
EUROGRAPHICS Workshop on ... (2005)
J. Marks and M. Alexa (Guest Editors)

GPU Simulation and Rendering of Volumetric Effects
for Computer Games and Virtual Environments

Jens Krügery and Rüdiger Westermannz

TU-München

Abstract

As simulation and rendering capabilities continue to increase, volumetric effects like smoke, �re or explosions
will be frequently encountered in computer games and virtual environments. In this paper, we present techniques
for the visual simulation and rendering of such effects thatkeep up with the demands for frame rates imposed by
such environments. This is achieved by leveraging functionality on recent graphics programming units (GPUs) in
combination with a novel approach to model non physics-based, yet realistic variations in �ow �elds. We show how
to use this mechanism for simulating effects as demonstrated in Figure1. Physics-based simulation is performed
on 2D proxy geometries, and simulation results are extrudedto 3D using particle or texture based approaches.
Our method allows the animator to model and to �exibly control the dynamic behavior of volumetric effects, and
it can be used to create plausible animations of a variety of natural phenomena.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction and Related Work

As simulation and rendering capabilities continue to in-
crease, volumetric real-world phenomena will be frequently
encountered in computer games and virtual reality environ-
ments. Popular examples include smoke, clouds and fog,
�re, or explosions. Such effects are bene�cial because they
can signi�cantly increase the degree of realism and thus help
to improve the immersiveness of such environments.

Due to the numerical complexity of physics-based
techniques for simulating these effects, they usually
cannot ful�ll the demands for frame rates in interac-
tive environments. Hence, simpli�ed physical models
in combination with 2D visual approximations like
sprites, billboards or animated images have been proposed
[Ree83, CMTM94, Ina94, KCR00, WLMK02, HBSL03].
Fractal approaches, on the other hand, can be used to model
structures that exhibit similar statistical properties asthose
evolving in nature [Per85, Gar85, EMP� 94, SW92, SF93].

y e-mail: jens.krueger@in.tum.de
z e-mail:westermann@in.tum.de

Pre-computed density and velocity maps, on the other
hand, have been introduced to explicitly specify the
shape of large-scale structures in �ames and wind �elds
[PP94, SF95]. Despite their bene�cial properties, all these
methods only provide restricted means for realistically
modelling small-scale variations in the simulated �elds.
Furthermore, it is dif�cult when using these methods to
control the dynamic evolution of structures as it appears in
reality.

Figure 1: Volumetric effects like explosions, �reballs, smoke
and �re can be simulated and rendered in real-time on recent
GPUs.

In interactive environments, the aforementioned phenom-
ena are usually presented to the viewer as "side effects" en-

c The Eurographics Association 2005.

J. Krüger & R. Westermann / GPU Simulation and Rendering of Volumetric Effects for Computer Games and Virtual Environments

hancing the overall visual impression. The simulation is re-
quired to create plausible results, and it should be control-
lable either by external parameters or by the actor itself. In
this paper, we address these requirements for the generation
of volumetric �uid effects. Besides user control, the tech-
niques we propose enable visual simulation and rendering of
such effects at a few hundred frames per second, thus leav-
ing suf�cient time for other tasks to perform, i.e. game AI,
scene graph traversal, or rendering. Procedural extrusionof
space �lling effects from 2D slices keeps memory require-
ments very low. As simulation and rendering is performed
on the GPU, the effects we describe do not impose addi-
tional constraints on the communication channel, and they
are thus suited for use in bandwidth-intensive applications.

The effects we address in this work can be mod-
elled by means of the Navier-Stokes equations (NSE),
which govern the motion of non-turbulent, Newto-
nian �uids. In computer graphics, these equations have
been employed for the realistic synthesis of liquids
[KM90, FM96, OH95, FF01], hot gases and explosives
[FM97, YOH00, OBH02, FOA03, RNGF03] or smoke and
�re [Sta99, FvJS01, NFvJ02], to name just a few.

While these techniques are effective in revealing intrin-
sic �uid properties, they are only of limited relevance for
the simulation of volumetric effects in real-time environ-
ments. Numerical solutions to the NSE on reasonably sized
3D grids, i.e. where detailed �ow structures can evolve, are
not able to ful�ll the demands on frame rates imposed by
such environments. In regard to this observation, we propose
a different strategy:

� On the GPU, physics-based simula-
tion [HBSL03, BFGS03, KW03] is performed on a
few slices in the 3D domain, and scalar as well as vector
valued simulation results are extruded to 3D via spherical
linear interpolation.

� To give the animator control over the phenomena and
to enable realistic evolution of small-scale variations in
the simulated �elds, we introduce a new modelling tech-
nique – so called pressure and impulse (velocity) tem-
plates. These templates locally perturb the scalar pres-
sure �eld and the velocity �eld used in the solution to the
NSE. While the pressure �eld is modi�ed such as to pro-
duce sources, sinks and small-scale vorticity structures,
impulse templates produce large-scale structures in the
simulated �ow �elds.

� The simulation engine is combined with both a particle
renderer and a texture based volume renderer. Particles are
advected through the reconstructed �ow �eld, and they are
then rendered in turn using functionality in Vertex Shader
3.0 [Mic04] to fetch texture values in the vertex units of
the GPU. Volume rendering is utilized to visualize scalar
�ow quantities like density, temperature or injected dye.

In the remainder of this paper we will shortly describe the
NSE as well as the numerical machinery used for computa-

tional �uid dynamics (CFD). We then introduce pressure and
impulse templates as a powerful mechanism to model realis-
tic variations in dynamic �ow �elds and thus to enhance the
appearance of the evolving structures. Next, we describe the
GPU simulation engine, which enables realistic simulation
of a variety of real-world phenomena. Finally, the integra-
tion of the simulation engine into particle and texture based
rendering systems is described. We conclude the paper with
a discussion of future work, and we show additional results
of the presented techniques.

2. Computational Fluid Dynamics

In CFD, the goal is to numerically compute a prediction of
what will happen when �uids �ow. Figure2 shows such a
simulation. Therefore, a physical model of �uid �ow as well
as a mathematical formulation of this model is required. The
NSE are such a formulation – they are the fundamental dif-
ferential equations describing the dynamics of �uid �ow.

Figure 2: A CFD simulation of the �ow around a car is
shown.

We solve for the velocityV = (u;v)T governed by the
NSE

¶u
¶t

=
1
Re

r 2u� V � r u+ fx �
¶p
¶x

(1)

¶v
¶t

=
1
Re

r 2v� V � r v+ fy �
¶p
¶y

(2)

r � V = 0 (3)

in two passes. First, by ignoring the pressure termp an in-
termediate velocity is computed. The computation of this
�elds is carried out on an uniform grid. On this grid, the
diffusion operatorr 2u is discretized by means of central
differences, and, as proposed in [Sta99], the advection part
V � r v is solved for by tracing the velocity �eld backward
in time. In the above equations,Reis the Reynolds number
and (fx; fy)T is the external force vector to be considered
at every grid point. To make the resulting intermediate vec-
tor �eld free of divergence, pressure is used as a correction
term. Mass conservation of incompressible media leads to a
Poisson-Equation for updating this pressure term. This equa-
tion is solved using a Conjugate-Gradient method (CG).

3. Effect Modelling with Flow Patterns

Ideally, the simulation of incompressible non-turbulent �u-
ids using the NSE produces physically accurate results. On

c The Eurographics Association 2005.

J. Krüger & R. Westermann / GPU Simulation and Rendering of Volumetric Effects for Computer Games and Virtual Environments

the other hand, adjusting �uid parameters to achieve a par-
ticular effect can be complicated or even impossible due to
restrictions of the underlying physical model. In particular,
expansion and contraction effects are not seen covered by
these equations. Additionally, due to the limited size of grids
that can be used in real-time scenarios, highly detailed fea-
tures can hardly be generated.

To overcome the described limitations one could either
perturb the resulting velocity �eld to introduce small-scale
features [SF93, RNGF03], or one could try to modify the
simulation process in such a way as to produce the desired
features automatically. For this purpose we introduce param-
eterized templates that are blended into the respective �elds,
and which are then considered by the simulation. Internally
our system distinguishes between pressure templates – pre-
computed pressure masks that are continually inserted into
the pressure �eldduring the solution of the poisson equa-
tion – and velocity templates – vector �eld masks that are
inserted as external forces into the velocity �eld.

The key observation that lends itself directly to pressure
templates is, that characteristic features in the vector �eld are
related to characteristic features in the corresponding pres-
sure �eld (see Figure3 for an example). While pressure tem-
plates provide an intuitive way to model divergence phenom-
ena, i.e. sinks and sources, direct modi�cation of the vector
�eld enables the user to intuitively add large-scale structures
like vortices of particular shape and size.

Figure 3: A vortex in the �ow �eld, the vector �eld and the
corresponding pressure �eld (red and green indicate high
and low pressure regions, respectively).

The need for pressure templates in addition to impulse
templates is motivated by the following observations: First,

pressure is a comprehensible feature of space, and it is thus
easy to imagine what would happen if the pressure at a cer-
tain point in space is changed – increasing pressure leads to
a source in the �eld, whereas a decrease creates a sink. By
modifying the pressure distribution within a region, a wide
range of different velocity structures can be modelled (see
Figure4). Second, pressure templates allow for the creation
of divergence effects that can not be ef�ciently and intu-
itively modelled using velocity templates. As pressure acts
as a global correction term for the velocity �eld, divergence
effects created by velocity templates will be destroyed by the
Poisson solver. If we do not want the effect to be corrected,
direct modi�cation of the pressure term turns out to be an
effective mechanism.

Figure 4: Velocity structures created by different pres-
sure templates are shown. Pressure templates are shown in
red/green indicating negative/positive pressure.

Our system provides the user a set of effect templates that
have been pre-computed, or which have been captured ei-
ther from the pressure or the velocity �eld. To the user, only
iconic representations of the effects generated by a particu-
lar template are presented. The way these effects have been
generated is hidden.

3.1. User Interaction

Our approach enables the user to design different effects by
capturing a template from the respective �elds. By adding
external forces via mouse drags or by applying templates
from a library, desired �ow structures are produced. It is
possible to switch between different views showing either
the vector �eld visualized by dye advection or the pressure
�eld. If a desired structure has been created, the simulation
can be stopped thus allowing the template to be grabbed with
a selection box. Depending on the current view, the system
either captures a pressure or an impulse template. The cur-
rent template then becomes active and the user can blend it
into the current �eld to analyze the effect. Selected templates

c The Eurographics Association 2005.

J. Krüger & R. Westermann / GPU Simulation and Rendering of Volumetric Effects for Computer Games and Virtual Environments

are stored as RGBA images in the template library, and they
can thus be post-processed using imaging tools.

Figure 5: Effects of interactive template insertion are
shown. The upper left image shows the effect of a sink tem-
plate, in the right image a source template was applied. In
the lower row an impulse template producing a vortex was
inserted at different positions and orientations.

To model a particular phenomenon, the user has two pos-
sibilities: First, templates from the library can be pastedin-
teractively into the current simulation (see Figure5). Sec-
ond, templates can be inserted automatically by the program
into user-de�ned regions (see Figure6). While the �rst ap-
proach is more adequate for prototyping and experimenting,
the second approach enables the design of complex phenom-
ena requiring only simple user interaction. In either case,
templates can be arbitrarily transformed to an appropriate
size and orientation, and values stored in a template can be
scaled at run-time to produce more or less dominant effects.
In particular, templates can be automatically aligned along
pre-de�ned contours or to the shape of the insertion regions,
e.g. to produce radially symmetric �ow.

Figure 6: The user interface to de�ne regions for automatic
insertion of templates.

One important effect that needs to be paid attention to

is the modi�cation of inserted templates in each simulation
step. If a template is only inserted once, it will be destroyed
by the pressure correction term in the upcoming iteration.
Consequently, templates need to be injected constantly into
the �eld over a number of iterations. Only then will the re-
spective �ow structures be formed.

From this observation an additional parameter that con-
trols the effect caused by a template is obtained. Templates
can be kept in a certain region for a certain number of time
steps. The longer the templates stay in the �ow, the more
dominant the resulting structures will appear and the longer
their lifetime will be after they have been taken out of the
�ow. If multiple templates are applied simultaneously and
their lifetime is stochastically varied between a minimum
and a maximum lifetime, the frequency characteristics of the
resulting structures in the velocity �eld can be varied. These
effects are illustrated in Figure7.

Figure 7: In all images, templates of equal shape and num-
ber are inserted. From image 1 to 3 we see high, medium,
and low frequency structures. In image 4 all frequencies are
contained. These effects are achieved by using different life-
times and scale factors.

On the GPU, the insertion of template can be handled very
ef�ciently. An appropriately scaled and positioned quadri-
lateral texture mapped with the desired template is rendered
into the respective �eld. In the fragment stage, scalar or vec-
tor values are fetched from the texture, and these values are
then alpha blended with the simulated results. To generate
continuous transitions at template boundaries, a Gaussian
distribution of alpha values ranging from one in the center
of the template to almost zero at the boundaries is used.

4. Real-Time Fluid Effects

The governing equations for incompressible �uid �ow are
entirely solved on the GPU. This is accomplished by means
of a GPU-based simulation engine, which provides a variety
of different parameters to model the �ow behavior.

c The Eurographics Association 2005.

J. Krüger & R. Westermann / GPU Simulation and Rendering of Volumetric Effects for Computer Games and Virtual Environments

4.1. GPU Simulation Engine

The GPU engine stores relevant �ow quantities in 2D tex-
tures representing a uniform computational grid structure. In
every iteration, simulation results are rendered to an equally
sized texture render target, which becomes the container for
these quantities in the next pass. Apart from the CG solver
to enforce mass conservation, all numerical operations are
carried out explicitly in the fragment units. By approximat-
ing partial derivatives in the NSE with �nite differences, we
obtain a set of difference equations to be solved for every
grid point. To approximate the operators on the left hand
side of the NSE and to accumulate external forces, only
simple arithmetic and a few localized texture fetches are re-
quired. For the implementation of the CG solver let us refer
to [BFGS03, GWL� 03, KW03].

Besides physics-based simulation of �uid �ow at high
frame rates (see Figure8 for some results), running the sim-
ulation on the GPU has another important advantage: As the
simulation results already exist on the GPU, they can be ren-
dered immediately. Any data transfer between the CPU and
the GPU is avoided.

Figure 8: Images of an incompressible �uid are shown. On
a 128� 128grid, simulation and rendering is performed at
about 450 fps on recent GPUs.

To realistically simulate the large-scale behavior of �uid
effects, the simulation engine enables �exible control of �ow
conditions. In�ow regions and characteristics can be speci-
�ed, the user can place obstacles exhibiting special boundary
conditions, vorticity con�nement [CIR52] is integrated and
time-varying external body forces that modulate the result-
ing vector �eld are considered during the simulation. Figure
9 shows a number of different examples that visualize the
effects of the described features.

4.2. Effects Modelling

To generate effects like explosions, �re and smoke, the GPU
engine simulates �ow dynamics using different �ow and
template parameters. Figure10 shows the generated phe-
nomena after 2D simulation results have been extruded to
3D. In contrast to low speed events such as �re, �ames
and smoke, for the realistic simulation of explosions com-
pressible events like expansion and contraction are impor-

Figure 9: From left to right we show a simple in�ow, the
same �ow with enabled vorticity con�nement, a few obsta-
cles placed in the �ow and a temperature driven in�ow

tant. Nevertheless, in all scenarios the incompressible NSE
in combination with pressure templates are employed.

Explosions: For modelling explosions, we simulate a vast
amount of energy that is instantaneously liberated by ini-
tially setting the temperature in near-by regions of the cen-
ter of the explosion to be very high. In subsequent simu-
lation steps the temperature of injected heat is decreased.
The buoyancy force is computed and added as an external
force. By using appropriate pressure templates, bigger struc-
tures are created in the very heart of the explosion while they
slowly fade out towards the outer regions and �nally disap-
pear outside the explosion. As we continually inject dye at
the source of the explosion, the dye density is used as scaling
parameter for the pressure templates.

Fire Ball: To realistically simulate a corona, templates are
positioned at the surface. In addition, they are oriented such
as to generate �ow structures moving away from the center
of the corona. Buoyancy is not considered in this case. To
simulate high frequency structures giving rise to a pumping
like behavior, only for a short period rather small templates
are inserted. These templates, however, are scaled by a large
factor to amplify their effect.

Smoke: Smoke rising from the cigarette exhibits all fre-
quency structures in the upper part, where cooling has al-
ready taken place. The rising hot air in the lower part is not
modi�ed. In order to prevent regular vortex-like structures
as in the explosion, much smaller templates with a short
lifetime are speci�ed. In this example, heat is continuously
injected and templates are scaled by temperature. Addition-
ally, an out�ow condition is speci�ed at the upper boundary
of the domain, and the Reynolds number is decreased to sim-
ulate less viscous material. In this way we achieve a much
straighter and faster upward �ow.

Log Fire: To simulate a log �re, we use many small tem-
plates at the base of the �re to disturb the otherwise too ho-
mogenous �ow. Larger templates are used in the upper part
of the simulation grid where the �re turns into smoke. Like
in the cigarette smoke example, heat is constantly injected
and templates are scaled by temperature.

c The Eurographics Association 2005.

J. Krüger & R. Westermann / GPU Simulation and Rendering of Volumetric Effects for Computer Games and Virtual Environments

Figure 10: From left to right we see the time evolution of
different phenomena as they are generated by the GPU sim-
ulation engine.

5. Volumetric Extrusion

While conceptually neither the pressure templates method
nor the GPU NSE framework is restricted to two dimensions,
a full direct simulation in 3D is not practical in real-time en-
vironments due to computational and memory requirements.
Thus we restrict ourselves to the simulation of effects that
exhibit a rotationally symmetric appearance. Then, simula-
tion can be restricted to a few 2D slices from which the vol-
ume is extruded [RNGF03].

The simulation loop starts by computing multiple inde-
pendent 2D �uid simulations to produce similar structures in
each slice, only slightly different initial conditions arespec-
i�ed. Volumetric effects can now be generated by spherical
linear interpolation between these 2D simulations (see Fig-
ure11).

For every data point in the 3D domain the projection along
the circular arc onto the closest two slices is computed. At
these projection points the 2D simulation slices are sam-
pled and reconstructed values are interpolated with regard
to their circular arc distance from the original point in 3D
space. Since this interpolation does not introduce new fea-
tures along the circular arc, it results in a perfectly symmet-
ric result. This is avoided by perturbing the initial point co-
ordinate by a stochastic fractal distribution. This leads to the
following compute kernel for every point in the domain:

� The initial point position is disturbed by a small turbu-
lence offset which is fetched from a 3D hypertexture

� The point is radially projected onto the closest simulation
slices

� Respective values are fetched from both slices

� Spherical linear interpolation is performed

Figure 11: The extrusion of 2D simulation results to 3D is
illustrated.

5.1. Texture based Volume Rendering

Because simulation results at arbitrary points in the 3D do-
main can be decoded procedurally, it is not necessary to re-
construct the whole volume for rendering. Instead, at run-
time the data can be reconstructed on proxy geometries, i.e.
view plane aligned slices that are rendered in a particular or-
der [CCF94, WE98]. Fragments covered by these slices re-
construct the data by executing the described kernel in the
fragment shader stage, and they blend the results into the
frame buffer. Proxy geometries are always rendered into a
texture render target with the same size as the 2D simulation
textures, and they are then scaled to the current view port.

5.2. Particle based Volume Rendering

Using OpenGL Superbuffer [KSW04, KLRS04] or Vertex
Shader 3.0 functionality, we can compute intermediate re-
sults on the GPU, save these results in graphics memory, and
use them again in the geometry units to displace point prim-
itives.

Initial particle positions are stored in the RGB color com-
ponents of a �oating point texture. For every particle, a frag-
ment shader fetches the particle position and reconstructsthe
vector �eld at that position from 2D slices. This vector is
then used in turn to perform an Euler step into the direction
of the �ow. Updated positions are written to a 2D texture
render target, which becomes the particle container in the
next pass.

To draw displaced particles, a static vertex array stored in
GPU memory is rendered. In a vertex shader program the
particle position is fetched from the current particle con-
tainer, and this position then replaces the position initially

c The Eurographics Association 2005.

J. Krüger & R. Westermann / GPU Simulation and Rendering of Volumetric Effects for Computer Games and Virtual Environments

stored in the vertex array. Particles are rendered as point
sprites, which gives them a similar visual appearance as ge-
ometric icons, but requires far less geometry processing. For
instance, in Figure1 the camp�re was rendered with a much
simpler sprite texture than in Figure10. In addition to tex-
ture and size, the color of each particle can be modulated
according to a speci�c color table or derived �ow quantities
like density of temperature.

6. Discussion and Performance Evaluation

To verify the effectiveness of the GPU engine for interactive
simulation of real-world phenomena let us �rst present tim-
ings for solving the NSE on differently sized 2D grids (see
table1). All our experiments were run under Windows XP
on an Intel Pentium 4 2.0 GHz processor equipped with an
ATI X800 XT graphics card. Because particle advection re-
quires a graphics card with Vertex Shader 3.0 support, a
Nvidia GeForce 6800 GT is used in the respective examples.

Grid Size Cells Performance

128� 128 16384 443 fps
256� 64 16384 443 fps
256� 256 65536 221 fps
512� 512 262144 54 fps

Table 1: Timings for solving the NSE on 2D grids.

The table shows that the implementation scales well for
grid sizes of 128� 128 and larger. Even for a grid of 512�
512 the simulation still runs at a frame rate of about 54 fps.
Overall, we note that the simulation can almost be performed
at a rate equal to what can be achieved by transferring pre-
computed simulation results from the CPU to the GPU.

The following table2 shows the impact of pressure tem-
plates on the overall performance.

Templates 1282 2562

0 443 fps 211 fps
5 411 fps 209 fps
10 391 fps 208 fps
20 369 fps 206 fps
40 326 fps 204 fps
80 256 fps 202 fps
200 166 fps 153 fps

Table 2: Performance impact of pressure templates for dif-
ferent grids. To simulate the corona, 40 templates are used.

One can see that even for a huge number of pressure tem-
plates only about one fourth of the overall run-time perfor-
mance is lost due to template insertion.

Next, timings for the complete simulation system includ-
ing two 2D-simulations, pressure templates and the extru-
sion to 3D via 2D textures are presented (see table3).

Volume Size Performance

643 190 fps
1283 152 fps
2563 62 fps

Table 3: Timings for the corona simulation using 40 pres-
sure templates. Intermediate results are rendered to a2562

texture map.

The results show that for a volume of 1283 the best trade-
off between visual quality and performance can be achieved.
Running the simulation on larger grids introduces additional
small-scale features while the overall appearance remains
unchanged (see Figure12).

Figure 12: The corona demo at resolutions of643, 1283 and
2563.

Finally we give timings for the particle based rendering,
again the timings describe the overall performance including
the simulation in two 2D slices, the particle advection and
the �nal rendering of the point sprites and the surrounding
scene (see table4).

Particle Count Performance

16384 190 fps
65536 128 fps
262144 60 fps
1048576 21 fps

Table 4: Timings for the smoke simulation using 50 pressure
templates on a1282 simulation grid.

Figure 13 shows the differences in visual quality for
16384, 65536, 262144 and 1048576 particles. As can be
seen, for a large amount of particles the size of the individ-
ual point sprite can be reduced to almost one pixel without
losing the impression of a connected smoke cloud. Whereas
with these very small particles very detailed structures can

c The Eurographics Association 2005.

J. Krüger & R. Westermann / GPU Simulation and Rendering of Volumetric Effects for Computer Games and Virtual Environments

be rendered at still interactive framerates. Yet even with rel-
atively few particles the physically plausible advection con-
veys an impression of rising smoke while the framerates al-
low for an integration into a bigger system, like a game en-
gine.

Figure 13: The images show the smoke simulation rendered
with 16384, 65536, 262144and1048576particles. For the
images with fewer particles we use larger points to maintain
a constant smoke density.

7. Conclusion and Future Work

In this work, we have described techniques for modelling
and rendering volumetric real-world phenomena. By using
a GPU simulation engine in combination with a novel ap-
proach to control the shape and appearance of simulated
structures, interactive visual simulation of �uid effectsis
possible. As the timings show, and because neither the
simulation engine nor the render engine impose consider-
able bandwidth or memory requirements, the proposed tech-
niques have the potential to be integrated into real-time sce-
narios like computer games or virtual environments.

We have introduced pressure templates as a new mod-
elling paradigm for �uid �ow. Such templates provide an
effective means for modelling small-scale features that can
be added at almost arbitrary resolution. To give the animator
control over the shape, the size and the dynamic behavior of
evolving structures, the proposed �ow templates can be in-
stantiated with a variety of different parameters. In this way,
custom design of �uid �ow is made possible.

Because the 3D �ow domain can be sampled procedurally
using spherical linear interpolation, relevant �ow quantities
can be reconstructed on arbitrary proxy geometries. As a
matter of fact, texture based volume rendering can be uti-
lized without any signi�cant loss of performance. In addi-
tion, by combining fragment processing and Vertex Shader
3.0 functionality, advection and rendering of particles can
be performed on the GPU without any data transfer to CPU
memory. This allows for the rendering of massive particle
sets, at the same time enabling the use of different, e.g. ori-
ented, point sprites to enhance the visual impression. The de-
scribed particle-based technique has the advantage that ex-
ternal forces like wind �elds and collisions with other parts
of the scene can be considered during rendering.

In the future, we will integrate the proposed effects into a

game engine and a virtual reality application. Besides per-
formance issues, one of the most interesting questions is
how to let these effects automatically be controlled by ex-
ternal forces in a given environment. Furthermore, we will
extend the concept of �ow templates to 3D by integrating
volumetric templates into 3D simulations. Although we do
not expect this method to be suitable in interactive scenarios,
visual simulation of real-world phenomena on rather small
grids should be possible in this way. Additionally, the de-
scribed method will no longer be constraint to the simulation
of radially symmetric effects.

References

[BFGS03] BOLZ J., FARMER I., GRINSPUNE., SCHRÖDERP.:
Sparse matrix solvers on the GPU: Conjugate gradi-
ents and multigrid. InACM Computer Graphics (Proc.
SIGGRAPH '03)(2003), pp. 917–924.2, 5

[CCF94] CABRAL B., CAM N., FORAN J.: Accelerated vol-
ume rendering and tomographic reconstruction using
texture mapping hardware. InProceedings ACM Sym-
posium on Volume Visualization 94(1994), pp. 91–98.
6

[CIR52] COURANT R., ISAACSONE., REESM.: On the solu-
tion of nonlinear hyperbolic differential equations by
�nite differences. Communications on Pure and Ap-
plied Mathematics 5(1952), 243–255.5

[CMTM94] CHIBA N., MURAOKA K., TAKAHASHI H., MIURA

M.: Two-dimensional visual simulation of �ames,
smoke and spread of �re.The Journal of Visualiza-
tion and Computer Animation 5(1994), 37:53.1

[EMP� 94] EBERT D., MUSGRAVE K., PEACHEY D., PERLIN

K., WORLEY M.: Texturing and Modeling: A Proce-
dural Approach. Academic Press, 1994.1

[FF01] FOSTERN., FEDKIW R.: Practical animation of liq-
uids. InACM Computer Graphics (Proc. SIGGRAPH
'01) (2001), pp. 22–32.2

[FM96] FOSTER N., METAXAS D.: Realistic animation of
liquids. Graphical Models and Image Processing 58,
5 (1996), 471–483.2

[FM97] FOSTERN., METAXAS D.: Modeling the motion of a
hot turbulent gas. InACM Computer Graphics (Proc.
SIGGRAPH '97)(1997), pp. 181–188.2

[FOA03] FELDMAN B. E., O'BRIEN J. F., ARIKAN O.: Ani-
mating suspended particle explosions. InProceedings
of ACM SIGGRAPH 2003(Aug. 2003), pp. 708–715.
2

[FvJS01] FEDKIW R., VAN JENSENH., STAM J.: Visual sim-
ulation of smoke. InACM Computer Graphics (Proc.
SIGGRAPH '01)(2001), pp. 15–21.2

[Gar85] GARDNER G.: Visual simulation of clouds. InACM
Computer Graphics (Proc. SIGGRAPH '85)(1985),
pp. 297–384.1

[GWL � 03] GOODNIGHT N., WOOLLEY C., LEWIN G., LUE-
BKE D., HUMPHREYS G.: A multigrid solver for

c The Eurographics Association 2005.

J. Krüger & R. Westermann / GPU Simulation and Rendering of Volumetric Effects for Computer Games and Virtual Environments

boundary value problems using programmable graph-
ics hardware. InGraphics Hardware 2003(July
2003), pp. 102–111.5

[HBSL03] HARRIS M., BAXTER W., SCHEUERMANN T.,
LASTRA A.: Simulation of cloud dynamics on
graphics hardware. InProceedings ACM SIG-
GRAPH/Eurographics Workshop on Graphics Hard-
ware(2003), pp. 12–20.1, 2

[Ina94] INAKAGE M.: A simple model of �ames. InProceed-
ings of Computer Graphics International 89(1994),
pp. 71–81.1

[KCR00] KING S., CRAWFIS R., REID W.: Fast volume render-
ing and animation of amorphous phenomena. InPro-
ceedings of Volume Graphics 2000(2000), pp. 229–
242. 1

[KLRS04] KOLB A., LATTA L., REZK-SALAMA C.: Hardware-
based simulation and collision detection for large par-
ticle systems. InEurographics Symposium Proceed-
ings Graphics Hardware 2004(2004).6

[KM90] K ASS M., M ILLER G.: Rapid, stable �uid dynamics
for computer graphics. InProceedings of the 17th an-
nual conference on Computer graphics and interactive
techniques(1990), ACM Press, pp. 49–57.2

[KSW04] KIPFER P., SEGAL M., WESTERMANN R.: Uber-
�ow: A GPU-based particle engine. InEurograph-
ics Symposium Proceedings Graphics Hardware 2004
(2004), pp. 115–122.6

[KW03] K RUEGER J., WESTERMANN R.: Linear algebra
operators for gpu implementation of numerical algo-
rithms. ACM Transactions on Graphics (TOG) 22, 3
(2003), 908–916.2, 5

[Mic04] M ICROSOFT: Shader Model 3 Speci�cation.
http://msdn.microsoft.com, 2004.2

[NFvJ02] NGUYEN D., FEDKIW R., VAN JENSEN H.: Physi-
cally based modeling and animation of �re. InPro-
ceedings of ACM SIGGRAPH 2002(2002), pp. 721–
728. 2

[OBH02] O'BRIEN J. F., BARGTEIL A. W., HODGINS J. K.:
Graphical modeling and animation of ductile fracture.
ACM Trans. Graph. 21, 3 (2002), 291–294.2

[OH95] O'BRIEN J., HODGINS J.: Dynamic simulation of
splashing �uids.Proceedings of Computer Animation
'95 (1995).2

[Per85] PERLIN K.: An image synthesizer.ACM Computer
Graphics (Proc. SIGGRAPH '85)(1985), 287–296.1

[PP94] PERRY G., PICARD R.: Synthesizing �ames and
their spread. SIGGRAPH '94 Technical Sketch Notes,
1994.1

[Ree83] REEVES T.: Particle systems - a technique for mod-
elling a class of fuzzy objects.ACM Computer Graph-
ics (Proc. SIGGRAPH '83)(1983).1

[RNGF03] RASMUSSENN., NGUYEN D. Q., GEIGERW., FED-
KIW R.: Smoke simulation for large scale phenomena.
ACM Trans. Graph. 22, 3 (2003), 703–707.2, 3, 6

[SF93] STAM J., FIUME E.: Turbulent wind �elds for gaseous
phenomena. InACM Computer Graphics (Proc. SIG-
GRAPH '93)(1993), pp. 369–376.1, 3

[SF95] STAM J., FIUME E.: Depiction of �re and other
gaseous phenomena using diffusion processes. In
ACM Computer Graphics (Proc. SIGGRAPH '95)
(1995), pp. 129–136.1

[Sta99] STAM J.: Stable �uids. InACM Computer Graphics
(Proc. SIGGRAPH '99)(1999), pp. 121–128.2

[SW92] SAKAS G., WESTERMANN R.: A Functional Ap-
proach to the Visual Simulation of Gaseous Turbu-
lence. Computer Graphics Forum 11, 7 (1992), 107–
116. 1

[WE98] WESTERMANNR., ERTL T.: Ef�ciently using graph-
ics hardware in volume rendering applications. In
Computer Graphics (SIGGRAPH 98 Proceedings)
(1998), pp. 291–294.6

[WLMK02] W EI X., L I W., MUELLER K., KAUFMAN A.: Sim-
ulating �re with texture splats. InProceedings IEEE
Visualization '02(2002), pp. 134–143.1

[YOH00] YNGVE G., O'BRIEN J., HODGINS J.: Animating
explosions. InACM Computer Graphics (Proc. SIG-
GRAPH '00)(2000), pp. 29–36.2

c The Eurographics Association 2005.

