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Abstract

Secure cooperation is the problem of protecting mutually suspicious citdentithin the
same execution environment from their potentially malicious peers. A staticdtlyceable
capability type system is proposed for the JVM bytecode language to prdéivie-grained
access control of shared resources among peer code units. Tipa déshe type system
is inspired by recent advances in alias control type systems for objecitenl programming
languages. The exercise of access rights and the propagation bilitegsaare given a uniform
interpretation as alias creation events. Each capability type assigns toenoefe dataflow
trajectory, prescribing the set of aliases that is allowed to be createdtfiwmeference. An
orthogonal and complementary type system for controlling object creatidrdawncasting
is also designed to avoid a class of capability spoofing attacks. The conthjpedystem
successfully addresses a number of classical protection problenst neca programming
language context. This work therefore demonstrates the need andshmslityaof a language-
based approach to enforce application-level security among peeundde

1 Introduction

Secure cooperation [35] is the problem of protecting miyusispicious code units within the
same execution environment from their potentially malisipeers. Genuine cooperation is pred-
icated on the establishment of trust between collaboratode units, so that access to shared
resources can be precisely controlled. Secure coopernatihierefore an enabling infrastructure
for dynamically extensible software systems such as mabitke language environments [7, 40],
scriptable applications, and software systems with pfugrchitectures [5, 13, 33].



1.1 Limitations of Existing Language-Based Approaches to Secure Cooper-
ation

The language-based approach has become a leading seeauatigm in the development of dy-
namically extensible software systems. Strongly typeduage environments supporting dynamic
loading of code units, such as the JVM [29] and the CLR [11] pmo¢otypical platforms for host-
ing dynamically extensible applications. Language-bgsetection mechanisms such as stack
inspection [44, 20], SASI/IRM [41, 42], Model-Carrying Code[3and history-based access con-
trol [12, 1, 17] take the perspective of a software systentegtong its resources and privileged
services against untrusted software extensions. Eskasiias for infrastructure protection, such
a bipartite perspective does not address the need of pootéot peer code units that are suspicious
of each other.

A bipartite, or more generally, a hierarchical perspectiveecure cooperation sees the under-
lying software system as a collection of application layérse emphasis is on the protection of
an application layer from being abused by an adjacent claym@r. In the context of extensible
systems, such a perspective protects an application aoredntrusted software extensions. Yet,
the protection interest of an extensible system develo@sr go further than what a hierarchical
perspective can offer. For instance, the developer may teismpose specific communication
protocols among collaborating software extensions. Likeythe developer may need to promote
structure and resource sharing between mutually susgicoitware extensions by assuring them
that abuse will not occur. Existing literature on langudgsed protection is relatively silent on
this need of peer-to-peer security.

1.2 A New Approach: Capabilities as Alias Control

In this work, a novel capability type system is proposed fer 8VM bytecode language. The
design goal is to provide a fine-grained access control nmsmefor capturing application-level
security. Specifically, every object reference can be pteteby a capability type, thereby allowing
peer code units to precisely control the way shared strestare accessed. The caller of a method
may control the way arguments are to be accessed by the cafide likewise, the callee may
control the way the return value is to be accessed by thercal#en coupled with subtyping
rules, an application core may impose communication pegten collaborating concrete classes
through the definition of abstract classes (or interfagesims of capability types.

Inspired by recent advances in alias control type systemsfject-oriented programming lan-
guages [24, 31, 3, 34, 8, 43, 6, 2], our type system offersshfneterpretation of the notion of
capability, which is traditionally understood as a refeeplus a set of access rights [10, 9]. In a
language-based environment, method invocation and fidithgenevitably create aliases. Con-
trolling alias creation therefore provides an effectiveam&for restricting access to class members.
Such an insight allows us to reinterpret a capability as ereefce plus a dataflow trajectory, pre-
scribing the set of aliases that is allowed to be created tlmreference. This reinterpretation
produces an extremely fine-grained access control mechdoislanguage-based systems. An
orthogonal and complementary type system for controllijgct creation and downcasting is also
designed to avoid a class of capability spoofing attacks. chmebined type system successfully
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interface Prisoner {
void send(Prisoner p, Guard g);
void receive(Mail m;

}

interface Guard {
void deliver(Mail m Prisoner p);

}

public final class Mail {
public Mail(string m { meg = m }
public string read() { return nsg; }
private string nsg;

}

Figure 1: The Prisoner Mail System Problem

addresses a number of classical protection problems [8ft@&ta programming language context.

2 The Prisoner Mail System Problem

We motivate the discussion of our capability type systemxamening a toy problem originally
proposed in an early work of Ambler and Hoch [4] for studyingtpction in programming lan-
guages. This so called Prison Mail System Problem is siredliind recast here in an object-
oriented flavor without diluting the essense of its origiobhllenges. The protection challenges
presented by the revised toy problem are then categorizaatding to a scheme inspired by the
seminal paper of Cohen and Jefferson [9].

In the Prisoner Mail System are three types of object®soner s, Guar ds andMai | s
(Figure 1).

1. Instances of th€r i soner interface are forbidden from direct communication withleac
other. All message exchanges must be mediated by the Priadrsistem.

2. Instances of th€uar d interface are responsible for delivering messages.
3. Instances of thihi | class are message carriers.

Classes implementing thier i soner and Guar d interfaces are dynamically loaded software
extensions, and their integrity are not to be trusted. Whégauar ds are ever suspicious of con-
spiracies, thér i soner s resent any form of censorship. To their mutual agreemieatPtison
Mail System application core imposes the following mailieksly protocol: The application core
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randomizes the schedule of mail delivery and the assignofe@iar d responsible for delivery.
It schedules a delivery by invoking tlee=nd method of aPri soner object, specifying which
fellow Pr i soner the sender is allowed to correspond with, and witalr d is to be responsible
for the delivery. ThePr i soner . send method will then create ki | object, and pass it along
with the addressee to tliel i ver method of the assigne@uar d. Guar d. del i ver will in
turn invoke ther ecei ve method of the receivin@r i soner, passing thévhi | object as the
argument. This completes one mail delivery.
The following security constraints must be enforced.

1. Safe Invocation. Pri soner s want to be assured thishi | messages passed to ithe-
| i ver method are not read by the mediati@gar d objects.

2. Capability Amplification. When aMai | is delivered to a receivingr i soner , the pre-
vious restriction on read access should be lifted so tha¢thigedded message can be con-
sumed.

3. Limiting Propagation of Capability. Mai | objects that are in transit must not be leaked to
any party other thanBri soner .

4. Mediated Communication. The sendind’r i soner may not contact the receivirigy i s-
oner directly. All communications must be mediated by the assitfpuar d.

5. Flexible Control of Capability Storing. The sendind’r i soner may not store away the
addressee reference for future use. The receiimgsoner , however, may save théi |
for future reading.

As we shall see in Section 4, all these protection probleraddly addressed by our capability
type system.

3 A Capability Type System

This section provides a high-level overview of our cap&pitype system. The type system is
intended to be used for annotating Java source files. Typetattons will be extracted by the
compiler frontend, and subsequently injected into thestiles generated by the compiler (Figure
2). Type checking, inter- and intra-modular, will be conacby the JVM at link time, against
classfiles, at the bytecode level. This is to ensure dynanking is type-safe with respect to our



capability type system. The following description thereféocuses on typing Java classfiles at
the bytecode instruction level. Syntactic issues such asdimcrete syntax for annotating Java
source programs with capability types, or the encodingreehi®r embedding type annotations in
classfiles, do not concern us in this paper.

3.1 An Intuitive Description

We begin the discussion of our capability type system witinéormal account that highlights the
intuitions behind the technicalities that follow.

Capability Types. A reference to an instance of cladsoffers indiscriminate access to the
public interface of the object. When an object reference $s@d from one context to another (i.e.,
argument passing or method value returning), the ownereof@ference may want to selectively
disable certain operations from being applied to the olijeitte receiver context (e.g., the sending
Pri soner desires that thelel i ver method does not invoke thheead method on theMai |
argument). Essentially, the owner may want to present amnaitiveview of classA that is more
restrictive than its public interface. More than that, degirg on the context, different views may
need to be presented for different receivers (e.g., medi@uar d vs receivingPr i soner).
Such a need is traditionally filled by the use of capabilitidscapability is a reference plus a set
of access rights, prescribing what operations can be peeron the underlying reference. In
the context of a language-based environment, one may magabdities with a type system by
assigning to each object reference a type that prescrilmessacights. Well-typed programs are
those that only exercise rights permitted by the typingidisee. Our capability type system is an
instance of this general approach.

The Priority of Method Invocation. In alanguage-based extensible system, the prime liability
is code execution. Undisciplined execution of untrustedecis to be avoided. In the context of
Java, this boils down to controlling method invocation. Theef goal of our capability type system
is therefore the regulation of method invocation pattern.

Capabilities for Argument Passing. The core insight behind our type system is that method
invocation coincides with alias creation events. Spedificaehen a method is applied to its ar-
guments, aliases of the arguments are created throughrttimdiof actual arguments to formal
parameters. Controlling the creation of aliases caused diynant binding effectively restricts
method invocation. A capability can therefore be interpuleds a reference plus a set of alias
control constraints, prescribing the argument bindinghevéhat may occur to the underlying ref-
erence. A capability type is thus a compact specificatioruohonstraints.

Controlling Capability Propagation. In our type system, a capability type constrains not only
a single aliasing event, but rather it specifies the set dfialte aliasing events that may occur to a
reference. Specifically, every capability type correspaiodsome finite automaton, specifying the
set of all call chains the reference may traverse. This &ffdg outlines a dataflow trajectory for
the object reference, and provides precise control on tlyeavzapability may be propagated.

Controlling Capability Sharing. A capability type may also specify if the underlying refer-
ence can be stored into fields, which again coincides withlias ereation event. Such a feature
may be used to control if a capability can be shared afterpassed as an argument to a method.
This in turns constrains structure sharing.



A, B € JavaReferenceTypes

M € JavaMethodTypes

F € JavaFieldTypes
mM ¢ JavaMethodSignatures""
fAF ¢ JavaFieldSignatures™”

M == (Ay,..., Ax)B
| (Al,...,Ak)VOid
F .= A

Figure 3. Abstract Syntax for Java Types

3.2 Assumptions and Notations

Figure 3 defines syntactic categories related to the stdddan type system. They will be assumed
in the following discussion. In this work, a Java referengeet(4, B) is either a class or interface
type in Java (e.gMni | , Pri soner). We assume in the following that the types of fields, for-
mal parameters and method return values are all referepes;tprimitive (e.g.i nt ) and array
types (e.g.Mai | [ ] ) are ignored for notational economy. Similarly, althougin scheme applies
equally well to static methods and fields, we consider ondgance methods and fields in this pa-
per. A Java method typel() is a list of parameter types, not including that of the irapliormal
parametet hi s, plus a return type (e.g(Pri soner ,Guar d)void). A Java field type F) is
simply a Java reference type (e.gt,r i ng). A Java method signature“" with Java method
type M is defined for Java reference tygdaf a method with that signature is declared4ror one

of its supertypes. For exampleydi d send( Pri soner, Cuard)” is a method signature
defined for Java reference typei soner . Its Java method type i®r i soner , Guar d)void.

A Java field signaturg* with Java field typeF is defined for a Java reference tygef a field
with this signature is declared iA or one of its supertypes. For examplstti ng nsg”is a
field signature defined for the Java reference typel , and has a Java field tyjsé r i ng.

3.3 Capability Types

A capability typeZ 4 defines a set of sequences of aliasing events that may ocanntoederlying
Java reference typé. The abstract syntax of capability types is given in Figuréhé exposition
of which is given below. A capability type is constructedrfrprimitive capabilitiesandcapbility

type constructors



C* e PrimitiveCapabilities
T4, U, V" € CapabilityTypes”
X4 e CapabilityTypeVariables”

TA w= TA| LA |CP = TA|[TA) | TANTA | x4

Figure 4: Abstract Syntax for Capability Types

3.3.1 Primitive Capabilities

A primitive capabilityC# for a Java reference typé is a namedsubset of method signatures
defined for Java reference tyge A primitive capabilityC# specifies the signatures’* of a set
of methods that can be applied to an object reference (dgssiough virtual method invocation).
In short, it denotes a set of argument binding events. Ruentapabilities araotcapability types.
Example.The following set named READ defines a primitive capabilitytftee Mai | class.

READ = {string read() }

It represents the event of passing an object reference aggament to ther ead method de-
clared inMai | . Since the method has onhyhi s as its formal parameter, the primitive capability
represents the right to invokeead on aMai | reference.

3.3.2 Capability Type Constructors

A capability type can be built by recursively applying théddaing type constructor.

Top. Top (T) is the mostrestrictive capability type. No aliasing of the underlyinbject
reference is permitted.

Bottom. Bottom(_L) is theleastrestrictive capability type. Arbitrary aliasing is perted of
the underlying object reference.

Propagation. If C? is a primitive capability for some Java reference typgand74 is a
capability type for Java reference tyde then thepropagation type&? — T4 is a capability type
for Java reference typd. Intuitively, one may read” — 74 as ‘grant 7 to C?”, meaning
that the underlying object reference can be passed as amanjuo methods with signatures
belonging to primitive capability”?. Moreover, the result of binding the argument reference to
the corresponding formal parameter is that the referenteauguire capability typeZ 4 inside
the body of the invoked method. Note that the propagatioe Blpo applies to the binding of a
reference to the formal parameteri s of an instance method.

Example A Mai | reference with capability type

READ — L
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<) O
Figure 5: LTS for capability typ&

can be passed to the formal parameter s of ther ead method. In short, th&hi | reference is
r eadable. Inside the ead method, the hi s parameter can be accessed without restriction (
Sharing. If 74 is a capability type for Java reference typethen thesharing type[74] is
also a capability type for Java reference type Intuitively, an object reference with capability
type [74] can be stored into a field of Java reference typeMoreover, the stored reference will
acquire the capability typ& .
Example A Mai | reference with the capability type

[READ — ]

can be saved into a field and subsequently retrieved formgadi

Choice. If 7,4 and 7,/ are capability types for Java reference typethen thechoice type
7/ N7,/ is also a capability type for Java reference typelntuitively, the resulting capability
denotes the right to exercise eith&f* or 7., but not both. The operator is commutative,
associative, and idempotent.

Example A Mai | reference with the capability type

(READ — 1) M [READ — ]

can either be read rightaway, or be saved into a field for éuteading.

Abstraction. As we shall see below, recusive definition of capability tygesupported. This
feature requires the use of type variables to name capetyiies. An occurrence of a type variable
X4 names the capability type that defines the type variable.h Witursive definitions, every
capability type in fact specifieslabelled transition system (LT§)4], each transition of which is
labelled by either a primitive capability® or a sharing type constructpr].

Example A Mai | reference with a capability type satisfying the followiregursive definition

R = (READ — 1) M [R]

can be read rightaway, or be saved into a field for both futeaeing and further sharing. The LTS
for this capability type is shown in Figure 5.

3.3.3 Subtyping

Subtyping permits the binding of more capable object refesgs to variable names with less ca-
pable types. Formally, given capability typ@s" and 7;'2, 7,'* is a subtype ofZ;*?, denoted
T4 <: T2, if (1) the Java reference typé is a subtype of the Java reference typg and (2)
there is a homomorphism from the LTS represented}y to the LTS represented b*'. As
usual, the subtyping relatior:f) is reflexive and transitive.
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MAM ¢ MethodAnnotations?®
FF ¢ FieldAnnotations”

MM e (T TATE M = (A, AB
| T T void if M= (A, ..., Ag)void
FF =74 if F=A

Figure 6: Abstract Syntax for Capability Types of Referencpeliylembers

3.4 Typing Members of Reference Types

The members (i.e., fields or methods) of a Java referenceceupée typed in our capability type
system. The abstract syntax for capability types for refeeeype members is given in Figure 6.
The capability annotation for a method defined for Java egfeg typed, with Java method type
M = (Ay,..., A)Bis of the form T (T ... T.%)T P, whereZ; is the capability type of
this, 7;‘41' the capability type of formal parametigandZ ” the capability type of the return value.
The capability annotation for a field of Java reference tifpe A is simply a capabilitiy type 4.
Subtyping of method types follows the usual contravariaie fi.e.,24;° (", ... U UA <:
VWP, vERWWEIE VP < i andut <: VP).

3.5 Capability Type Interfaces

Every Java class (or interface) is endowed with a capalyje interface, the abstract syntax of
which is provided in Figures 7. A capability type interfagé for a class (or interface) is com-
posed of three sections, namely, (k)mitive capability definitions(2) capability type variable
definitions and (3)capability type annotations

Primitive capability definitions. Every primitive capability definition associates a set of
method signatures defined for Java reference tyfe a primitive capabilityC#4. Primitive ca-
pabilities defined for the supertypes.éfare implicitly inherited byA.

Capability type variable definitions. Each definition binds a capability tygE* to a type
variable X4, (Mutually) recusive definition of capability type variaslis supported, so long as
the recursive definition is properly guarded [14]. Variagdefined in the capability type interfaces
of supertypes are implicitly inherited.

Capability type annotations. A capability type annotation for a fiel(t**" assigns a capability
type 7* to the field. The underlying Java type of the field must matehuhderlying reference
type of the capability type. A capability type annotationfioethodmn 4" assigns a capability type
to every formal parameter and also the return value (in tke cdnon-void method). Again, the



P4 € PrimitiveCapabilityDefinitions *
Q4 ¢ CapabilityTypeVariableDefinitions*
RA € CapabilityTypeAnnotations”

S4 € CapabilityTypelnterfaces”

St = classA {P}...PAQd QA RY ... R}

PA = capability C* = {m"™ ... mMEY
04 = definex* =74
RA = methodm*M : MAM

| field fA7 : FF

Figure 7. Abstract Syntax for Capability Type Interfaces

underlying Java type of the annotation must match the Jgeadfthe method.

Method overriding must follow the usual subtyping requiegin That is, if the annotations
of the overriding method and the overridden method.&té"" and M3 respectively, then
M,lah,M < M,242,M_

Methods that are not annotated explicitly inherit their @ations from supertypes, or else,
if no such annotation is available, then a default annatascassumed. Specifically, the default
annotation for a field is simply_, where the default annotation for a method assignsmiformly
to all formal parameters and the return value.

3.6 Type Checking

Type rules must be in place for checking if the implementatba Java reference type conforms
to a given capability type interface. Our type system cdsttioe creation of aliases caused by
passing arguments and setting fields. Accordingly, typesrshould be in place for bytecode
instructionsputfield getfield putstatic getstatic invokevirtual invokespecialinvokeinterfacend
invokestatic We give an informal account of the type rules putfieldandinvokevirtual The rest
are analogous

putfield f4-F

Operand Stack:

e, 0,0 —

1The treatment oinvokespeciais in fact nontrivial, for it is the instruction by which clasonstructors and private
methods are invoked. Details can be found in an upcomingiteahreport.

10



Operation: Store the value into the field f* of object instance.

Type Constraints: The capability type of isi/4 and 4" is annotated with capability type
VB then it must be true that* <: [VP].

invokevirtualm4-

Operand Stack:

ey 0,01, Q9, 0., A — ...,

Operation: Invoke instance methoeh*M, with argumentsi, as, ..., az, On object in-
stancen. Any return valuev is pushed into the operand stack.

Type Constraints: Suppose that the capability typesmfa, ..., a; andv areldS™, U,
., UM and U+ respectively, and that m*™ has annotation
Ve WP vPE VI, then it must be the case thaf <: {m*M} — VP for
0<i<k, andv,i’:l+1 < u,fffl.

4 Solving Protection Problems

In this section, we will look at how the above capability tygestem may be applied to address a
number of classical protection problems recast in the amogning language context. According to
[9], “a protection problems simply a description of some class of restricted behavidrprotec-
tion problem can be solved in@otection systernf the system provides some set of mechanisms
which, when invoked, guarantee that the behavior of theegaystill be appropriately restricted.”
We present a solution to the Prison Mail System Problem, @awlisls how the solution addresses
the five protection problems highlighted in Section 2.

Our solution to the Prison Mail System Problem consists efdapability type interfaces for
Mai | , Pri soner andGuar d as presented in Figure 8.

Safe Invocation. The right to access thehi | . r ead is captured in the primitive capabil-
ity READ. TheMai | parameter ofauar d. del i ver is not granted this right, because its ca-
pability annotation is RECV— [READ — ], meaning that thé/hi | argument received by
Guard. del i ver may only be passed to theri soner. r ecei ve method. Guar d. de-
| i ver istherefore forbidden to read the contentvi | .

Capability Amplification. WhenGuar d. del i ver passesthbhi | reference td’r i son-
er. recei ve, capability amplification occurs. Specifically, as an argatrofPr i soner . r e-
cei ve, theMai | reference acquires the capability typEAD — _L|, which allows the reference
to be stored and subsequently be used for acced&ing. r ead. TheMai | message can there-
fore be consumed by the receiviRgi soner .

Limiting Propagation of Capability. Since theMai | argument ofGCuar d. del i ver has
capability type RECV— [READ — ], propagation of the reference to oth@uar d is not
permitted.

Mediated Communication. When thePr i soner . send method is invoked by the applica-
tion core, it receives the identity of the addressee Bsiasoner argument. This argument has
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classMai | {
capability READ ={string read() }
methodMai | (string) : L (L) void
methodstring read() : L () L
fieldstring nmsg: L

}

classPri soner {
capability SEND ={ voi d send(Prisoner, Guard) }
capability RECV ={void receive(Mil) }
methodvoi d send(Pri soner, Guard)
: 1 (DLVR — RECV — 1, DLVR — 1) void
methodvoi d recei ve(Mil)
: 1 ([READ — 1]) void
}

classGuard {

capability DLVR = { voi d deliver(Mil, Prisoner) }

methodvoi d deliver(Mil, Prisoner)
: 1 (RECV — [READ — 1], RECV — 1) void
}

Figure 8: Solution to the Prison Mail System Problem
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capability type DLVR— RECV — 1, and as such it can only be passe@uar d. del i ver and
subsequently tér i soner . r ecei ve. The sendindgr i soner is therefore disallowed from in-
voking Pri soner . r ecei ve directly. Mediation througl@uar d. del i ver is mandatory.

Flexible Control of Capability Storing. Notice also that, having capability type DLVR-
RECV — 1, thePri soner argument received blr i soner. send cannot be stored into a
field. Access to the addressee is therefore transient. ItrasgntheMai | argument passed to
Pri soner. recei ve has capability typeREAD — 1], and as such it can be stored by the
receivingPr i soner for future consumption.

In summary, our capability type system is expressive entaigddress all the protection prob-
lems exemplified in the Prison Mail Systém

5 Preventing Capability Spoofing

The above capability type system does not prevent a classpafodity spoofing attacks. For in-
stance, &uar d object may create a collaboratify i soner who impersonates the receiving
Prisoner, and subsequently leaks a readable referendei ¢f to the maliciousGuar d. Down-
casting may also be exploited for the same purpose. Capadidofing may also be launched
indirectly through the invocation of static methods or exipg access to static fields. To prevent
capability spoofing, an orthogonal type system for coritrglbbject creation and downcasting is
designed to complement our capability type system. Detéilse mentioned attack and this com-
plementary type system will be given in an upcoming tecHmegeort. The main ideas are outlined
below.

5.1 Subsystem Annotations

The Java reference type hierarchy is decomposed itreeaof subsystemd&very Java reference
type isownedby a unique subsystem. A Java reference tpe amembeiof a subsystens if A

is owned bysS or a descendant subsystem%fSystem classes such@sj ect andSt ri ng are
owned by thaoot subsystenilhe following restrictions are imposed.

Subtyping. If a Java reference typd is a subtype of another Java reference typeand B is
owned by subsystetfi, then A must be a member .

Static members accessA static member declared in Java reference tgpeay be accessed from
a Java reference typéonly if B is owned by a subsystem of whichis a member.

Object instantiation. A Java classA may create an instance of another Java classly if B is
owned by a subsystem of whichis a member.

Downcasting. Downcasting of an object reference to Java reference Bypan be performed in
a Java clasgl only if B is owned by a subsystem of whichis a member.

2Due to space constraints, we are not able to demonstratet@uehbice operator() can be employed to solve
the Confused Deputy problem [22]. Details can be found inooming technical report.
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Enforcing these restrictions involves the annotation afsfiles with subsystem ownership in-
formation, and the specification of type rules for JVM by@eanstructionsnew checkcastin-
stanceafgetstatic putstaticandinvokestati¢both of which are straightforward.

5.2 The Prison Mail System Revisited

Subsystem annotations can be applied to avoid capabilitgfsp in the Prison Mail System ap-
plication. Specifically, three subsystems are defirspCore PrisonerSysand GuardSys The
subsystem®risonerSysandGuardSysare children of théAppCoresubsystem, which in turn is a
child of the root subsystem. Th& i soner andCGuar d interfaces are owned by tiisonerSys
and GuardSyssubsystems respectively, while tMai | class is owned by subsystefippCore
BecausePrisonerSysand GuardSysare sibling subsystems, instancesQofar d are not permit-
ted to create or downcast instancesPof soner, and vice versa. This effectively removes the
possibility of capability spoofing.

There is, however, one subtlety. How can Java code ownedpgmpCorecreates instances
of Pri soner andGuar d in the first place? As in any extensible Java applicationtwsaog
extensions are always loaded and instantiated by the JavacRafl API, which is accessible
only to trusted classes (e.g., the application core), amsbisaccessible to untrusted code (e.g.,
dynamically loaded extensions).

6 Implementing Capability Types

This section presents an implementation strategy we plandertake to realize our capability type
system. The goal of this section is to convince readers tl@t an implementation is feasible.

Frontend. The frontend component in Figure 2, which extracts capglipe interfaces from
Java source files, can be implemented in the framework of &wadoc tool of the Java SDK.
Custom doclets and taglets will be designed, so that capatyipe interfaces can be embedded in
Java source files as comments.

Backend. The Prelude library [15] is a set of C functions for prepreieg Java classfiles. It
can be employed to build the backend component of Figure @jecting capability type annota-
tions into Java classfiles.

Link-time Typechecker. The Aegis VM [15] is an open source JVM supporting a Pluggable
Verification Module architecture [16, 18]. Static analyzean be incorporated into the dynamic
linking process of the Aegis VM with ease. Intrachecking bamperformed with a typical itera-
tive dataflow analysis algorithm, while interchecking cangerformed in the framework of proof
linking [19, 18]. Prior experience [16, 18] with employinget Pluggable Verification Module ar-
chitecture to implement the JAC type system [27] demoresrtite feasbility of such an approach.
We do however anticipate a nontrivial technical challenggecking for subtyping of capability
types amounts to solving a subgraph isomorphism problerthdM the support of empirical data,
one cannot be sure of how intensive such computation is ictipea An interesting approach to
address the problem is to adopt the spirit of Proof-CarryindedJ83, 32], and request the code
producer (i.e., the backend) to precompute the homomarghisvolved in all subtyping checks.
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7 Related Work

Secure cooperation [35] and its variations such as the NM@&uspicion Problem [37], the Con-
fused Deputy [22], the Safe Invocation Problem [35], anddrag Protection [18] have been stud-
ied in the security literature.

The limitations of various language-based protection raedms such as stack inspection,
execution monitoring and code rewriting have been formsillydied in recent years [36, 28, 21,
20, 17].

The notion of capabilities was first proposed by Dennis and Marn [10]. An archetypical
capability-based operating system kernel is Hydra [9]. patality-based security kernel for Java
is J-Kernel [25], which is implemented as a class library ezlies on a combination of bytecode
rewriting, dynamic checks and avoidance of structure sigatd enforce protection. Our type
system is statically enforceable, and supports securetsteusharing.

Previous type systems for modelling access control arelgé@dfuenced by stack inspection,
and thus usually take a hierarchical perspective on protef39, 20, 23]. To the best knowledge
of the authors, our capability type system is the first of itelko adopt a peer-to-peer perspective
on access control.

Side effects make it difficult to reason about the behavioa grogram. Alias control type
systems [24, 31, 3, 34, 8, 43, 6, 2] were originally proposecantrol the proliferation of aliases
in object-oriented programming systems. The intent isgbkgctive elimination of aliasing reduces
the scope of side effects. Vitek and Bokowski's work on cordfityges [43] is a first attempt of
applying alias control to address security issues. Our wWuwever, is the first to offer a uniform
reinterpretation of capabilities as alias control.

8 Concluding Remarks

Summary. We have presented a capability type system designed foessidg the protection
needs of dynamically extensible software systems. Not bale we proposed a novel protection
mechanism in which an application core can impose commtioic@rotocols among untrusted
software extensions, our capability type system also ®ffdresh reinterpretation of capability in
terms of alias control.

Future Work. A number of future directions are suggested by this workstiirwe would like
to study the soundness of our capability type system fognialthe framework of Featherweight
Java [26]. Secondly, our capability type system can be seenlightweight partial specification
language. We would therefore like to provide tool suppoartdevelopers of extensible systems to
articulate and validate capability type interfaces. Tlyirdre would like to employ our capability
type system to demonstrate that there is a close conneatiwrebn access control and software
architecture. Our conjecture is that the notion of commation integrity [30] in software archi-
tecture can be understood as protection problems [9], arsddtfoss-pollination between the study
of software architecture and that of software security &hba attempted.
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