AWPre andASPost are
onverted into C expressions over the formalparameters and global variables of P . These expressions areadded to the input
ontra
ts using logi
al-and operator.
4.2.1 Obtaining PostconditionsRe
all that the integer analysis
omputes properties of ab-stra
t lo
ations. Ea
h su
h abstra
t lo
ation
orresponds toa set of L-value expressions over global and formal variablesof P. Consider an abstra
t lo
ation l and assume, for simpli
-ity, that there is a unique expression, say e, whose L-value isl. In this
ase, every
onstraint variable in the inequalitiesthat o

ur in the exit are repla
ed by substituting e for a.Ea
h o

urren
e of a designated formal parameter \hei" isrepla
ed by dheiepre. Finally, the semanti
 properties are
onverted to the
ontra
t-language attributes.For the equations in (1), the writeba
k algorithm yields:**PtrEndText.is nullt &&**PtrEndText.strlen = 0 &&

*PtrEndText.o�set >= d*PtrEndText.offsetepre + NbLineWhen an abstra
t lo
ation
orresponds to a set of L-value expressions, we generate a weaker post
ondition usinglogi
al-or operator. An alternative would be to ignore someof these expressions, whi
h may lead to false alarms whenthe pro
edure is analyzed by CSSV.
4.2.2 Obtaining PreconditionsGenerating C expressions for pre
onditions from the entryinequalities is similar to the pro
ess of generating post
ondi-tion. The main di�eren
e is that we use logi
al-and insteadof logi
al-or when multiple expressions
orrespond to thesame abstra
t lo
ation.
5. EMPIRICAL RESULTSImplementing the CSSV tool is non-trivial be
ause of the
ompli
ated aspe
ts of C and program analysis. We haveimplemented a prototype of CSSV with signi�
ant help fromthe Semanti
s Based Tools group at Mi
rosoft Resear
h andfrom Greta Yorsh from Tel-Aviv university. The
ompilerfrom C to CoreC is built upon the AST-Toolkit. CSSV usesGolf, a
ow-insensitive
ontext-sensitive points-to analysiste
hnique, as the underlying whole program pointer analysis.Golf uses
ow edges to represent assignments. Partial mustinformation on pointer aliases is extra
ted from these edges.Both the integer analysis and the automati
 derivation ofpre- and post-
ondition were implemented using the Polylibrary.We applied CSSV to pro
edures from the following: (i) Astring-manipulation library from EADS Airbus with a totalof 400 lines and 11 pro
edures. (ii) �xwrites | part of web2
a
onverter from TeX, Metafont, and other related WEBprograms to C. fixwrites
onsist of 460 lines and eightpro
edures. We have manually written
ontra
ts for theanalyzed pro
edures.Table 5 des
ribes the ben
hmark
hara
teristi
s and theanalysis results. The
olumn LOC displays the numberof sour
e lines in the original sour
e. Column SLOC dis-

plays the number of sour
e lines after the sour
e-to-sour
etransformation. The Contra
t
olumn investigates the dif-�
ulty of manually providing a
ontra
t. We use the
har-a
ters `S',`B' and `I' as follows: (S) for simple spe
i�
ation,su
h as string and is within bounds, (B) for spe
ifyingthe boundaries of bu�ers, and (I) for other integer relations.There was no need to provide pointer spe
i�
ation for theanalyzed
ode.Columns IP Vars and IP size report the number of vari-ables and statements in the integer program produ
ed byC2IP. Columns CPU and Spa
e display the running timeand total allo
ated spa
e of CSSV. The measurements weredone using a 900 MHz Intel Pentium-III CPU with 512MBof memory, running Windows 2000.TheMsg
olumns
lassify the messages reported by CSSV.Messages are
lassi�ed as errors for
ases where there is aninput to the appli
ation on whi
h the error o

urs. Theerrors dete
ted are due to unsafe
alls to library fun
tions,su
h as str
py(), unsafe assumptions that an input
ontainsa spe
i�

hara
ter, or unsafe pointer arithmeti
.There are six false messages on Airbus's
ode. The pro-gram destru
tively assigns a non-zero
hara
ter to a
ertainpla
e in a bu�er. CSSV fails to infer that this
hara
ter isnon zero. The fun
tion skip balan
ed safely assumes thatthe input parameter
ontains a balan
ed number of paren-theses. This is veri�ed by the whole fun
tion whi
h is
alledprior to skip balaned. This example demonstrates that insome
ases it is hard to separate safety from
orre
tness.To show that this fun
tion is safe, we need to verify
or-re
tness, i.e., that the implementation
orre
tly
he
ks thatthe input string
ontains a balan
ed number of parentheses.Fortunately, in most of the analyzed examples, this is notthe
ase, i.e., the safety does not depend on
orre
tness.The Deriving
olumns provides information about thee�e
tiveness of the AWPre and ASPost algorithms. It isnot trivial to measure the result in terms of pre
ision. Anew
ontra
t for a fun
tion P
an
hange the result of theanalysis of P itself and of pro
edures invoking P . We pro-

vide a simple measurement that is independent of the
all-ing
ontext. We run ASPost to generate a post
ondition,AWPre to generate a pre
ondition, and then run CSSV.Columns CPU and Spa
e display the running time andtotal allo
ated spa
e of both ASPost and AWPre. ColumnVa
uous displays the number of false-alarm messages re-ported by CSSV when a va
uous
ontra
t for the analyzedpro
edure is provided. Column Auto displays the numberof false alarms reported by CSSV when using the automati-
ally derived
ontra
ts. On average, the manually provided
ontra
ts redu
e the number of false alarms by 93% as
om-pared to the va
uous
ontra
ts' false alarms, while the au-tomati
 derivation algorithm redu
es the number of mes-sage by 25%. The derived pre
onditions are in many
asesweaker than the manually provided ones. Our initial studyindi
ates that this happens when the integer analysis joinstwo di�erent pro
edure behaviors. One potential remedy tothis impre
ision is by using sets of linear inequalities thatallow to pre
isely represent logi
al-or.
6. RELATED WORK

6.1 Static Detection of String ErrorsAlthough the problem of string-manipulation safety
he
k-ing is to verify that a

esses are within bounds [16, 1, 26℄,the domain of string programs requires that the analysis be
apable of tra
king the following features of the C program-ming language: (i) handling standard C fun
tions, su
h asstr
py() and strlen(), whi
h perform an unbounded num-ber of loop iterations; (ii) stati
ally estimating the length ofstrings (in addition to the sizes of allo
ated base addresses);this length is dynami
ally
hanged based on the index ofthe �rst null
hara
ter; and (iii) simultaneously analyzingpointer and integer values is required whi
h pre
isely han-dle pointer arithmeti
 and destru
tive updates.Many a
ademi
 proje
ts produ
e unsound tools to stat-i
ally dete
t string-manipulation errors. In [18℄ an exten-sion to LCLint is presented. It uses unsound lightweight

App. Fun
tion Sour
e Code CSSV Msg DerivingLOC SLOC Contra
t IPVars IPSize CPUse
 Spa
eMB False Errors CPUse
 Spa
eMB Va
uous Auto
EADSAirbus RTC Si SkipLine 13 260 SBI 39 109 2.6 12 0 0 0.3 3 5 5RTC Se CopieEtFiltre 66 773 SB 127 812 206 347 6 0 95 433 24 24RTC Si FiltrerCarNonImp 19 114 S 13 151 0.3 2 0 0 0.2 2 4 4RTC Si Find 26 820 SI 108 476 2.7 24 0 0 1.4 54 4 1RTC Si StrNCat 8 299 SBI 54 182 0.9 6 0 0 0.2 3 2 0RTC Si Cal
ulerStringTime 33 567 SBI 86 529 76 127 0 0 131 173 21 4RTC Si FormatM
duTo- 18 273 SB 58 323 6.9 28 0 0 6.8 27 9 9FormatprinterRTC Si StoreIntInBu�er 35 222 SBI 59 346 9.8 43 0 0 3.3 22 15 15RTC Se ComposerEntete 10 550 SI 77 352 3.4 23 0 0 1.3 12 2 0�xwrites remove newline 12 260 S 35 203 0.1 2 0 0 0.61 1 1 0insert long 14 367 SB 138 571 13 99 0 2 23.4 86 5 0join 15 701 SB 95 443 2.1 23 0 2 6.7 15 2 2whole 30 423 S 46 352 1.2 20 0 1 0.6 4 9 9skip balan
ed 20 258 SB 29 215 0.3 5 2 0 0.6 3 6 6bare 26 333 S 41 319 0.6 12 0 3 0.4 9 11 11Table 5: The experimental results.te
hniques, heuristi
s, and in-
ode annotations are used to
he
k for bu�er over
ow vulnerabilities. Eau
laire [2℄, atool based on ESC-Java,
he
k for se
urity holes in C pro-grams by translating a subset of C to guarded
ommands.It's annotation language is similar in sense to CSSV. In [29℄Wagner et al. present an algorithm that stati
ally identi�esstring errors by performing a
ow insensitive unsound anal-ysis. The main disadvantage of all of these unsound tools isthat they miss errors while CSSV does not miss any error.Furthermore, none of them
an tra
k e�e
ts of pointer arith-meti
, a widely used method for string manipulation. Soundalgorithm for stati
ally dete
ting string errors are presentedin [9, 28℄. However, they
an not handle all C, in parti
u-lar multi-level pointers and stru
tures. As far as we know,CSSV is the �rst sound tool to handle all C and in a ratherpre
ise manner.

6.2 The Automatic Derivation ProcessThe Houdini annotation-derivation tool [10℄ tries ESC/Javawith di�erent annotations. Su
h an approa
h is inadequatein our
ase be
ause the number of potential annotations isunbounded. In
ontrast, we derive a
ontra
t by forwardand ba
kward analyses of the integer program [11℄.

7. CONCLUSIONSBu�er over
ow is one of the most harmful sour
e of defe
tsin C programs. Moreover, it makes software vulnerable toha
ker atta
ks. We believe that CSSV provides eviden
ethat sound analysis
an be applied to verify stati
ally theabsen
e of all string errors in realisti
 appli
ations.
AcknowledgmentsWe would like to thank Manuvir Das for providing and as-sisting us with AST-ToolKit and GOLF. Thanks to BertrandJeannet and Ni
olas Halbwa
hs for providing us the poly-hedra library and for their support. Thanks to Greta Yorshfor her assistan
e in the prototype implementation and formany te
hni
al insights. Thanks to Seth Hallem, RomanManevi
h, Tom Reps, and Reinhard Willhelm for their help-ful
omments.
8. REFERENCES[1℄ R. Bodik, R. Gupta, and V. Sarkar. ABCD:eliminating array bounds
he
ks on demand. InSIGPLAN Conf. on Prog. Lang. Design and Impl.,2000.[2℄ B. Chess. Improving
omputer se
urity using extended

stati

he
king. In IEEE Symposium on Se
urity andPriva
y, 2002.[3℄ P. Cousot and N. Halbwa
hs. Automati
 dis
overy oflinear
onstraints among variables of a program. InSymp. on Prin
. of Prog. Lang., 1978.[4℄ M. Das. Uni�
ation-based pointer analysis withdire
tional assignments. In SIGPLAN Conf. on Prog.Lang. Design and Impl., 2000.[5℄ M. Das, B. Liblit, M. F�ahndri
h, and J. Rehof.Estimating the impa
t of s
alable pointer analysis onoptimization. In Stati
 Analysis Symp., 2001.[6℄ A. Deuts
h. Interpro
edural may-alias analysis forpointers: Beyond k-limiting. In SIGPLAN Conf. onProg. Lang. Design and Impl., pages 230{241, NewYork, NY, 1994. ACM Press.[7℄ E.W. Dijkstra. A Dis
ipline of Programming.Prenti
e-Hall, 1976.[8℄ N. Dor. Stati
ally Dete
ting All Bu�er Over
ows in C.PhD thesis, Univ. of Tel-Aviv, Israel, 2003. Inpreparation.[9℄ N. Dor, M. Rodeh, and M. Sagiv. Cleanness
he
kingof string manipulations in C programs via integeranalysis. In Stati
 Analysis Symp., 2001.[10℄ C. Flanagan, K. Rustan, and M. Leino. Houdini, anannotation assistant for Es
/java. In Formal Methodsfor In
reasing Software Produ
tivity, volume 2021 ofLe
ture Notes in Computer S
ien
e, 2001.[11℄ N. Halbwa
hs. Stati
 Analysis of Linear PropertiesInvariantly Satis�ed by the Numeri
 Variables of aprogram. PhD thesis, Grenoble University, 1979.[12℄ N. Halbwa
hs, Y.E. Proy, and P. Roumano�.Veri�
ation of real-time systems using linear relationanalysis. Formal Methods in System Design,11(2):157{185, 1997.[13℄ N. Heintze and O. Tardieu. Ultra-fast aliasing analysisusing
la: A million lines of

ode in a se
ond. InSIGPLAN Conf. on Prog. Lang. Design and Impl.,2001.

[14℄ B. Jeannet. New polka library. Available at\http://www.irisa.fr/prive/Bertrand.Jeannet/newpolka.html".[15℄ B. W. Kernighan and D. M. Rit
hie. The Cprogramming language. Prenti
e-Hall, EnglewoodCli�s, NJ 07632, USA, 1988.[16℄ P. Kolte and M. Wolfe. Elimination of redundantarray subs
ript range
he
ks. ACM SIGPLAN Noti
es,30(6):270{278, 1995.[17℄ W. Landi. Interpro
edural Aliasing in the Presen
e ofPointers. PhD thesis, Dept. of Comp. S
i., RutgersUniv., 1991.[18℄ D. Laro
helle and D. Evans. Stati
ally dete
ting likelybu�er over
ow vulnerabilities. In 10th USENIXSe
urity Symposium, 2001.[19℄ G. Leavens and A. Baker. Enhan
ing the pre- andpost
ondition te
hnique for more expressivespe
i�
ations. In Formal Methods, 1999.[20℄ D. Liang and M. J. Harrold. EÆ
ient
omputation ofparameterized pointer information for interpro
eduralanalyses. In Stati
 Analysis Symp., 2001.[21℄ T.J. Marlowe and B. G. Ryder. An eÆ
ient hybridalgorithm for in
remental data
ow analysis. In Symp.on Prin
. of Prog. Lang., 1990.[22℄ Mi
rosoft. Ast toolkit. Available at\http://resear
h.mi
rosoft.
om/sbt/asttoolkit/ast.asp",2002.[23℄ B. Miller, D. Koski, C. Lee, V. Maganty, R. Murthy,A. Natarajan, and J. Steidl. Fuzz revisited: Are-examination of the reliability of Unix utilities andservi
es, 1995. Available athttp://www.
s.wis
.edu/�bart/fuzz/fuzz.html.[24℄ C. Morgan. Programming from Spe
i�
ations.Prenti
e-Hall, Engelwood N.J, 1990.[25℄ E.W. Myers. A pre
ise inter-pro
edural data
owalgorithm. In Symp. on Prin
. of Prog. Lang., 1981.[26℄ R. Rugina and M.C. Rinard. Symboli
 boundsanalysis of pointers, array indi
es, and a

essed

memory regions. In SIGPLAN Conf. on Prog. Lang.Design and Impl., 2000.[27℄ B. G. Ryder, W. A. Landi, P. A. Sto
ks, S. Zhang,and R. Altu
her. A s
hema for interpro
eduralmodi�
ation side-e�e
t analysis with pointer aliasing.ACM Transa
tions on Programming Languages andSystems, 23(2):105{186, 2001.[28℄ A. Simon and A. King. Analyzing string bu�ers in
.In International Conferen
e on Algebrai
 Methodologyand Software Te
hnology, 2000.[29℄ D. Wagner, J. Foster, E. Brewer, and A. Aiken. A �rststep towards automated dete
tion of bu�er overrunvulnerabilities. In Symp. on Network and DistributedSystems Se
urity, 2000.[30℄ G. Yorsh. CoreC: A Simpli�er for C, 2002.http://www.
s.tau.a
.il/� gretay/GFC.htm.

