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1 Introduction

The last decade has seen an explosion of research into type systems, formal
verification and certification for low-level code, ignited by the original papers
on typed assembly language [34] and proof-carrying code [36], and fanned by
the development of separation logic [42]. These developments have been driven
partly by need (as well as the traditional arguments in favour of some level of
formal verification as a way to develop software that actually works, the internet
has made checkable safety of mobile code more than a purely academic prob-
lem), partly by improvements in the technology of theorem provers and model
checkers, and partly by the realization that conservative techniques for verifying
comparatively simple properties, such as forms of memory safety, can be much
easier and more efficient to apply than complete methods for showing full func-
tional correctness, whilst still offering useful real-world guarantees. Another
driving force has been the (occasionally surprising) discovery that logical, type
theoretic and semantic ideas that were originally developed in fairly abstract
settings, or for very high-level programming languages, are actually applicable
to realistic, low-level, ‘dirty’ languages and systems.

In the present paper, we will be concerned with certified compilation, proving
once and for all that a compiler always produces object code that satisfies some
policy, which in this case will be type safety.1

But what do we mean by type safety? For high-level languages, there are
two main approaches to formalizing type soundness properties: syntactic and
semantic. The difference between the two is not (merely) one of proof technique;
they are different kinds of result.

In the syntactic approach [46], one typically defines a small-step operational
semantics for the language that gets stuck (makes no transition) in configura-
tions that are considered to be bad. One then shows ‘preservation and progress’
– that every typable configuration is either properly terminal or makes a transi-
tion into another typeable configuration – and can then conclude by induction
that well-typed programs don’t get stuck. Syntactic type soundness is often
fairly straighforward to establish, but is a rather weak and fragile result. Firstly,
it is closely tied to the particular set of syntactic rules that define the type sys-
tem. There is no direct definition of the meaning of a type A as a property of
phrases beyond ‘being assignable the type A using this particular set of rules’,
so there is no real notion of what it is that the types are supposed to ensure.
Secondly, the introduction of stuckness (or error states) into the operational
semantics is something of a sleight of hand, changing the original problem to
match the solution. For a simple type system and a high-level semantics, it
seems reasonable to work with syntax for (untyped) phrases that explicitly dis-
tinguishes, say, functions from integer constants, or even booleans and integers,
and which gets stuck when one tries to apply an integer or increment a boolean.

1Certified compilation can be contrasted with certifying compilation, in which the compiler
produces a checkable certificate for each binary, purporting to prove that the policy is satisfied
in that case, and compiler validation, in which each output of the compiler is analysed for
safety by an independent tool.
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But this becomes less tenable when the type system is intended to track more
interesting properties, such as the use of locks or the reading and writing of
particular parts of the store. In such cases, formulating a syntactic type sound-
ness result involves changing the operational semantics of the language one
first thought of, to track extra information and possibly add new stuck states.
And the more sophisticated the analysis, the more complex the instrumenta-
tion becomes. Furthermore, the notion of error is not preserved by compilation:
machine code does not inherently disinguish code pointers, heap pointers, in-
tegers or booleans; no fault is raised by performing arithmetic on addresses to
which one subsequently jumps or stores,2 and compiled code, particularly when
optimized, often depends upon such possibilities.

It is, of course, possible to mitigate the effect of bogus instrumentation by
also proving an erasure theorem, showing that removing the extra information
does not affect the execution of non-faulting programs, and such a result can
be extended to relate evaluation in a high-level operational semantics to the
behaviour of compiled code. Even then, however, the theorem about low-level
code is tied to the syntactic definition of the high-level language and its type
rules. This is a significant shortcoming: compiled code nearly always relies
upon a runtime system and library routines that are written directly in a low-
level language, and we would also like to be able to link soundly with code
compiled from other high-level languages. Without an independent low-level
characterization of the intended behavioural properties of code compiled from
phrases with a particular high-level type, the implementer of a library function
or support routine written in C or assembler does not know what specification
his code should meet in order to interoperate properly with the output of the
compiler.

The semantic approach to type safety, by contrast, gives a meaning to each
type that is independent of any particular set of rules for assigning those types
to program phrases. The meaning of a type will be (roughly) a set of values
with some property; for a given language and set of types, there can be many
different analyses, of varying degrees of precision, for soundly assigning types
to terms.3 The meaning of a function type A → B, for example, can be defined
inductively to be the set of terms that when applied to a value in the meaning
of type A always yield a result in the meaning of type B; the similarity (at least
at first order) of such an interpretation to the meaning Hoare triples in program
logics should be apparent.

Interpretations of types as predicates over some untyped model of compu-
tation have a long history, from the early work of Scott [43] and McCracken

2This is, of course, not strictly true. Operating systems use memory management hardware
to trap ‘illegal’ pointer dereferencing or jumps to addresses in pages marked as ‘no execute’,
floats are passed in special registers, etc. But faults in compiled code certainly do not corre-
spond exactly to errors in a high-level semantics, and a major goal of static verification should
surely be to remove the need for such crude and expensive dynamic checks.

3This is the ‘extrinsic’ or ‘descriptive’ view of typing, traditionally associated with Curry,
which one may contrast with the ‘intrinsic’, ‘prescriptive’ position of Church, which regards
types as coming before terms, rather than after. Even if our source types are prescriptive, we
are firmly in the Curry camp regarding their interpretations here.
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[29] using retracts of universal domains through to recent research on ideals
and biorthogonality [45, 30]. Particularly relevent from the point of view of
the present paper is the work of Appel and his collaborators [8, 7, 9, 44, 4]
on Foundational Proof Carrying Code (FPCC). The idea of FPCC is to give a
semantics to high-level types as low-level specifications expressed in some suffi-
ciently powerful program logic. This low-level logic is not tied to any particular
language or type system, and proofs that a particular piece of low-level code
satisfies such a specification can be generated or checked independently from
any particular compilation scheme. Although the concept of FPCC is clearly
parametric in just what safety property one wishes to prove and check, the only
instance that has really been studied and implemented so far is memory safety:
ensuring that ‘illegal’ accesses to memory will not occur at runtime. The rather
intensional notion of which accesses are legal is formalized by changing the op-
erational semantics of the low-level machine so that it gets stuck when certain
locations are dereferenced, essentially just as in the syntactic approaches.

Whilst memory safety is undeniably important, it is not the same as type
safety. Program fragments that satisfy an interpretation of a type in the style of
previous work on FPCC, whilst memory safe (in the right contexts), can easily
fail to have other rather basic properties one would expect, and on which secu-
rity and compiler correctness can depend. Given an ML-like source language,
for example, an assembly language function that simply returns its argument
will be in the interpretation of the type (int → int) → int, since if one passes
in the address of some closure, one will get back something that looks like an
integer. But allowing the identity function to be given that type, whilst not
leading to illegal memory accesses, would invalidate very basic reasoning prin-
ciples for ML programs that are used by both programmers and compilers: not
only are static transformations such as common subexpression elimination no
longer behaviour-preserving, but the observable results of a particular compiled
binary can vary according to where it is loaded in memory, the behaviour of the
allocator, etc. Such possibilities violate most language-based encapsulation or
security properties one can think of.

An ideal situation would be that the translation of high-level types into low-
level assertions captures enough about the semantics of the source language that
all typed contextual equivalences that are valid at the high level are somehow
justifiable at the low-level. This would mean we had captured a sense in which
our compilation scheme is fully abstract. Even quite small abstraction failures
in compilation can easily lead to security holes [1, 26] so it seems natural to
try to achieve full abstraction. One way to do that would be to take the in-
terpretation of a type A to be (roughly) the set of code fragments that might
be emitted by a fixed compiler for phrases of type A (a kind of term model),
but that would clearly be silly. What we really want are behavioural specifi-
cations, admitting the widest possible range of well-behaved implementations.
But it may be that ‘sufficient’, rather than ‘full’, abstraction is the reasonable
goal. We certainly want to preserve all the reasoning principles that might be
used by a compiler in optimization or on which security properties might de-
pend, and for real languages those certainly include subtle arguments about,
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for example, encapsulated state and higher-order features. On the other hand,
source languages may validate very esoteric equivalences that could almost be
regarded as accidental. There is some reason (e.g. some results on typed ver-
sus untyped realizability [30]) to believe that modelling all equations may lead
to excessively complicated specifications and awkward restrictions on contexts,
with little benefit.

What sort of interpretation of types should we use to establish sufficient
abstraction of compilation? In the present paper, we work with a semantic
interpretation of high-level types that uses binary relations, rather than unary
predicates, over low-level code and data. One should think of these relations as
carving out both a set of values and a type-specific notion of equality on that set
of values; these are defined together because which values are judged to be in the
set associated with some compound type will depend on both the sets of values
and the equality relations associated with its components. The crucial case is
that for functions: two values f and f ′ are in the relation interpreting A → B

iff for any x and x′ that are related by the interpretation of A, f x and f ′ x′ are
related by the interpretation of B. The set of values having a particular type
is given by the diagonal part of the associated relation, so f has type A → B

just when f is related to itself by the interpretation of A → B; this is the usual
notion of ‘logical’ relation [39]. Since equality should be an equivalence relation,
the natural notion for interpreting a type is a set of values and an equivalence
relation on that set, which is easily seen to be the same thing as a relation that is
symmetric and transitive, aka a partial equivalence relation (PER). Interpreting
types as partial equivalence relations over some untyped model of computation
also has a long history, but previous work has generally taken the untyped model
either to be rather high-level and abstract (e.g. a domain theoretic model of
the untyped lambda calculus) or low-level but with uninteresting fine structure
(e.g. some Gödel numbering of partial recursive functions). The difference here
is that we work with a low-level, untyped model in whose structure we most
certainly are interested, viz. machine code (albeit very idealized), and we work
with a translation into that model that is representative of realistic compilation
schemes (albeit for a rather toy language). We do not claim that the actual
type soundness result we prove is, in itself, especially exciting; the interesting
apsects of the work are the form of the result and the methodology used for
showing it.

This paper describes work in progress, building on our earlier work on mod-
ular specification and verification of a simple memory allocator [13]. The results
have been formalized and checked in the Coq proof assistant and most of the
formal parts of the present paper are presented as extracts from the proof script,
using Coq syntax.

2 Low-Level Target Machine

We work with the same completely straightforward operational semantics for an
idealized assembly language that we used in our earlier work on allocation [13].
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There is a single datatype, the natural numbers, though different instructions
treat elements of that type as code pointers, heap addresses, integers, etc. The
heap is simply a total function from naturals to naturals and the code heap is
a total function from naturals to instructions. Computed branches and address
arithmetic are perfectly allowable. There is no built-in notion of allocation and
no notion of stuckness or ‘going wrong’: the only observable behaviours are
termination and divergence.

The instruction set of the machine is given by Coq inductive definitions for
lvalues (dest), rvalues (src) and instructions (instruction). Destinations are
either immediate (a fixed memory location), indirect or indirect with a fixed
offset. Sources are literal values, immediate (the contents of a fixed memory
location), indirect or indirect with an offset.

Inductive dest : Set :=
| d imm : nat → dest | d ind : nat → dest | d indo : nat → nat →

dest.
Inductive src : Set :=

| s cst : nat → src | s imm : nat → src | s ind : nat → src
| s indo : nat → nat → src.

Inductive instruction : Set :=
| i halt : instruction
| i move : dest → src → instruction
| i add : dest → src → src → instruction
| i sub : dest → src → src → instruction
| i mult : dest → src → src → instruction
| i branch : src → instruction
| i brz : src → src → instruction
| i brnz : src → src → instruction.

The mutable heap of our machine is a function from naturals to naturals, which
we choose to represent using a named record type with a single field and an
implicit coercion to (nat → nat):

Record state : Set := State { fun of state :> nat → nat }.

Definition update (s :state) (n:nat) (v :nat) : state :=
State (fun m ⇒ if beq nat n m then v else s m).

We now give the meaning of sources, destinations, and the single-step semantics
of instructions themselves. The meaning of an instruction at a particular pro-
gram counter in a particular state is of an option type: either None, indicating
termination, or Some(s′, pc′), giving a new heap and a new program counter:

Definition sem dest (de:dest) (s :state) :=
match de with
| d imm n ⇒ n
| d ind n ⇒ s n
| d indo ofs n ⇒ s n + ofs

end.

Definition sem src (sr :src) (s :state) :=
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match sr with
| s cst n ⇒ n
| s imm n ⇒ s n
| s ind n ⇒ s (s n)
| s indo ofs n ⇒ s (s n + ofs)

end.

Definition sem instr (ins :instruction) (s :state) (pc:nat) : option (state × nat)
:=
match ins with
| i halt ⇒ None
| i move de sr ⇒ Some (update s (sem dest de s) (sem src sr s), S pc)
| i add de sr1 sr2 ⇒
Some (update s (sem dest de s) ((sem src sr1 s) + (sem src sr2 s)), S pc)

| i sub de sr1 sr2 ⇒
Some (update s (sem dest de s) ((sem src sr1 s) - (sem src sr2 s)), S pc)

| i mult de sr1 sr2 ⇒
Some (update s (sem dest de s) ((sem src sr1 s) × (sem src sr2 s)), S pc)

| i branch sr ⇒ Some (s, sem src sr s)
| i brz srscrut srtarg ⇒

Some (s, match sem src srscrut s
with 0 ⇒ sem src srtarg s | S ⇒ S pc end)

| i brnz srscrut srtarg ⇒
Some (s, match sem src srscrut s

with 0 ⇒ S pc | S ⇒ sem src srtarg s end)
end.

A program is simply a total function from labels (naturals) to instructions,
whilst a program fragment is a partial function from labels to naturals:

Definition program : Set := nat → instruction.

Definition program fragment : Set := nat → option instruction.

Definition program extends fragment (p:program) (pf :program fragment) :=
∀ n, match pf n with None ⇒ True | Some i ⇒ (p n = i) end.

We now define kstepterm, saying when a configuration comprising a program
p, a heap s, and a program counter l terminates in k steps. The terminates
predicate then holds of configurations that terminate in some number of steps:

Fixpoint kstepterm (k :nat) (p:program) (s :state) (l :nat) {struct k} : Prop :=
match k with
| O ⇒ False
| (S j ) ⇒ match sem instr (p l) s l with

| None ⇒ True
| Some (s’, l’) ⇒ kstepterm j p s’ l’

end
end.

Definition terminates p s l := ∃ k, kstepterm k p s l.
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Expression types

A := int | bool | A × A′

Store types

Γ := v1 : A1, . . . , vn : An

Expressions

Γ ` true : bool Γ ` false : bool Γ ` n : int Γ, x : A ` x : A

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 > e2 : bool

Γ ` e1 : A1 Γ ` e2 : A2

Γ ` (e1, e2) : A1 × A2

Γ ` e : A1 × A2

Γ ` π1e : A1

Γ ` e : A1 × A2

Γ ` π2e : A2

Commands

Γ, x : A ` e : B

Γ, x : A ` (x := e) : Γ, x : B

Γ ` C1 : Γ′ Γ′ ` C2 : Γ′′

Γ ` C1 ;C2 : Γ′′

Γ ` e : bool Γ ` C1 : Γ′ Γ ` C2 : Γ′

Γ ` if e then C1 else C2 : Γ′

Γ ` e : bool Γ ` C : Γ

Γ ` while e do C : Γ

Figure 1: The While Language

The major idealizations compared with a real machine are that we have
arbitrary-sized natural numbers as a primitive type, rather than fixed-length
words, and that we have separated code and data memory. Note also that there
are no registers; we will simply adopt a convention of using some low-numbered
memory locations in a register-like fashion.

3 Source Language

The source language is that of simple while-programs with integer- (actually
natural-), boolean- and pair-valued expressions and a type system for commands
that supports ‘strong updates’ to (global) variables. The syntax and type rules
of the language are shown in conventional notation in Figure 1. Expressions are
typed in the context of a typing Γ for the global variables. Commands, which
may update variables with values of different types, are given both a pretyping
and a posttyping, recording their assumptions and effects on the store.
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The Coq translation of Figure 1 is fairly direct. We use natural numbers
instead of names for global variables and have chosen to make elements of En-
vType, representing store types, be total functions on the naturals (we will pass
around a separate size as well later on, though we could have used lists or
fixed-size vectors instead). Note also the use of simple ‘GADT-style’ dependent
typing for expressions and commands: Exp env t is the type of expressions that
have type t in store environment env, and similarly for commands.

Inductive ExpType : Set :=
| TInt : ExpType
| TBool : ExpType
| TPair : ExpType → ExpType → ExpType.

Notation "a ** b" := (TPair a b) (at level 55).

Definition EnvType := nat → ExpType.

Definition envupdate (env :EnvType) m a :=
(fun n ⇒ if beq nat n m then a else env n).

Inductive Exp : EnvType → ExpType → Set :=
| EInt : ∀ env, nat → Exp env TInt
| EBool : ∀ env, bool → Exp env TBool
| EId : ∀ env m a (h : env m = a), Exp env a
| EAdd : ∀ env, Exp env TInt → Exp env TInt → Exp env TInt
| EGt : ∀ env, Exp env TInt → Exp env TInt → Exp env TBool
| EPair : ∀ env a b, Exp env a → Exp env b → Exp env (TPair a b)
| EFst : ∀ env a b, Exp env (TPair a b) → Exp env a
| ESnd : ∀ env a b, Exp env (TPair a b) → Exp env b.

Inductive Command : EnvType → EnvType → Set :=
| CAssign : ∀ env m a, Exp env a → Command env (envupdate env m a)
| CSeq : ∀ env1 env2 env3, Command env1 env2 → Command env2 env3

→ Command env1 env3
| CIf : ∀ env1 env2, Exp env1 TBool → Command env1 env2 → Command

env1 env2 → Command env1 env2
| CWhile : ∀ env, Exp env TBool → Command env env → Command env

env.

4 Compilation

The compiler is structured as a pair of straightforward recursive functions
traversing expressions and commands in the high-level language to produce lists
of low-level instructions. The correctness of the generated code relies on it being
linked with a memory allocator module satisfying the specification given in our
previous work [13]. We call the allocator firstly to get a statically fixed-size
block of memory for storing variables and an evaluation stack and, secondly, for
dynamically allocating the heap storage for values of pair types. Heap datas-
tructures generated by programs in our language can involve non-trivial sharing,
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Figure 2: Memory Layout

which complicates their reclamation. We have not yet considered proving either
garbage collection or any static memory management scheme, so for now just
let the compiled code leak memory.

We adopt a convention of using memory locations 0 to 9 in a register-like
fashion. The calling convention for the memory allocator is that a return address
is passed in location 0 (retreg) and the size of the block requested is passed in
location 1 (argreg); a pointer to the free block is returned in location 0. The
code produced by compiling phrases of our language relies on location 6 (envreg)
holding a pointer to the base of a contiguous block of memory, the first part of
which is used to store the global variables and the remainder of which is used
as a stack during the evaluation of expressions. Location 5 (spreg) points to the
next free stack location. Figure 2 shows a view of a typical layout of the store
at run-time. We have shown a situation in which the second component of the
second global variable (which has type int × ((bool × int) × bool)) aliases with
the value at the top of the stack. It is also worth re-emphasizing at this point
that the store is really just a function from naturals to naturals: the intended
interpretation of some of them as pointers, booleans, etc. as shown in the figure
is just what we are going to formalize by giving a semantics to types.

Here is the code sequence (represented as a list of instructions, built using ‘::’
and ‘nil ’) for pushing a particular natural number n onto the evaluation stack.
We do an indirect store of the constant n to the memory location pointed to by
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spreg and then increment spreg:

Definition int code n :=
(i move (d ind spreg) (s cst n)) ::
(i add (d imm spreg) (s imm spreg) (s cst 1)) ::
nil.

The code for boolean constants is similar, pushing 1 for true and 0 for false:
Definition bool code (b:bool) :=

(i move (d ind spreg) (s cst (if b then 1 else 0))) ::
(i add (d imm spreg) (s imm spreg) (s cst 1)) ::
nil.

The value of a global variable n is obtained by indirection through envreg with
an offset:

Definition id code n :=
(i move (d ind spreg) (s indo n envreg)) ::
(i add (d imm spreg) (s imm spreg) (s cst 1)) ::
nil.

The code for addition subtracts two from the stack pointer, adds the two values
that were previously on top together, writing the result to the location pointed
to by the updated stack pointer, and then increments the stack pointer again:

Definition add code :=
(i sub (d imm spreg) (s imm spreg) (s cst 2)) ::
(i add (d ind spreg) (s ind spreg) (s indo 1 spreg)) ::
(i add (d imm spreg) (s imm spreg) (s cst 1)) ::
nil.

The sequence for the greater-than test manipulates the stack in the same way,
using subtraction to compare the two values. We are working with natural
numbers and a subtraction operator that yields zero when the result would
otherwise be negative, thus we either leave zero (representing false) or some
strictly positive value, all of which we take to represent true. This encoding,
or realization, of the booleans will be made more explicit when we consider the
semantics of types later.

Definition gt code :=
(i sub (d imm spreg) (s imm spreg) (s cst 2)) ::
(i sub (d ind spreg) (s ind spreg) (s indo 1 spreg)) ::
(i add (d imm spreg) (s imm spreg) (s cst 1)) ::
nil.

The code for creating a pair has to allocate a fresh cons cell, pop two values
off the stack and write them into the fields of the new cell and finally push the
address of the new cell back to the stack. It is parameterized by the starting
address of the code fragment, label, and the entry point of the allocation routine,
alloc.

Definition pair code label alloc :=
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(i sub (d imm spreg) (s imm spreg) (s cst 2)) ::
(i move (d imm argreg) (s cst 2)) ::
(i move (d imm retreg) (s cst (4 + label))) ::
(i branch (s cst alloc)) ::
(i move (d ind retreg) (s ind spreg)) ::
(i move (d indo 1 retreg) (s indo 1 spreg)) ::
(i move (d ind spreg) (s imm retreg)) ::
(i add (d imm spreg) (s imm spreg) (s cst 1)) ::
nil.

The code for projecting from a pair decrements the stack pointer and does an
indirect load via spreg to store the address of the relevant cons cell on the heap
in workreg. It then pushes the value pointed to by workreg onto the stack:

Definition fst code :=
(i sub (d imm spreg) (s imm spreg) (s cst 1)) ::
(i move (d imm workreg) (s ind spreg)) ::
(i move (d ind spreg) (s ind workreg)) ::
(i add (d imm spreg) (s imm spreg) (s cst 1)) ::
nil.

Definition snd code := . . . (similar to above) . . .

We now show the function for compiling an expression e, which is parameterized
by a starting address for the generated code, label and the address of the allo-
cation routine, alloc.4 compile exp returns a list of instructions and the next
free code address. The compile expression function wraps the compilation of a
complete expression, decrementing the stack pointer at the end so that it points
to the computed value, rather than the next free stack location.

Fixpoint compile exp (env :EnvType) (a:ExpType) (e:Exp env a) (label alloc:nat)
{struct e} : list instruction × nat :=

match e with
| EInt n ⇒ (int code n, int code size + label)
| EBool b ⇒ (bool code b, bool code size + label)
| EId n ⇒ (id code n, id code size + label)
| EAdd e1 e2 ⇒ let (code’,label’) := compile exp e1 label alloc in

let (code”,label”) := compile exp e2 label’ alloc in
(code’ ++ code” ++ add code, add code size + label”)

| EGt e1 e2 ⇒ let (code’,label’) := compile exp e1 label alloc in
let (code”,label”) := compile exp e2 label’ alloc in

(code’ ++ code” ++ gt code, gt code size + label”)
| EPair e1 e2 ⇒ let (code’,label’) := compile exp e1 label alloc in

let (code”,label”) := compile exp e2 label’ alloc in
(code’ ++ code” ++ pair code label” alloc,
pair code size + label”)

| EFst e’ ⇒ let (code’,label’) := compile exp e’ label alloc in

4e is actually a typed expression in context, but the parameters env and a are Implicit, so
do not appear in the recursive calls.
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(code’ ++ fst code, fst code size + label’)
| ESnd e’ ⇒ let (code’,label’) := compile exp e’ label alloc in

(code’ ++ snd code, snd code size + label’)
end.

Definition compile expression env a (e:Exp env a) label alloc :=
let (code, label) := compile exp e label alloc in

(code ++ ((i sub (d imm spreg) (s imm spreg) (s cst 1)) :: nil), S label).

The compile function compiles a command into a sequence of instructions:

Fixpoint compile (env1 env2 : EnvType) (c:Command env1 env2 ) (label al-
loc:nat) {struct c} : list instruction × nat :=

match c with
| CAssign m e ⇒ let (code’,label’) := compile expression e label alloc

in (code’ ++ (i move (d indo m envreg) (s ind spreg)
:: nil), 1 + label’)

| CSeq c1 c2 ⇒ let (code’,label’) := compile c1 label alloc in
let (code”,label”) := compile c2 label’ alloc in

(code’ ++ code”, label”)
| CIf b c1 c2 ⇒ let (code’,label’) := compile expression b label alloc

in
let (code”,label”) := compile c1 (1 + label’) alloc in
let (code”’,label”’) := compile c2 (1 + label”) alloc in
(code’ ++

(i brz (s ind spreg) (s cst (1 + label”)) :: nil)
++ code” ++ (i branch (s cst label”’) :: nil) ++
code”’, label”’)

| CWhile b c1 ⇒ let (code’,label’) := compile expression b label alloc in
let (code”,label”) := compile c1 (1 + label’) alloc in
(code’ ++
(i brz (s ind spreg) (s cst (S label”)) :: nil)
++ code” ++ (i branch (s cst label) :: nil),
1 + label”)

end.
Just in case it is not immediately apparent from the above, we should ex-

plicitly remark that – even in the absence of setcar/setcdr operations – code
produced by the compiler really does build heap datatstructures that are DAGs
with non-trivial sharing. For example, the program

X := (3, 4) ; Y := (X, X)

generates two cons cells, with both fields of the second (which is pointed to
from the global variable Y ) pointing to the first (which is also pointed to from
X).
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5 Relational Assertions

The language and compiler described in the previous sections are extremely
simple. We now turn to the rather less trivial things that we would like to say
about them. The next subsection gives a slightly informal account of the idea
of relational specifications, which is followed by the more detailed Coq version.

5.1 Overview of relations for specification

The central idea of our approach to specifications in general, and the interpre-
tation of types in particular, is that they are about invariance, independence,
or ‘how much difference makes a difference’. With the representations we are
using, there is no sensible way that even a simple statement like ‘location 74
holds a boolean’ can be interpreted as a predicate on the contents of location 74:
whatever value v is stored there, it is always interpretable as either a natural
number, a boolean or even a pointer. How the value is interpreted depends on
how it will be used, and the difference between a piece of code that is typed as-
suming location 74 holds a natural and one that is typed assuming that it holds
a boolean is that the latter should only care about whether the value is zero or
not. In other words (assuming everything else is fixed), the code can have two
different observable behaviours: one in the case that v is zero and the other one
for all the non-zero values. But the notion of observable behaviour needs to
be defined carefully. Consider, for example, what we might mean by saying a
particular piece of code is supposed to be entered with a boolean in location 74
and will then exit with a boolean in location 74. This specification is met by a
piece of code that does nothing at all, or which doubles the value in 74 (both
of which implement, or realize, the identity on booleans). After the exit point
however, we certainly can place a piece of code that behaves differently (e.g.
halting or diverging) according to whether or not the initial value v was, say,
42. Clearly, we have to restrict the notion of observation (and hence observably
equivalent behaviour) to take types into account. So we’ll refine our specifica-
tion to say that assuming that the code at the exit point (the continuation) has
the same behaviour for all non-zero values in location 74, then the code at the
entry point promises to have the same behaviour whatever non-zero value is in
74 when it is called. We’ll write this specification something like this:

exit : (74 7→ [[bool]])> ` M � entry : (74 7→ [[bool]])>

Here M is the program fragment that is the subject of the judgement. [[bool]] is
a binary relation on natural numbers, defined as

[[bool]]
def
= {(n, n′) | (n = n′ = 0) ∨ (n > 0 ∧ n′ > 0)}

which is a (partial equivalence) relation capturing when two natural numbers
are equivalent as boolean values. (74 7→ [[bool]]) is then a binary relation on
states, relating two states whenever they hold values in location 74 that are
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[[bool]]-related. More generally, if r ⊆ N × N and x ∈ N,

(x 7→ r)
def
= {(s, s′) | (s x, s′ x) ∈ r}

Finally, the ‘perp’ operator, (·)>, takes a binary relation on states to one on
pairs of programs and code pointers. If R ⊆ state × state, then R> relates
two such pairs just when they behave equivalently whenever they are started
in states that are R-related. The notion of equivalent behaviour we use here is
eqi-termination:

R> def
= {((p, l), (p′, l′)) | ∀(s, s′) ∈ R, terminates p s l ⇔ terminates p′ s′ l′}

One can think of the elements of R> as a collection of ‘test contexts’ for R. The
meaning of the entire judgement above is then

∀p p′, program extends fragment p M

⇒ program extends fragment p′ M

⇒ ((p, exit), (p′, exit)) ∈ (74 7→ [[bool]])>

⇒ ((p, entry), (p′, entry)) ∈ (74 7→ [[bool]])>.

Reducing various notions of observational equivalence to equitermination in a
set of contexts is common in denotational semantics, but some readers might
have expected to see something more direct, such as that two executions started
at entry with [[bool]]-related values in 74 will both reach exit with similarly
related values. Such a property is actually implied by the definition we have
given, because amongst the chosen tests are ones that make all the observ-
able distinctions one wishes to be able to make at intermediate points. For
example, in (74 7→ [[bool]])> there are, amongst other things, pairs of contexts
that both halt starting at exit whenever the value in 74 represents true and
diverge whenever it represents false, and which have varying termination be-
haviours elsewhere. By considering such contexts, one can deduce the that if
one jumps to entry with two values representing the same boolean, then ei-
ther both computations diverge, both computations halt, or both computations
reach exit with two values that represent the same boolean in location 74. For
simple first-order types such as we consider here, the ‘double negation’ formula-
tion deals neatly with possible divergence; for more complex types it has other
advantages over direct-style versions, involving, for example, admissibility.

As mentioned above, one kind of relation with which we will work is relations
on stores. To be able to reason locally and modularly about how such relations
are either affected or left unchanged by the execution of pieces of code it is
necessary to have some handle on which part of the store a given relation depends
upon. For example, the store relation (x 7→ r) clearly only ‘looks at’ location
x (on both sides); one consequence is that if we start with two states (s0, s

′
0) ∈

(x 7→ r) and make arbitrary updates to them in locations other than x, yielding
new states s1,s

′

1, then (s1, s
′

1) ∈ (x 7→ r) too. Indeed, we capture the notion of
which locations a relation depends upon (its ‘support’) in terms of invariance
under change. If L ⊆ N and s0 and s1 are states, then define

s0 ∼L s1
def
= ∀x ∈ L, s0 x = s1 x
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(In Coq, we represent subsets by maps into Prop and define equpto : (nat →
Prop) → state → state → Prop to mean ∼.)

Now, though we shall refine this definition shortly, say that a pair of sets of
locations (L, L′) supports a relation R ⊆ state × state when

∀(s0, s
′

0) ∈ R, ∀(s1, s
′

1), (s0 ∼L s1) ∧ (s′0 ∼L′ s′1) ⇒ (s1, s
′

1) ∈ R

In other words, if one starts with two states in the relation then any modifi-
cations outside the support yield another pair of states in the relation. If R1

is supported by (L1, L
′

1) and R2 by (L2, L
′

2), then define a form of separating
conjunction [37] by

R1 ⊗ R2
def
=

{

R1 ∩ R2 if L1 ∩ L2 = ∅ and L′

1 ∩ L′

2 = ∅
∅ otherwise

So two states are in R1⊗R2 when they are in both R1 and R2 and the supports
are disjoint. It is easy to see that R1 ⊗ R2 is supported by (L1 ∪ L2, L

′

1 ∪ L′

2).
When working with concrete supported relations, the separating conjunction
allows many specifications to be written very concisely, since it abbreviates a
host of ‘absence of aliasing’ conditions that would be explicit in a traditional
Hoare-logic style assertion language. The separating conjunction will prove even
more useful when we reason about modules: the private invariants of modules
will be captured by existentially quantifying over supported relations about
which clients know nothing except that their support is disjoint from that of the
client’s own store.

Unfortunately, the above notion of support is slightly too weak to be useful.
For example, consider a relation (List 74) expressing that two states have equal
linked lists of integers in location 74. Assuming the usual representation, this
will relate s and s′ when either s 74 and s′ 74 are both zero, or they are both
non-zero, s (s 74) = s′ (s′ 74) – capturing the equality of the first elements –
and (inductively) there are equal linked lists starting at (s 74)+1 and (s′ 74)+1.
Thus the sets of locations that get looked at to test whether two stores are in
(List 74) are not constant; they depend on the contents of those stores. So we
have to replace sets of locations L ⊆ N with functions A : state → P(N). We
restrict attention to accessibility maps (first introduced in [15]), those A for
which

∀ s s′, s ∼A(s) s′ ⇒ As = As′

The accessibility map condition intuitively says that A ‘supports itself’, and
has the effect of making the relation ∼A, defined by s ∼A s′ ⇔ s ∼A(s) s′ an
equivalence relation.

We will build our specifications out of state relations supported by pairs
of accessibility maps, making much use of (a suitable generalization of) the
separating conjunction described above.

5.2 Relations for specifications, formally

In this section we present the formal definitions of the relations and operations
on relations with which we will be working. These are slightly more complex
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than those introduced in the semi-formal discussion of the previous section. The
first extra complexity is that relations on states and naturals will both generally
depend on a pair of programs, because they will involve sets of code pointers that
have particular behaviours, which only makes sense relative to some program.
The second additional bit of structure we shall need is a form of admissibility
property to justify recursive reasoning about program fragments and recursive
definitions of relations. The way we deal with this is to work with relations that
are the limit of a sequence of k-indexed approximants, where the natural number
k represents a number of steps in the operational semantics [9, 4, 12]. In other
words, our notions of ‘equivalent’ are expressed as the limit of ‘indistinguishable
for up to k steps’ as k goes to ω. As more steps allow more distinctions to be
made, it is natural to work with indexed relations that are anitmonotonic in k.

Here is the program- and step-indexed definition of relations on natural
numbers. A Natrel is a record containing two fields. The first, NRel, is the
carrier: the relation itself. The second, NRcond, is a proof that the relation is
antimonotonic in the index k:

Record Natrel : Type :=
mkNR {NRrel :> program → program → nat → nat → nat → Prop ;

NRcond : ∀ p p’ j k x x’, j < k → NRrel p p’ k x x’ → NRrel p p’ j
x x’}.

The carrier of a Natrel is a relation, expressed in curried form, on pairs of
programs and triples of natural numbers. The first two arguments are the left
and right programs, p and p’. The third argument is the step index, k :nat. The
fourth and fifth arguments are the natural numbers on the left and the right,
x and x’. Since all values in our model are naturals, some Natrels we use will
express properties of x and x’ viewed as code pointers, whilst others will treat
them as heap pointers, naturals or booleans.

There’s a natural partial order and equality relation on Natrels, which satisfy
the usual axioms:

Definition Natrelleq (R1 R2 : Natrel) :=
∀ p p’ k n n’, R1 p p’ k n n’ → R2 p p’ k n n’.

Definition Natreleq Na1 Na2 := Natrelleq Na1 Na2 ∧ Natrelleq Na2 Na1.

We can also lift non-indexed relations on naturals to Natrels:

Definition Natrel lift (R : nat→nat → Prop) : Natrel.
intro R.
refine ( mkNR (fun p p’ k ⇒ R) ).
tauto.

Defined.

The definition of Natrel lift makes use of the interactive proof language of Coq:
the refine tactic is used to define the carrier of the lifted relation, leaving a hole
(the underscore) for the NRcond proof component that is needed to show that
the monotonicity requirement is satisfied. The proof is then filled in interac-
tively, in this simple case just by calling the automatic tactic tauto. Several
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of our definitions are of similar form, though generally with less trivial inter-
active proofs; we will henceforth usually elide the proofs, presenting just the
application of the refine tactic.

Here is the definition of the type Accrel of supported, indexed relations on
states. An element of Accrel is a record comprising the relation itself (ARel),
two accessibility maps (ARacc and ARacc’), a proof (ARcond) that the acces-
sibility maps are accessibility maps and do support the relation, and a proof
(ARindexed) that the relation is antimonotonic in the step index:

Record Accrel : Type :=
mkAR { ARrel :> program → program → nat → state → state → Prop;

ARacc : state → state → nat → Prop;
ARacc’ : state → state → nat → Prop;
ARcond : ∀ p p’ k s0 s0’ s1 s1’,

(ARrel p p’ k s0 s0’) → equpto (ARacc s0 s0’) s0 s1
→ equpto (ARacc’ s0 s0’) s0’ s1’ →

(ARrel p p’ k s1 s1’) ∧
(∀ n, ARacc s0 s0’ n ↔ ARacc s1 s1’ n) ∧
(∀ n, ARacc’ s0 s0’ n ↔ ARacc’ s1 s1’ n);

ARindexed : ∀ p p’ j k s s’, j < k → ARrel p p’ k s s’ → ARrel p
p’ j s s’

}.

The carrier relates two programs (p on the left, p’ on the right), a step index
and two states (s on the left, s’ on the right). ARacc is the accessibility map
giving the locations that are relevant on the left (i.e. in state s), whilst ARacc’
is associated with the state on the right. Note that these are actually dependent
on two states, rather than one as in our earlier overview; this turns out to be
technically smoother, though we won’t really exploit the extra generality in the
present paper. The ARcond condition looks complex because it combines the
conditions on both accessibility maps and on the relation, but if we ignore the
program and index dependence then it reads as follows: if we start with two
states s0 and s0’ in the relation, and s1 and s1’ are two other states, with s1
equal to s0 up to the left hand accessibility map (applied to the states we started
with), and s1’ equal to s0’ up to the right hand accessibility map, then three
things happen. Firstly, s1 and s1’ are also in the relation; this says that the
accessibility maps do support the relation. Second, the left hand accessibility
map yields the same set of locations when given s0 and s0’ as arguments as
it does when given s1 and s1’ ; this is the accessibility map condition. Finally,
the same is true of the right hand accessibility map. Compared with our earlier
slightly informal account, we have not only parameterized accessibility maps by
both states rather than one, but we have also tied the maps and the relations
closer together by only requiring the accessibility map condition to hold for
states that are in the relation, which is why we do not define accessibility maps
separately (as we did in our earlier work [13]).

Accrels also have a natural partial order and equality. Note that the order
involves an implication between the carrier relations and a containment the
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other way between the accessibility maps:

Definition Accrelleq (Na1 Na2 : Accrel) :=
∀ p p’ k s s’, Na1 p p’ k s s’ →

( (Na2 p p’ k s s’) ∧
(∀ n, ARacc Na2 s s’ n → ARacc Na1 s s’ n ) ∧
(∀ n, ARacc’ Na2 s s’ n → ARacc’ Na1 s s’ n )).

Definition Accreleq Na1 Na2 := Accrelleq Na1 Na2 ∧ Accrelleq Na2 Na1.

Here are some basic Accrels:

Definition Accrel const (q : Prop) (a: nat → Prop) (a’ : nat → Prop) : Accrel.
intros.
refine (mkAR (fun p p’ k s s’ ⇒ q)

(fun s s’ ⇒ a)
(fun s s’ ⇒ a’)

).
. . .

Defined.

Definition Emptyrel (q : Prop) := Accrel const q (fun n ⇒ False) (fun n ⇒
False).
Definition Toprel := Emptyrel True.

Lemma Accrelleq Toprel : ∀ r, Accrelleq r Toprel.

We can now define some interesting constructions on Accrels. The first is the or-
dinary additive conjunction, RelConj, which does not require disjoint supports:

Definition nunion (a1 a2 : nat→Prop) n := (a1 n) ∨ (a2 n).
Definition RelConj (Ar1 Ar2 : Accrel) : Accrel.

intros.
refine (mkAR (fun p p’ k s s’ ⇒ (Ar1 p p’ k s s’) ∧ (Ar2 p p’ k s s’))

(fun s s’ ⇒ (nunion (ARacc Ar1 s s’) (ARacc Ar2 s s’)))
(fun s s’ ⇒ (nunion (ARacc’ Ar1 s s’) (ARacc’ Ar2 s s’)))

).
. . .

Defined.

Lemma RelConj unit : ∀ R, Accreleq (RelConj R Toprel) R.

Lemma RelConj comm : ∀ R1 R2, Accreleq (RelConj R1 R2 ) (RelConj R2
R1 ).

Lemma RelConj assoc : ∀ R1 R2 R3, Accreleq (RelConj (RelConj R1 R2 ) R3 )
(RelConj R1 (RelConj R2 R3 )).

The second is the separating conjunction, RelTensor, introduced previously.
This is also associative and commutative with Toprel as unit (amongst other
properties whose formal statements we elide).
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Definition ndisj (a1 a2 : nat→Prop) := ∀ n, ˜(a1 n ∧ a2 n).
Definition RelTensor (Na1 Na2 : Accrel) : Accrel.

intros.
refine (mkAR (fun p p’ k s s’ ⇒ (Na1 p p’ k s s’) ∧ (Na2 p p’ k s s’) ∧

(ndisj (ARacc Na1 s s’) (ARacc Na2 s s’)) ∧
(ndisj (ARacc’ Na1 s s’) (ARacc’ Na2 s s’)))

(fun s s’ ⇒ (nunion (ARacc Na1 s s’) (ARacc Na2 s s’)))
(fun s s’ ⇒ (nunion (ARacc’ Na1 s s’) (ARacc’ Na2 s s’)))

).
. . .

Defined.

The ptsto relation is like the ‘points to’ predicate of separation logic. It relates
two states s and s’ just when the values stored in location l in s and in location l’
in s’ are related by the Natrel, r. Obviously, it is supported by the accessibility
map that always returns the singleton set {l} on the left, and by the constant
{l’} map on the right:

Definition ptsto (l l’ :nat) (r : Natrel) : Accrel.
intros.
refine (mkAR (fun p p’ k s s’ ⇒ r p p’ k (s l) (s’ l’))

(fun s s’ n ⇒ n=l)
(fun s s’ n ⇒ n=l’)

).
. . .

Defined.

Notation "[ m , n ] |=> r" := (ptsto m n r) (at level 80).
Notation "m |-> r" := (ptsto m m r) (at level 80).

The definition of the ‘perp’ operation is the place where we make careful use of
the step-indexing.

Definition Perp (R:Accrel) : Natrel.
intro R.
refine(

mkNR (fun p p’ k l l’ ⇒ ∀ j s s’, j < k → R p p’ j s s’ →
(((kstepterm j p s l) → (terminates p’ s’ l’)) ∧

((kstepterm j p’ s’ l’) → (terminates p s l))))
).

. . .
Defined.

Note the way in which the indices are used: two labels l, l′ are in Perp R at
index k just when for any strictly smaller j, and states related by R at index j,
if jumping to l terminates within j steps, then jumping to l′ terminates in some
number of steps, and vice versa.5 The limit of Perp R agrees with the definition

5A more naive definition might end up only relating computations that terminated in
exactly the same number of steps, which is not what we want at all.
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of R> we gave earlier, in that

R> = {((p, l), (p′, l′)) | ∀k,Perp p p′ k l l′}.

As one would expect, Perp is contravariant:

Lemma Accrelleq Perp : ∀ R1 R2,
Accrelleq R1 R2 → Natrelleq (Perp R2 ) (Perp R1 ).

We define ‘#’ as Coq notation for RelTensor, and ‘ !’ as notation for Perp.6

6 Specification of Allocation

This section briefly recalls the specification of a memory allocator module from
our previous work [13]; see that paper for a fuller account. The module has
three entry points: one for init ialization, one to allocate a block and one to
deallocate a block. We just detail the specification for allocation here, since we
will not be making calls to the other routines.

We have already described the calling convention of the allocator: the return
address is passed in location 0, the size of the requested block is passed in 1,
and a pointer to the start of the allocated block is returned in 0. But what is
the formal contract between the allocator and its clients?

After the allocator has been initialized, the heap will, like Gaul, be divided
into three parts. First, the pseudo-registers 0 to 9; second, the part belonging
to the allocator; and finally, the part belonging to the rest of the program.
Ownership of blocks of memory is transferred between the allocator and its
clients by calls to alloc and dealloc. The allocator promises not to (observably)
read or write the part belonging to the clients. In return, the clients promise
not to read or write the part belonging to the allocator and not to care about
either the location or the initial contents of the blocks they are given.

We capture this intent by saying that a module Ma with entry point alloc
meets the specification of an allocator if there exists a supported relation Ra –
the allocator’s private invariant – such that for all programs p, p′ extending Ma,
for all k, for all Rc (client invariants) and for all n (block sizes),

(R al Ra n Rc) p p′ k alloc alloc

where

Definition R aret (n:nat) : Accrel.
intro.
refine (mkAR (fun p p’ k s s’ ⇒ s 0 > 9 ∧ s’ 0 > 9)

(fun s s’ l ⇒ (l = 0) ∨ (l ≥ s 0 ∧ l < n + s 0))
(fun s s’ l ⇒ (l = 0) ∨ (l ≥ s’ 0 ∧ l < n + s’ 0))

6These are really defined as notation for operations on an inductive type of relation-
denoting expressions that we use in doing proofs by computational reflection [25, 19], but
we gloss over that technicality here.
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).
. . .

Defined.

and

Definition R al (Ra:Accrel) n (Rc:Accrel) :=
! ((0 |-> !(R aret n # T rel (1 to 4) (1 to 4) # Rc # Ra # E ))

# (1 |-> (Natrel lift (fun l l’ ⇒ l = n ∧ l’ = n)))
# T rel (2 to 4) (2 to 4) # Rc # Ra # E ).

This says that two calls to alloc are guaranteed to behave the same whenever
they are started in a pair of initial states s, s′ that are related by all of the
following disjoint relations:

• Ra, so the allocator’s invariant holds before the call;

• Rc, so the client’s invariant holds before the call

• T rel (2 to 4) (2 to 4). This is the ‘true’ relation with support {2, 3, 4}
on both sides, so these locations are not looked at by the allocator;

• location 1 holds the value n on both s and s′

• The contents of location 0 on the two sides are code pointers that promise
to behave the same if they are started in states related by

– Ra, so the allocator invariant holds after the call;

– Rc, so the client invariant holds after the call;

– T rel (2 to 4) (2 to 4), so these locations are not looked at by the
return addresses, i.e. they may be modified by the allocator;

– R aret n, which expresses that location 0 on each side points to a
block of size n that doesn’t overlap the pseudo-registers

In previous work, we described a very naive allocation module that satisfies
this specification; we have since verified that a slightly less trivial implementa-
tion that uses a free list satisfies the same spec.

7 Formalizing and Verifying Type Soundness

This section presents the actual type soundness theorem for the simple compiler.

We start with a useful construction on Accrels:

Definition pex (l l’ :nat) (h: nat → nat → Accrel) : Accrel.
intros.
refine (mkAR (fun p p’ k (s s’ :state) ⇒

h (s l) (s’ l’) p p’ k s s’ ∧
¬ (ARacc (h (s l) (s’ l’)) s s’ l) ∧
¬ (ARacc’ (h (s l) (s’ l’)) s s’ l’))
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(fun s s’ n ⇒ (n = l) ∨ (ARacc (h (s l) (s’ l’)) s s’ n))
(fun s s’ n ⇒ (n = l’) ∨ (ARacc’ (h (s l) (s’ l’)) s s’ n))

).
. . .

Defined.

Notation "’pexists’ ( x , y ) @ ( l , m ) , g" := (pex l m (fun x y ⇒ g))
(at level 200, . . . ).

The pexists operation captures a pattern of existential quantification over values
in the store that is common in defining Accrels , viz.

∃xx′, ([l, l′] |=> [x, x′]) # g(x, x′)

i.e. s and s′ are in the relation just when locations l and l′ in s, s′ respectively
hold some values x, x′, and the relation g(x, x′) holds on some disjoint part of
the store.7

Now we can inductively define the semantics of types in our source language
as relations over values and stores of the low-level machine:

Fixpoint typerefsem (t : ExpType) (l l’ : nat) {struct t} : Accrel :=
match t with

| TInt ⇒ Emptyrel (l = l’)
| TBool ⇒ Emptyrel ((l = 0) ∧ (l’ = 0) ∨ (l 6= 0) ∧ (l’ 6= 0))
| TPair a b ⇒ pexists (va, va’) @ (l, l’), pexists (vb, vb’) @ (S l, S l’),

RelConj (typerefsem a va va’) (typerefsem b vb vb’)
end.

Two states are related by typerefsem t l l’ just when l and l’ are equal as values
of type t in those states. So

• Two values are equal as natural numbers just when they are equal, inde-
pendent of what the states are.

• Similarly, two values are equal as booleans just when they are in [[bool]],
again independent of the states.

• l and l′ are equal as values of type TPair a b in states s and s′ when the
cons cells pointed to by l in s and by l′ in s′ have first components that are
equal as values of type a and second components that are equal as values
of type b. The use of the additive conjunction, RelConj, allows the storage
used by the values pointed to in the first and second components to share
with one another, but note that we have not allowed sharing with the cell
itself (because of the separation built into the definition of pexists).

The support part of the Accrel returned by typerefsem will, of course, follow
chains of pointers to capture what parts of the two heaps are looked at in judging
relatedness; this will be a function of both the actual values in the heap and the
type at which we are comparing them.

7The reason for this definition, suggested to us by Matthew Parkinson, is that our notion
of supported relation does not (easily) allow general existential quantification. pexists is a
form of quantification in which the witness, if any, is uniquely determined, fixing the support.
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Figure 3: Typerefsem Examples

Figure 3 shows some examples. On the left is a positive example: the stores
s and s′ are related by

typerefsem (TInt**TBool)**(TInt**TBool) 74 56

because location 74 in s and location 56 in s′ are both interpretable as holding
the value ((42, true), (42, true)). The right hand side of the figure shows a non-
example: one might (rather deviously) think that 12 in s and 56 in s′ are both
interpretable as the pair of pairs of integers ((12, 12), (12, 12)), but the punning
representation on the left is actually ruled out by the use of separation in the
definition of pexists.8 The essence of the positive example is that our semantics
of types whose representation involves pointers makes explicit the independence
of the represented value from the actual pointer values and potential sharing
used in the representation.

Having defined the relational interpretation of each ExpType, we need to de-
fine the relational interpretation of an EnvType, capturing the notion of equality
on the vector of globals, the evaluation stack and the heap (as was illustrated
in Figure 2). This is built up by induction over the length of the environment
(globals+stack), taking care to maintain the separation between individual en-
vironment entries and between the environment and the heap, whilst allowing
sharing within the heap. To this end, we first define a function that builds an
Accrel by folding pexists over the vectors of length n (staring at locations l and
l′, respectively) in the two states, additively conjoining all the results of applying

8A small tweak to the definition of typerefsem would admit such encodings. This would
actually work for our simple compiler, but would break if we later added copying garbage
collection. The important thing to note is that our formalism allows precise control over such
details.
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Figure 4: Typesem Example

a function f to the existentially quantified values stored in the corresponding
elements of the vectors.

Fixpoint pexconj (n m l l’ : nat) (f : nat → nat → nat → Accrel) (r :Accrel)
{struct n} : Accrel :=

match n with
| 0 ⇒ r
| S n’ ⇒ pex l l’ (fun (x1 x2 : nat) ⇒ pexconj n’ (S m) (S l) (S l’) f

(RelConj (f x1 x2 m) r))
end.

Using pexconj to fold typerefsem, we can define the relational interpretation of
an environment type env of length n, starting at locations base and base’ :

Definition typesem n (env :EnvType) base base’ :=
pexconj n 0 base base’ (fun x1 x2 m ⇒ typerefsem (env m) x1 x2 ) Toprel.

Figure 4 shows an example of two states related by (typesem 4 env 20 22), where
we assume env maps offsets to types as follows:

0 7→ TBool
1 7→ (TInt**TBool)**(TInt**TBool)
2 7→ TInt
3 7→ TInt**TBool

Having defined relations accounting for the structure of the environment and
heap, we now need to define the contracts for the pieces of compiled code that
come from typed expressions and commands in the source language. These will
involve Perps, expressing that jumping to certain pairs of addresses will yield
equitermination provided that the initial states are in a certain relation, which
will involve a typesem for the heap plus something about the pseudo-registers
being suitably related.

Here is the formal definition of the prerelation for commands and expressions
that expect to be entered with envsize global variables typed according to the
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EnvType env and an empty stack (which is allowed to grow up to maxstack + 1
locations), assuming allocators related by Ra and starting addresss envbase and
envbase’ for the two environments. Ro is an arbitrary relation on the parts of
memory which do not belong to either the allocator or the compiled code:

Definition R comp (Ra Ro : Accrel) envsize env envbase envbase’ maxstack :=
let sp := (envsize + envbase) in

let sp’ := (envsize + envbase’) in
! (T rel (0 to 4) (0 to 4)

# (envreg |-> (Natrel lift (fun l l’ ⇒ l = envbase ∧ l’ = envbase’)))
# (spreg |-> (Natrel lift (fun l l’ ⇒ l = sp ∧ l’ = sp’)))
# typesem envsize env envbase envbase’
# T rel (sp to (maxstack + sp)) (sp’ to (maxstack + sp’))
# Ra # Ro # E ).

As explained in Section 5.1, however, the entry point of the code for a command
or expression will only be in the R comp corresponding to the pre-type under
the assumption that the code at its exit point satisfies a suitable relation for the
post-type. For commands, which always expect to be entered with an empty
stack, the assumption on the exit will just be another instance of R comp. For
expressions, however, we expect a value of a particular type to be left on the
stack. That’s expressed by the following variant of R comp which adds the
requirement that there be values related by the interpretation of type t on the
stacks:

Definition R comp exp post (Ra Ro : Accrel) envsize (env :EnvType) t envbase
envbase’ maxstack :=

let sp := (envsize + envbase) in
let sp’ := (envsize + envbase’) in

! (T rel (0 to 4) (0 to 4)
# (envreg |-> (Natrel lift (fun l l’ ⇒ l = envbase ∧ l’ = envbase’)))
# (spreg |-> (Natrel lift (fun l l’ ⇒ l = S sp ∧ l’ = S sp’)))
# typesem (S envsize) (envupdate env envsize t) envbase envbase’
# T rel ((S sp) to (maxstack + sp)) ((S sp’) to (maxstack + sp’))
# Ra # Ro # E ).

Note the way in which the first stack location is treated as if it were the
(envsize + 1)-th variable. At last, we can give the type soundess theorems
for our compiler. There is one for expressions and one for commands. Here is
the one for expressions:

Theorem comp expression thm :
∀ (alloc alloc’ : nat) (Ra Ro : Accrel) (p p’ : program)

(envbase envbase’ : nat) (envsize: nat)
(env :EnvType) (a:ExpType) (e:Exp env a),

∀ (h env :env ok exp e envsize)
(maxstack :nat) (h stack :stack ok exp e maxstack)
(k label label’ : nat)
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(code:list instruction) (code’ :list instruction)
(hcode : code = fst (compile exp e label alloc))
(hcode’ : code’ = fst (compile exp e label’ alloc’)),

program extends fragment p (fragfromlist code label)
→ program extends fragment p’ (fragfromlist code’ label’)
→ (∀ n Rc, (R al Ra n Rc) p p’ k alloc alloc’)
→ (R comp exp post Ra Ro envsize env a envbase envbase’ maxstack) p p’

k (length code + label) (length code’ + label’)

→ (R comp Ra Ro envsize env envbase envbase’ maxstack) p p’ (1 + k) label
label’.

And here is the theorem for commands:

Theorem comp thm :
∀ (alloc alloc’ : nat) (Ra Ro : Accrel) (p p’ : program)

(envbase envbase’ : nat) (envsize: nat)
(env1 env2 :EnvType) (c:Command env1 env2 ),

∀ (h env :env ok c envsize)
(maxstack :nat) (h stack :stack ok c maxstack)
(label label’ : nat)
(code:list instruction) (code’ :list instruction)
(hcode : code = fst (compile c label alloc))
(hcode’ : code’ = fst (compile c label’ alloc’)),

program extends fragment p (fragfromlist code label)
→ program extends fragment p’ (fragfromlist code’ label’)
→ ∀ k,
((∀ n Rc, (R al Ra n Rc) p p’ k alloc alloc’)
→ (R comp Ra Ro envsize env2 envbase envbase’ maxstack) p p’ k (length

code + label) (length code’ + label’)
→ (R comp Ra Ro envsize env1 envbase envbase’ maxstack) p p’ (1 + k)

label label’).

Let’s look at the theorem for commands, comp thm, first to see what it says.
Ignoring the checks that maxstack is sufficiently large and that only variables
numbered less than envsize are used, the essence is the following:

• For any Command, c, typeable with a pretype env1 and a posttype env2,

• if we compile c twice, once starting at label and once starting at label’,
linking the first with an allocator at alloc and the second with an allocator
at alloc’,

• then if we put those bits of code into contexts such that alloc and alloc’ are
equivalent memory allocators (according to the specification of allocation)
and the exit points of the two bits of compiled code behave equivalently
in all states related by the interpretation of the posttype env2
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• then the entry points of the bits of compiled code behave equivalently in
all states related by the interpretation of the pretype env1.

The above captures lots of information about what the behaviour of the code
compiled from c can depend upon. For example, it is independent of where the
compiled code is placed, where the allocator is, where the environment is stored,
what addresses the allocator returns and what their original contents are, how
booleans or pairs are represented in the initial state, and so on.

We have a strong (extensional) form of memory safety, showing that the
compiled code doesn’t observably read or write any locations that it shouldn’t.
The preservation of any Ro, for example, means that storage disjoint from both
the allocator’s private store and the while-program’s heap neither affects the
behaviour of code compiled from a command, because the poststates will be
equivalent for any initial Ro, nor is affected by it, because any Ro (in particular
extensions of singleton relations) will be preserved. Note that the notion of
independence really is more liberal than a naive intensional one: code that
messes with unowned memory locations but restores them before exit meets
the specification, as does code that builds literally different, but equivalent
according to the types, heap structures according to the contents of unowned
memory. See [14] for more on how preservation of sets of relations can express
not only complete independence, but also read-only and write-only effects on
particular storage locations.

The theorem for expressions is similar to that for commands, except that the
environments in the pre and post relations stay the same and the postrelation
assumes that there is a value of type a on the stack.

The proofs of the above theorems are basically inductions over the source
language, with each case being dealt with by forward Hoare-style reasoning,
similar to that of our previous work on allocation. The indexing structure on
relations is used just in the case for CWhile, which uses mathematical induction:
we assume that the label at the entry of the loop satisfies the desired relation at
index k, and then examine the loop body to show that the entry then satisfies
the same relation to index k + 1.

The total size of the Coq development is around 8500 lines, which includes
the low-level machine, metatheory of supported relations, the language and
compiler and the actual proofs. There is scope for significant simplification here
though. We are still comparatively inexperienced Coq users and were developing
much of the theory in the prover, rather than doing post-hoc formalization
of a completed paper development, so there is a lot of ‘junk DNA’ in those
8500 lines. We use little automation so far, but the proof scripts for particular
segments of assembly code are already about an order of magnitude shorter than
in our earlier efforts, averaging around 20 (instead of 200) lines of proof for each
assembly language instruction. The only lemma that turned out to be tricky to
prove was one used in the CAssign case: the intertwined mix of additive and
multiplicative conjunctions in the definition of typesem made getting the right
induction hypothesis for showing the soundness of strong updates harder than
one might have expected.

27



8 Discussion

We have presented a semantic interpretation of the types of a high-level lan-
guage as relations over configurations of a low-level machine, and used that to
formulate and prove type correctness of a compiler.

One might fairly characterize this work as ‘saying complicated things about
simple programs’. There seems to be more sophistication in the specifications
than in the original code. This is partly because our framework is a little
more general than is really needed for this simple first-order problem (the step-
indexing structure and treatment of code pointers is really aimed at treating
higher-order programs and recursive specifications and types). But types are,
inherently, surprisingly non-trivial things. The entire point of types is compo-
sitionality: we carve out a boundary between one piece of the program and the
rest and write down a contract comprising assumptions and guarantees about in-
teractions across that boundary. Although those contracts abstract behavioural
details of any particular piece of code, they also have to capture the space of all
pieces of code that would do just as well, which involves making explicit many
details about the interface that are implicit in the code. When one adds all the
parameterization necessary to achieve compositionality, it is easy for an abstract
description of what a short piece of code is supposed to do to be longer than the
code itself. The trick, of course, is to choose the primitives, place the boundaries
and compose systems in such a way that the interfaces of the composites don’t
get still more complex (or at least, not too quickly).

A crucial feature of our approach is that the semantics of a type is a sup-
ported relation on low-level stores that makes no further reference to the source
language type we started with. One might have instead defined a ‘represents’
relation between high-level values and low-level stores; two low-level stores could
then be said to be equivalent at a type if there exists a high-level value such
that both stores represent that value. We do not want to take such a definition
as primitive (even though we used something like it in some of the intuitive
explanations in Section 7) for a couple of reasons. Firstly, it does not fit with
our ‘foundational’ goal of compiling different high-level type systems down to a
common language-independent low-level assertion language in such a way that
we can justify cross-language linking and specify run-time systems. Secondly,
for languages with interesting features (such as higher-order functions and ref-
erences), the question of what equal means at high-level types is about as hard
as, and addressed using the same relational techniques, as what we are doing
down at the low-level. Rather than construct a naive denotational semantics for
the high-level language, then refine (quotient) it with a state-based logical rela-
tion (as in [15], for example) and then construct a relation between the refined
model and the low level, we just construct low-level relations directly. The hope
is that this will ultimately prove simpler and more useful, since encapsulation
that is provided by language features (e.g. local references) will be treated in
exactly the same way as encapsulation that is used in implementing language
features (e.g. environments of closures, memory managment). But that will
only be tested when we consider more complex source languages.
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The treatment of termination in the current work could usefully be refined.
The way in which we’ve used perping in the specs means that a program frag-
ment that always diverges will satisfy any pre-post relation pair, irrespective
of what effects it has on the store. This is just what one normally intends for
interetations of types in sequential languages with recursion or looping. On
the other hand, the same is true of our interpretation of expression typings,
whereas evaluation of expressions in this particular source language actually
always terminates (unlike most real languages, of course). One could make
the low-level sementics closer to fully abstract by using total correctness judge-
ments, involving pre and postrelations, for expression evaluation in place of the
‘double negation’ judgements we’ve used here. There is a similar small weak-
ness in the specification of allocation, which also allows for non-termination.
Whilst these differences do not substantially weaken our type soundness result,
they do restrict our ability to prove interesting program transformations. Type
soundness is essentially about programs being in the diagonal part of the rela-
tional interpretations of their types, i.e. being related to themselves. Having a
relational interpretation should also allow one to prove that two different pieces
of machine code (possibly compiled from different high-level phrases, possibly
written by hand) are equivalent modulo the contract of a particular type. But
if the allocator is assumed to be able to diverge, and we make different calls to
the allocator in the two programs, then such proofs don’t go through. Our more
recent work uses an allocator specification that does enforce totality, so that we
can reason about equations on low-level code.

There is a great deal of related work, of which we can only mention a fraction.
Compiler correctness has been studied for at least four decades [28, 32] with
notable early examples including the work on Piton and Micro-Gypsy using the
Boyer-Moore prover [31, 48] and the manual verification of the VLISP Scheme
compiler [24]. More recent work includes that of Leroy on verifying compilation
of a C-like language to PowerPC assembly code [27]. Full compiler correctness
is a more ambitious goal than type safety, but these projects relate high-level
to low-level without making explicit the kind of language-independent low-level
contracts that we are formalizing here. (Of course, one would ideally like both,
and that is one subject of our current work.)

Reasoning directly about unstructured low-level code also has a long history,
going right back to Floyd’s original paper [23]. Once again, the Boyer-Moore
prover was used in some notable early mechanization projects [20]. The idea of
developing type systems for low-level programs, and preserving typing through
compilation, is more recent [34, 33] and has attracted much attention in the
context of proof-carrying code [36], as well as in more traditional compiler certi-
fication. That low-level types might be given a semantic interpretation in terms
of more primitive logical assertions is the key idea of foundational proof-carrying
code, pioneered by Appel and his collaborators [7]. We have already mentioned
that the step-indexing idea we use here originated in the FPCC project; the
technique has recently been refined somewhat, replacing literal natural num-
bers with a modal operator [10], and it would be interesting to incorporate this
into our formalization.
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Modelling types by partial equivalence relations goes back a long way [41,
6, 22, 3, 21] and, amongst many other things, parametric logical relations have
recently been used by many authors in reasoning about program equivalences in
the presence of higher order functions and encapsulated dynamically allocated
store [38, 40, 15]. Ahmed has used step-indexed relations to give a complete
characterization of contextual equivalence in a pure language with recursive and
quantified types [5]. Relational program logics have been developed by several
researchers [2, 11, 47], though note that the current work does not make use of
a specialized relational logic: we just work directly in CiC.

The other main influence on this work is separation logic [37, 42], though
we work with relations rather than predicates, and use explicit higher-order
parameterization over frames in place of the more usual ‘tight’ interpretation.
Recent work on separation logic typing with higher order frame rules [17] and
and extensions with quantification [16, 18] are technically very close to the
present work, though working on paper and with slightly higher-level languages.
Hoare type theory (HTT) is a related mixture of polymorphism, dependent type
theory and separation-logic style reasoning about side effects [35].

Acknowledgements. Thanks to Josh Berdine and Andrew Kennedy for use-
ful discussions and feedback on earlier drafts of this work.
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