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Abstract

Pattern discovery techniques, such as association rule discovery, ex-

plore large search spaces of potential patterns to find those that satisfy

some user-specified constraints. Due to the large number of patterns con-

sidered, they suffer from an extreme risk of type-1 error, that is, of finding

patterns that appear due to chance alone to satisfy the constraints on the

sample data. This paper proposes techniques to overcome this problem

by applying well-established statistical practices. These allow the user to

enforce a strict upper limit on the risk of experimentwise error. Empirical

studies demonstrate that standard pattern discovery techniques can dis-

cover numerous spurious patterns when applied to random data and when

applied to real-world data result in large numbers of patterns that are re-

jected when subjected to sound statistical evaluation. They also reveal

that a number of pragmatic choices about how such tests are performed

can greatly affect their power.
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1 Introduction

This paper addresses the problem of using statistical hypothesis tests to screen
individual patterns in the context of discovering large numbers of patterns from
a single set of data. This problem arises in pattern discovery, as exemplified by
association rule discovery (Agrawal, Imielinski, & Swami, 1993), k-optimal or k-
top rule discovery (Webb, 1995; Scheffer & Wrobel, 2002; Webb & Zhang, 2005),
contrast or emerging pattern discovery (Bay & Pazzani, 2001; Dong & Li, 1999),
subgroup discovery (Klösgen, 1996), interesting itemset discovery (Jaroszewicz
& Simovici, 2004) and impact or quantitative rule discovery (Aumann & Lin-
dell, 1999; Webb, 2001; Zhang, Padmanabhan, & Tuzhilin, 2004). All these
techniques search large spaces of possible patterns P and return all patterns
that satisfy user-defined constraints. Such a process entails evaluating numer-
ous patterns ρ ∈ P against a set of sample data D drawn from a distribution
Θ, seeking those ρ that satisfy user-specified constraints φ with respect to Θ.
Each time such an evaluation is performed there is a risk that the pattern ρ will
satisfy φ with respect to the sample data D and hence that it will be inferred
that ρ satisfies φ with respect to Θ, even though this inference is incorrect. Even
if this risk is tightly bounded for each ρ, by considering numerous patterns, the
risk of accepting at least one erroneous pattern can grow large. For example,
suppose the risk is bounded by applying a statistical test for φ, accepting each
pattern only if the significance level falls below critical value κ. If n indepen-
dent patterns are assessed, the risk of accepting at least one erroneous pattern
by chance is 1 − (1 − κ)n, which, for even relatively small values of κ and n,
rapidly approaches 1.0. This problem is closely related to the multiple compar-
isons problem (Jensen & Cohen, 2000) and the problem of oversearch (Quinlan
& Cameron-Jones, 1995).

Most pattern discovery systems do little to control this risk. While a number
of approaches to controlling this risk have been developed (for example, Megiddo
& Srikant, 1998; Bay & Pazzani, 2001; Webb, 2002), each has limitations as
detailed in Section 4.

The current paper investigates two approaches to applying statistical tests
in pattern discovery. The first applies a Bonferroni correction for multiple tests
(Shaffer, 1995), dividing the global significance level α by the number of patterns
in the search space in order to obtain the critical value κ. The second divides the
available data into exploratory and holdout sets. The exploratory data are used
for pattern discovery. The holdout data are then used to assess the patterns
so discovered, with any set of statistical hypothesis tests the user desires being
applied to each pattern in turn. The critical value used with the hypothesis tests
is adjusted for the number of patterns tested using a correction for multiple tests
such as the Bonferroni correction.

These approaches —

• can apply any type of statistical hypothesis test to each of the individual
patterns discovered by a system;

• can apply any number of such hypothesis tests to each of the patterns;
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and

• provide precise control over the experimentwise risk of type-1 error. That
is, under the assumption that D is an iid sample from Θ, they allow the
experimenter to establish a precise upper-bound on the risk of any of the
multiple hypothesis tests falsely rejecting a null hypothesis and thus on
the risk of falsely accepting a pattern.

Further, the holdout-evaluation approach can be applied as a simple wrapper
to any pattern discovery system.

These approaches to handling multiple comparisons are well established in
statistical theory and practice (Shaffer, 1995). The contribution of the current
work is to recognize their applicability in the context of the massive search
spaces frequently explored in pattern discovery, to highlight the critical need for
such techniques, and to investigate their relative strengths and weaknesses in
this context.

The use of holdout evaluation should be very familiar to most machine learn-
ing researchers, who frequently use a similar process, dividing data into training
and test sets, forming models from the former and obtaining unbiased estimates
of their expected performance by observing their performance against the lat-
ter. The differences are that rather than obtaining an unbiased estimate of the
quality of a single model, such as its error or ROC curve, we are seeking to
either accept or reject each of many patterns, and we are doing so in a manner
that strictly controls the risk of false discoveries.

The paper is organized as follows. Section 2 describes pattern discovery.
Section 3 provides a formal problem statement. Section 4 discusses previous
approaches to statistical testing within pattern discovery and outlines their lim-
itations. Section 5 presents the new approaches. Section 6 summarises a series
of experiments that assess key attributes of the new technique and compare
its performance to that of previous approaches. Details of the experiments are
presented in the Appendices. Section 7 provides a general discussion including
directions for future research. Section 8 concludes the paper with a summary
and concluding remarks.

The holdout-evaluation technique was first presented in Webb (2003) and
the direct-adjustment technique first presented in Webb (2006). Experiment 1
in the current paper, and Section 6.1 that discusses it, is reproduced from Webb
(2006) and Experiments 2, 3 and 4 are more extensive variants of experiments
in that previous paper. The discussions of previous approaches in Section 4 and
the new approaches in Section 5 are substantially expanded upon those in the
earlier papers. The general discussion presented in Section 7 is entirely new.

2 Pattern Discovery

Most machine learning systems learn a single model from the available data.
The model learned is usually that expected to maximize accuracy or some other
metric on unseen future data. Many systems that learn explicit models, such as
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decision tree (Quinlan, 1993) or decision rule (Michalski, 1983) learners, do so
by searching a space of alternative models to select the model that appears to
perform best with respect to the available data.

Frequently during such a search through the space of models the learner will
encounter alternatives that perform equally well or almost as well as each other
on the available data. For example, during decision tree induction it is common
to find multiple alternative splits at a node all of which score as well or nearly
as well on the split selection criterion.

A machine learning system must inevitably make arbitrary choices between
such alternative models. Quite simply, it must choose one of these models and
has no non-arbitrary basis on which to do so. This is acceptable if there is no
other source of information about the potential models. If several alternatives
appear equally good, there is no basis on which to prefer any one over the others
and it does not matter which is selected.

However, in some contexts there are factors not available to the learning
system that can help distinguish between the models.

• Experts may be able to bring to bear background knowledge of a form
that would be difficult to encode and make available to a learning system.

• Alternative models may have different levels of desirability because they
use different attributes that represent tests with differing costs to evaluate
(Turney, 2000). For example, in a medical diagnosis task it might be
possible to form alternative models of equivalent power, one using a simple
blood test and the other using an expensive MRI scan. Clearly the former
model will be more desirable. However, most learners are unable to take
account of the costs of tests during a learning process.

• Some models may be socially or politically unacceptable, for example be-
cause they do not fit into senior management’s conceptualization of the
business.

• Some models may be unusable due to legislated restrictions.

• Alternative models may be more or less acceptable to a user population
simply because one is consistent with existing knowledge and beliefs and
the other is not.

• Finally, in some applications it may be possible to deploy multiple models
and hence be unnecessary to derive just one.

For these reasons it is often desirable to find all models that satisfy some
criteria with regard to the data. In such pattern discovery tasks, the user
specifies constraints on the models to be discovered and the system discovers all
models that satisfy those constraints. For many pattern discovery techniques
the models take the form of rules. However, the same underlying techniques
may be applied to other forms of model of regularities in the data, such as
itemsets (Agrawal et al., 1993), sequential patterns (Agrawal & Srikant, 1995)
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and sub-graphs (Kuramochi & Karypis, 2001). The best known example of
pattern discovery is association rule discovery (Agrawal et al., 1993).

3 Problem Statement

As outlined in the introduction, pattern discovery seeks to identify patterns
ρ ∈ P that satisfy constraints φ with respect to distribution Θ. However,
whether ρ satisfies φ with respect to Θ is assessed by reference to sample data
D drawn from Θ. Although the principles extend directly to further contexts,
the current research limits consideration to two types of data, transactional data
and attribute-value data, and one type of pattern, rules.

For both data types, D is a multiset of n records and each record R ∈ D
is a set of items R ⊆ I. For transactional data, items are atomic terms. For
attribute-value data, there exists a set of a attributes A1 . . . Aa, each attribute
Ai has a domain of #Ai values dom(Ai), each item is an attribute-value pair
denoted as Ai=v, where v ∈ dom(Ai), and each record R ∈ D contains exactly
one item for each attribute.

Rules take the form X → y, where X ⊆ I, |X | ≥ 1 and y ∈ I. X is called the
antecedent and y the consequent of the rule. For attribute-value data, X ∪ {y}
may contain no more than one item for any one attribute.

Association rule discovery finds all rules that satisfy specified constraints
φ specified as a minimum support (Agrawal et al., 1993), together with other
constraints, if desired, such as minimum confidence (Agrawal et al., 1993), lift
(International Business Machines, 1996), or leverage (Piatetsky-Shapiro, 1991).
These terms are defined with respect to a rule X → y and dataset D as follows:

• coverage(X → y) is |{R ∈ D : X ⊆ R}|;

• support(X → y) is |{R ∈ D : X ∪ {y} ⊆ R}|;

• confidence(X → y) = support(X → y)/coverage(X → y). This can be
viewed as a maximum likelihood estimate of the conditional probability
P (y | X);

• lift(X → y) = confidence(X → y)/confidence(∅ → y).

• leverage(X → y) = support(X → y) − coverage(X → y) × |{R ∈ D : y ∈
R}| / |D |, This measure represents the difference between the support and
the support that would be expected if X and y were independent.

Each assessment of whether a given ρ satisfies φ is accompanied by a risk
that the pattern ρ will satisfy φ with respect to the sample data D but not with
respect to Θ. Most pattern discovery systems fail to effectively control this risk.

Statistical hypothesis tests are applicable to such a scenario. To apply such
a test it is necessary to specify a null hypothesis, in our context the hypothesis
that the negation of φ is true. If the discovery process “discovers” a pattern
ρ that satisfies the null hypothesis, ρ is considered to be a false discovery or
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equivalently, a type-1 error. Any pattern ρ that is not “discovered” and does
not satisfy the null hypothesis is called a type-2 error.

The techniques presented herein allow arbitrary statistical hypothesis tests
to be applied during pattern discovery in a manner that allows the user to place
a strict upper bound on the risk of any pattern being accepted that is a false
discovery.

4 Previous Approaches to Avoiding False

Discoveries in Pattern Discovery

The original formulation of association rule discovery sought all rules that sat-
isfied user specified constraints on minimum-support and minimum-confidence,
with the justification that “confidence is a measure of the rule’s strength” while
“support corresponds to statistical significance” (Agrawal et al., 1993). From
this it might be inferred that support and confidence are measures used to select
rules that represent strong positive associations in the distribution from which
the sample data are drawn. In our framework this means the φ should be re-
garded as strong positive association rather than the explicit minimum-support
and confidence constraints.

There is evidence this approach can be successful at avoiding false discoveries
when applied to the type of sparse transaction data for which it was designed
(Megiddo & Srikant, 1998). However, pattern discovery is widely applied to
many other forms of data and, as is shown below in Appendix 6, the enforcement
of a minimum-support constraint both fails to ensure statistical significance in
many contexts and can also lead to many significant patterns being overlooked.
Further, different data analysis tasks will call for different sets of constraints
φ, and the support-confidence framework provides little scope for adjusting to
arbitrary such constraints.

There have been numerous proposals to identify and discard association rules
that are unlikely to be of interest. These include constraints on minimum lift
(International Business Machines, 1996) leverage (Piatetsky-Shapiro, 1991) and
improvement (Bayardo, Agrawal, & Gunopulos, 2000). They also include the
identification and rejection of redundant (Bastide, Pasquier, Taouil, Stumme,
& Lakhal, 2000; Zaki, 2000) and derivable (Calders & Goethals, 2002) rules.

Redundant rules are those such as {pregnant , female} → oedema that include
items in the antecedent that are entailed by the other elements of the antecedent,
as is the case with pregnant entailing female. Redundant rule constraints discard
rules x → y for which ∃z∈x : support(x → y) = support(x−z → y).

A minimum improvement constraint (Bayardo et al., 2000) is more powerful
than a redundant rules constraint. The improvement of rule x → y is defined
as

improvement(x → y) = confidence(x → y) − max
z⊂x

(confidence(z → y)) . (1)

We use the term productive to denote rules with improvement greater than zero.
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The improvement of a redundant rule cannot be greater than 0.0, and hence
a constraint that rules must be productive will discard all redundant rules. In
addition to redundant rules, a constraint that rules must be productive can
discard rules that include items in the antecedent that are independent of the
consequent given the remaining items in the antecedent.

However, these approaches make no assessment of the likelihood that an
observed pattern is a chance artifact of the sample data rather than a consis-
tent pattern in the distribution from which the data are drawn. That is, no
assessment is made of the likelihood that an apparently redundant rule is truly
redundant, or whether a rule with positive improvement on the sample data
does not have negative improvement in the distribution from which thse data
are drawn.

Some systems seek to make such an assessment by applying a statistical
significance test before accepting a pattern. Examples include Brin, Motwani,
and Silverstein’s (1997) correlation rules, Liu, Hsu, and Ma’s (1999) pruning
technique, version 1.3 of Magnum Opus (Webb, 2002) and Zhang et al.’s (2004)
significant statistical quantitative rules. As indicated in the introduction, this
approach has high risk of type-1 error, that is, of erroneously accepting spurious
patterns.

Some systems, such as STUCCO (Bay & Pazzani, 2001), apply a statistical
test with a correction for multiple comparisons. This system seeks to control
type-1 error by applying a Bonferroni-like adjustment to the critical value used
with a statistical test during pattern discovery. Rather than dividing the base
critical value, α, by the number of tests performed, they apply tests in batches
(tests for all rules with a given number n of conditions in the antecedent), and
use a critical value of α/(2n × m), where m is the number of rules tested in
batch n.

The application of either a standard Bonferroni adjustment for the total
number of rules tested or this modified adjustment is not statistically sound
because the number of rules tested m is less than the number of rules considered.
This is because the tests are only applied to rules that pass all other constraints,
including a constraint that the joint frequency of the antecedent and consequent
(the support) must differ from the expected frequency (coverage(X → Y ) ×
support(∅ → Y )) by a user-specified constant. This has the effect of selecting
rules that are most likely to pass the statistical test. However, it does not reduce
the risk of encountering those rules by chance during the exploration of a large
number of alternatives. To maintain strict control over the risk of type-1 error,
the critical value should be adjusted not by the number of times the statistical
test is applied, but rather by the number of patterns from which those to be
tested are selected.

An alternative approach has been suggested by Megiddo and Srikant (1998).
Given a transaction dataset D, repeated tests are performed on datasets D′

i

that sample from a synthetic distribution Θ′. This distribution instantiates
the null hypothesis with respect to which a hypothesis test evaluates φ, while
retaining all other relevant properties of the original data. The data mining
system can then be applied to the D′

i. As the null hypothesis is enforced, any
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patterns discovered represent type-1 error. The parameters of the system are
manipulated so that less than critical value α runs produce any rules. Then,
if the system is subsequently run on the original data with those settings and
produces rules, the probability of obtaining such rules under the null hypothesis
is less than α and hence the rules may be accepted. As a single statistical test is
applied to all rules produced by a run of the system, rather than individual tests
being applied to each rule in isolation, the problem of multiple comparisons is
avoided.

In Megiddo and Srikant’s (1998) technique the data are randomly generated
from the set of items I of the original data such that for each record R′ ∈ D′

and item i ∈ I, P (i ∈ R′) = P (i ∈ R), where P (i ∈ R) is shorthand for
the probability that an R ∈ D drawn at random will contain i. This process
generates data drawn from a distribution in which each i ∈ I has the same
frequency as in D, but in which each i is independent of the other.

This is a very powerful approach. However, it requires that it be possible
to create a single synthetic distribution Θ′ that instantiates the null hypothesis
with respect to all hypothesis tests that are required. This is feasible with re-
spect to a test that the elements of a rule are not all independent of one another.
The null hypothesis is then that all conditions in the rule are independent. An
appropriate Θ′ can be generated using Megiddo and Srikant’s (1998) technique
or, for attribute-value data, by Monte Carlo sampling whereby the attribute
values are assigned randomly to the data records while retaining the original
frequency of each value. Hence, all characteristics of the data will be retained
except that the value of one attribute for a record will not influence the values
of the other attributes for that record.

It is also feasible with respect to a test that the consequent is not independent
of the antecedent, if the consequent is constrained to a single prespecified target
variable. In this case the null hypothesis is that the consequent is independent
of the antecedent. An appropriate Θ′ can be generated by Monte Carlo sam-
pling whereby only the target variable is randomized in the data records while
retaining the original frequency of each value.

However, there are other hypothesis tests for which it does not appear possi-
ble to apply this approach. For example, it does not appear possible to produce
a synthetic distribution that establishes a suitable null hypothesis to test that
the support of each rule meets a minimum support constraint with respect to
the distribution Θ from which the sample data D has been drawn.

Another example is that it will often be desirable to test whether a pattern
contains any condition c such that c is independent of all other conditions to
which the pattern refers. This can be important to assess with association
rules. If there is a rule X → Y with confidence τ , then for any condition c
that is independent of both X and Y , X ∪ {c} → Y will also have confidence τ
(except insofar as sampling effects may vary the observed confidence for a given
data set). Hence, depending upon the specific constraints in use, for every
rule X → Y representing an interaction between conditions that is of interest,
a spurious rule may be generated for every combination of conditions that is
independent of X and Y . For example, consider the hypothetical example of a
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rule tea → coffee that captures an interdependence between tea and coffee. As
tea and coffee are not independent it follows that

P(coffee | tea) 6= P(coffee) (2)

Now consider any third factor, say footwear , that is independent of both tea
and coffee (both individually and in combination). As footware is independent
of both tea and coffee it follows that

P(coffee | tea, footware) = P(coffee | tea). (3)

From (2) and (3) it follows that

P(coffee | tea, footware) 6= P(coffee). (4)

Thus the antecedent of tea & footware → coffee is not independent of the con-
sequent, even though footware is independent of both tea and coffee.

It may be desirable to apply a hypothesis test to each pattern to guard
against such a possibility. However, for a pattern relating to more than two
conditions there is no single manipulation of the data that can establish the
null hypothesis. If the pattern contains three conditions a, b and c, then the
null hypothesis is that any one of a, b or c is independent of the other two.

A related line of research is the use of shrinkage estimates, or Bayesian
smoothing, to provide conservative estimates of the true probability of a con-
junction of conditions. Examples of this approach include DuMouchel and Preg-
ibon’s (2001) Empirical Bayes Screening, Magnum Opus ’s m-estimates (Webb,
2005) and Scheffer’s (1995) Bayesian Frequency Correction. These approaches
can be very effective at reducing the overestimates of measures such as support
or confidence that can occur for rules with low support, and hence reduce type-1
error with respect to minimum support or confidence (or similar) constraints.
However, they do not provide a general mechanism for applying hypothesis tests
to discovered rules, and do not take account of the search space size.

So, to summarize, existing techniques either have high risks of type-1 error,
or are only applicable to a limited range of hypothesis tests. This is clearly of
concern. In many pattern discovery contexts both type-1 and type-2 error are
undesirable. We do not want to overlook knowledge-nuggets. Nor, however, do
we want to present as knowledge-nuggets patterns that are actually knowledge-
dross. My previous response to this problem has been that we should accept
that pattern discovery is inherently statistically unsound. In order to avoid high
levels of type-2 error we should not apply a correction for multiple comparisons.
Rather, we should expect type-1 error and always seek to assess independently
the quality of the rules that are discovered. In hypothesis testing terminology,
we should view pattern discovery as a hypothesis generation process and then
seek independently to test those hypotheses.

However, this line of reasoning leads naturally to the question of whether it
is possible to automate the process of independent hypothesis testing. It turns
out that it is indeed straightforward to do so. As outlined in the introduction,
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one need only divide the available data into exploratory and holdout sets, use
the former for pattern discovery and then use the latter to assess the soundness
of the rules so discovered.

Further, it appears to have previously been presumed that applying a sta-
tistical correction for the number of patterns in the search spaces typically
considered during pattern discovery would result in such low critical values that
no patterns would be accepted. This turns out to be untrue.

While the use of holdout assessment and of a Bonferroni adjustment for the
size of the search space in pattern discovery are both conceptually simple, there
are a number of non-trivial technical issues to be addressed. The next section
describes in detail these statistically sound approaches to pattern discovery.

5 Statistically Sound Pattern

Discovery

We seek the capacity to apply arbitrary hypothesis tests to all patterns found by
an arbitrary pattern discovery process while maintaining strict control over the
experimentwise risk of type-1 error. In this section we first describe in outline
two techniques that provide this capacity. We then provide detailed discussions
of a number of specific issues that arise in practice when seeking to apply these
techniques.

5.1 Proposed techniques

Before explaining our techniques we need to provide a short overview of relevant
established statistical techniques for controlling the risk of type-1 error in the
context of multiple hypothesis tests.

Each hypothesis test returns a p-value, the probability that the observed
data or more extreme would be obtained if the null hypothesis were true. In
the pattern discovery context the null hypothesis will usually correspond to the
pattern being spurious or a chance artifact of no real interest. Thus, the pattern
is accepted only if the null hypothesis is rejected. In classical hypothesis testing,
the null hypothesis is rejected if the p-value is no greater than a predefined
critical value, commonly 0.05. However, as outlined in the Introduction, if many
such hypothesis tests are performed, it becomes a near certainty that some will
be accepted in error.

The classical approach rectifying this problem is the Bonferroni adjustment
(Shaffer, 1995) that bounds the risk of any type-1 error at α when performing n
hypothesis tests by using a critical value κ = α/n for each hypothesis test. This
turns out to be needlessly strict, however. The Holm procedure (Holm, 1979) is
more powerful than the Bonferroni adjustment while still guaranteeing that the
risk of any type-1 error is no more than α. The procedure takes the p-values
from the n hypothesis tests and orders them from the lowest, p1, to the highest,
pn. It then sets κ = max(pi : ∀1≤j≤i, pj ≤ α / (n− j + 1)), that is, the highest
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Figure 1: The holdout evaluation process
Reproduced from Webb (2006).

pi such that all pj up to and including pi pass the test pj ≤ α / (n − j + 1). If
no pi satisfies this test then κ = 0.0.

The Bonferroni and Holm procedures both make no assumptions about
whether the hypothesis tests are correlated. That is, both tests guarantee that
the experimentwise error will be no more than α irrespective of whether there
are correlations between the hypothesis tests. This property is very important
in the context of pattern discovery, as often many of the patterns considered will
be related to one another and some statistical tests will be mutually exclusive,
which is the most extreme form of correlation between tests that a multiple
testing procedure may encounter. For example, a hypothesis that pregnant and
gender=female are positively correlated will be mutually exclusive with a hy-
pothesis that pregnant and gender=male are positively correlated. While there
are more powerful multiple testing procedures than the Holm procedure (Shaffer,
1995), most make assumptions about the possible forms of correlation between
the tests and hence fail to strictly bound the experimentwise risk of type-1 error
in the pattern discovery context.

Two approaches present themselves to using these techniques for pattern
discovery. Under the direct adjustment approach one determines the size of the
search space, s and simply applies the adjustment directly, requiring all patterns
to pass any statistical tests at the adjusted critical value α/s. Under the holdout
approach, one first generates patterns without regard for the problem of multiple
testing and then applies statistical tests on the candidate patterns so generated,
ensuring that the tests are evaluated with respect to data that was not employed
in the initial pattern generation process. This can be achieved by dividing the
data into exploratory and holdout sets. A constrained number of patterns are
found by analysis of the exploratory data. These are then evaluated against
the holdout data through the application of statistical hypothesis tests using a
correction for the number of patterns found, such as the Bonferroni adjustment.
Both approaches may be applied with any statistical significance tests that
should be desired. The holdout approach is illustrated in Figure 1.

As both approaches use well established statistical procedures, there should
be little doubt about their capacity to strictly control the risk of experimentwise
type-1 error. What is less clear is the relative power of each technique. The
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power of the technique is the probability that a pattern will be discovered if it
is a true pattern. Unfortunately, analysis of statistical power is only possible
with respect to a hypothesis with a known effect-size. The stronger the effect
and the greater the quantity of available data, the greater the power of a typical
statistic.

Each technique has features that may provide an advantage relative to the
other with respect to power. The direct adjustment approach will obtain an
advantage from the use of all data for both pattern discovery and statistical
evaluation. On the other hand, the holdout evaluation approach will obtain an
advantage as the corrections to the critical value will usually be many orders
of magnitude smaller and it will be possible to apply the more powerful Holm
procedure. It does not appear feasible to apply the Holm procedure to the direct
adjustment approach, as it requires that all significance levels be discovered
before the adjusted critical value can be determined. If the search space is 1020,
for example, it will not be feasible to explicitly investigate all patterns in order
to discover their significance levels. Further, the difference in adjustment will
often be so small as to make little impact. For example, suppose 1 million true
patterns were found in a search space of size 1020. Rather than dividing α by
1020 for the 1 millionth pattern, the Holm procedure would divide it by 1020 −
106, a very small variation from the straightforward Bonferroni adjustment.

Bounding the size of the search space will typically involve two conflicting
pressures with respect to the power of the direct adjustment approach. A smaller
search space is likely to reduce power due to excluding some true patterns from
the space of possibilities that are considered. On the other hand, however, the
smaller the search space the smaller the Bonferroni adjustment and hence the
greater the power of the analysis with respect to those patterns within the search
space.

The same factors will apply to the holdout approach, as a larger search space
will usually generate more candidates and hence reduce the power of the Holm
procedure. However, it is possible that the rate at which the number of candi-
dates will increase will be lower than the rate at which the search space increases
as more complex patterns often have weaker effect and hence less likelihood of
being selected as a candidate. Hence, we hypothesize that increasing the size of
the search space will tend to be more beneficial for the holdout than the direct
adjustment approach.

The following sub-sections examine in turn the issues that must be addressed
to operationalize these schemes.

5.2 Correcting for multiple comparisons with respect to a

single pattern

Sometimes it will be desirable to subject each pattern to multiple hypothesis
tests, with n null hypotheses H0,1, H0,2, . . . H0,n. For example, to test whether
any conjunct in the antecedent of a rule is independent of the remaining con-
juncts, one hypothesis test might be applied for each of the n conjuncts.
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It is not necessary to adjust for multiple tests in this respect. This is be-
cause although multiple hypotheses are being tested, the outcome sought is
simply an evaluation of whether any of the hypotheses is violated without seek-
ing to identify which one. If the pattern is rejected when any of the hypothesis
tests fails, then there is no need to adjust the critical value applied for the in-
dividual tests. In effect, a new null hypothesis is evaluated, the disjunction of
H0,1, H0,2, . . .H0,n. If each test is applied with critical value α and only n of
the hypotheses are not correct then the risk of incorrectly accepting the pattern
is the risk of all the single hypothesis tests that test the n hypotheses simulta-
neously failing to reject them while none of the other tests incorrectly rejects
its hypothesis. This risk must be less than α as the probability of a conjunc-
tion of events cannot exceed the probability of any of the individual events.
To illustrate this point, consider a rule with two conditions in its antecedent,
{a, b} → c. We wish to apply three hypothesis tests, one to evaluate each of
(i) confidence({a, b} → c) > confidence({a} → c), (ii) confidence({a, b} → c) >
confidence({b} → c) and (iii) confidence({a, b} → c) > confidence({} → c).
Suppose that (i) is true and (ii) and (iii) are false. If all three hypothesis tests
are applied with a critical value of α, the probability that the rule will be ac-
cepted is the probability that all three will be accepted which is the probability
of a true positive for (i) co-occurring with a false positive for both (ii) and (iii).
Thus, when multiple hypotheses are tested to assess only whether any does not
hold, it is the risk of type-2 rather than type-1 error that is increased by the
multiple hypothesis testing.

For this reason, an adjustment is applied only with respect to the number
of patterns to be assessed, not with respect to the total number of hypothesis
tests that are to be performed.

5.3 Anticipating the holdout test

Under the holdout evaluation approach, we intend to subject the patterns dis-
covered to statistical evaluation on a holdout set. In consequence, it is desirable
to minimize the number of patterns so tested, as this will minimize the adjust-
ment that is applied to the significance test.

To this end it may be desirable to anticipate patterns that are unlikely to
pass the hypothesis test and to discard them prior to the holdout testing phase.
We will use the generic term filtering for such a strategy. The application of
such a filter can be regarded as the imposition of additional constraints to be
applied at rule discovery time.

Filtering will inevitably involve a trade-off. The more patterns discarded
prior to holdout testing, the lower the adjustment that need be applied, and
hence the greater the number of remaining patterns that are likely to pass.
However, for every such pattern discarded prior to holdout testing, there will
be a risk that had it been subjected to the holdout test it would have passed.
Clearly, it is desirable to find a process for anticipating the hypothesis test that
results in more patterns being accepted that would otherwise have failed than
patterns discarded that would otherwise have passed.
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One approach to this is to apply the hypothesis tests during the pattern
discovery process as well as during holdout evaluation. One possibility is to
apply such a test with the raw α, that is, without using the Bonferroni ad-
justment. This might be expected to balance the risks of type-1 and type-2
error, as discussed in the introduction. However, given that α will be adjusted
at the statistical evaluation phase, a case can be made for applying this ad-
justment also at the exploratory phase. If the strength of an interaction is not
sufficient to pass such a test with respect to the exploratory data then the prob-
ability that it will pass it with respect to the holdout data must be low. Note
that this approach does not lead to statistically sound rule discovery during
the exploratory discovery phase, as the adjustment being applied relates to the
number of patterns to be subjected to holdout evaluation, not to the number of
patterns considered during pattern discovery. Typically the latter will be orders
of magnitude greater than the former as many patterns will fail the test and
hence be rejected.

There can be no single ‘correct’ solution to this dilemma. Any strategy
that is adopted will imply a trade-off between the risks of type-1 and type-2
error, of accepting spurious patterns or of failing to discover potentially valuable
patterns. The best solution will depend on the relative costs of type-1 and type-
2 error for a specific application. A stronger filter is likely to increase type-2
error by discarding more potential patterns before holdout evaluation, whereas
a weaker filter is likely to increase type-1 error by increasing the number of
patterns subjected to holdout evaluation and hence decreasing the critical value
employed in the hypothesis tests.

5.4 Determining the size of the search space

Before a Bonferroni adjustment may be applied directly during pattern discov-
ery, it is necessary to determine the size of the search space. The size of the
search space will clearly depend on the type of pattern being explored. In the
current paper we consider rules.

For market-basket data it is straightforward to determine the size of the
search space. Recall that m is the total number of items and assume that the
antecedent X must contain at least one item and that there is an upper bound
Xmax on the number of items it may contain. There are m possible values for
y, and for each y value there are m− 1 items from which up to Xmax X values
are selected.

s = m ×
Xmax
∑

i=1

Cm−1
i (5)

where Cm−1
i is the number of combinations containing i out of m−1 items. So,

for example, with the Retail dataset, used below, the number of items is 16,470
and hence with X limited to no more than 5 items the size of the rule space is
1.66 × 1023.

For attribute-value data the situation is a little more complex, as no rule con-
taining more than one item for a single attribute can be productive. Examples
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of such rules include {gender=male, gender=female} → occupation=dataminer
and {gender=male, occupation=dataminer} → gender=female. In conse-
quence, all such rules should be excluded from the calculation. To calculate
the total s we must first be able to calculate the number of combinations of val-
ues of a given subset of i attributes, atts. To do so we first order the attributes
in arbitrary order from 1 to i and refer to the individual attributes using this
order as att1 . . . atti. We use intermediate values catt,j,k that each represent the
total number of combinations of up to j items where items contain only values
for attributes att1 . . . attk.

catt,j,k =















#attk, j = 1, k = 1
0, j > 1, k = 1
catt,1,k−1 + #attk, j = 1, k > 1
catt,j,k−1 + #attk × catt,j−1,k−1, otherwise

(6)

where #attj is the number of values for attribute attj .

s =
∑

z∈a



#z ×
Xmax
∑

j=1

ca−z,m,j



 (7)

5.5 Computational considerations

The computational impact of each of the two strategies will vary greatly depend-
ing upon the base pattern discovery algorithm with which they are employed
and the properties of the search space for a given application.

The holdout approach will speed-up the pattern discovery process by reduc-
ing the amount of data that is considered. This saving will be offset, however,
by the addition of the holdout process. The computational requirements of the
holdout process will depend on the number of patterns to be assessed and the
complexity of the statistical tests that are employed.

The direct adjustment approach will have an additional computational bur-
den resulting from the application of a statistical test during search. The amount
of additional computation this requires will also depend on the requirements of
the specific tests being employed. Note that the tests need only be applied if a
potential pattern passes all other constraints, so it is conceivable that no more
statistical tests will be required under this approach than under the holdout
approach.

The direct adjustment approach may also result in some computational sav-
ings through the introduction of new opportunities to prune the search space.
Within the KORD algorithm (Webb & Zhang, 2005) that underlies the Magnum
Opus software used in our experiments, some pruning of the search space can be
obtained by considering at a node in the search space whether any specializa-
tion of the current rule could pass the significance test. For the statistical tests
employed in the current work, this can be determined by assessing whether a
rule with the same support as the current rule but with confidence = 1.0 would
pass the test. As this represents the greatest power that a specialization of the
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current rule could possibly have, if such a rule would not pass the test then no
specialization of the current rule will.

6 Empirical investigations

The techniques that we are proposing all use standard statistical procedures
and hence there should be no question as to whether they will provide strict
control over type-1 error (Shaffer, 1995). It is important, however, to assess
whether previous techniques actually suffer in practice the high risk of type-1
error suggested by the analysis above and the relative power of each of the two
techniques. This section presents a number of experiments that investigate these
issues. The current section provides an overview of the experimental outcomes.

Section 6.1 investigates the susceptibility of pattern discovery techniques to
making false discoveries and the capacity of the proposed techniques to prevent
them. Section 6.2 explores the factors that affect the power of each of the
approaches. Section 6.3 investigates the need for and efficacy of the techniques
with real-world data. Section 6.4 assesses the computational efficiency of the
techniques when applied to real-world data. Finally, Section 6.5 looks at the
number of statistically significant patterns that are embodied in a number of
real-world data sets.

All experiments were carried out with the Magnum Opus (Webb, 2005)
pattern discovery system. Magnum Opus was used with its default settings
unless otherwise specified. By default it finds the 100 rules that maximize
leverage with respect to the exploratory data within any other user specified
constraints. By default the rule antecedents consist of a conjunction of one to
four attribute-value tests (tests of the form x=v, where x is an attribute and v is
a value of that attribute) and the consequents consist of a single attribute-value
test.

The experiments use the Fisher exact test for productive rules, described in
Appendix A.

6.1 Establishing the need

Experiment 1 investigated the need for statistical control over the risk of Type-1
error during pattern discovery. Random data were generated containing 10,000
records, each comprising values for 100 binary variables. The two values for
each variable were equiprobable. All variables in this data were independent
of each other and hence any patterns discovered must be false discoveries. 100
such data sets were generated. Magnum Opus was applied to each data set
using each of the following set of parameters. For all settings the maximum
antecedent size was set to the default value of 4.
Non-redundant: find the 1000 non-redundant rules with the highest leverage.
Productive: find the 1000 productive rules with the highest leverage.
Significance=0.05: find the 1000 rules with the highest leverage that pass a
significance test at the 0.05 significance level.
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Table 1: Support, confidence and leverage of rules found from random data
—support— —confidence— —leverage—

Treatment min mean max min mean max min mean max

Non-redundant 320 950 2,688 0.490 0.537 0.618 0.0044 0.0050 0.0116

Productive 320 950 2,688 0.490 0.537 0.618 0.0044 0.0050 0.0116

Sig. 0.05 320 860 2,688 0.489 0.537 0.618 0.0042 0.0050 0.0116

Direct adjustment: find the 1000 rules that pass a significance test at the
4.06×10−12 significance level that results from applying a Bonferroni correction
to a raw significance level of 0.05 with a search space of 1.23 × 1010 rules.
Non-redundant+holdout: find the 1000 non-redundant rules with the high-
est leverage from half the data and then validate the rules using the remaining
holdout data.
Productive+holdout: find the 1000 productive rules with the highest leverage
from half the data and then validate the rules using the remaining holdout data.
Unadjusted+holdout: find the 1000 rules with the highest leverage that pass
a significance test at the 0.05 significance level from half the data and then
validate the rules using the remaining holdout data.

The non-redundant, productive and significance=0.05 treatments all resulted
in discovery of 1000 rules for every dataset. Table 1 shows the minimum, mean
and maximum support, confidence and leverage for each of these treatments.
As can be seen, some rules had substantial support, confidence and leverage.
For this task there were almost no differences in the rules discovered by the non-
redundant and productive approaches because almost all rules with the highest
leverage were productive on the sample data.

These results illustrate the high risk of false discoveries that simple theo-
retical analysis shows must exist unless appropriate allowance is made for the
multiple-tests problem.

Neither the direct adjustment nor any of the three holdout approaches found
any rules. Given that all four of these approaches controlled the experimentwise
risk of false discoveries at the 0.05 level, it would have been reasonable to expect
false discoveries for up to 5 of the 100 datasets under each of these treatments.
However, the Bonferroni adjustment applied by the direct-adjustment approach
is known to be very conservative. Further, many of the null hypotheses tested
are strongly positively correlated as they relate to correlations between the same
sets of items. This greatly reduces the experimentwise risk of false discoveries,
but means that if any false discoveries occur, there are likely to be many.

These results demonstrate that both the direct-adjustment and holdout ap-
proaches can prevent false discoveries.

6.2 Assessing the relative power of the approaches

As discussed in Section 5, the power of a statistical analysis is the probability
that it will reject the null hypothesis if the null hypothesis is false. Recast in
the pattern discovery context, this translates into the probability that a true
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pattern will be discovered. The relative power of the two approaches is going to
depend upon many factors for any given application, including the size of the
search space, the quantity of data, and the number of patterns found during the
exploratory stage of the holdout evaluation approach.

6.2.1 Experiments

To explore these issues we investigated manipulating each of these factors in
two contexts, one where increasing the search space provided access to more
true patterns and the other where it did not. We manipulated the size of the
search space by changing the maximum number of items in the antecedent.

Experiment 2 established a situation where increases to the size of the search
space do not provide access to additional true patterns. We generated random
data for ten pairs of binary variables x0 and y0 through to x9 and y9. Each xi

was generated at random with each value being equiprobable. The probability of
yi = 1 was 1.0− i× .05 if xi = 1, 0.0+ i× .05 otherwise. This gives rise to a total
of forty valid (productive) rules of the forms xi = 0 → yi = 0, xi = 1 → yi = 1,
yi = 0 → xi = 0 and yi = 1 → xi = 1. These rules differ greatly in the
ease with which they may be detected, those for x0 and y0 representing very
strong correlations and being straightforward to detect and those for x9 and y9

representing relatively weak correlations and being correspondingly difficult to
detect. As all valid rules have only one item in the antecedent, any increase in
the maximum allowed size of the antecedent serves to increase the search space
without increasing the number of valid rules in the search space. For all other
combinations of parameters, we varied the maximum allowed antecedent size
through each size from 1 through to 5.

We varied the quantity of data by generating datasets of the following sizes,
250, 500, 1,000, 2,000, 4,000, 8,000 and 16,000. These sizes were selected
by experimentation as those providing the most interesting variations in per-
formance. We generated 100 random datasets at each of these sizes. Each
larger dataset was generated by appending additional data onto the immedi-
ately smaller dataset.

For the holdout treatments, half of each dataset was used for exploration and
the remaining half for statistical evaluation. For holdout evaluation, we sought
alternatively the 100, 1,000 and 10,000 rules with the highest leverage during
the exploratory stage. We also varied whether a statistical test was applied
during the exploratory stage. The None treatments found the highest leverage
rules without regard for whether they were productive. The Sig treatments
found the highest leverage rules out of those that passed the Fisher exact test
for productivity at the 0.05 level, without any adjustment for the number of
patterns considered.

The Direct treatments applied a significance test during search with the
critical value adjusted to allow for the size of the search space.

For the second experiment 15 binary variables were created, a, b, c, d, e and
x0, x1, . . . x9. All variable values were randomly generated independently of one
another, with each value equiprobable, except for e for which the probability of
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value 1 was 0.80 if all of a, b, c and d were 1 and 0.48 otherwise.
This generates a total of 83 productive rules, those with

• one or more of a = 1, b = 1, c = 1 and d = 1 in the antecedent and e = 1
in the consequent

• e = 1 and zero or more of a = 1, b = 1, c = 1 and d = 1 in the antecedent
and one of a = 1, b = 1, c = 1 and d = 1 in the consequent,

• exactly one of a = 0, b = 0, c = 0 and d = 0 in the antecedent and e = 0
in the consequent, and

• e = 0 and zero or more of a = 1, b = 1, c = 1 and d = 1 in the antecedent
and one of a = 0, b = 0, c = 0 and d = 0 in the consequent.

Note that this meant that each increase in the size of the search space but the
last increased the number of productive rules that could be found.

Identical treatments were applied to those for Experiment 2 except that
datasets sizes were varied from 1,000 to 64,000, as larger datasets were required
to find the more subtle patterns.

6.2.2 Results

We refer to the application of one of the 245 treatments to a single dataset as a
run. Tables 4 and 5 in Appendix B present for each treatment the mean numbers
of true and false discoveries per run, together with the number of runs for which
any false discoveries occurred. This latter value corresponds to experimentwise
error, whereas the mean number of false discoveries indicates the total number
of patterns falsely discovered, rather than the number of runs in which false
discoveries occurred. Figures 2 and 3 plot these outcomes against variations in
the maximum antecedent size and the quantity of data available. We do not
perform statistical evaluation of comparative performance as these are synthetic
data and whether differences in performance reach statistical significance or not
is a greater reflection on the data generated than on the alternative techniques.
These experiments are not designed to test hypotheses, as the theoretical prop-
erties of the techniques we are employing are already well understood. Rather,
they are designed to provide insight into the magnitude of the expected effects
in practice.

The holdout and direct adjustment approaches both cap the risk of any false
discovery at 0.05. For Experiment 2, out of the 245 treatments considered, just 2
had 6 runs with false discoveries. For Experiment 3, 2 of the 245 treatments had
7 runs with false discoveries and 1 had 6. Each outcome represents an aggregate
result for 100 runs. If the probability of each event is 0.05, the probability is
0.23 of obtaining 7 or more events out of 100 trials, 0.38 of obtaining 6 or
more out of 100 and 0.56 of 5 or more. For Experiment 2, out of the 24,500
runs performed, only 124 resulted in any false discoveries, an experimentwise
error rate of approximately 0.005. For Experiment 3, only 238 out of 24,500
runs resulted in false discoveries, an experimentwise error rate of approximately
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Figure 2: Plots of results for Experiment 2
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Figure 3: Plots of results for Experiment 3
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0.010. However, it is noteworthy that when an experiment resulted in any error
it usually resulted in more than one. For Experiment 2 there were a total of
293 false discoveries, representing an average of 2.4 false discoveries for every
run for which there were any false discoveries. For Experiment 3 there were 507
false discoveries, representing an average of 4.2 false discoveries for every run
with any false discoveries. This effect is due to the null hypotheses for different
rules being closely related to one another such that if one passes then another
is likely to. Despite this effect, the total false discovery rate for Experiment 2
is 293/814,954, which is less than 0.001 and for Experiment 3 it is 507/460,800,
which is less than 0.002.

Due to the very low experimentwise false discovery rates, the differences
in false discoveries between treatments should not be considered meaningful,
as they could readily be accounted for by the variance in results. The ridges
observed in Figures 2 and 3 at specific data sizes, such as that for Experiment
2 None 1000 at data size 8000, can be explained by the use of the same 100
datasets for each antecedent size and do not necessarily represent an effect
relating to the specific data set size. If a false discovery with one item in the
antecedent received strong support from a specific dataset, it would appear as
a false discovery at all maximum antecedent size levels.

For Experiment 2, all treatments found all 40 productive rules on all 100 runs
when the antecedent was restricted to 1 item and the dataset contained 16,000
or (except for None 1,000 and None 10,000) 8,000 records. For all treatments
the true discovery rate declined as the search space was increased to include
more false patterns. For the direct-adjustment technique this is because the
adjusted critical value decreases as the search space increases, making it more
difficult for a rule to be accepted. For the holdout techniques this is because
of two effects. As the search space increases, the risk increases that spurious
rules will be discovered with higher apparent leverage than the true rules and
hence the true rules will be excluded from the set of candidate rules. Where a
significance test is used as a filter, when the search space is small it will often be
the case that fewer than the allowed maximum number of rules are found, and
hence the adjustment applied during holdout evaluation is smaller and more
patterns are able to pass the holdout test.

No treatment consistently found all 83 rules for Experiment 3, but it is
clear that given sufficient data all would. For most conditions the number of
true discoveries decreased when the search space was increased to include only
regions that did not contain any true discoveries (the increase from Max Size 4
to 5).

For all treatments across both experiments the true discovery rate increased
as the amount of data increased. This is because the statistical tests are more
powerful with more data and are less likely to fail. However, while the true dis-
covery rate increased, so did the false discovery rate for the holdout approaches.

For the holdout techniques, the number of true discoveries tended to increase
as the number of candidates found during the exploratory stage increased. This
is because the primary reason for rules not being discovered was that they
were not found during the exploratory stage rather than their being excluded
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Table 2: Datasets

Dataset Records Items Minsup Description

BMS-WebView-1 59,602 497 60 E-commerce clickstream data

Covtype 581,012 125 359,866 Geographic forest vegetation data

IPUMS LA 99 88,443 1,883 42,098 Census data

KDDCup98 52,256 4,244 43,668 Mailing list profitability data

Letter Recognition 20,000 74 1,304 Image recognition data

Mush 8,124 127 1,018 Biological data

Retail 88,162 16,470 96 Retail market-basket data

Shuttle 58,000 34 878 Space shuttle mission data

Splice Junction 3,177 243 244 Gene sequence data

TICDATA 2000 5,822 709 5,612 Insurance policy holder data

during holdout evaluation. Hence the decrease in the critical value caused by the
increase in the number of candidates had less effect than the increased likelihood
of a true rule being included in the set of candidates.

Turning next to the effect of filtering the candidates, in these experiments
the application of a statistical test to filter the candidates (the Sig treatment) is
very effective at increasing the number of true rules found (relative to the None
treatment). This is primarily because it increases the number of true rules in
the set of candidates subjected to holdout evaluation by excluding alternative
rules with higher leverage that might otherwise replace them.

For Experiment 2, comparing the direct-adjustment significance testing to
the most effective of the holdout approaches (Sig 10000), the former is more
effective at small data sizes but the latter is more effective at larger data sizes.
While the results suggest a similar effect for Experiment 3, even with data sizes
of 64,000 the direct-adjustment approach does not hold a clear advantage over
Sig 100.

6.3 Experiments with real world data

We turn next to the issue of how the techniques perform on real-world data. The
same seven treatments were used as for Experiment 1. Experiments were con-
ducted using eight of the largest attribute-value datasets from the UCI machine
learning (Newman, Hettich, Blake, & Merz, 2006) and KDD (Hettich & Bay,
2006) repositories together with the BMS-WebView-1 (Zheng, Kohavi, & Ma-
son, 2001) and Retail (Brijs, Swinnen, Vanhoof, & Wets, 1999) datasets. These
datasets are described in Table 2. We first found for each dataset the minimum
even value for minimum-support that produced fewer than 10,000 productive
rules when applied with respect to the dataset as a whole with antecedents of
size up to six. These values are listed in the minsup column of Table 2. Each
treatment was then applied to each dataset six times, once with each maxi-
mum limit Xmax on the size of of the antecedent from 1 to 6. All runs used
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the minimum-support specified, except for the holdout treatments which only
use half the data for rule discovery and for which the minimum-support was
therefore halved. For the sake of computational efficiency, where the number of
rules satisfying the minimum-support threshold exceeded 100,000, search was
restricted to the 100,000 rules with the highest support.

6.3.1 Results

Table 6 in Appendix B presents the number of rules found by each technique
for each dataset and setting of Xmax. The relative numbers of rules discovered
for each dataset and Xmax by the direct-adjustment significance tests and by
each of the holdout evaluation techniques are plotted in Figure 4.

It is striking how many patterns of dubious quality are discovered when
statistical evaluation is not performed. For most treatments the vast majority
of non-redundant rules do not even pass an unadjusted significance test on the
data from which they are discovered, let alone one which is adjusted to allow
for multiple tests. For example, for TICDATA 2000 with antecedent size 4
more than 100,000 non-redundant rules are found, but the most powerful of the
statistically sound approaches passes only 78 (less than 0.1%), meaning that
more than 99.9% of the non-redundant rules found are of questionable value.
While discarding unproductive rules removes many non-redundant patterns that
are most probably spurious, in many cases there are still many thousands of
rules discovered that do not pass a significance test. In the TICDATA 2000
example, more than 99% of the unproductive rules are not accepted by any of
the statistically sound approaches. Even the use of an unadjusted significance
test results in very large numbers of discoveries that do not pass an adjusted test.
In the TICDATA 2000 case, more than 96% of these rules are not accepted by
any of the statistically sound approaches. Given the propensity of an unadjusted
test to make false discoveries, as illustrated in Experiment 1, it seems likely that
many of these additional discoveries are likewise spurious.

Holdout evaluation with rules that pass an unadjusted significance test usu-
ally finds slightly more rules than Holdout evaluation with productive rules,
which in turn usually finds slightly more rules that Holdout evaluation with
non-redundant rules. This is because the size of the correction for multiple
tests that is performed during holdout evaluation is smaller when a stronger
filter is applied during pattern discovery. The use of a stronger filter will only
result in fewer discoveries if it excludes patterns at the exploratory discovery
stage that would be passed at the holdout stage. In only two cases do the use
of a weaker filter result in more rules being discovered than the use of an unad-
justed significance test, the use of a productive filter for Covtype with Xmax = 1
and for IPUMS LA 99 with Xmax = 2. In both cases two additional discoveries
are made. In contrast the stronger filter usually results in substantially more
discoveries than the weaker filters.

For three datasets, the greatest number of discoveries were made by the
direct-adjustment approach. For the remaining seven datasets the greatest
number of discoveries were made by holdout evaluation applied after an un-
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adjusted significance test. Overall, the holdout approach found more rules than
direct-adjustment significance testing, with the relative performance being more
favorable to direct-adjustment when the size of the rule space was smaller (small
Xmax or fewer items) and more favorable to holdout evaluation as the size of
the search space increased. This is because of the extremely small significance
levels that are employed with large search spaces. The total number of rules
discovered by direct-adjustment often decreased as the search space increased.
Such decreases occurred less frequently for holdout evaluation and when they
did, the decreases were smaller. Note, however, that these relative results are in
part an artifact of the experimental design. If minimum support had been set
lower, direct-adjustment would have found more rules, as the rules found under
the current setting would not have been affected and further rules with lower
support could have potentially passed the adjusted significance test. However,
increasing minimum support could have reduced the number of rules found by
holdout evaluation as it would have increased the number of candidate rules
and hence lowered the adjusted significance level that rules had to pass.

It is also interesting to observe that in some cases there was considerable
difference in the numbers of rules found during the exploratory stage of holdout
evaluation relative to those found from the full dataset. The most extreme
examples of this were BMS-Webview-1, for which substantially larger numbers
of candidate rules were found relative to discovery from the full dataset and
TICDATA 2000 for which substantially fewer rules were found. This illustrates
the disadvantage of working with the smaller samples inherent in the holdout
approach.

6.4 Computational results

Table 7 in Appendix B presents the User CPU times for each treatment in the
experiments on real-world data using an AMD64 939.3000 Linux system. These
times should be treated with great caution, as they are the results for a single
run only and time can vary substantially from one run to another of the same
process.

With this caveat, it appears that the direct-adjustment approach does some-
times substantially increase the compute time in comparison to searching just
for non-redundant rules. The most extreme example of this is for Covtype with
Xmax = 6 for which the direct adjustment approach takes more than 16 times
as long, non-redundant rules taking slightly over 6 CPU seconds and direct
adjustment taking slightly over 100.

The direct adjustment approach appears to have a very slight computational
advantage over the use of a statistical test without adjustment. This presumably
reflects an advantage obtained from extra pruning of the search space. On the
whole, there is a substantial advantage within the holdout approaches to holdout
evaluation with the application of a significance test during search, presumably
because the reduced number of tests applied at holdout evaluation time more
than compensates for the additional cost of the stricter evaluation during the
exploratory search stage. The exception is for Covtype, where the extra cost
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of applying a statistical test during the search phase outweighs this advantage,
at least when comparing against productive rules, which at Xmax = 6 takes
slightly over 20 CPU seconds.

Neither the direct adjustment nor the holdout approach has a clear advan-
tage over the other, with the relative compute times varying greatly from dataset
to dataset. The CPU times for direct adjustment at Xmax = 6 vary from 0.12
seconds for TICDATA 2000 through to the 100 seconds already discussed for
Covtype. For holdout evaluation with an unadjusted significance test they vary
from 0.10 seconds for TICDATA 2000 through to slightly under 62 seconds for
Covtype. When direct adjustment is more efficient the difference is not as great
as the most extreme advantage enjoyed by holdout evaluation. For example,
for BMS-WebView-1 direct adjustment takes 3.70 CPU seconds while holdout
evaluation with an unadjusted significance test takes 4.78.

6.5 How many highly significant rules are there?

A question that arises naturally is just how many rules are going to reach a
sufficient level of significance that they will be accepted by the direct-adjustment
approach. Our assumption before embarking on the research reported herein
was that the numbers would be so low in many applications as to make the
direct-adjustment approach infeasible. Experiment 5 sought insight into this
issue by running Magnum Opus on each of the datasets listed in Table 2 using
its default settings except that the maximum number of rules to be discovered
was increased to 1,000,000 and the significance level used in the statistical test
was adjusted to take account of the search space size.

For two datasets, KDDCup98 and TICDATA 2000, this computational task
proved infeasible, and the search was terminated early, establishing a lower
bound on the number of significant rules. In the case of TICDATA 2000, search
was terminated after more than two CPU weeks of processing on an AMD64
939.3000 Linux system. The reason for this processing inefficiency is the re-
duction in pruning of the search space that occurs when significance tests with
very low critical values are introduced in k-optimal rule discovery. It is only
feasible to search the massive search spaces involved in these tasks if most of
the search space can be pruned from consideration. Magnum Opus has only
weak pruning mechanisms relating to its significance tests, and hence gains only
moderate increases in pruning from the test. This small increase fails to offset
the massive loss in pruning that can occur in k-optimal rule discovery when the
significance tests prevent rules from being accepted. This is because the most ef-
fective pruning utilizes increases in the minimum bound on leverage that can be
derived as additional candidates that pass all other constraints are encountered.
This computational inefficiency was not evident in the previous experiments
because they did not use the k-optimal rule discovery approach.

As Magnum Opus ’s default setting allows antecedents of up to size 4, the
row for Xmax = 4 in Table 6 provides the relevant search space size for each
dataset. Table 3 lists the resulting adjusted significance level and the number of
rules found for each dataset. The column headed “Significant Rules” indicates

27



Table 3: The number of significant rules for each dataset at Xmax = 4

Dataset α′ Significant Rules

BMS-WebView-1 4.00 × 10−14 >1,000,000
Covtype 3.23 × 10−11 >1,000,000
IPUMS LA 99 1.81 × 10−16 191,472
KDDCup98 5.71 × 10−20 >345,000
Letter Recognition 1.87 × 10−09 57,233
Mush 6.37 × 10−11 61,901
Retail 9.90 × 10−22 5,088
Shuttle 7.95 × 10−08 4,234
Splice Junction 1.64 × 10−12 395
TICDATA 2000 9.04 × 10−15 >155,000

the number of rules that satisfy a within-search significance test at Xmax = 4.
Where the number is preceded by “>” it indicates a lower bound on the number
of such rules. It is apparent that for many datasets there are very large numbers
of significant patterns available to be found.

7 Discussion and Future Research

The current work reveals a number of interesting issues that provide potentially
productive avenues for future research.

The relative performance of direct-adjustment and holdout evaluation differs
substantially from application domain to application domain. While the current
research has identified broad factors that influence their relative performance,
it would be useful if techniques could be found for predicting which would be
more powerful for a specific task.

Similarly, the numbers of discoveries found by the direct-adjustment tech-
nique differ substantially as Xmax increases. This reflects a trade-off between
increasing the number of true patterns contained within the search space and
hence available to be discovered and decreasing the critical value employed in
the statistical test and hence increasing the strength of association required for
a pattern to be discovered. It would be valuable to find approaches for selecting
an appropriate trade-off between these two effects for any given application.

The use of a filter on the rules that are passed to holdout evaluation has
been demonstrated to be very effective. The strongest filter applied in the
current studies was an unadjusted significance test. Further experiments, not
presented, have demonstrated that the application of a significance test with a
reduced critical value can further increase the number of discoveries, but, as the
critical value is decreased, eventually a level will be found at which the number
of discoveries starts decreasing. It would be useful to develop techniques for
setting appropriate adjustments for the purposes of filtering.
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The current research has performed holdout evaluation by setting each of the
exploratory and holdout data sets to contain 50% of the available data. There is
no reason to suppose that this split should be optimal. It could be argued that
the exploratory data need only be of sufficient size that the majority of relevant
patterns should be revealed and that most of the data should be reserved for
holdout evaluation so as to maximize the power of the statistical evaluation.
This is a promising issue for further investigation.

It is worth noting that an advantage of the holdout approach relative to
direct-adjustment is that it can support controls on the false discovery rate
(Benjamini & Hochberg, 1995) instead of the experimentwise error rate. If
this is to be done, a technique that accommodates correlations between the
hypothesis tests should be employed (Benjamini & Yekutieli, 2001).

An advantage of the direct-adjustment approach is that it supports k-optimal
pattern discovery (Webb, 1995; Scheffer & Wrobel, 2002; Webb & Zhang, 2005).
Rather than seeking all patterns that satisfy some set of constraints, as do the
frequent pattern approaches, k-optimal (also known as k-top) approaches take
user-specified metrics of the value of a pattern and k, the number of patterns to
be discovered, and find the k patterns that optimize the metric of interest within
any other constraints the user might specify. These approaches have proved
very popular, as they avoid the need to experimentally determine appropriate
settings for minimum support and related constraints. However, the holdout-
evaluation approach undermines k-optimal techniques, as it is not possible to
determine in advance how many patterns will pass holdout evaluation, and hence
not possible to ensure that k discoveries will be made. In contrast, a direct-
adjustment significance test can become just another constraint, such that a
k-optimal approach finds the k significant patterns that optimize the metric of
interest.

The current research has used statistical tests for productivity to assess
the rules. In practice many other forms of test might be appropriate, such as
a simple test for independence between the antecedent and consequent, tests
that allow negative rules or tests for a specific minimum level of support or
confidence. The holdout and direct-adjustment techniques may be applied to
any traditional statistical hypothesis test. An interesting direction for future
research is to identify properties of patterns for which it may be desirable to
apply such tests.

The current work has considered only patterns in the forms of rules. The
generic techniques generalize directly to other forms of pattern such as item-
sets or sequential patterns, and it would be valuable to develop appropriate
techniques to support each such type of pattern.

The current techniques provide strict control over the risk of type-1 error,
the risk of ‘discovering’ a pattern that is false. The techniques do not provide
bounds on the risk of type-2 error, the risk of failing to discover a pattern that
is true. This is perhaps inevitable in many real-world data analysis contexts, as
assessment of the risk of type-2 error requires knowledge of the size of the effect
of the phenomenon being investigated, and this is typically unknown. Nonethe-
less, it is desirable to minimize the risk of type-2 error, and techniques for better
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managing the dual risks of type-1 and type-2 error remain an important area
for future research.

The large risk of type-2 error inherent in these techniques might lead some
practitioners to question their use. After all, do we really want to use pattern
discovery systems that fail to discover large numbers of patterns? In many
applications the end-users will usually only be prepared to consider a very small
number of patterns. While a pattern discovery system may discover millions of
patterns, in our experience the numbers of patterns with which an end-user can
engage is typically measured in the dozens. If only a small number of patterns
will actually be considered, perhaps it is best to limit these to those in which
we have very high confidence that the risk of type-1 error is low. As Table 3
demonstrates, for many real-world datasets the numbers of rules in which we can
have high confidence will often be large. In many cases there will be more such
rules than an end-user will be able consider. In this context it is tempting to ask
why we would direct users to consider alternative rules in which our confidence
is less high when there are so many in which we can have high confidence?

8 Conclusions

This paper presents two techniques for performing statistically sound pattern
discovery. Both provide mechanisms for applying standard statistical hypoth-
esis tests to all patterns discovered in a manner that strictly controls the risk
of experimentwise type-1 error. The holdout technique separates the available
data into exploratory and holdout sets, discovers rules from the former and
evaluates them against the latter, using a Bonferroni or similar adjustment for
the number of rules evaluated against the holdout data. It differs from the
standard use of holdout evaluation in machine learning which seeks unbiased
estimates of the performance of a single model. Rather, it seeks to apply sta-
tistical hypothesis tests to accept or reject each of a set of patterns discovered
by evaluation of a large space of potential patterns against sample data. The
direct-adjustment technique applies to statistical tests that are employed during
the pattern discovery process a Bonferroni adjustment for the size of the search
space.

These two techniques may be used with any statistical hypothesis test. The
current research has used tests for whether a rule is productive. Where the
analytic objective is to find rules that represent positive correlations, such tests
appear highly desirable.

Experiments demonstrate that application of standard pattern discovery
techniques to random data that does not embody any underlying patterns can
find numerous spurious patterns, as can the application of a statistical test with-
out adjustment for multiple testing. When applied to real-world data, standard
pattern discovery techniques find numerous patterns that do not pass holdout
evaluation. By applying well-established statistical principles, the new tech-
niques overcome these serious problems, even when considering search spaces
containing in excess of 1026 alternative patterns.

30



For the holdout approach, the application of a statistical filter during rule
discovery that discarded rules that were unlikely to pass subsequent holdout
evaluation proved very powerful, and resulted in substantial increases in the
number of rules that passed holdout evaluation.

Each of the approaches has some advantages and disadvantages compared
to the other. The holdout approach can be applied as a simple wrapper to
any existing pattern discovery system, allowing those using pattern discovery to
essentially keep doing what they have been doing, but add a simple step that has
high probability of discarding all spurious patterns that they would otherwise
have assumed were real discoveries. In contrast, the direct-adjustment approach
may require substantial re-engineering of a system. The holdout approach is less
susceptible to decreases in its power as a result of increases in the size of the
search space, can utilize more powerful corrections for multiple tests such as the
Holm procedure, and can support procedures to control the false discovery rate
as well as the experimentwise error rate. Further, the actual number of tests that
must be applied will often be orders of magnitude lower than under the direct-
adjustment approach, providing a considerable computational advantage when
employing computationally demanding statistical tests. On the other hand, the
direct-adjustment approach better supports k-optimal pattern discovery and
utilizes all available data for both pattern detection and pattern evaluation.

Given the ease with which the holdout technique can be retro-fitted to any
existing pattern discovery process, it would appear desirable for anyone seeking
to perform such an analysis to consider what statistical tests are appropriate to
their specific application and to at least assess the feasibility of applying those
tests using either the holdout or the direct-adjustment technique.

This research demonstrates both how computational research can scale con-
ventional statistics to handle massive tasks that appear previously to have been
assumed intractable and how the appropriate application of conventional sta-
tistics can solve serious problems in machine learning.
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A Fisher exact test for productive rules

Given a rule x1&x2...&xn → y, where each xi and y are tests that are indi-
vidually true or false of each record in the data D, let X = x1&x2...&xn and
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X−xi = x1...&xi−1&xi+1...&xn we wish to test

∀x ∈ {1...n}, P (y | X) > P (y | X−xi). (8)

The imposition of (8) ensures that all factors in the antecedent of a rule con-
tribute to its confidence, or in other words, that the confidence is higher than
that of any of its immediate specializations. Applying a hypothesis test to test
for (8) is similar to the imposition of statistical test on a minimum improvement
constraint. It requires that a rule pass a hypothesis test with respect to the null
hypothesis that the probability of the consequent given the antecedent in the
population from which the sample data are drawn is no greater than that for
a generalization, or in other words, that the improvement is greater than zero
with respect to the distribution from which the data are drawn.

Chi-square is an obvious test to apply to evaluate (8). This is the test used
by Brin et al. (1997), Liu et al. (1999) and Bay and Pazzani (2001) in the
context of applying tests during pattern discovery. Brin et al. and Liu et al. use
the chi-square test without adjustment for multiple comparisons whereas Bay
and Pazzani use it with a partial adjustment for multiple comparisons.

However, there are two reasons why the chi-square test may not always be
ideal for this purpose. First, chi-square is an approximate test that is notoriously
unreliable for small samples (Johnson, 1984). As pattern discovery is often
applied to sparse data, the samples relating to a given test may be expected to
be small. Second, chi-square is a two-tailed test, and in the current context a
one-tailed test appears more appropriate.

The Fisher exact test (Agresti, 1992) is appropriate for (8). To evaluate (8)
for each x, calculate the probability of observing the observed number or greater
of occurrences of y&X given the number of observed occurrences of y&X−xi if
P (y | X) = P (y | X−xi).

The p value for this test can be calculated as follows. Let a, b, c and d be,
respectively the frequencies with which X and y co-occur, X occurs without y,
y occurs with X−xi but without xi, and X−xi but neither xi nor y occurs.

p =

min(b,c)
∑

i=0

(a+b)!(c+d)!(a+c)!(b+d)!

(a+b+c+d)!(a+i)!(b−i)!(c−i)!(d+i)!
. (9)

Here, n! denotes the factorial of n.
The Fisher exact test is exact, and hence reliable even with infrequent data.
The Fisher exact test has a reputation for excessive computational require-

ments. Certainly, the amount of computation it requires for any non-trivial
task makes it infeasible for hand computation. However, it has polynomial time
complexity, and in practice the computation it requires is minor in comparison
to the other computations required in typical pattern discovery tasks.

B Tables of experimental outcomes

Tables 4 and 5 present results for experiments 2 and 3, discussed in Section 6.2.
For each treatment they list the mean numbers of true and false discoveries per
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run, together with the number of runs for which any false discoveries occurred.
Table 6 presents the results of the experiments on real-world data (Sec-

tion 6.3). It lists the number of rules found by each technique for each dataset
and setting of Xmax.The meanings of the columns are as follows:
Dataset: The dataset.
Xmax: The maximum number of items allowed in the antecedent.
NR: The number of non-redundant rules ‘discovered.’
Prod: The number of productive rules ‘discovered.’
0.05: The number of rules ‘discovered’ that passed an unadjusted significance
test at the 0.05 level.
Direct-Adjustment Rule Space: The number of rules in the search space.
The direct-adjustment technique used a significance level of 0.05 divided by this
value.
Direct-Adjustment Disc: The number of rules ‘discovered’ that passed the
adjusted significance test. This is abbreviated as WS, below.
HO-NR Cand: The number of non-redundant candidate rules generated from
the exploratory data under the holdout approach.
HO-NR Disc: The number of those candidate rules that passed the subsequent
holdout evaluation.
HO-Prod Cand: The number of productive candidate rules generated from
the exploratory data under the holdout approach.
HO-Prod Disc: The number of those candidate rules that passed the subse-
quent holdout evaluation.
HO-Unadj Cand: The number of candidate rules that passed an unadjusted
significance test generated from the exploratory data under the holdout ap-
proach.
HO-Unadj Disc: The number of those candidate rules that passed the subse-
quent holdout evaluation.

Table 7 presents the User CPU times for each treatment in the experiments
on real-world data using an AMD64 939.3000 Linux system. These results are
discussed in Section 6.4.
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Table 4: Results for Experiment 2
Experiment

Data Mean true discoveries Mean false discoveries false disc.

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

250 29.56 21.19 21.12 21.12 21.12 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0

500 33.80 21.77 21.67 21.67 21.67 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0

1000 36.24 21.88 21.87 21.87 21.87 0.04 0.00 0.00 0.00 0.00 1 0 0 0 0

N
o
n
e

1
0
0

2000 37.76 22.13 22.13 22.13 22.13 0.08 0.00 0.00 0.00 0.00 2 0 0 0 0

4000 39.56 21.92 21.92 21.92 21.92 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0

8000 40.00 22.32 22.32 22.32 22.32 0.04 0.00 0.00 0.00 0.00 1 0 0 0 0

16000 40.00 21.84 21.84 21.84 21.84 0.04 0.00 0.00 0.00 0.00 1 0 0 0 0

250 27.68 27.48 26.26 26.24 26.24 0.00 0.01 0.00 0.00 0.00 0 1 0 0 0

500 32.00 31.00 28.88 28.82 28.82 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0

1000 35.32 33.88 30.20 30.20 30.20 0.00 0.01 0.00 0.00 0.00 0 1 0 0 0

N
o
n
e

1
0
0
0

2000 36.72 34.40 30.00 30.32 30.32 0.04 0.00 0.00 0.00 0.00 1 0 0 0 0

4000 38.88 34.54 31.32 31.32 31.32 0.00 0.06 0.06 0.06 0.06 0 4 4 4 4

8000 39.96 34.39 31.80 31.80 31.80 0.04 0.07 0.06 0.06 0.06 1 6 5 5 5

16000 40.00 34.39 32.00 32.00 32.00 0.00 0.06 0.03 0.03 0.03 0 5 2 2 2

250 27.56 26.24 26.24 26.16 26.16 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0

500 31.48 30.64 30.32 30.16 30.16 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0

1000 35.16 34.36 33.76 33.32 33.32 0.04 0.00 0.00 0.00 0.00 1 0 0 0 0

N
o
n
e

1
0
0
0
0

2000 36.44 36.24 35.24 34.32 34.32 0.04 0.00 0.00 0.00 0.00 1 0 0 0 0

4000 38.68 38.12 35.72 34.52 34.48 0.04 0.02 0.00 0.00 0.00 1 1 0 0 0

8000 39.96 39.92 35.92 34.60 34.56 0.04 0.00 0.00 0.00 0.00 1 0 0 0 0

16000 40.00 40.00 36.00 34.92 34.80 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0

250 29.80 29.28 29.06 29.06 29.06 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0

500 33.96 32.98 32.31 32.30 32.30 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0

1000 36.24 35.75 33.47 33.47 33.47 0.04 0.01 0.01 0.01 0.01 1 1 1 1 1

S
ig

1
0
0

2000 37.84 37.00 33.27 33.25 33.25 0.08 0.03 0.03 0.03 0.03 2 2 2 2 2

4000 39.56 39.01 32.97 32.96 32.96 0.00 0.04 0.02 0.02 0.02 0 4 2 2 2

8000 40.00 39.81 32.94 32.94 32.94 0.04 0.00 0.00 0.00 0.00 1 0 0 0 0

16000 40.00 39.35 32.59 32.59 32.59 0.04 0.05 0.02 0.02 0.02 1 5 2 2 2

250 29.80 28.68 27.92 27.64 27.64 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0

500 33.96 32.84 32.00 31.92 31.92 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0

1000 36.16 35.76 35.28 35.24 35.24 0.04 0.00 0.00 0.00 0.00 1 0 0 0 0

S
ig

1
0
0
0

2000 37.80 36.88 36.68 36.60 36.60 0.12 0.08 0.04 0.00 0.00 2 1 1 0 0

4000 39.56 39.32 38.88 38.84 38.72 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0

8000 40.00 40.00 39.96 39.96 39.76 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0

16000 40.00 40.00 40.00 40.00 40.00 0.04 0.00 0.00 0.00 0.00 1 0 0 0 0

250 29.80 28.68 27.92 27.56 27.52 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0

500 33.96 32.84 32.00 31.20 31.04 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0

1000 36.16 35.76 35.28 34.84 34.40 0.04 0.00 0.00 0.00 0.00 1 0 0 0 0

S
ig

1
0
0
0
0

2000 37.80 36.88 36.52 36.32 36.24 0.12 0.08 0.04 0.00 0.00 2 1 1 0 0

4000 39.56 39.32 38.68 38.40 38.12 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0

8000 40.00 40.00 39.96 39.92 39.92 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0

16000 40.00 40.00 40.00 40.00 40.00 0.04 0.00 0.00 0.00 0.00 1 0 0 0 0

250 31.28 29.72 28.76 28.00 27.20 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0

500 35.20 33.76 32.68 32.00 31.44 0.04 0.00 0.00 0.00 0.00 1 0 0 0 0

1000 36.88 36.12 35.84 35.28 34.76 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0

D
ir

e
c
t

2000 38.56 37.52 36.80 36.56 36.36 0.12 0.00 0.00 0.00 0.00 3 0 0 0 0

4000 39.96 39.84 39.24 39.04 38.76 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0

8000 40.00 40.00 40.00 40.00 40.00 0.08 0.00 0.00 0.00 0.00 1 0 0 0 0

16000 40.00 40.00 40.00 40.00 40.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0
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Table 5: Results for Experiment 3
Experiment

Data Mean true discoveries Mean false discoveries false disc.

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1000 0.00 0.00 0.00 0.00 0.00 0.16 0.08 0.04 0.04 0.04 4 2 1 1 1

2000 0.20 0.10 0.20 0.40 0.40 0.04 0.00 0.00 0.00 0.00 1 0 0 0 0

4000 0.60 0.70 2.00 3.00 3.00 0.16 0.04 0.00 0.00 0.00 4 1 0 0 0

N
o
n
e

1
0
0

8000 2.90 5.20 9.50 11.70 11.60 0.00 0.01 0.01 0.02 0.02 0 1 1 2 2

16000 9.50 18.70 29.30 32.30 31.30 0.04 0.04 0.06 0.04 0.04 1 4 4 3 3

32000 15.00 36.20 57.20 57.20 54.80 0.00 0.02 0.05 0.04 0.05 0 2 5 4 4

64000 16.00 45.07 70.67 70.27 66.67 0.04 0.07 0.03 0.06 0.09 1 7 3 5 7

1000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0

2000 0.00 0.00 0.00 0.20 0.20 0.00 0.01 0.01 0.01 0.01 0 1 1 1 1

4000 0.30 0.40 1.00 2.10 2.10 0.04 0.05 0.04 0.04 0.04 1 2 1 1 1

N
o
n
e

1
0
0
0

8000 1.30 2.60 6.20 9.30 9.30 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0

16000 6.20 12.40 21.90 28.10 28.10 0.00 0.02 0.02 0.03 0.03 0 2 2 3 3

32000 13.90 28.70 51.80 60.60 60.60 0.04 0.03 0.03 0.03 0.03 1 3 3 3 3

64000 16.00 42.90 70.82 79.84 79.84 0.04 0.02 0.03 0.08 0.07 1 2 3 6 6

1000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0

2000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0

4000 0.30 0.10 0.30 1.10 1.10 0.04 0.00 0.00 0.00 0.00 1 0 0 0 0

N
o
n
e

1
0
0
0
0

8000 1.30 0.90 3.20 5.70 5.70 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0

16000 6.20 6.80 13.10 18.60 18.60 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0

32000 13.90 21.80 40.60 49.00 49.00 0.04 0.00 0.00 0.00 0.00 1 0 0 0 0

64000 16.00 39.42 67.17 76.17 76.17 0.04 0.01 0.01 0.01 0.01 1 1 1 1 1

1000 0.00 0.00 0.00 0.00 0.00 0.08 0.08 0.05 0.05 0.05 2 2 2 2 2

2000 0.20 0.10 0.20 0.40 0.40 0.00 0.01 0.00 0.00 0.00 0 1 0 0 0

4000 0.80 0.70 2.10 3.10 3.10 0.08 0.05 0.04 0.04 0.04 2 2 1 1 1

S
ig

1
0
0

8000 3.60 5.40 9.90 12.90 12.80 0.00 0.01 0.02 0.02 0.02 0 1 2 2 2

16000 10.20 19.10 32.80 39.00 38.80 0.04 0.00 0.03 0.03 0.03 1 0 3 3 3

32000 15.20 36.30 63.20 70.50 70.30 0.00 0.01 0.01 0.01 0.01 0 1 1 1 1

64000 16.00 45.06 73.31 81.96 81.91 0.12 0.00 0.00 0.05 0.06 3 0 0 5 6

1000 0.00 0.00 0.00 0.00 0.00 0.08 0.04 0.00 0.00 0.00 2 1 0 0 0

2000 0.20 0.10 0.10 0.10 0.10 0.00 0.01 0.01 0.01 0.01 0 1 1 1 1

4000 0.80 0.80 1.30 2.10 2.10 0.08 0.04 0.04 0.04 0.04 2 1 1 1 1

S
ig

1
0
0
0

8000 3.60 4.70 6.90 9.20 9.20 0.00 0.01 0.00 0.00 0.00 0 1 0 0 0

16000 10.20 16.10 23.80 27.70 27.70 0.04 0.00 0.00 0.00 0.00 1 0 0 0 0

32000 15.20 33.30 53.70 60.20 60.20 0.00 0.00 0.00 0.01 0.01 0 0 0 1 1

64000 16.00 44.54 71.44 79.84 79.84 0.12 0.04 0.00 0.00 0.00 3 1 0 0 0

1000 0.00 0.00 0.00 0.00 0.00 0.08 0.04 0.00 0.00 0.00 2 1 0 0 0

2000 0.20 0.10 0.10 0.10 0.10 0.00 0.01 0.01 0.00 0.00 0 1 1 0 0

4000 0.80 0.80 1.30 1.90 1.60 0.08 0.04 0.04 0.04 0.00 2 1 1 1 0

S
ig

1
0
0
0
0

8000 3.60 4.70 6.90 8.30 6.90 0.00 0.01 0.00 0.00 0.00 0 1 0 0 0

16000 10.20 16.10 23.80 25.10 21.80 0.04 0.00 0.00 0.00 0.00 1 0 0 0 0

32000 15.20 33.30 53.70 57.60 53.20 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0

64000 16.00 44.54 71.44 78.85 77.59 0.12 0.04 0.00 0.00 0.00 3 1 0 0 0

1000 0.04 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 3 0 0 0 0

2000 0.36 0.08 0.11 0.22 0.14 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0

4000 1.28 0.96 1.84 2.70 1.92 0.08 0.04 0.00 0.00 0.00 2 1 0 0 0

D
ir

e
c
t

8000 5.92 6.73 8.76 11.09 9.41 0.00 0.01 0.00 0.00 0.00 0 1 0 0 0

16000 13.96 21.31 31.10 32.29 27.42 0.04 0.00 0.00 0.00 0.00 1 0 0 0 0

32000 16.00 39.22 61.92 66.68 63.02 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0

64000 16.00 45.88 73.60 82.06 81.58 0.04 0.00 0.00 0.00 0.00 1 0 0 0 0
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Table 6: Number of rules found in the experiments on real-world data
Direct-Adjustment HO-NR HO-Prod HO-Unadj

Dataset Xmax NR Prod 0.05 Space Disc Cand Disc Cand Disc Cand Disc

BMS-WebView-1 1 3146 3126 3110 2.46 × 1005 3010 3576 3312 3558 3314 3524 3316
BMS-WebView-1 2 7622 7548 7394 6.12 × 1007 5995 10245 7357 10159 7363 9886 7386
BMS-WebView-1 3 9710 9511 8844 1.01 × 1010 5440 14412 7114 14031 7130 12249 7206
BMS-WebView-1 4 10004 9765 8930 1.25 × 1012 4953 15266 7080 14624 7102 12339 7200
BMS-WebView-1 5 10016 9772 8931 1.23 × 1014 4503 15315 7079 14632 7102 12339 7200
BMS-WebView-1 6 10016 9772 8931 1.01 × 1016 4073 15315 7079 14632 7102 12339 7200
Covtype 1 1794 74 74 1.78 × 1004 68 1794 68 74 70 72 68
Covtype 2 37593 290 286 1.17 × 1006 245 37590 233 284 245 271 247
Covtype 3 100000 1035 971 4.98 × 1007 746 100000 717 987 755 919 755
Covtype 4 100000 2829 2477 1.55 × 1009 1690 100000 1409 2649 1752 2336 1752
Covtype 5 100000 5967 4887 3.80 × 1010 2848 100000 444 5559 3065 4548 3116
Covtype 6 100000 9995 7778 7.56 × 1011 3893 100000 570 9351 4267 7135 4390
IPUMS LA 99 1 984 526 472 3.08 × 1006 440 978 440 526 442 456 452
IPUMS LA 99 2 7822 2152 1782 2.23 × 1009 1469 7802 1491 2193 1510 1704 1508
IPUMS LA 99 3 33957 5324 3999 9.60 × 1011 2748 33904 2886 5366 3004 3721 3017
IPUMS LA 99 4 94157 8382 5832 2.77 × 1014 3483 93912 3803 8337 4034 5301 4103
IPUMS LA 99 5 100000 9763 6440 5.73 × 1016 3522 100000 3847 9685 4312 5778 4398
IPUMS LA 99 6 100000 9998 6510 8.93 × 1018 3426 100000 3103 9982 4310 5838 4400
KDDCup98 1 667 402 172 1.50 × 1008 78 659 84 360 84 116 88
KDDCup98 2 5721 1885 365 4.39 × 1011 93 5614 104 1579 108 214 112
KDDCup98 3 24681 4638 489 7.49 × 1014 83 24081 101 3877 112 272 116
KDDCup98 4 63564 7601 574 8.76 × 1017 75 61758 101 6302 108 303 116
KDDCup98 5 100000 9384 632 7.66 × 1020 73 100000 101 7757 107 311 116
KDDCup98 6 100000 9988 652 5.28 × 1023 73 100000 101 8200 107 311 116
Letter Recognition 1 1490 854 744 4.66 × 1003 606 1520 552 868 556 724 574
Letter Recognition 2 8536 4003 3228 1.34 × 1005 2039 8448 1778 4093 1852 2994 1905
Letter Recognition 3 19040 7534 5676 2.29 × 1006 2744 18128 2360 7409 2502 4925 2581
Letter Recognition 4 26697 9443 6762 2.68 × 1007 2697 24039 2449 8963 2597 5588 2702
Letter Recognition 5 29195 9939 6967 2.27 × 1008 2574 25495 2448 9238 2600 5667 2703
Letter Recognition 6 29447 9964 6974 1.47 × 1009 2448 25537 2448 9241 2600 5667 2703
Mush 1 1136 778 748 1.52 × 1004 686 1144 672 778 684 734 690
Mush 2 7625 3501 3233 8.75 × 1005 2594 7697 2479 3526 2558 3106 2567
Mush 3 21773 7079 6463 3.12 × 1007 4844 21873 4639 7205 4781 6202 4838
Mush 4 34866 9229 8351 7.85 × 1008 5885 34881 5719 9410 5976 7985 6039
Mush 5 41155 9885 8905 1.48 × 1010 5972 41026 5988 10112 6274 8493 6346
Mush 6 42830 9998 9005 2.16 × 1011 5845 42584 6041 10245 6335 8590 6412
Retail 1 5908 5250 4142 2.72 × 1008 882 6056 990 5352 994 3652 1036
Retail 2 10669 8943 6251 2.23 × 1012 648 10955 1034 9081 1056 5247 1099
Retail 3 12008 9847 6571 1.23 × 1016 528 12310 1021 9931 1044 5430 1099
Retail 4 12153 9909 6576 5.05 × 1019 455 12464 1021 9993 1043 5432 1099
Retail 5 12153 9909 6576 1.66 × 1023 413 12464 1021 9993 1043 5432 1099
Retail 6 12153 9909 6576 4.56 × 1026 383 12464 1021 9993 1043 5432 1099
Shuttle 1 706 380 354 1.03 × 1003 322 706 302 382 310 342 316
Shuttle 2 6182 2426 2082 1.46 × 1004 1585 6172 1345 2440 1404 1952 1446
Shuttle 3 22491 6632 4891 1.19 × 1005 2876 22455 2292 6635 2442 4426 2507
Shuttle 4 42158 9420 6345 6.30 × 1005 3113 41701 2489 9354 2668 5554 2768
Shuttle 5 50674 9970 6587 2.28 × 1006 3019 49884 2489 9885 2673 5717 2785
Shuttle 6 51776 9993 6591 5.83 × 1006 2930 50907 2486 9900 2673 5719 2785
Splice Junction 1 9172 6846 4004 5.80 × 1004 578 9786 264 7400 266 3390 308
Splice Junction 2 12574 9111 5152 6.88 × 1006 518 13055 384 9583 392 4367 430
Splice Junction 3 13553 9697 5484 5.32 × 1008 382 13932 427 10132 438 4635 485
Splice Junction 4 13675 9743 5514 3.04 × 1010 280 14051 430 10180 441 4663 488
Splice Junction 5 13683 9744 5514 1.36 × 1012 242 14059 430 10182 441 4663 488
Splice Junction 6 13683 9744 5514 5.00 × 1013 204 14059 430 10182 441 4663 488
TICDATA 2000 1 814 454 294 4.68 × 1005 78 806 70 366 70 206 86
TICDATA 2000 2 9446 2334 1038 1.56 × 1008 70 9118 78 1310 78 478 78
TICDATA 2000 3 55630 5662 1886 3.42 × 1010 68 51982 62 2382 70 638 78
TICDATA 2000 4 100000 8670 2270 5.53 × 1012 52 100000 44 2734 70 670 78
TICDATA 2000 5 100000 9694 2270 7.02 × 1014 36 100000 34 2734 70 670 78
TICDATA 2000 6 100000 9694 2270 7.32 × 1016 36 100000 26 2734 70 670 78
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Table 7: User CPU time in seconds under each treatment for the experiments
on real-world data
Dataset Xmax NR Prod 0.05 DA HO-NR HO-Prod HO-Unadj

BMS-WebView-1 1 3.27 3.32 3.39 3.38 4.64 3.10 3.12
BMS-WebView-1 2 3.48 3.77 3.91 3.75 3.36 3.80 3.88
BMS-WebView-1 3 3.57 4.14 4.27 3.81 3.57 4.90 4.67
BMS-WebView-1 4 3.58 4.19 4.32 3.77 3.64 5.17 4.77
BMS-WebView-1 5 3.59 4.21 4.31 3.69 3.64 5.16 4.74
BMS-WebView-1 6 3.59 4.18 4.32 3.70 3.62 5.16 4.78
Covtype 1 4.02 4.01 4.14 4.14 4.09 3.99 4.06
Covtype 2 5.08 4.17 4.82 4.76 10.70 4.36 4.55
Covtype 3 5.57 4.63 8.18 7.89 51.68 5.88 7.07
Covtype 4 5.87 6.15 19.41 18.48 199.98 10.58 14.81
Covtype 5 6.24 10.40 48.09 45.79 247.86 20.78 32.07
Covtype 6 6.23 20.37 104.33 100.26 254.14 36.78 61.93
IPUMS LA 99 1 1.58 1.57 2.22 2.21 1.80 1.77 2.06
IPUMS LA 99 2 1.70 1.65 4.15 3.96 4.78 3.10 3.99
IPUMS LA 99 3 1.86 2.02 7.63 7.21 16.33 5.67 7.24
IPUMS LA 99 4 1.95 3.09 12.86 12.05 39.00 8.44 10.84
IPUMS LA 99 5 1.98 4.42 21.32 20.44 28.73 10.10 15.03
IPUMS LA 99 6 1.98 5.10 27.67 26.75 26.40 10.64 17.86
KDDCup98 1 27.68 27.66 27.72 27.80 31.66 31.79 31.67
KDDCup98 2 27.76 27.69 27.82 27.83 31.86 31.75 31.68
KDDCup98 3 27.88 28.00 28.10 28.02 33.22 32.02 31.91
KDDCup98 4 27.90 28.91 28.63 28.55 37.45 32.47 32.09
KDDCup98 5 28.02 30.25 29.08 28.83 38.85 32.94 32.36
KDDCup98 6 28.04 30.93 29.76 29.37 39.50 33.36 32.56
Letter Recognition 1 0.07 0.06 0.18 0.16 0.11 0.09 0.12
Letter Recognition 2 0.16 0.19 0.47 0.37 0.50 0.32 0.36
Letter Recognition 3 0.24 0.59 0.92 0.62 1.11 0.71 0.66
Letter Recognition 4 0.28 1.16 1.27 0.74 1.51 1.08 0.82
Letter Recognition 5 0.29 1.36 1.40 0.77 1.61 1.17 0.86
Letter Recognition 6 0.30 1.39 1.40 0.77 1.60 1.17 0.86
Mush 1 0.03 0.03 0.06 0.06 0.05 0.04 0.04
Mush 2 0.10 0.10 0.20 0.18 0.23 0.14 0.16
Mush 3 0.20 0.33 0.51 0.40 0.78 0.39 0.41
Mush 4 0.24 0.66 0.88 0.61 1.60 0.70 0.69
Mush 5 0.25 0.82 1.10 0.72 2.13 0.87 0.80
Mush 6 0.26 0.87 1.14 0.73 2.33 0.88 0.82
Retail 1 21.01 21.37 21.32 23.68 12.61 12.80 12.51
Retail 2 22.64 23.76 25.41 25.80 16.77 17.14 15.80
Retail 3 23.19 24.55 26.95 26.94 18.71 18.73 16.69
Retail 4 23.26 24.68 27.08 27.69 18.98 18.89 16.78
Retail 5 23.30 24.66 27.12 28.94 18.98 18.86 16.82
Retail 6 23.29 24.69 27.12 29.09 18.95 18.82 16.83
Shuttle 1 0.09 0.09 0.37 0.36 0.21 0.16 0.24
Shuttle 2 0.18 0.19 0.90 0.81 0.97 0.51 0.70
Shuttle 3 0.37 0.70 1.84 1.55 2.75 1.25 1.39
Shuttle 4 0.44 1.84 2.80 2.14 4.79 2.37 1.97
Shuttle 5 0.46 2.28 3.19 2.37 5.70 2.78 2.17
Shuttle 6 0.45 2.34 3.23 2.35 5.64 2.79 2.17
Splice Junction 1 0.14 0.25 0.19 0.06 0.24 0.31 0.15
Splice Junction 2 0.25 0.61 0.37 0.15 0.37 0.60 0.32
Splice Junction 3 0.26 0.72 0.40 0.15 0.40 0.70 0.34
Splice Junction 4 0.26 0.73 0.41 0.15 0.40 0.71 0.35
Splice Junction 5 0.26 0.74 0.42 0.15 0.40 0.70 0.34
Splice Junction 6 0.26 0.74 0.42 0.14 0.40 0.70 0.34
TICDATA 2000 1 0.08 0.08 0.08 0.08 0.09 0.08 0.08
TICDATA 2000 2 0.16 0.11 0.09 0.08 0.22 0.10 0.09
TICDATA 2000 3 0.26 0.26 0.16 0.09 2.27 0.13 0.10
TICDATA 2000 4 0.33 0.63 0.22 0.10 6.88 0.13 0.10
TICDATA 2000 5 0.37 0.87 0.25 0.11 12.20 0.14 0.10
TICDATA 2000 6 0.38 0.88 0.25 0.12 17.97 0.14 0.10
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