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Abstract

Causal inferences about sparsely observed objects are often
supported by causal schemata, or systems of abstract causal
knowledge. We present a hierarchical Bayesian framework
that learns simple causal schemata given only raw data as in-
put. Given a set of objects and observations of causal events in-
volving some of these objects, our framework simultaneously
discovers the causal type of each object, the causal powers
of these types, the characteristic features of these types, and
the characteristic interactions between these types. Previous
behavioral studies confirm that humans are able to discover
causal schemata, and we show that our framework accounts
for data collected by Lien and Cheng and Shanks and Darby.
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Introduction

People often make accurate causal inferences based on very

sparse data. Imagine, for instance, that you are travelling in

the tropics, and on your very first morning you take an anti-

malarial pill and wash it down with guava juice. Soon af-

terward you develop a headache and wonder what might have

caused it. Suppose that you have very little direct information

about the two potential causes—you have never before tasted

guava juice or taken anti-malarial pills. Even so, you will

probably correctly attribute your headache to the pill rather

than the juice.

Accurate inferences from sparse data often rely on the top-

down influence of abstract knowledge. Even if you have

never come across anti-malarial pills or guava juice, you

probably know about the causal powers of pills in general

and juices in general—in particular, you know that pills tend

to cause headaches but that juices do not. Abstract causal be-

liefs of this sort are sometimes called causal schemata [6] or

intuitive theories.

Two fundamental questions can be asked about causal

schemata: how do these schemata support top-down in-

ferences given relatively sparse data, and how are these

schemata acquired? This paper develops a hierarchical

Bayesian framework that provides a unified approach to both

questions. Griffiths [4] has previously shown that hierarchi-

cal Bayesian models help to explain how top-down inferences

can be guided by causal schemata. Here we focus on the ac-

quisition question, and show that hierarchical Bayesian mod-

els help to explain how causal schemata can be acquired by

bottom-up learning.

Top-down and bottom-up approaches to causal learning are

sometimes seen as competitors. The top-down approach [6,

14] emphasizes inferences that are based on knowledge about

causal powers, and the bottom-up approach emphasizes sta-

tistical inferences that are based on patterns of covariation.

As Cheng [2] and others have argued, these perspectives are

best regarded as complementary: top-down knowledge about

causal power plays a role in many inferences, and bottom-up

statistical learning can help to explain how this knowledge

is acquired. The apparent conflict between these perspec-

tives may have developed in part because there is no well-

established framework that accommodates them both. Kelley,

for example, argued for both top-down [6] and bottom-up ap-

proaches [7] to causal reasoning, but did not develop a single

theoretical framework that properly unified his two proposals.

We will argue that a hierarchical Bayesian approach provides

this missing theoretical framework, and will develop a model

that shows how schemata support causal reasoning and how

schemata can be acquired by statistical learning.

Part of our task is to formalize the notion of a causal

schema. Suppose that we are interested in a set of objects—

for example, a set of pills. This paper works with schemata

that assign each object to a causal type, and specify the causal

powers and features of each type. Our pills, for instance, may

represent four causal types—pills of type A cause headaches,

pills of type B relieve headaches, and pills of types C and D

neither cause nor relieve headaches. A causal schema may

also specify how causal types interact. For instance, a C-pill

and a D-pill may cause a headache when taken together, even

though neither pill causes a headache on its own.

The first section of this paper considers the well-studied

problem (Fig. 1a) of learning a causal model that captures

the relationship between a single object (e.g. a pill) and an

effect (e.g. a headache). Causal models for several objects

can be learned independently, but this approach ignores any

information that might be shared across objects: for instance,

two blood-pressure medications are likely to have similar side

effects, enabling us to predict that a new blood-pressure med-

ication will cause headaches if several others already have.

The second section introduces causal schemata that group

the objects into types, and specify the likely causal powers

of the objects belonging to each type (Fig. 1b). We show

how these schemata can be acquired in settings where learn-

ers must learn a schema at the same time as they are learning

causal models for many different objects.

By tracking the characteristic features of causal types,

learners can often make strong predictions about a novel ob-

ject before it is observed to participate in any causal interac-

tions. For instance, predictions about a pill with a given color,

size, shape and imprint can be based on the effects produced

by previous pills which shared these features. The third sec-
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Figure 1: (a) A generative framework for discovering the

causal powers of a single object. (b) A generative framework

for learning a schema that guides inferences about multiple

objects. The schema organizes the objects into causal types,

and specifies the causal powers of each type. (c) A generative

framework for learning a schema that includes information

about the characteristic features of each type. Concrete ex-

amples of each framework are shown in Figs. 2b, 2c, and 3.

tion extends the notion of a causal schema by including infor-

mation about the characteristic features of each causal type

(Fig. 1c). Although we begin with cases where at most one

object is present at any time, the final section considers cases

where multiple objects may be present. We extend the notion

of a schema one more time by allowing interactions between

different types (for instance, pills of type C may interfere with

pills of type D), and we show how these characteristic inter-

actions can be learned.

Learning a single causal model

Suppose that we are interested in the relationship between a

single object o and an effect e, and that we have observed a

collection of event data V . Each observation in V represents

a trial where the object o was either present or absent and

the effect e either was or was not observed. For instance, if

object o is a pill and effect e is a headache, each trial might

indicate whether or not a patient took a pill on a given day,

and whether or not she subsequently experienced a headache.

To simplify our notation, o will refer both to the pill and to

the event of the patient swallowing the pill.

We assume that the outcome of each trial is generated from

a causal model M that captures the causal relationship be-

tween o and e (Figs. 1a and 2b). Having observed the event

data V , our beliefs about the causal model can be summarized

by the posterior distribution

P (M |V ) ∝ P (V |M)P (M). (1)

We build on the approach of Griffiths and Tenenbaum [5] and

parameterize the causal model M using four causal variables

(Fig. 2a and 2b). Let a indicate whether there is an arrow

joining o and e, and let g indicate the polarity of this causal

relationship (g = 1 if o is a generative cause and g = 0 if o

is a preventive cause). Suppose that s is the strength of the

relationship between o and e.1 To capture the possibility that

1To simplify the later development of our model, we assume that
g and s are defined even if a = 0 and there is no causal relationship
between o and e. When a = 0, g and s can be interpreted as the
polarity and strength that the causal relationship between o and e
might have had if this relationship actually existed.

e will be present even though o is absent, we assume that a

generative background cause of strength b is always present

We specify the distribution P (e|o) by assuming that genera-

tive and preventive causes combine according to a network of

noisy-OR and noisy-AND-NOT gates.

Now that we have parameterized model M in terms of the

triple (a, g, s) and the background strength b, we can rewrite

Equation 1 as

p(a, g, s, b|V ) ∝ P (V |a, g, s, b)P (a)P (g)p(s)p(b). (2)

To complete our framework we must place prior distributions

on the four causal variables. We use uniform priors on the two

binary variables (a and g), and assume that the two continu-

ous variables (s and b) represent the logistic transformations

of Gaussian variables drawn from conjugate priors.2 We set

the hyperparameters of these conjugate priors to encourage b

to be small and s to be large.

Learning multiple causal models

Suppose now that we are interested in a set of objects {oi}
and a single effect e. We begin with the case where at most

one object is present at any time: for example, suppose that

our patient takes many different pills, but at most one per day.

Instead of learning a single causal model our goal is to learn

a set {Mi} of causal models, one for each pill (Figs. 1b and

2c). There is now a triple (ai, gi, si) describing the causal

model for each pill oi, and we collect these variables into

three vectors, a, g and s. Let Ψ be the tuple (a, g, s, b) which

includes all the parameters of the causal models. As for the

single object case, we assume that a generative background

cause of strength b is always present.

Instead of learning each causal model separately, we intro-

duce the notion of a schema. A schema specifies a grouping

of the objects into causal types, and indicates the causal pow-

ers of each of these types. The schema in Fig. 2c indicates

that there are two causal types: objects of type t1 tend to pre-

vent the effect, and objects of type t2 tend to cause the effect.

Formally, let zi indicate the type of oi, and let ā, ḡ, and s̄ be

schema-level analogues of a, g, and s: ā(t) is the probability

that any given object of type t will be causally related to the

effect, and ḡ(t) and s̄(t) are the expected polarity and causal

strength for objects of type t. Even though ā and ḡ are vec-

tors of probabilities, Fig. 2c simplifies by showing each ā(t)
and ḡ(t) as a binary variable.

To generate a causal model for each object, we assume

that each arrow variable ai is generated by tossing a coin

with weight ā(zi), that each polarity gi is generated by toss-

ing a coin with weight ḡ(zi), and that each strength si is

drawn from the logistic transform of a Gaussian distribu-

tion with mean s̄(zi) and variance σ̄(zi). Let Ψ̄ be the tuple

2For instance, logit(s) is drawn from a Gaussian with mean µ

and variance σ2. σ2 is drawn from an inverse gamma distribution
with shape parameter a and scale parameter b, and µ is drawn from

a Gaussian with mean m and variance vσ2. We set v = 10, a = 2
and b = 0.3 for all continuous variables. For strength variables, we
set m = 1, and for the background variable we set m = −1.
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Figure 2: (a) Causal graphical models which capture two possible relationships between an object o and an effect e. a indicates

whether there is a causal relationship between o and e, g indicates whether this relationship is generative or preventive, and

s indicates the strength of this relationship. A generative background cause of strength b is always present. A third possible

model (a = 1, g = 0) is not shown. (b) Learning a causal model M from event data V (see Fig. 1a). The event data specify the

number of times the effect was (e+) and was not (e−) observed when o was absent and when o was present. The model shown

has a = 1, g = 1, s = 0.9 and b = 0.2, and is an instance of the second model in (a). (c) Learning a schema and a set of causal

models (see Fig. 1b). z specifies a set of causal types, where objects belonging to the same type have similar causal powers,

and ā, ḡ, and s̄ specify the causal powers of each type. Note that the schema supports inferences about an object (o7) that is

very sparsely observed.

(ā, ḡ, s̄, σ̄). To complete the model, we specify prior distri-

butions on z and Ψ̄. We use a prior P (z) that assigns some

probability mass to all possible partitions but favors partitions

that use a small number of types.3

Having defined a generative model, we can use it to learn

the type assignments z, the schema parameters Ψ̄ and the pa-

rameters Ψ of the causal models that are most probable given

the event data V we have observed:

p(z, Ψ̄,Ψ|V ) ∝ P (V |Ψ)P (Ψ|Ψ̄,z)p(Ψ̄|z)P (z). (3)

Fig. 2c shows how a schema and a set of causal models (top

two rows) can be simultaneously learned from the event data

V in the bottom row. All of the variables in the figure have

been set to values with high posterior probability according to

Equation 3: for instance, the partition z shown is the z with

maximum posterior probability. Note that learning a schema

supports confident inferences about object o7, which is very

sparsely observed (see the underlined entries in Fig. 2c). On

its own, a single trial might not be very informative about the

causal powers of a novel object, but experience with previous

objects allows our model to predict that o7 will produce the

effect as regularly as the other members of type t2.

To compute the predictions of our model we implemented

a Markov chain Monte Carlo scheme that samples from the

posterior distribution in Equation 3. Our implementation,

however, is not intended as a process model, and our pri-

mary contribution is the computational theory summarized by

Equation 3.

3We use a Chinese Restaurant Process prior on P (z), and set
the concentration parameter to 1. The entries in ā and ḡ are inde-
pendently drawn from a Beta(0.1, 0.1) distribution, and the means
and variances in s̄ and σ̄ are drawn from the conjugate prior already
described.

Learning causal types given feature data

Imagine that you are allergic to nuts, and that one day you

discover a small white sphere in your breakfast cereal—a

macadamia nut, although you do not know it. To discover

the causal powers of this novel object you could collect some

causal data—you could eat it and wait to see what happens.

Probably, however, you will observe the features of the object

(its color, shape and texture) and decide to avoid it since it

is similar to other allergy-producing foods you have encoun-

tered.

Our formal framework naturally handles the idea that in-

stances of a given causal type tend to have similar features

(Figs. 1c and 3). Suppose that we have a matrix F which

captures many features of the pills in our study, including

their sizes, shapes, colors, and imprints. We assume that ob-

jects belonging to the same type have similar features. For

instance, the schema in Fig. 3 specifies that objects of type t1
tend to have feature f7 but not f8. Formally, let the schema

parameters Ψ̄ include a matrix F̄ , where f̄j(t) specifies the

expected value of feature fj within causal type t.4 Building

on previous models of categorization [1], we assume that the

value of fj for object oi is generated by tossing a coin with

bias f̄j(zi). Our goal is now to use the features F along with

the event data V to learn a schema and a set of causal models:

p(z, Ψ̄,Ψ|V, F ) ∝ P (V |Ψ)P (F |Ψ̄,z)p(Ψ|Ψ̄,z)p(Ψ̄|z)P (z).

There are many previous models for discovering categories

of objects with similar features [1], and feature-based catego-

rization is sometimes pitted against causal categorization [3].

Our framework works with the idea that real-world categories

are often distinguished both by their characteristic features

4The prior on F̄ assumes that all entries in this matrix are inde-
pendent draws from a Beta(0.5, 0.5) distribution.



condition o13 o14 o15

Human
horizontal 6 24 43

vertical 73 90 98

Model
horizontal 6 8 12

vertical 61 68 75

t2

.

.
.
.

.

.

.

.
.
.

.

.

+0.7

.5 .4

.6.5

.3.3

.1.9

.9.1

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.

1

0

1 0 0 1

0 1 1

0 0

0 0 1 1 0

1 0 0

1 1

0 0 0 0 0 0 01 1

0 0 0 0 0 0 0 0

1 1 1 1 1 1 11 0 0

1 1

o1 o2 o3 o4 o5 o6 o7 o8 o9 o10

· · ·

· · ·

· · ·

· · ·f1 :
f2 :
f3 :

f7 :
f8 : · · ·

+0.7+0.7 +0.7
Causal
Models

t2

e

o5 o6 o8o7

t1

o13 o14 o15

o9 o10 o12o11o1 o2 o4o3

t1

e

f̄1 :
(a) t1 t2

f̄2 :

f̄3 :

f̄7 :

f̄8 :

z :

Schema

(b) (d)

o1

o13 o14

o11 o12

f1

f10

f11

f12

f14

f2

f13 f3 f4 f5 f6

o15

o2 o3 o4

o5 o6 o7 o8

o10o9

f7

f8

f9

(c)

8

2 2

8 8 8

8 8 8 8

22

Horizontal

8

2 2

8 2 2

8 8 2 2

22

Vertical

∅ o2 . . . o8 o9o1

Data e+ :
e− :

o9

e

o8

ee

o1 o2

e

. . .

b : +0.2

8 22 8 82

2 88 2 28

o12

o12

. . .

. . .

Preference for f1-match

o15

o15

0

00

0

o13

o13. . .

. . .

e e e
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Figure 3: (a) Learning a schema and a set of causal models given event and feature data (see Fig. 1c). Objects belonging to the

same type have similar causal powers and similar features, and f̄i specifies the expected value of feature fi within each type.

The event and feature data shown are for the horizontal condition of the Lien and Cheng experiment. (b) A summary of the

feature matrix shown in (a). Feature f7 is shared by all and only the first eight objects, and f9 is shared only by the first four

objects. (c) Event data for two conditions. 10 trials were shown for each of the first 12 objects. In the horizontal condition, each

object with feature f7 produces the effect on 8 out of 10 trials. In the vertical condition, only objects with f1 regularly produce

the effect. (d) Predictions for the sorting task of Lien and Cheng [9]. The first two rows show the percentage of subjects who

grouped a novel object (o13, o14 or o15) with the f1-match (o1) rather than the f8-match (o10). Only subjects in the vertical

condition tend to sort according to f1. The model predictions represent the relative probability that each novel object belongs

to the same causal type as the f1-match.

and their characteristic causal interactions. More often than

not, one kind of information will support the categories in-

dicated by the other, but there will also be cases where the

causal data and the feature data conflict. In cases like this, our

model may discover the feature-based categories, the causal

categories, or some combination of both—the categories pre-

ferred will depend on the relative weights of the statistical

information present in the two kinds of data.

Behavioral data

Lien and Cheng [9] ran several experiments that explore how

perceptual features and causal observations can both inform

causal judgments. Our framework can handle all of their

tasks, but we focus here on a simplified version of their first

task. The effect of interest is whether a certain kind of plant

blooms, and the potential causes are 15 chemicals (objects o1

through o15). Fig. 3b shows that the features of these objects

(f1 through f14) support two systems of categorization. The

first is based on color: each object has a cool color (f7) or

a warm color (f8), and the warm-colored objects are either

yellow (f11), red (f12) or orange (f14). Similarly, each object

has an irregular shape (f1) or a regular shape (f2) and there

are three kinds of irregular shapes (f13, f3 and f4).

We show our model 10 trials for each of the first 12 ob-

jects, and Fig. 3c summarizes the results of these trials. In

the horizontal condition, each object with a cool color (f7)

causes blooming on 8 out of 10 occasions, and the remaining

objects lead to blooming less often. In the vertical condition,

objects with irregular shapes (f1) are the only ones that tend

to cause blooming. In both conditions, the model is shown

that blooming occurs on 2 out of 10 trials when no chemicals

are applied.

We test our model by requiring it to reason about three

objects (o13, o14 and o15) for which no trials were observed

(see the underlined entries in Fig. 3a). Object o13 has a novel

shape, o15 has a novel color, and o14 is a novel combination of

a known shape and known color. Each novel object was pre-

sented as part of a trio that also included o1 and o10, and we

computed whether the model preferred to group each novel

object with the shape match (o1) or the color match (o10).5

In the horizontal condition, the model prefers to sort each trio

according to color (f8), but in the vertical condition the model

sorts each trio according to shape (f1) (see Fig. 3d). Note

that the feature data and the causal data must be combined to

produce this result: a model that relied on the features alone

would predict no difference between the two conditions, and

5We implemented this sorting task by computing the posterior
distribution p(z|V, F ), and comparing the probability that the novel
object and its color match belong to the same causal type with the
probability that the novel object is grouped with the shape match.
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Figure 4: Learning about interactions between objects. The schema specifies the causal powers of each type and of each com-

bination of types (the combination t1+t2) is not shown. The collection of causal models includes a model for each combination

of objects. The event data are inspired by the experiment of Shanks and Darby [13]. The model groups the objects into two

types: objects belonging to type t1 cause the effect on their own but not when paired with each other, and objects belonging to

the type t2 cause the effect only when paired with each other.

a model that used only the causal data would be unable to

make useful predictions about the three novel objects. Since

we have modeled a simplified version of the Lien and Cheng

task, the quantitative predictions of our model are not directly

comparable to their results, but Fig. 3d shows that our model

captures the main qualitative patterns in their data.6

Discovering interactions between causal types

So far we have considered problems where at most one object

oi can be present at a time. Suppose now that multiple objects

can be present on any trial. For instance, consider the prob-

lem of discovering which drugs produce a certain allergy—

two drugs which are innocuous on their own may produce the

allergy when combined. Our goal is to discover a schema and

a set of causal models that allow us to predict whether any

given combination of drugs is likely to produce an allergic

reaction. Formally, we would like to learn a causal model M

for each possible combination of objects.

We assume that each combination of objects corresponds

to a conjunctive cause that may be generative or preventive,

and extend Ψ to include an arrow a, a polarity g and a strength

s for each combination of objects. We extend the schema in a

similar fashion, and include schema parameters ā, ḡ, s̄ and σ̄

for each combination of causal types. The causal model pa-

rameters for sets of objects are generated, as before, from the

schema parameters for the corresponding set of types. For

instance, Fig. 4 shows how the causal model for o13+o14 is

generated from the schema-level knowledge that pairs of ob-

jects drawn from type t2 tend, in combination, to generate the

effect with strength 0.9. As before, we assume that a genera-

tive background cause of strength b is always present.

There are several possible strategies for handling conjunc-

tive causes and our approach makes several simplifying as-

6Lien and Cheng report that a handful of subjects did not group
the novel objects with either the shape match or the color match.
These subjects were dropped before computing the percentages in
Fig. 3d.

sumptions. For instance, we assume that the causal power

of a conjunction of objects is independent of the causal pow-

ers that correspond to any subset of these objects. To accu-

rately capture human intuitions, it will be necessary to relax

our simplifying assumptions, and to combine our framework

with a sophisticated approach to conjunctive causality [11].

Here, however, we have aimed to provide the simplest possi-

ble example of how our framework can discover interactions

between causal types.

Behavioral data

Shanks and Darby [13] ran an experiment which suggests

that humans can acquire abstract knowledge about interac-

tions between causal types. These authors used a task where

the potential causes were foods, and the effect of interest was

an allergic reaction. The data observed by participants in their

second experiment are shown in Fig. 4.7 When supplied with

these data, our model discovers two causal types: foods of

type t1 (o1 through o8) produce the allergy on their own, but

foods of type t2 (o9 through o16) do not. The model also dis-

covers that two foods of type t2 will produce the allergy when

eaten together, but two foods of type t1 will not (Fig. 4).

Shanks and Darby were primarily interested in predictions

about cases which had never been observed in training—the

cases underlined in Fig. 4. Their participants can be divided

into two groups according to their scores when tested on the

training data. Learners in the high group (learners who scored

well on the test) tended to make the same predictions as our

model: for instance, they tended to predict that o7 and o8 pro-

duce the allergy when eaten in isolation, that o15 and o16 do

not, that the combination of o13 and o14 produces the allergy,

and that the combination of o5 and o6 does not. Learners in

the low group tended to make the opposite predictions: for

instance, they tended to predict that o7 and o8 do not pro-

duce the allergy when eaten in isolation. Since our compu-

7Different subjects saw different amounts of training data, but
we overlook this detail.



tational framework does not suffer from memory limitations

or lapses of attention, it is not surprising that it accounts only

for the predictions of learners who absorbed the information

provided during training.

Discussion

We described a hierarchical Bayesian framework (Fig. 1c) for

learning causal schemata. Our hierarchical framework sup-

ports several kinds of inferences. We focused on bottom-up

learning and showed that the model helps to explain how a

causal schema and a set of specific causal models can be si-

multaneously learned given event data and feature data. If

the causal schema is known in advance, then the framework

serves as a computational theory of top-down causal learning,

and explains how inferences about a set of causal models can

simultaneously draw on low-level event data and top-down

knowledge.

Our work exploits the fact that probabilistic approaches

are modular and can be composed to build integrated mod-

els of inductive reasoning. The model in Fig. 1c can be cre-

ated by combining three models: probabilistic causal mod-

els [12] specify how the event data are generated given a set

of causal models, the infinite relational model [8] specifies

how the causal models are generated, and Anderson’s ratio-

nal approach to categorization [1] specifies how the features

are generated. Since all three models work with probabili-

ties it is straightforward to combine them to create a single

integrated framework for causal reasoning.

We showed that our framework helps to explain some as-

pects of the data collected by Lien and Cheng [9] and Shanks

and Darby [13], and it also accounts for several other results

in the literature. Waldmann and Hagmayer [16] showed that a

known set of categories can influence future causal learning,

and our approach predicts a similar result if we fix the causal

types z then use our framework to discover a set of causal

models given event data. Our framework can also model ex-

periments carried out using the blicket detector [3] or causal

blocks world [15] paradigms. Many aspects of these exper-

iments have been previously modeled, but our framework

captures phenomena that are not addressed by most existing

models. For instance, our model suggests why two identi-

cal looking blocks might both be categorized as blickets even

though a handful of observations suggest that they have dif-

ferent effects on a blicket detector [3].

Several extensions of our approach may be worth explor-

ing. We restricted ourselves to problems where the distinc-

tion between a set of potential causes and a set of effects 8

is known in advance, but in some cases this distinction might

need to be learned [10]. A second limitation is that we fo-

cused on cases where feature data and contingency data rep-

resent the only input to our model. Human learners are some-

times directly supplied with abstract causal knowledge—for

example, a science student might be told that “pineapple juice

8This paper has focused on problems where there is a single ef-
fect, but our approach also handles problems with multiple effects.

is an acid, and acids turn litmus paper red.” Statements like

these correspond to fragments of a causal schema, and future

experiments should explore how schemata are learned when

parts of these schemata are directly supplied.

More often than not, competing accounts of a given phe-

nomenon both capture some element of the truth. Where

possible, cases like these should be handled by building uni-

fied accounts that subsume the two competing views. We

have developed a hierarchical Bayesian model that attempts

to unify top-down and bottom-up approaches to causal rea-

soning. Similar conflicts between top-down and bottom-up

approaches are found in other areas of cognitive science, and

the hierarchical Bayesian approach may be useful for resolv-

ing these conflicts wherever they occur.
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