
Fight against 1-day exploits: Diffing Binaries vs Anti-diffing
Binaries

Jeongwook Oh(mat@monkey.org,oh.jeongwook@gmail.com)

Jeongwook Oh works on eEye's flagship product called "Blink". He develops traffic analysis module that filters attacker's traffic. The analysis engine
identifies protocol integrity violations by protocol parsing and lowers the chances of false positives and false negatives compared to traditional signature

based IPS engines.

He's also interested in blocking ActiveX related attacks and made some special schemes to block ActiveX-based attacks without any false positives. The
implementation was integrated to the company's product and used by the customers.

He runs Korean security mailing list called Bugtruck(not bugtraq).

Introduction
The Problem
Security patches are usually meant to fix security vulnerabilities. And thost are for fixing problems and
protect computers and end users from risks. But how about releasing patch imposes new threats? We
call the threat "1-day exploits". Just few minutes after the release of patches, binary diffing technique
can be used to identify the vulnerabilities that the security patches are remedying. It's ironical situation
but that's what is happening these days.
This binary diffing technique is especially useful for Microsoft's binaries. Not like other vendors they
are releasing patch regularly and the patched vulnerabilities are relatively concentrated in small areas in
the binary. Those facts make the patched area in the binary more visible and apparent to the patch
analyzers.
We already developed "eEye Binary Diffing Suites" back in 2006 and it's widely used by security
researchers to identify vulnerabilities. It's free and open-source and it's powerful enough to be used for
1-day vulnerabilities hunting purpose. So virtually, attackers have access to all the tools and targets
they need to identify unknown vulnerabilities that is just patched. They can launch attack during the
time frame users or corporates are applying patches. This process typically takes few minutes to few
days.
From our observations during past few years, all the important security patches were binary diffed
manually or automatically using tools. Sometimes the researchers claimed they finished analyzing
patches in just 20-30 minutes. At most in a day, it's possible to identify the vulnerability itself and make
working exploits. And binary diffing has now become too easy and cheap to the attackers. During patch
applying time frame, the end users are more vulnerable and targeted using 1-day attack.

The Answer
So now it became crucial to make theses 1-day exploits more difficult and time-consuming so that the
vendors can earn more time for the consumers to apply patches. Even though using severe code
obfuscation is not an option for Microsoft's products, they can still follow some strategies and
techniques to defeat the binary diffing processes without forsaking stability and usability. We are going
to show the methods and tactics to make binary differs life harder. And will show the in-house tool that
obfuscates the binaries in a way that especially binary differs confused. We call this process anti-binary
diffing.

Binary Diffing

The History
Since being introduced 10 years ago by Bmat paper[BMAT], binary diffing is now so common and
easily affordable technique. Aside from expensive commercial tools like "bindiff", there are already 2-3
free or opensource tools that can be used to identify exact patched points in the patch files.
Here we are presenting the brief history of binary diffing theories and tools.

BMAT(1999)
It severely depends on symbolic name matching. It was mainly used for Microsoft's binaries which
symbol they have access to. With name-based matching, after matching procedure or function is
identified, it conducts hashing-based comparison for the blocks inside each procedure. It's using 64bit
hash value calculated from the instructions and the checksum is order dependent. Hashing is generated
from instruction bytes. There are multiple level of abstractions with opcode and operands.
This paper is mainly focused on transfer of profile propagation and not in security patch analysis. The
strength of this paper is that it suggested using checksum for block matches. Sometimes same block
can be changed without code change by code optimizations. But usually the vendors doesn't change the
optimization level and the registers and order of instructions in basic blocks usually remains same. So
just doing checksumming basic blocks and compare them instead of whole instruction text will be
acceptable in normal times. Also they showed 5 different levels of checksumming method for the basic
blocks. They call these levels "matching fuzziness levels". As the level decreasess more and more
information the hash has will use for calculation. The level 0 basically has all the information of the
basic block including register allocation and block address operand and operands and opcodes. Level 5
has only opcode information.
This paper also presented CFG based basic block matches. So this match method is actually the basic
method for binary diffing.

Automated Reverse Engineering(2004)
Halvar presented at Blackhat 2004 on reverse engineering techniques[ARE]. And he suggested using
fingerprints of functions for binary diffing. Basically same idea is used for his following papers and
bindiff tool. The idea is unique and simple. Using number of nodes and edges and number of calls as
traits, construct a function signature. And compare them between binaries. It suggests isomorphic
comparison between functions CG(call graph)s.

Comparing binaries with graph isomorphism(2004)
Todd Sabin suggested isomorphic analysis and matching two binaries[TODD]. It's based on
instructions graph's isomorphic matching. It adopted divide and conquer strategy to diff whole
structure. The interesting point is that it compares instructions not basic blocks. But the instruction
comparison is merged as basic block matching and function matching. He claimed the binary diffing
performance is acceptable and usable. But no POC ever released.

Structural Comparison of Executable Objects(2004)
Improved version of Halvar's Blackhat 2004 "Automated Reverse Engineering(2004)"[ARE]
presentation[SCEO].

Graph-based comparison of Executable Objects(2005)
Halvar improved previous paper "Structural Comparison of Executable Objects(2004)". The basic idea
is same.

The problem is that the algorithm is heavily dependent on CFG generation from the binaries. As the
paper is saying in modern day binaries it's not simple work to extract CFG and CG. The complete CFG
analysis of binary itself is a challenging work and any inconsistency in CFG can result in major
analysis failure of whole binaries.

You can ignore CFG recognition failure, but it means a lot of false negatives. And there are some
chances you miss important parts. Also this algorithm can't catch patches not incurring any structural
changes like by using constant values or register changes.

The Tools
We are going to present all the major binary diffing tools out until now(commercial or freeware). We
also compare their algorithms and show how effective in real world.

Sabre Security's bindiff(2004)
Halvar made a commercial binary diffing tool based on his graph based fingerprinting theory.

IDACompare(2005)
Based on the description of the tool, it looks like it's based on signature scanning. We didn't test the tool
but it's mainly targeted for porting malware analysis data porting. It's also using mdb and the page says
it's designed for around 500k file in size. For normal patch diffing the binary file can be more than 1M
Bytes to 10 to 20 Mbytes.

eEye Binary Diffing Suite(2006)
We at eEeye, developed a opensource binary diffing suite back in 2006 summer. It was used internally
for Microsoft's Patch Tuesday patches analysis. At that times, Microsoft didn't provide patch
information to the vendors and patch analysis was the only way to obtain some secret information they
don't release.

The "DarunGrim" is one of the tools included and performs the main binary diffing analysis. The tool
used sqlite database to save differential analysis results. The main algorithm used in this tool is
basically used in DarunGrim2, also. Because it was written in Python, it had low performance when
the analysis target is bigger than around 10 mega bytes. And this is solved by using C++ instead of
Python in DarunGrim2.

Patchdiff2(2008)
From the description of the tool, this tool is made specifically for security patch or hotfix analysis. This
is not suitable tool for similar functions finding or malware similarities research. This is a freely
distributed tool from Tenable Security. From the document, looks like they are using checksum of
graph call for signaturing, which mean they have similar scheme as Halvar's.

DarunGrim2
This is the improved version of eEye Binary Diffing Suite. The major difference is that it's using C++
instead of Python. Aside from that it introduced a lot of improvements over the past version of
DarunGrim.

DarunGrim2

Algorithms
We are going to present all known binary diffing algorithms, tactics that can be practically used. We
will explain the algorithms that are used by diffing tools one by one with experimental data we
collected. Some statistical method will be used to show the effectiveness of each algorithms. Mere
simple looking algorithms can be surprisingly powerful in identifying serious vulnerabilities.
The engine is based on fingerprint hashing method to match procedures fast and in reliable way. The
previous works in binary difference analysis were mainly concentrated on the graph structure analysis
and graph isomorphism. But they involve intensive comparison of two graphs and also has a drawback
like depending on the disassembler's CFG analysis capabilities. If the CFG is not complete whole
procedure will remain unmatched. Some pattern like indirect call can't be analyzed using isomorphic
analysis. Name matching is also widely used for procedure matching but if the symbol is not available,
this is not an option.

Fingerprint hashing is the way to overcome this limitation and to improve analysis result drastically. It
also has benefit of high performance. We are presenting the way to implement the fingerprint hashing
and will show some real binary differences analysis examples.

But fingerprint hashing is not the only algorithms used in DarunGrim2, there are also some algorithms
to match functions based on fingerprint matching. DarunGrim2 is also using traditional isomorphic
algorithms and name matching.

Symbolic Names Matching
DarunGrim2 is using symbolic name matching as like other binary diffing tools. It's a basic starting
points for binary matching procedure. The symbolic name can be exported name or names retrieved
from vendor provided symbol . Usually the symbol file is not provided to the public, but Microsoft is
kind enough to provide symbol files to anyone as soon as the patch is out. So it helps a lot with binary
diffing process and actual tracing of the vulnerabilities.

Fingerprint Hash Map
What is a fingerprint?
We are presenting fingerprint hashing method as main algorithm of DarunGrim2. This method is very
simple. Also it can be implemented without any intensive analysis of binaries. Fingerprint hashing is
using a way to abstract the instruction sequences.

In general, fingerprint can have multiple meanings in computer science. In this article fingerprint is
used to express a data bytes representing a basic block. For every basic blocks DarunGrim2 extract
code bytes features and use that as a key to hash table. We call that fingerprint of the block. The size
can be variable and relative to sum of the actual instructions bytes size. There can be many ways to
make fingerprint.

Fingerprint matching is a method for matching basic blocks efficiently. Basic block is the basic element
for differential analysis. It's a basic block that has one or more code referencing blocks. Building hash
table takes O(n). DarunGrim2 build two fingerprint hash table for original binary and patched binary.
For each unique fingerprints from original binary fingerprints, DarunGrim2 check if the patched
binaries fingerprint hash table has matching entry. This procedure takes O(n) because searching hash
table takes O(1).

Unlike flirt-like traditional function level fingerprint DarunGrim2 is using abstracted forms of
fingerprint bytes as a hash data for basic blocks. So even though some of the basic blocks in a function
is modified, other matching basic blocks support the function matching. For faster matching of
enormous number of fingerprint hashes generated, we put all unique fingerprint strings to hash table
and use them for matching fingerprints. There can be many ways to generate the fingerprint for a basic
block. And as you switch the fingerprint generation method, it shows different behavior in the matching
process.

Generating fingerprint for a basic block
The simplest way to generate fingerprint of a basic block is using opcodes and operand. Because
fingerprint generation of the basic blocks are most crucial part in this method, there are few things to
consider in generating fingerprints depending on the compiler and link options. We can determine to
ignore memory or immediate type operands, because they tend to change with source code
modification. We might choose to ignore any register differences and make them as one representation.
There can be multiple way of fingerprint generation methods.

Using IDA
The implementation is using IDA for binary analysis. So the fingerprint generation is dependent on
IDA's disassembly representation. And IDA is providing good structure to extract this information.
DarunGrim2 plugin is using insn_t structure to retrieve information on instructions.

Overcoming Order Dependency
The drawback of simple sequential extraction of fingerprint is that it's order dependent. Actually this
problem is common for any algorithms dependent on instructions order. So to solve this problem we
also have option to perform instruction ordering normalization before generating any signatures. This is
done by choosing instructions that is dependent each other. And sort them by instruction bytes
ascending order. Any dependent instructions sequence should maintain their order anyway. This
instruction ordering normalization is especially important for the binaries built with compilers doing
aggressive optimization using instruction reordering.

Reducing Hash Collision
There can be short basic blocks and they tend to have duplicates in one binary. That is to say, there can
be fingerprints that is not unique in the binary. This makes hash collision when used in hash table.
Basically we ignore and don't use the entries that has conflicts for comparison. But there are better way
to make the collision rate low. By associating one blocks fingerprint with next connected blocks in
fingerprint CFG, we have some chances of making the collision blocks unique. In that way we can use
fingerprint hashing for multiple linked blocks and reduce the number of collisions.

Determining functions matching pair
After hash table traverse and matching blocks, we go through every procedures in original binary to
calculate the number of matches to the procedures in patched binary. If one procedure has basic blocks
matching to different procedures in patched binary, we need to select one of them. We use simple
method to accomplish this. We just count the number of matching entries for each matching couples
and we select the match with highest number. If there are multiple entries with same highest number,
we need to select one of them randomly.

So, the matching functions are determined by comparing the matching counts for each functions and
selecting the function match pair that has biggest matching count. If the matching function is
determined, any non-compliant matching pairs which has matching basic block in non-matching
functions will be revoked.

So the determining process for matching functions is mainly dependent on fingerprint matching. And
for the real world patches, we found that fingerprinting basic blocks showed good performance and
quality.

Matching blocks inside function
If matching functions are determined, the blocks inside each functions will have some kind of a
locality. So we again construct fingerprint hash table for basic blocks inside each function and can
perform fingerprint match on that. This is called "fingerprint match inside function". In this case the
node number is relatively small. The collision probability is also very low compared to the global
fingerprint match performed before.

How does it look like?
Here's the example of fingerprint representation inside database.

Illustration 1: Query Results from Sqlite database showing Fingerprint entries.

Structure Based Analysis
Structure based analysis: basic block isomorphism
After determining matching functions and finishing fingerprinting match inside function, we perform
structure based analysis. But, it's definitely not Halvar's method. Our method is just procedural and has
a philosophy of divide and conquer. Because we are using basic blocks as graph node, it's different
from Todd's isomorphic algorithm. As far as I know, this matching algorithm is similar to that is
presented in BMAT tool [BMAT]. From the known matched nodes, it will try to match their children's
nodes.

Control flow Inversion
In this process, we need to consider control flow inversion. Control flow inversion issue is already
known from Todd's document [TODD]. DarunGrim2 just tweaks the CFG when we encounter any
negative comparison type jumps(jnz,jle, etc).

Here's some C style pseudo code showing the code inversion removal process.
if(InstructionType==ja || InstructionType==jae || InstructionType==jc || InstructionType==jcxz || InstructionType==jecxz ||
InstructionType==jrcxz || InstructionType==je || InstructionType==jg || InstructionType==jge || InstructionType==jo ||
InstructionType==jp || InstructionType==jpe || InstructionType==js || InstructionType==jz || InstructionType==jmp ||
InstructionType==jmpfi || InstructionType==jmpni || InstructionType==jmpshort || InstructionType==jpo || InstructionType==jl ||
InstructionType==jle || InstructionType==jb || InstructionType==jbe || InstructionType==jna || InstructionType==jnae ||
InstructionType==jnb || InstructionType==jnbe || InstructionType==jnc || InstructionType==jne || InstructionType==jng ||
InstructionType==jnge || InstructionType==jnl || InstructionType==jnle || InstructionType==jno || InstructionType==jnp ||
InstructionType==jns || InstructionType==jnz

)

{

if(InstructionType==ja || InstructionType==jae || InstructionType==jc || InstructionType==jcxz || InstructionType==jecxz ||
InstructionType==jrcxz || InstructionType==je || InstructionType==jg || InstructionType==jge || InstructionType==jo ||
InstructionType==jp || InstructionType==jpe || InstructionType==js || InstructionType==jz || InstructionType==jmp ||
InstructionType==jmpfi || InstructionType==jmpni || InstructionType==jmpshort)

{

is_positive_jmp=TRUE;

}else{

is_positive_jmp=FALSE;

}

}

Calculating Match Rate
When performing procedural structural matching, we need to determine if two basic blocks are same or
similar. We use fingerprint as a means for performing this operation. Because fingerprint is extracted
from real code instructions, it shows the real implementation of the basic block and also has been
abstracted and normalized for analysis. The fingerprint is stored as binary byte sequences in the
memory when the fingerprint matching is performed, but it can be easily converted to hex ascii form
representation. With converted form of ascii string we use well known string matching algorithms to
calculate similarities of the basic blocks. This part is a little bit time-consuming and will have more
false match rate if we used real instruction bytes or disassembly representation of the basic block.

So after all this process is finished we will repeat whole matching process again with unmatched code

blocks that is not a member of any matching procedures. We repeat this process until there is no
matching entries produced by any methods.

In real world examples, especially circumstances like Microsoft patch analysis, fingerprint matching
and procedural structural matching is enough for identifying the patched part of the binary.

Real Life Issues
There are some issues with diffing real binaries because eash vendors are using different compilers and
optimization methods. We are going to show some issues we encountered during binary diffing actual
binaries.

Split Blocks
As a part of optimization, there are some blocks that is split in multiple location. We can define split
block as like following.

"The block who has one child and the child of the block has only one parent in CFG."

The split blocks tend to make CFG broken and the matching process incomplete. Here's a example of
the situation. 757AC02B block in left pane and 7CB411B5+7CB411BA blocks in right pane is same.
But the blocks in right pane is split and all the children blocks is colored in red which means they are
not recognized as matching blocks, even though they are matching.

DarunGrim2 recognizes these split blocks and merges them in one block. After applying this merging
process, here's the result of binary matching for same code blocks.

Illustration 2: Split Blocks(L:757AC02B=R:7CB41185+R:7CB411BA)

You can see that all the unmatched blocks are now matched.

Hot Patching
Microsoft's binaries sometimes has hot patch instructions just before the real function starts. Here's an
example of a function with hot patch preamble.
W32TimeGetNetlogonServiceBits

patched has this:

.text:765D1E9C ; int __stdcall sub_765D1E9C(unsigned __int8 *NetworkAddr,int)

.text:765D1E9C sub_765D1E9C proc near ; CODE XREF: sub_765A909A+53E#p

.text:765D1E9C

.text:765D1E9C Binding = dword ptr -24h

.text:765D1E9C String = dword ptr -1Ch

.text:765D1E9C var_18 = dword ptr -18h

.text:765D1E9C var_10 = dword ptr -10h

.text:765D1E9C var_4 = dword ptr -4

.text:765D1E9C NetworkAddr = dword ptr 8

Illustration 3: Now the blocks are merged in right(7CB41185)

.text:765D1E9C arg_4 = dword ptr 0Ch

.text:765D1E9C

.text:765D1E9C mov eax, eax

.text:765D1E9E

.text:765D1E9E ; __stdcall W32TimeGetNetlogonServiceBits(x, x)

.text:765D1E9E _W32TimeGetNetlogonServiceBits@8:

.text:765D1E9E push ebp

.text:765D1E9F mov ebp, esp

.text:765D1EA1 push 0FFFFFFFFh

.text:765D1EA3 push offset dword_765D1F80

The red part is the hot patching instruction, it's usually "mov eax,eax" which has no effect but to
reserve space for hot patch installation. It's 2 bytes instruction which can make the hot patching process
race-condition free.

Sometimes original binary doesn't have it and patched binary has it. That makes the basic block looks
modified. So DarunGrim2 ignores any hot patching instructions. When a instruction that is doing
"mov" operation on same register at the start of a function, DarunGrim2 ignore them when generating
basic block fingerprint.

Basic Blocks in Multiple Functions
Usually one basic block belongs to one function. But for optimization reason, there are some cases that
one basic block can be part of multiple functions.
Here's a basic block at 41fbc2 from Windows kernel disassembly. The IDA disassembler reports it part
of "MmCopyToCachedPage" function.
.text:0041FBC2 loc_41FBC2: ; CODE XREF: MmCopyToCachedPage(x,x,x,x,x)+DF#j
.text:0041FBC2 mov eax, [ebp-44h]
.text:0041FBC5 test byte ptr [eax], 1
.text:0041FBC8 jz loc_44CA3F

But from code flow analysis using custom tool, we found that the specific basic block belongs to more
than one function.
Function 41d3c9(MmUnmapViewInSystemCache): 41d3c9 41d431 41d43b 41d2c4 41d488 41d440 41d5bc 41d2cd 41d492 41d7b4
41d445 41d5e0 41d339 41d312 41d4aa 41c856 41d469 41d349 41d355 41d662 41d31d 41d5e8 41d4b4 41c86b 41c94e 41d474 427991
41d36c 44c7d4 41d66d 41d7d7 41d32b 41d5f2 41d872 41c870 41d482 44c7b8 42975c 41d378 44c80c 41d686 41d649 41d640 41c878
44c7ed 44c7c0 41d37c 44c818 41d691 44c7fe 41c87e 41c888 41d395 44c7de 44c83d 41d69a 44c83b 41c8e4 41c883 41c89a 41d3a1
42931c 44c821 44c842 41d6a4 429739 41c8a4 421515 41d3a9 44c84b 440761 41c8bd 440843 4407b2 4407a7 41c8c8 44c831 440852
44084a 435352 4407c0 4352d6 41c8d6 41c8cf 440854 440747 44c8a2 4407cf 4408a1 4352f5 4352dd 41c8d3 41c8fc 44c9fe 440861
4408c0 440752 44c8b1 44c8cd 4407e7 4352fd 44c874 4352e7 44ca07 440875 435360 44c8f6 4408cd 44c8b9 44080a 44c8e8 435316
44c8ff 44082b 4408d6 43536e 440816 44ca25 43531f 435378 4408fa 44081a 44ca3f 43532c 44c920 440905 440825 41fbce 435337
44c931 44c92a 41fbdb 44ca7c 43533f 44c936 41fbe4 41fe6c 44ca90 44ca81 43534a 44c894 44c947 44c93a 41fbf2 41fbc2 41fe75
44ca9a 43f4e2 44c963 44c94d 41fbfc 43f19f 41fe7e 44cad8 41fcac 41fdd9 44c985 44c96d 44c987 41fc06 41f006 44ca74 43f1b3 41fe89
41fcaf 41fddf 41fe3d 44c971 44c98b 44c989 41fc1e 43f1d1 43f1dd 41fe93 41fcca 43f41d 41fe27 41fe40 44c9f7 44c98f 429e27 41fc4a
43f1d7 43f1eb 43f4c3 41fe9c 41fcf4 44ccb4 44caa2 43f434 44c995 44c9b0 41fc54 43f203 41fea9 41fd09 43f4fe 44cd24 44cd0d 44caad
43f452 44cabe 44c9ca 429d99 41fc5c 43f23f 43f245 41fca7 41fd10 41fd1c 41fd1e 44cd32 44cd2c 44cd12 44cac6 44c9cf 44ca50 429dc0
44cb59 43f296 44cc70 41fd45 44cd3a 44c9d8 429df1 43f344 43f2c3 44cafb 41fd61 44cd3d 44c9df 44ca5f 429e06 43f35e 44cb70
43f2db 44cb15 41fdcf 41fd83 44c9e4 429e10 43f4f0 43f36c 44cb83 44cb97 43f319 43f3f9 41fd89 44c9f4 44c9eb 429e19 43f371 43f377
44cb88 44cb8e 44cba6 44cb9c 43f40b 44cd44 41fd91 41efe7 43f3be 44cd60 41fdaa 43f3ca 44cbc6 41fdc6 44cca7 43f3db 44cbe1 43f3e0
43f3e6 44cbf0 44cbe6 43f3ea 44cc0e 44cc2b 44cc3e 44cc32 44cc69 44cc58 44cc5c

Function 41fb11(MmCopyToCachedPage): 41fb11 41fb53 41fdd9 41fbc2 41fddf 41fe3d 44ca3f 41fbce 41fe27 41fe40 41fbdb 44ca7c
41fbe4 41fe6c 44ca90 44ca81 41fbf2 41fe75 44ca9a 43f4e2 41fbfc 43f19f 41fe7e 44cad8 41fcac 41fc06 41f006 44ca74 43f1b3 41fe89
41fcaf 41fc1e 43f1d1 43f1dd 41fe93 41fcca 43f41d 429e27 41fc4a 43f1d7 43f1eb 43f4c3 41fe9c 41fcf4 44ccb4 44caa2 43f434 41fc54
43f203 41fea9 41fd09 43f4fe 44cd24 44cd0d 44caad 43f452 44cabe 429d99 41fc5c 43f23f 43f245 41fca7 41fd10 41fd1c 41fd1e 44cd32

44cd2c 44cd12 44cac6 44ca50 429dc0 44cb59 43f296 44cc70 41fd45 44cd3a 429df1 43f344 43f2c3 44cafb 41fd61 44cd3d 44ca5f
429e06 43f35e 44cb70 43f2db 44cb15 41fdcf 41fd83 429e10 43f4f0 43f36c 44cb83 44cb97 43f319 43f3f9 41fd89 429e19 43f371 43f377
44cb88 44cb8e 44cba6 44cb9c 43f40b 44cd44 41fd91 41efe7 43f3be 44cd60 41fdaa 43f3ca 44cbc6 41fdc6 44cca7 43f3db 44cbe1 43f3e0
43f3e6 44cbf0 44cbe6 43f3ea 44cc0e 44cc2b 44cc3e 44cc32 44cc69 44cc58 44cc5c

Function 440702(MiRemoveMappedPtes): 440702 440854 440745 44c9fe 440861 440747 44ca07 440875 435360 4408c0 440752
44c8f6 4408cd 44c842 440761 44c8ff 44082b 4408d6 44c84b 4407b2 4407a7 440843 435378 4408fa 435352 4407c0 4352d6 440852
44084a 44c920 440905 44c8a2 4407cf 4408a1 4352f5 4352dd 44c931 44c92a 44c8b1 44c8cd 4407e7 4352fd 44c874 4352e7 44c936
44c8b9 44080a 44c8e8 435316 44c947 44c93a 43536e 440816 44ca25 43531f 44c963 44c94d 44081a 44ca3f 43532c 44c985 44c96d
44c987 440825 41fbce 435337 44c971 44c98b 44c989 41fbdb 44ca7c 43533f 44c9f7 44c98f 41fbe4 41fe6c 44ca90 44ca81 43534a
44c894 44c995 44c9b0 41fbf2 41fbc2 41fe75 44ca9a 43f4e2 44c9ca 41fbfc 43f19f 41fe7e 44cad8 41fcac 41fdd9 44c9cf 41fc06 41f006
44ca74 43f1b3 41fe89 41fcaf 41fddf 41fe3d 44c9d8 41fc1e 43f1d1 43f1dd 41fe93 41fcca 43f41d 41fe27 41fe40 44c9df 429e27 41fc4a
43f1d7 43f1eb 43f4c3 41fe9c 41fcf4 44ccb4 44caa2 43f434 44c9e4 41fc54 43f203 41fea9 41fd09 43f4fe 44cd24 44cd0d 44caad 43f452
44cabe 44c9f4 44c9eb 429d99 41fc5c 43f23f 43f245 41fca7 41fd10 41fd1c 41fd1e 44cd32 44cd2c 44cd12 44cac6 44ca50 429dc0
44cb59 43f296 44cc70 41fd45 44cd3a 429df1 43f344 43f2c3 44cafb 41fd61 44cd3d 44ca5f 429e06 43f35e 44cb70 43f2db 44cb15 41fdcf
41fd83 429e10 43f4f0 43f36c 44cb83 44cb97 43f319 43f3f9 41fd89 429e19 43f371 43f377 44cb88 44cb8e 44cba6 44cb9c 43f40b
44cd44 41fd91 41efe7 43f3be 44cd60 41fdaa 43f3ca 44cbc6 41fdc6 44cca7 43f3db 44cbe1 43f3e0 43f3e6 44cbf0 44cbe6 43f3ea 44cc0e
44cc2b 44cc3e 44cc32 44cc69 44cc58 44cc5c

From the above analysis result, you can see that basic block at 41fbc2(in yellow color) is parts of
function "MmUnmapViewInSystemCache", "MmCopyToCachedPage" and "MiRemoveMappedPtes".
This kind of multiple function ownership of a basic block can prevent proper binary diffing process.
The limitation with IDA is that it only supports one function match for one basic block. DarunGrim2
solves this problem by doing custom CFG analysis and make it possible for a basic block belong
multiple functions.

Instruction Reordering
In real world, instruction reordering is not happening a lot. Especially with Microsoft's binaries, we
didn't see that much of instruction reordering cases. But during ARM binaries diffing experiments, we
found that there are a lot of instruction reordering happen over each releases. "Illustration 4: Instruction
Reordering in ARM Binaries" is a diffing result from iPhone 2.2. vs 3.0 binary. The function in
question is matched by name matching, but the root node is colored yellow, which means the basic
block is different.

So we checked the disassembly of two basic blocks.

Illustration 4: Instruction Reordering in ARM Binaries

Original Patched
STMFD SP!, {R4-R7,LR}

ADD R7, SP, #0x14+var_8

LDR R3, =(off_3AFD9AAC - 0x32FF9A80)

SUB SP, SP, #0xC

LDR R1, =(off_3AFD86B8 - 0x32FF9A88)

LDR R3, [PC,R3]

STR R0, [SP,#0x20+var_20]

LDR R1, [PC,R1] ; "initWithPath:"

MOV R0, SP

MOV R6, R2

STR R3, [SP,#0x20+var_1C]

BL _objc_msgSendSuper2

SUBS R5, R0, #0

BEQ loc_32FF9B84

STMFD SP!, {R4-R7,LR}

ADD R7, SP, #0x14+var_8

SUB SP, SP, #0xC

LDR R3, =(off_3B2CF6C8 - 0x33328E08)

LDR R1, =(off_3B2CDE70 - 0x33328E10)

STR R0, [SP,#0x20+var_20]

LDR R3, [PC,R3]

MOV R0, SP

LDR R1, [PC,R1] ; "initWithPath:"

MOV R6, R2

STR R3, [SP,#0x20+var_1C]

BL _objc_msgSendSuper2

SUBS R5, R0, #0

BEQ loc_33328F08

Table 1: The original disassembly(same colors for same instructions)

The original and the patched basic block is basically same. The only difference is the order of each
instructions many of the instructions are swapped.

So to solve this instruction reordering problem, we use grouping using variable tracing and sorting
method. We can follow each register or displacement variable's change and usage paths. For example
"Illustration 5: Part of register,displacement variable and call arguments trace of the patched basic
block" shows some part of patched binaries basic block's variable traces. DarunGrim2 currently support
register, displacement variable and call arguments tracing.

By using variable tracing we can group each instruction nodes. There can be multiple groups and they
are independent each other and the order of instruction between them will not affect each other. We
calculate hash value from each groups. The hash will use instruction type and operand's type and value.
We intentionally ignores any immediate value or memory references. They tend to be random across
each builds and will prevent proper calculation. With the hash value calculated, we sort each block and
list them in sorted order.

"Table 2: After Grouping And Sorting" shows the result of grouping and sorting. They show same
sequence of instructions except immediate and memory reference values. This instruction re-reordering
process consume more CPU than original way of gathering sequential fingerprint. So this feature can
be optionally used when necessary.

Original Patched
STMFD SP!, {R4-R7,LR}
ADD R7, SP, #0x14+var_8
SUB SP, SP, #0xC
BEQ loc_32FF9B84
MOV R0, SP
SUBS R5, R0, #0
STR R0, [SP,#0x20+var_20]
LDR R3, =(off_3AFD9AAC - 0x32FF9A80)
LDR R3, [PC,R3]
STR R3, [SP,#0x20+var_1C]
LDR R1, =(off_3AFD86B8 - 0x32FF9A88)
LDR R1, [PC,R1] ; "initWithPath:"
BL _objc_msgSendSuper2
MOV R6, R2

STMFD SP!, {R4-R7,LR}
ADD R7, SP, #0x14+var_8
SUB SP, SP, #0xC
BEQ loc_33328F08
MOV R0, SP
SUBS R5, R0, #0
STR R0, [SP,#0x20+var_20]
LDR R3, =(off_3B2CF6C8 - 0x33328E08)
LDR R3, [PC,R3]
STR R3, [SP,#0x20+var_1C]
LDR R1, =(off_3B2CDE70 - 0x33328E10)
LDR R1, [PC,R1] ; "initWithPath:"
BL _objc_msgSendSuper2
MOV R6, R2

Table 2: After Grouping And Sorting

Examples
We will show the result of binary diffing of real Microsoft patches to show the effectiveness of
identifying patched points. We will use 3-4 critical-rated patches as examples. The critical and hard-to-
find vulnerabilities doesn't need to be hard to pinpoint in the patches. We will use DarunGrim2 to
demonstrate this.

Illustration 5: Part of register,displacement variable and call arguments trace of the
patched basic block

Microsoft's Binaries
Why are Microsoft's binaries easy targets?
They ship security patches in every second Tuesday of the Month. So the patches tend to contain only
security fixing codes. Usually there is no feature enhancements or other types of patches are included
in the patch. The feature enhancements are in service pack, not in monthly patch. So you can get pure
security related patched parts with binary diffing.

They also provide symbols. They usually provide symbols for system dlls and drivers and kernel
images. They don't provide symbol for non core OS products like IIS or Active Directory or Microsoft
Office. But many critical vulnerabilities are found in system DLLs, drivers and kernel, the attacker can
use the symbols Microsoft provides to get more confidence in binary diffing. And it also saves a lot of
time understanding the codes that modified.

They don't do any code obfuscation. Aside from code optimization, they usually never do code
obfuscation. Actually if they do code obfuscation, it will make a lot of problems. For example, it can
conflict other products and also make debugging process very hard for them. So I think they will never
be able to use code obfuscation technique for their shipping products.

This makes the process of binary diffing more easy and cost effective. Amount of modified codes in
patch is relatively small compared to other vendors. This means Microsoft is doing well in their code
maintenance. In the point of binary differs' view, it's a low hanging fruit.

Gathering Binaries
It's very easy to gather Microsoft's binaries. You can just visit each patches page. For example for
MS08-067 issue, you can visit http://www.microsoft.com/technet/security/Bulletin/MS08-067.mspx
and you can download binaries that matching your operating system. Then you can extract the binaries
inside the package using "/x" option. You can find older version of the binaries from your harddisk and
open IDA and load the files and just start the diffing. This whole process usually takes little than 30
minutes.

The infamous MS08-067(which was exploited by Conficker)
MS08-067 is a very interesting patch. It's patching stack buffer overflow problem inside netapi32.dll.
And the real problem is that the stack overflow can be reached through anonymous pipe, which means
this exploit can be exploited remotely without any credentials. This vulnerability was used with
Conficker worm to propagate through internal network after it infects any machine in the network.

From the point of binary diffing, MS08-067 is a very easy target. Identifying the modified block just
takes few minutes. And there is only 2 functions changed. And one is a change in calling convention.
So there is only one function changed.

http://www.microsoft.com/technet/security/Bulletin/MS08-067.mspx

Of course, you need more research and analysis of the patched function to get what was really causing
the vulnerabilities happening. It's not in the range of binary diffing art itself. Binary diffing is a starting
point of whole patch analysis. Especially for MS08-067 patch, the modified codes are enormous, we
can easily guess that it might be a huge mistake in processing some data. More analysis will reveal the
actual vulnerabilities.

Illustration 6: Differences between two matching functions are
massive

MS08-063: DarunGrim2 vs bindiff
Binary diffing with DarunGrim2 will show following functions are modified. You can check them one
by one to find any interesting basic block additions. The "Illustration 11: Screenshot from bindiff
manual" shows the list of modified functions.

The "_SrvIssueQueryDirectoryRequest@32" has the patch that is supposed to fix the security issue.
The zoomed-out call graph of the function looks like following.

The original basic block that is modified is like following.

Illustration 8: Zoomed out view of the modified
function(_SrvIssueQueryDirectoryRequest@32)

Illustration 7: Modified Functions

In "Illustration 8: Zoomed out view of the modified function(_SrvIssueQueryDirectoryRequest@32)"
The red blocks below are the additional basic blocks and they are doing sanity checks for the data.

From the patch you can see it's calling "RtlUlongSub" function and returns C000000Dh return code
according to the result. With further tracing of what data it's checking sanity, you can see what kind of
vulnerabilities it's fixing.

So DarunGrim2 finds 7 modified functions. And if you look into each changes most of them have some
kind of sanity checks or something meaningful changes added.

If you look into bindiff's manual page, you can see binary diffing example using this exact same
binaries. But, the screenshot from the bindiff help file shows only 3 function changes.
SrvFsdRestartPrepareRawMdlWrite

SrvIssueQueryDirectoryRequest

SrvRestartRawReceive

So as Halvar mentioned in his paper, function fingerprinting using nodes, edges and call count usually
have few false negatives. And sometimes they are critical if the patch is done without changing the
CFG structure.

Here's the graph screenshot from bindiff help file showing "_SrvIssueQueryDirectoryRequest@32" .
Primary is patched file and secondary is original file. And you can see that the diffing result is same as
DarunGrim2.

Illustration 9:
Original basic block
that is modified

Illustration 10: The patched parts

So this diffing example shows that DarunGrim2 diffing scheme is useful and practical as much as
bindiff. And sometimes if you want more detailed depth of diff analysis DarunGrim2 might show better
results. But this doesn't mean that which tool or algorithm is superior or inferior. Both of them has their
own strength and weakness, so you need to choose the tool and algorithms according to your specific
diffing needs.

Illustration 11: Screenshot from bindiff manual

MS09-020: WebDav case
By diffing the patches, the following functions are shown as matching and modified. The interesting
thing on this issue is that there is no unidentified blocks in original or patched binaries. Only 9 basic
blocks are modified.

So the most significant change happened in following basic blocks. The following is showing the
blocks from original binary.

And the following is the basic blocks from patched binary.
Illustration 13: Original binary

Illustration 12: The Function Match Line

The difference is unnoticeable at first. But you can find that the 2nd argument for
"MultiByteToWideChar" call is changed. The original binary is getting it using following assembly
sequences.
6F0695EA mov esi, 0FDE9h

,,,,

6F069641 call ?FIsUTF8Url@@YIHPBD@Z ; FIsUTF8Url(char const *)

6F069646 test eax, eax

if(!eax)

{

6F0695C3 xor edi, edi

6F06964A mov [ebp-124h], edi

}else

{

6F069650 cmp [ebp-124h], esi

}

,,,

6F0696C9 mov eax, [ebp-124h]

6F0696D5 sub eax, esi

6F0696DE neg eax

6F0696E0 sbb eax, eax

6F0696E2 and eax, 8

It's doing some arithmetics using "eax" and the result is used for the flag of the call.But if at address
6F069641, the call for "FisUTF8Url" function returns TRUE, "esi" and "[ebp-124h]" will have same
value. So the flag will be 0.

Illustration 14: Patched Binary

MSDN(http://msdn.microsoft.com/en-us/library/dd319072(VS.85).aspx) declares like following:
MB_ERR_INVALID_CHARS Windows Vista and later: The function does not drop illegal code points if the application does not set this
flag.

Windows 2000 Service Pack 4, Windows XP: Fail if an invalid input character is encountered. If this flag is not set, the function silently
drops illegal code points. A call to GetLastError returns ERROR_NO_UNICODE_TRANSLATION.

The "FIsUTF8Url" is not complete UTF8 recognizing routine, but it's doing some heuristic character
range checks to see if the string looks like UTF8. Even though the string looks like UTF8, it still can be
invalid UTF8 string. And you don't specify the "MB_ERR_INVALID_CHARS" flag, the function will
convert the string ignoring the errors.

This vulnerability is special, because the fix doesn't incur any CFG structure change. The only change
is some instructions inside blocks. CFG based matching tools like "bindiff" have possibilities to miss
these kinds of patches.

Non-MS Binaries

JRE Font Manager Buffer Overflow(Sun Alert 254571)
It's also possible binary diff binaries without symbols. Sun Microsystems doesn't provide symbols for
their binaries. But with binary diffing of the target binaries, you can get the following result.

The unpatched binary looks like following.

Illustration 15: Overview of the Difference

http://msdn.microsoft.com/en-us/library/dd319072(VS.85).aspx

The patched binary has following.

From IDA, I retrieved more parts of disassembly. The original and patched parts looks like following.
The patched binary has additional lines in red.

Original Patched
.text:6D2C4A75 mov edi, [esp+10h]
.text:6D2C4A79 lea eax, [edi+0Ah]
.text:6D2C4A7C cmp eax, 2000000h
.text:6D2C4A81 jnb short loc_6D2C4A8D
.text:6D2C4A83 push eax ; size_t
.text:6D2C4A84 call ds:malloc

.text:6D244B06 push edi

.text:6D244B07 mov edi, [esp+10h]

.text:6D244B0B mov eax, 2000000h

.text:6D244B10 cmp edi, eax

.text:6D244B12 jnb short loc_6D244B2B

.text:6D244B14 lea ecx, [edi+0Ah]

.text:6D244B17 cmp ecx, eax

.text:6D244B19 jnb short loc_6D244B25

.text:6D244B1B push ecx ; size_t

.text:6D244B1C call ds:malloc

If you look into the red part, you can see that the part is checking edi register's value is over 2000000h.

Orignal check only ecx(which is edi+0ah) value is over 2000000h(6D2C4A7C). The additional edi
value check actually prevents integer overflow. For example edi is 0xffffffff, then ecx will be

Illustration 16: The Original Parts

Illustration 17: The patched parts

0xffffffff+0xa=0x9. In Orignal binary ecx will pass the test because it's smaller than 2000000h. But in
the patched binary the cmp edi,eax in address 6D244B10 will filter big edi value. This can help prevent
integer overflow.

So we can know that there's a integer overflow is happening in this part. And with further investigation
we can find where the data is coming in. It must be somewhere the attacker can control.

Actually the original advisory here(iDefense Security Advisory 03.26.09: Sun Java Runtine
Environment (JRE) Type1 Font Parsing Integer Signedness Vulnerability) describe the vulnerability as
following
The vulnerability occurs when parsing glyph description instructions in the font file. When parsing the glyph descriptions, a 16bit signed
counter is used as the index to store the next glyph point value. This counter is compared to a 32bit value that represents the maximum
size of the heap buffer. Under certain conditions, the 16bit counter will be interpreted as a negative value, which allows the attacker to
store data before the allocated buffer.

So we see the patch we just found just matches the vulnerability description.

Anti-Binary Diffing
So now it became crucial to make these practices more difficult and time-consuming so that earn more
time for the consumers to apply patches. Even though using severe code obfuscation is not an option
for Microsoft's products, they can still follow some strategies and techniques to defeat the binary
diffing processes without forsaking stability and usability. We are going to show the methods and
tactics to make binary differs life harder.
We will give some ideas and informations on how to prevent effective binary diffing. We are going to
show tactics and algorithms that can be used to defeat the binary diffing methods. Some are related to
practices and processes that the vendors are doing and others are totally technical.

We can think of some measures to prevent this kind of binary difference analysis.

Symbol Mangling
We can think about changing symbol names for the procedures. Many implementations are basically
dependent on symbolic name of procedures and variables. So if we use different names for original and
patched binaries then we can make name based procedure matching useless. BMAT is actually heavily
dependent on name matching, and they are also doing similarities based name matching. So we need to
mangle the names to avoid the heuristic name matching.

Reordering and replacing instructions
Some binary diffing tools are using code checksum for matching basic blocks. And the checksum is
order dependent sometimes. In that case just reordering or replacing existing instructions to alternates
will make the matching fail.

CFG Altering
Some tools like bindiff is dependent on CFG signatures of each functions. How about if ruin this
signature by adding fake nodes and edges and calls. So the function signature will be modified and the
fixed points identifying process will fail. By putting a branch that will never be taken, you can break
CFG and make diffing algorithms based on CFG break.

http://www.gossamer-threads.com/lists/fulldisc/full-disclosure/67841
http://www.gossamer-threads.com/lists/fulldisc/full-disclosure/67841

By altering the structure of procedure's CFG or program's CG without changing functionality, it's
possible to make binary difference analysis tools based on structural analysis fail. This method also
affects isomorphic analysis based binary matching. Because the graph structure must be matched for
each binaries, just putting few meaningless blocks or instructions will confuse function signaturing
process. Something to note is that we need to put the CFG mangling blocks to enough number of
functions. If it's concentrated around the patched function, it only makes the patched point more
visible.

Use proxy call
Prevent CG Recognition
Replace call <XXX> to call <YYY> and the function YYY will look like following
proc YYY:

call XXX
ret

Function YYY is basically null function without any functionality other than call proxying. In case
disassembler of binary differ recognizes this null functions, you can put some non-functioning garbage
instruction to deceive disassembler or binary differ.

Call that never returns
Actually this idea came with some real world case where DarunGrim2 was deluded where
RpcRaiseException broke CFG and prevented matching of functions. This will break CFG seriously. If
you put a call that is never returning and put a function block just next to that "call XXX" instruction.

Change instructions like following:
jz A

To something like following.
1: call B
2: proc B:
3: add esp,4
4: jz A

The call will never return and if the code part that is next to "jz A" line will be recognized as belonging
to their functions. If you place a basic block from other functions there, it will totally break the function
's block ownership recognition.

Sharing Basic Blocks
Sharing basic blocks by multiple functions can break CFG and CG. Sometimes compiler perform
optimization sharing same basic blocks between multiple functions. The basic blocks shared must be
contain returning basic block. So it's not easy to find this kind of basic blocks that is same for any given
functions pair.

Use multiple heads for a function
If you make multiple entry point to a function, you can effectively confuse disassembler from
recognizing real function entry point. To make the fake function head(entry point) more realistic, you
can make a fake basic blocks that is calling the fake head. This will convince the disassembler to
believe that the fake head is also valid one. So this will prevent proper function-block matching and

will affect binary diffing using graph isomorphism.

Anti Binary Diffing Tool: Hondon
We will implemented in-house tool called "Hondon"(in Korean means chaos) to show that it's possible
to defeat major commercial and freeware binary diffing tools. It can be used to obfuscated binaries so
that the patched points are buried under other meaningless differences. The obfuscated code parts
should not affect the performance of the module nor it should not make the debugging difficult. As to
say, it should not have any serious side effects other than preventing binary diffing. It will just make the
patched code parts invisible and buried among obfuscated fake patched parts.
Hondon is implementing most of the methods presented here. And you can run it as a IDA plugin. It
will be dependent on IDA's disassembling ability. That's better than a tool has full blown disassembler
because you can manually correct what IDA's disassembler mis interpreted. If we provided our own in-
house disassembler, it would make the feedback process almost impossible. So you run this as IDA's
plugin, it will rewrite the target binary as binary-diffing-proof binary.

Conclusion
So we looked into the history and current state of binary diffing art. The 1-day exploit threat is real and
currently happening every patch days. Sometimes some people diff different version of product, for
example, IE6 and IE7 binaries and find some vulnerabilities fixed silently. And the points where
vulnerabilities are fixed are good starting points for further vulnerabilities hunting. Bugs tend to
aggregate and many times around where bugs were found, another bugs reside. Or some fixes are
incomplete and someone can find those facts and can exploit the conditions.

So as the attacking technology improves, the protection techniques need to evolve accordingly. Some
major vendors are reluctant to use severe form of anti debugging, because it can break things. So they
need some lightweight, non-aggressive and effective way for defeat binary differs. We presented
"Hondon" which exploit binary-differs weak points. As anti-binary diffing technology evolves, binary
differ will evolve, too. They will process the broken CFGs and also do strong form of instruction
reordering or use other techniques. So the story will continue...

Acknowledgements
Without patience and help from my wife and kids, this paper would never been possible. They
supported me without knowing they are doing that and their presence itself was great help to me. Also I
thank to Byoungyoung Lee for his advice, help and all the times spent listening to me and talking on
the messenger.

References
[BMAT] Z. Wang, K. Pierce and S. McFarling, BMAT - A Binary Matching Tool for Stale Profile
Propagation, The Journal of Instruction-Level Parallelism (JILP), Vol. 2, May 2000.

[ARE] Automated Reverse Engineering

[TODD] Comparing binaries with graph
isomorphism((http://web.archive.org/web/20061026170045/www.bindview.com/Services/Razor/Papers
/2004/comparing_binaries.cfm)

[SCEO] Structural Comparison of Executable Objects

http://www.zynamics.com/downloads/dimva_paper2.pdf
http://web.archive.org/web/20061026170045/www.bindview.com/Services/Razor/Papers/2004/comparing_binaries.cfm
http://web.archive.org/web/20061026170045/www.bindview.com/Services/Razor/Papers/2004/comparing_binaries.cfm
http://web.archive.org/web/20061005022107/www.blackhat.com/presentations/win-usa-04/bh-win-04-flake.pdf

[IDACompare] IDACompare(http://labs.idefense.com/files/labs/releases/previews/IDACompare/)

[PatchDiff2] PatchDiff2(http://cgi.tenablesecurity.com/tenable/patchdiff.php)

[BinDiff] http://www.zynamics.com/bindiff.html

[DG2] http://www.darungrim.org

http://www.darungrim.org/
http://www.zynamics.com/bindiff.html
http://cgi.tenablesecurity.com/tenable/patchdiff.php
http://labs.idefense.com/files/labs/releases/previews/IDACompare/

	Fight against 1-day exploits: Diffing Binaries vs Anti-diffing Binaries
	Introduction
	Binary Diffing
	The History
	The Tools

	DarunGrim2
	Algorithms
	Symbolic Names Matching
	Fingerprint Hash Map
	Structure Based Analysis

	Real Life Issues
	Split Blocks
	Hot Patching
	Basic Blocks in Multiple Functions
	Instruction Reordering

	Examples
	Microsoft's Binaries
	Gathering Binaries
	The infamous MS08-067(which was exploited by Conficker)
	MS08-063: DarunGrim2 vs bindiff
	MS09-020: WebDav case

	Non-MS Binaries
	JRE Font Manager Buffer Overflow(Sun Alert 254571)

	Anti-Binary Diffing
	Anti Binary Diffing Tool: Hondon

	Conclusion

