

Abstract—Direct application of reinforcement learning in

robotics rises the issue of discontinuity of control signal.

Consecutive actions are selected independently on random,

which often makes them excessively far from one another. Such

control is hardly ever appropriate in robots, it may even lead to

their destruction. This paper considers a control policy in which

consecutive actions are modified by autocorrelated noise. That

policy generally solves the aforementioned problems and it is

readily applicable in robots. In the experimental study it is

applied to three robotic learning control tasks: Cart-Pole

SwingUp, Half-Cheetah, and a walking humanoid.

Index Terms—Machine learning, reinforcement learning,

actorcritics, robotics.

I. INTRODUCTION

Reinforcement learning (RL) addresses the problem of an

agent that optimizes its reactive policy in a poorly structured

and initially unknown environment [1]. The primary

application of RL is robotics where the agent becomes a

robot’s controller and the robot itself with its surrounding

becomes the agent’s environment. Reinforcement learning

offers the prospect of efficient robot behaviour being learned

rather than programmed by a human designer.

A typical setting in which RL is applied in robotics is as

follows. There are two levels of control. The lower level is

based on servomotors in the robot’s joints. The servomotors

are fed with desired joint positions and try to make the joints

follow them. At the higher level, the controller determines

desired servomotors’ positions based on the robot state. A

learning (through reinforcement) component resides at the

higher control level. Within typical scheme of the learning

component operation, the desired servomotors’ positions are

periodically selected on random, and consecutive selections

are only stochastically dependent through the robot state. But

that means that the consecutive desired servos’ positions are

far from one another. This results in a characteristic jerking of

the robot which is an unhealthy robot behaviour and may lead

to its destruction.

Applications of RL in robotics are surveyed in [2]. More

general discussion on policy search in robotics is presented in

[3]. The work [4] presents an RL algorithm that optimizes

robotic primitives. This algorithm overcomes the problem of

robot jerking during learning at the cost of giving up the

framework of Markov Decision Process (MDP) [1]. In [5] a

method is presented that enables optimization of robotic

Manuscript received August 5, 2014; revised December 1, 2014.

Paweł Wawrzyński is with Warsaw University of Technology,

Nowowiejska 15/19, 00-665 Warsaw, Poland (e-mail:

p.wawrzynski@elka.pw.edu.pl).

primitives by means of RL algorithms based on MDP

framework, but it does not alleviate the problem of robot

jerking. The current paper is intended to fill this gap.

In this paper, control policy is introduced that may undergo

reinforcement learning and have the following properties:

 It is applicable to robot control optimization.

 It does not lead to robot jerking.

 It can be optimized by any RL algorithm that is designed

to optimize a classical stochastic control policy.

The policy introduced here is based on a deterministic

transformation of state combined with a random element in

the form of a specific stochastic process, namely the moving

average.

The paper is organized as follows. In Section II the

problem of our interest is defined. Section III presents the

main contribution of this paper i.e., a stochastic control policy

that prevents robot jerking while learning. In Section IV an

analysis of this policy is presented. Section V contains an

experimental study in which the policy is applied in two

simulated and one real robotic learning control tasks. The last

section concludes the paper.

II. PROBLEM FORMULATION

We consider the standard RL setup [1]. A Markov Decision

Process (MDP) defines a problem of an agent that observes its

state, st, in discrete time t = 1, 2, 3,..., performs actions, at,

receives rewards, rt, and moves to other states, st+1. A

particular MDP is a tuple <S, A, Ps, r> where S and A are the

state and action spaces, respectively; { Ps (·|s,a) : s ∈ S, a ∈A}

is a set of state transition distributions; we write st+1 ~

Ps(·|st,at) and assume that each Ps is a density. Each state

transition generates a reward, rt ∈R. Here we assume that each

reward is depends deterministically on the current action and

the next state, rt = r(at,st+1). The agent learns to assign actions

to states so as to may expect in each state highest rewards in

the future.

Here we consider robotic applications of the above general

framework. Therefore, both spaces of interest are

multidimensional continuous: S = Rns and A = Rna. Also, it is

assumed that st

reflects the state of a certain continuous-time

system at discrete time instants. Let τ∈ R denote continuous

time. The dynamics of that system could be described by an

equation of the form

 ,

ds
f s

d

 , (1)

where f is unknown, δ > 0 denotes time discretization, st =

Control Policy with Autocorrelated Noise in

Reinforcement Learning for Robotics

Paweł Wawrzyński

International Journal of Machine Learning and Computing, Vol. 5, No. 2, April 2015

91DOI: 10.7763/IJMLC.2015.V5.489

s(τ0 + tδ), and a(τ) = at for τ ∈ [τ0 + tδ,τ0 + (t + 1)δ).

The subject of our interest is a stochastic control policy that

produces actions. The following properties of this policy are

required:

1) It is possible to optimize this policy by any RL algorithm

designed for stochastic control policy optimization.

2) Fine time discretization does not prevent the learning

algorithm from efficient operation nor it results in robot

jerking. However, fine time discretization may require

adjustment of some parameters of the learning algorithm

and the policy.

III. POLICY DEFINITION

A. Generic Definition

Let the actions by produced by the following function

at = h(st,ξt,θ) (2)

where st is the state, ξt ∈ Rnξ is a random element, and θ ∈ Rn is

a parameter (e.g., neural weights). Typically a policy that

produces actions is defined as a probability distribution

parameterized by the state and a vector, θ, whose

optimization is an objective of learning. But technically,

actions are always computed on the basis of a certain function,

h, and a finite-dimensional random element, ξt. With the

additional assumptions that ξt have the same distribution for

various t, and ξt is stochastically independent from ξt+i for i Ѐ ֗
0, eq. (2) is a typical representation of a stochastic control

policy in reinforcement learning.

In this paper the following set or requirements is imposed

on (2):

1) ξt has the same (stationary) distribution for each t.

2) ξt is stochastically independent from ξt+i for |iȿІ M, where

M > 0 is a certain constant.

3) E∥ξt Ϻ ξtϺi∥2 < E∥ξt Ϻ ξtϺiϺ1∥2 for π Ѕ i < M.

4) h is continuous with respect to all its arguments.

The first two conditions are required for the policy to be

applicable in known reinforcement learning algorithms, e.g.,

in actor-critics [6], [7]. The latter two make consecutive

control actions close to one another. Strict “continuity” of the

control signal is not possible in continuous time. However, if

h is continuous and ξt is on average close to ξt+1, consecutive

actions are close to each other as well.

B. Specific Definition

A specific design of a policy based on the above

requirements may be the following. Let

at = h(st,ξt,θ) = g(st;θ) + ξt, (3)

where g is a certain approximator parametrized by θ with

input st, and ξt is defined as follows. Let

ξt Ḑ N(0, Iσ2/M) (4)

be random vectors stochastically independent for different t,
M > 0 be constant, and

 (5)

A stochastic process defined in (5) is known as the moving

average. Let us now verify the conditions from the previous

section.

1) Each ξt is a sum of normal random vectors, therefore each

ξt has the same (stationary) distribution N(0,σ2I).

2) ξt and ξt+i are, for |i| > M, computed from different ζ-s,

thus they are stochastically independent.

3) For 0 ≤ i < M we have

(6)

(7)

(8)

and therefore

 (9)

4) If g is continuous with respect to its arguments, then h is

continuous too.

The distribution of action defined according to (3) is

normal with mean g(st;θ) and covariance matrix Iσ2.

IV. ANALYSIS

In this section we investigate the following question: how

to parametrize control policy to assure constant level of

randomness in state trajectory for any given time

discretization, δ. In this order, power of noise is defined

below, it is derived for ξt defined in the previous section, and

it is proven that the randomness in state trajectory is

proportional to that power.

A. Power of ξ

Let

 (10)

We define the power of ξ

(11)

In the case of the moving-average (5), its power has the

value

(12)

(13)

(14)

(15)

B. Constant Randomness in State Trajectory

A learning controller requires randomness in its actions. Its

states trajectories need to be diversified, in order to find out

which actions are good and which are inferior. But the level of
�t =

M�1X
j=0

�t�j :

Ek�t � �t�ik2 = E

M�1X
j=0

�t�j � �t�i�j

2

= E

i�1X
j=0

�t�j �
i�1X
j=0

�t�M�j

2

= 2i�2=M;

Ek�t��t�ik2 < Ek�t��t�i�1k2 = 2(i+1)�2=M:

P� = lim
T !1

1

T
E

0@ �0+TZ
�0

�(�)d�

�0+TZ
�0

�(�)T d�

1A :

P� = lim
t!1

1

t�
E

t�1X
i=0

��i

t�1X
i=0

��T

i

!

= lim
t!1

1

t�
E

t�1X
i=0

�M�i

t�1X
i=0

�M�T

i

!
=

1

t�
�2M2tI�2=M

= I�2�M:

0
@
0
@

�(�) = �t for t : �0 + t� � � < �0 + (t + 1)�:

as

International Journal of Machine Learning and Computing, Vol. 5, No. 2, April 2015

92

randomness should be selected reasonably. We stabilize

randomness in state trajectory, such that for any given time

discretization, δ, we are able adjust parameters of ξt (5), to

keep the conditional variance

 V (s(τ Ϲ ЎɊȿs(τ)) (16)

constant for constant Ў. From (1) we have

(17)

Let us denote

g0 = g(s(τ);θ) (18)

and consider small Ў such that for τ’

∈ [τ,τ Ϲ ЎɊ we have

(19)

(20)

Then we have

(21)

(22)

Therefore, from (17) we have

 (23)

For given τ and s(τ), the integral is the only random

element above. Therefore

 (24)

 (25)

 (26)

 (27)

It is seen that conditional variance of state is proportional to

the power of ξt.

C. Conclusions and Illustration

The results above lead to the following conclusions.

1) Conditional variance of state is proportional to the

power of ξt. Therefore, in order to keep this variance constant

when manipulating time discretization, we need to adjust

other coefficients in (15) accordingly.

2) The policy (3) with ξt (5) and M = 1 is a traditional

control policy applied in RL: actions are only stochastically

dependent through the state. The drawback of such a policy is

clearly visible in (15). Variance of noise, σ2, required to

stabilize the power of ξ is inversely proportional to time

discretization, δ. Therefore, if δ is very small, then σ2 needs to

be very large. But that makes such a policy not feasible as it

requires large changes in control signal to be performed at

large frequency.

Fig. 1 presents ξt (5) with different parameters but the same

power. Top part of Fig. 1 presents noise typically applied in a

control policy in reinforcement learning; it leads to

“discontinuity” of control signal (its literal “continuity” is not

possible in discrete time). The middle part presents

autocorrelated ξt which has the same power but leads to more

continuous control signal.

Fig. 1. The figures above demonstrates runs of ξt with various parameters,

but the same power, Pξ =0.02.

V. EXPERIMENTAL STUDY

In this study reinforcement learning is applied to optimize

control policy in two simulated robotic learning control tasks

and one real robotic learning control task. The simulated tasks

are Cart-Pole Swing-Up [8] and Half-Cheetah [9], and the

real one is humanoid walking [5]. The learning algorithms

applied are actor-critics. The control policy applied is one

introduced in Sec. III. The main question investigated

concerns feasibility of the proposed policy: Is it possible to

obtain similar (or better) learning performance with finer time

discretization and smaller time-to-time differences in control

signal?

Fig. 2. Learning control problems.

A. Adjusting Parameters to Changing Time Discretization

If an actor-critic algorithm with the policy introduced here

is successfully applied to a certain task, it can also be applied

to this task with different time discretization. However, that

requires adjustment of several parameters. Suppose time

discretization δ is changed to δᴂ < δ. New parameters will be

denoted below with primes:

 A weight of a reward received in a specific time in the

a) Half-Cheetah

Swing-Up Cart-Pole b)

c) Bioloid Walking

s(� + �) = s(�) +

�+�Z
�

f(s(� 0); a(� 0))d� 0:

f(s(� 0); a(� 0)) �= f(s(�); a(� 0))

g(s(� 0); �) �= g0:

f(s(� 0); a(� 0)) �= f(s(�); g0 + �(� 0))

�= f(s(�); g0) +
@f(s(�); g0)

@g0
�(� 0):

s(� +�) �= s(�)+�f(s(�); g0)+
@f(s(�); g0)

@g0

�+�Z
�

�(� 0)d� 0:

V (s(� + �)js(�)) �=
@f(s(�); g0)

@g0

�+�Z
�

�(� 0)d� 0�

�
�+�Z
�

�(� 0)T d� 0 @f(s(�); g0)

@gT
0

�=
@f(s(�); g0)

@g0
�P�

@f(s(�); g0)

@gT
0

�= P��
@f(s(�); g0)

@g0

@f(s(�); g0)

@gT
0

:

International Journal of Machine Learning and Computing, Vol. 5, No. 2, April 2015

93

future should remain the same. But that reward will be

received after more discrete time steps. The discount

factor should be modified accordingly:

γᴂ Ѐ ρ Ϻ ɉρ Ϻ γ)δᴂ/δ. (28)

By the same token, the λ parameter should be adjusted as

λᴂ Ѐ ρ Ϻ ɉρ Ϻ λ)δᴂ/δ. (29)

 The sum of discounted rewards expected at each state

should remain the same. Therefore all rewards except

those received at the end of an episode (succeeded of

failed) should be multiplied by the factor

 δᴂ/δ. (30)

 The actor and the critic updates are performed more

often but they use the same stream of information. The

step sizes for the actor, βθ, and the critic, βυ should thus

be smaller, they should be multiplied by the factor

δᴂ/δ. (31)

 In order to keep the power of noise (15) at the same level,

we need to apply

Mᴂ = Mδ/δᴂ. (32)

(Otherwise we could increase σ2

accordingly, but that could

destroy the robot.)

B. Half-Cheetah

goal of its control is to make it run as fast as possible. With

time discretization δ = 0.02sec., 31 state variables, 6 control

variables, and complex dynamics, Half-Cheetah represents a

difficult system for efficient control.

We perform two experiments with Half-Cheetah. In both

cases we use the same learning algorithm: Classic

Actor-Critic with Experience Replay as in [8]. In the first case,

we use the typical control policy based on a neural network

and independently sampled normal noise. This policy rises

the issue of control signal discontinuity. In the second case,

the policy is applied discussed in Sec. III which overcomes

the problem of control signal discontinuity.

The parameters of both experiments are listed as following:

param. δ σ M γ λ βθ βυ

in [8] 0.02 5 1 0.99 0.9 10Ϻ5 10Ϻ5

here 0.02 3 3 0.99 0.9 10Ϻ5 10Ϻ5

The resulting learning curves are presented in Fig. 3.a. It is

seen, that in the novel policy does not deteriorate learning

efficiency nor ultimate performance. In fact, bot the learning

efficiency and the ultimate performance are better when the

new policy is applied.

C. Cart-Pole Swing-Up

Cart-Pole Swing-Up task [10] is a pendulum attached

objective of control is to swing the pendulum and stabilize it

upwards, by pushing the car.

The learning control algorithm applied here is the classic

actor-critic [6]. Details of its implementation are taken from

[8]. An action is independently selected every δ = 0.1sec.

from the normal distribution with standard deviation equal to

2.

We also perform an experiment in which time

discretization is δ = 0.01sec., which is more typical for

robotic applications. We apply the control policy from Sec.

III with coefficients selected according to Section V-A. The

parameters of both experiments are listed as following:

param. δ σ M γ λ βθ βυ

in [8] 0.1 2 1 0.95 0.5 0.003 0.003

here 0.01 2 10 0.995 0.95 0.0003 0.0003

The resulting learning curves are presented in Fig. 3.b. It is

seen, that in the original setting the learning is about twice

faster. However, the ultimate performance obtained is the

same.

Fig. 3. Learning curves i.e., average rewards vs. episode number. Each curve

averages 10 runs.

D. Bioloid Walking

objective is to make this robot walk as fast as possible without

falling and spinning about the vertical axis. A robot controller

may learn to do so with the use of an actor-critic algorithm, as

presented in [5]. Within the setting applied in [5] control

signal discontinuity creates significant difficulties. The robot

is jerking, its servomotors often get overloaded.

We perform an experiment in which we apply the policy

introduced in Section III in Bioloid that is learning to walk

fast. The parameters of both experiments are listed as the

following.

param. δ σ M γ λ

in [5] 0.03 10 1 0.99 0.9

here 0.03 7 3 0.99 0.9

1Bioloid Premium manufactured by Robotis: http://www.robotis.com

International Journal of Machine Learning and Computing, Vol. 5, No. 2, April 2015

94

Half-Cheetah [8] is a planar model of cat (Fig. 2a). The

freely to a car that moves on a straight track (Fig. 2b). The

Biolid
1
is a small humanoid robot (Fig. 2c). The control

Step-sizes are absent from the table above because the

algorithm applied calculates them autonomously.

seen, that with the new control policy the learning is equally

efficient as in the original setting. Moreover, the course of

experiment is much healthier for the robot. It is not jerking

and its servomotors remain cool all the time.
2

E. Discussion

The field of reinforcement learning offers the prospect of

robots that learn instead of being programmed. Most

algorithms developed in this field learn to make the best

selection of the control action for each state the controlled

system may enter. In order to learn, at each state the algorithm

selects a control action on random thereby collecting

experience that allows to tell which actions are good and

which are not. However, these actions need to make

difference, that is they need to assure appropriate level of

randomness in state trajectory. The finer time discretization,

the less significant each particular action is, and the more

noise it should contain. That leads to excessively

discontinuous control signal, inappropriate for robotic

applications.

A remedy to the aforementioned problem is a control

policy with autocorrelated noise. It assures both continuity of

control signal and appropriate randomness in state trajectory.

In this experimental study it was verified whether such a

policy can be optimized with the use of known RL algorithms.

Experiments with Half-Cheetah and Bioloid Walking

revealed that such a policy may be applied without

deterioration of learning efficiency or ultimate performance.

Experiments with Cart-Pole Swing-Up and tenfold decrease

of time discretization yielded ambiguous result. The ultimate

control performance was as good as for traditional policy, but

the speed of learning was smaller. It is easy to interpret that

result. With coarse time distretization and independently

selected control actions, it is straightforward to verify quality

of each action and adjust policy to make this action more (or

less) probable. With finer time discretization and the policy

presented in Sec. III each action starts an experiment that is

continued in further actions in which random elements are

present autocorrelated with the first one. But this

autocorrelation decreases with time passing. Some

information is lost and thus slower learning. But this price

may be worth paying in those robotic applications where fine

time discretization has no alternative.

VI. CONCLUSIONS

In this paper the problem of continuity of control signal is

analyzed, which arises when reinforcement learning is applied

in robotics. It is demonstrated why this problem is so difficult

to handle within the traditional reinforcement learning

paradigm in which consecutive control actions are

stochastically dependent only thorough the state. A control

policy is introduced that is based on autocorrelated noise. It

alleviates the problem of control signal discontinuity, and it

2 The resulting control policy may be seen at:

https://www.youtube.com/watch?v=O2rx4Bdwn24

may be optimized by known RL algorithms. In the

experimental study that policy was applied to two simulated

and one real robotic learning control problems. The policy

was successfully optimized through reinforcement learning.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An

Introduction, MIT Press, 1998.

[2] J. Kober, D. Bagnell, and J. Peters, “Reinforcement learning in robotics:

A survey,” International Journal of Robotics Research, no. 11, pp.

1238-1274, 2013.

[3] M. P. Deisenroth, G. Neumann, and J. Peters, “A survey on policy

search for robotics,” Foundations and Trends in Robotics, vol. 2, no.

1-2, pp. 1-142, 2013.

[4] J. Kober and J. Peters, “Policy search for motor primitives in robotics,”

Machine Learning, no. 1-2, pp. 171-203, 2011.

[5] P. Wawrzynski, “Reinforcement learning with experience replay for

model-free humanoid walking optimization,” International Journal of

Humanoid Robotics, in press, 2014.

[6] H. Kimura and S. Kobayashi, “An analysis of actor/critic algorithm

using eligibility traces: Reinforcement learning with imperfect value

functions,” in Proc. the 15th ICML, 1998, pp. 278-286.

[7] S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, and M. Lee,

“Incremental natural actor-critic algorithms,” Automatica, vol. 45, no.

11, 2009.

[8] P. Wawrzynski, “Real-time reinforcement learning by sequential

actorcritics and experience repla,” Neural Networks, vol. 22, pp.

1484-1497, 2009.

[9] P. Wawrzynski and A. K. Tanwani, “Autonomous reinforcement

learning with experience replay,” Neural Networks, vol. 41, pp.

156-167, 2013.

[10] K. Doya, “Reinforcement learning in continuous time and space,”

Neural Computation, vol. 12, no. 1, pp. 219-245, 2000.

Paweł Wawrzyński received his M.Sc. degree in

computer science from Warsaw University of

Technology in 2001 and, M.Sc degree in economics

from Warsaw University in 2004, and Ph.D. degree in

computer science from Warsaw University of

Technology in 2005. Since 2006 he has been working

as an assistant professor at Institute of Control and

Computation Engineering in Warsaw, Poland. His

research interests include robotics, machine learning, neural networks, and

cognitive science.

International Journal of Machine Learning and Computing, Vol. 5, No. 2, April 2015

95

The resulting learning curves are presented in Fig. 3c. It is

