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Simultaneous spline approximation and topographic
analysis for lidar elevation data in open source GIS

Helena Mitasova, Lubos Mitas, and Russell S. Harmon

Abstract— Application of spline approximation method to com-
putation and analysis of lidar-based digital elevation models is
investigated to determine its accuracy and capability to create
surfaces at different levels of detail. Quadtree segmentation that
adapts to the spatial heterogeneity of data points makes the
method feasible for large data sets. The results demonstrate
the importance of smoothing for the surface accuracy and noise
reduction. Tension parameter is effective for tuning the level
of detail in the elevation surface. Simultaneous computation of
topographic parameters is applied to extraction of sand dunes’
features for assessment of dune migration and beach erosion.

Index Terms— lidar, spline, topographic analysis, change de-
tection, open source GIS

I. INTRODUCTION

L IDAR data are often collected for a specific purpose,
such as monitoring of coastal change [1] or update of

flood insurance maps [2]. Due to their high resolution and rich
information content, the lidar data are used for a wide range of
additional applications [3] with different requirements in terms
of resolution, accuracy, and digital surface representation.
Therefore, a variety of techniques and algorithms are needed
to make the best use of this type of data.

Depending on the application, elevation surfaces derived
from lidar data are represented by triangular irregular networks
(TIN) [4] or regular grids [5], [6]. In this letter, the focus
is on regular grid digital bare ground models (DGM) and
digital surface models (DSM: DGM with vegetation and
buildings). Gridding techniques based on averaging points
within a given grid cell are sufficient for applications using
resolutions that are lower than the lidar point density [7] and
when the point coverage is spatially homogeneous. However,
spatial distribution of lidar data points can vary significantly,
especially for bare ground data in vegetated areas. In addition,
there are applications where the grid cell size of DGM/DSM
needs to be smaller than the average distance between points
and for these cases a robust spatial approximation is essential.

Spatial approximation of lidar data poses significant chal-
lenges. Due to point densities that often exceed 1 point/m

�
,

lidar captures more detail than traditional methods leading
to massive data sets (with millions of data points points)
even for small projects. Contours and topographic parameters
(gradients and curvatures) derived from lidar-based surfaces
usually have a noisy pattern caused by the combined effect of
various types of errors and natural surface roughness [4], [8],
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and need to be further processed (filtered, smoothed) to make
them suitable for most applications. Various approximation
methods have been used for lidar data gridding, including
inverse distance weighting [5], [6], splines [9], and kriging,
often with mixed results, because these methods were designed
for data with different properties than lidar point clouds.

In this letter, we present a flexible spatial approxima-
tion method for simultaneous computation of grid-based
DGM/DSM and topographic parameters from scattered li-
dar point data. We describe the segmentation procedure for
processing of large data sets and analyze the influence of
the function’s parameters on the resulting surface errors and
deviations. The function is applied to monitoring of coastal
topographic change based on surface geometry analysis.

II. SPATIAL APPROXIMATION METHOD

To compute a DGM/DSM and its first and second order pa-
rameters from lidar point clouds a generalized thin plate spline
function with regular derivatives of all orders is employed.
Quadtree-based segmentation is used to make the method
applicable to massive data sets.

A. Regularized spline with tension and smoothing (RST)

RST belongs to approximation functions that minimize
the deviations from the measured points and a smoothness
seminorm [10]. The RST smoothness seminorm includes
derivatives of all orders with their weights decreasing with
the increasing derivative order [10], [11], leading to function:
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where �,�-��� is elevation at a point �.�/��02143
� , 
5� is a trend, � �
are coefficients, 6 is number of given points, � ��� � � is a radial
basis function, � � �7�98;: �=<?> � � , 8 is a generalized tension
parameter, : � �A@ �B�C� � @ is a distance, & ( �ED5F GIH?H >KJ G is the
Euler constant, and  � ��� � � is the exponential integral function
[12], see also [13]. The coefficients 
 � 1ML � ��N are obtained by
solving the following system of linear equations:����� � � � �ODPF (3)
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where V X < V � are positive weighting factors representing a
smoothing parameter at each given point � � � �-0 � 143 � � .

The method has both geostatistical and physical interpre-
tation [10]. It is formally equivalent to universal kriging
with the choice of the covariance function determined by the
smoothness seminorm. The physical interpretation, as a thin
surface that can be tuned from rigid plate to rubber sheet by
changing its tension, makes the application more intuitive. The
tension parameter 8 controls the distance over which the given
points influence the resulting surface while smoothing controls
the vertical deviation of the surface from data points. By using
an appropriate combination of tension and smoothing, it is
possible to apply the function to various types of surfaces from
smoothly changing topography to rough terrain, and select a
level of detail represented by a DGM/DSM without changing
the resolution. The optimal values of parameters often can be
found by minimizing the crossvalidation error [10], [11].

B. Topographic analysis

Surface gradients and curvatures are important for feature
recognition and as inputs for a wide range of models (e.g.,
hydrology). Standard algorithms compute the topographic pa-
rameters at a grid point using the elevation at this point and its
3x3 neighborhood [14]. This approach works well for smooth
surfaces where local polynomial approximation is adequate.
However, for high resolution data, the small neighborhood
may not be sufficient to adequately capture the geometry of
topographic features. Alternatively, the topographic parameters
can be computed simultaneously with approximation using
partial derivatives of the RST function and principles of
differential geometry [15]. The explicit form of the RST
derivatives can be found in [16], Appendix B.2.

The steepest slope angle � and aspect angle � are then
computed from a gradient ��� �]� ��� 1 �	� � (its direction is
upslope) as follows [15]:

� ��
���
���
�#�� � �� � � �� 1 � ��
���
���
�# � �� � (5)

For applications in geosciences, two types of curvature are the
most relevant. Profile curvature ��� , computed in gradient di-
rection, reflects the change in slope while tangential curvature��� estimated in direction perpendicular to the gradient reflects
the change in aspect angle. In this letter we use the profile
curvature ��� that is computed as follows [15]:

� � � �	����� �� � > �	���	�	���	� � ������� ��� � �� � � �� � � � � �� � � �� � J ��� (6)

The values of slope, aspect, profile and tangential curvatures
can be combined to define basic geometric relief forms and
topographic features [15], [17].

C. Implementation for large data sets

Theoretically, the RST method requires solution of a system
of 6 linear equations, making the method computationally
intractable for large data sets typical for lidar surveys. The

problem can be solved by applying the function locally be-
cause, at a given point (or within a small area), the function
is not sensitive to data at some sufficiently distant location.
A widely used approach, both for splines and kriging, is the
neighborhood approximation, in which a separate function
is computed for each grid point using ��� � 6 points in
its neighborhood, with � usually between 12-24 [10]. This
approach may lead to minor discontinuities in the resulting
surface that are visible in the aspect and curvature maps.

Alternatively, it is possible to apply the approximation func-
tion within a segment of a grid using the points located within
this segment and additional points from its neighborhood. If
the data points have a heterogeneous spatial distribution, the
decomposition into segments with approximately the same
number of points can be done efficiently using quadtrees. The
quadtree ! has all data points stored in its leaf nodes in such a
way that each leaf’s array has no more than " points and the
union of all rectangles defined by leaf nodes of ! is the entire
region. A threshold 3D distance can be defined to identify
points that are practically identical (e.g., due to the scanning
overlaps), such points are removed from the input data set
during the decomposition procedure.

The approximation is then performed for each segment
using not only this segment’s points, but also the points
from its neighborhood. The number of points � used for
approximation is selected so that �$#%�'& U)( , where �*& U)( #%"
to ensure smooth connection of segments, and �+�,�'&.-�� ,
where �/&.-�� is the maximum size of the system of linear equa-
tions that can still be computed efficiently (around 400). The
additional points are obtained using a ”growing overlapping
window” 0 (Fig. 1), initialized as a subregion defined by
the current segment increased by 1 0 and 1 3 on each side.
If 0 doesn’t have enough points, it is increased by 1 0 and1 3 until �32,� & U4( . If, at the same time, �526� &.-�� (too
many points), the 1 0 and 1 3 are split in half until increasing0 gives � & U4( �+�7�+� &.-�� . Thus, the smooth connection
of segments and computational efficiency can be controlled
by adjusting the values of " 1 �/& U4( 1 �*&.-�� . For special cases,
where most of the region has homogeneously distributed points
with only few areas with sparse points (e.g., water or gap
between swaths) �/& U4( can be set to a relatively small value
(less than 100) to ensure computational efficiency, because�*& U4( is automatically increased for larger segments using the
following relation [18]:

�*8& U4( � 9 F �*& U)(J � 9 F (�:*;=<( :/>@? (7)

where 9 � >�A ��B A ��CED � , F 0 is the width of the given segment
and F 0 X is the width of the smallest segment.

To ensure the numerical stability and minimize the impact
of scale on tension parameter, the distances : are normalized
using the average segment size G �IH 
 < �/J , where 
 is the
area of the entire region and �'J � 6 < � & U4( is the approximate
number of segments (with their windows 0 ).

The RST function has been implemented in open source
GRASS GIS [16], [18] in modules s.surf.rst and v.surf.rst. It
is also available for on-line gridding of lidar data [19].
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Fig. 1. Segmentation of lidar data using quadtrees. The midsize segment has
484 grid points to be interpolated using the points within the segment � and
its neighborhood, defined by the ”growing window” � .

III. APPLICATIONS

The RST method was applied to analysis of short-term
coastal topographic change using two sets of lidar surveys
for North Carolina, USA. The first set is based on mapping of
the coast using the Airborne Topographic Mapper II [1], [20]
with terrain sampled from an altitude of 700 m at 1 point per
1-3 m density using an elliptic scanning pattern. The vertical
and horizontal accuracy is 0.15 m (bare areas) and 0.80 m
respectively. Only the first return points were acquired, repre-
senting the terrain surface with vegetation and buildings. The
second set includes data from Floodplain Mapping Program
survey 2001 [2] acquired by Leica Geosystems aeroscan with
linear scanning pattern and about 1 point per 3 m density
measured from an altitude of 2300 m. Bare ground data were
available with the published vertical accuracy of 0.20 m and
the horizontal accuracy of 2 m.

A. Impact of RST parameters on a lidar-based surface

To assess the suitability of the RST function for generating
DGM/DSM from lidar data an analysis of impact of its
parameters on the resulting surface geometry and accuracy
was performed. The analysis was done for the density of
points given by a minimum 3D distance 1 � J " . The DGMs
and DSMs were interpolated at 1 m resolution so that the
dune features used in the topographic change analysis were
adequately represented.

First, smoothing was set to 0.0 and tension was changed
gradually from 900 to 100. The surface passed exactly through
the data points, the root mean square of deviations (RMSD)
was zero; however, the surface was noisy including the bare
sandy areas (Fig. 2a) and at lower tensions ( � 400), overshoots
were present (Fig. 2a insert). Maps of gradients and curvatures
derived from these surfaces were noisy and reflected the lidar
scanning pattern rather than topography. Introduction of a
small value of smoothing ( V � D5F J ) substantially improved
the resulting surface while preserving the sharp features, such
as dune crests (Fig. 2b). The solution was without overshoots

a     

 b
0                                               300m

NN

Fig. 2. Impact of tension � and smoothing � on the 1999 DSM: (a) ������	��
 ��� ��
 � ; insert shows overshoots for ����� �	��
 ��� ��
 � ; (b) ���
� �	��
 ��� ��
 � . The � and � values are given for the RST implementation as� 
 ������� 
 �	��� module run with the � � flag [16].

for a wide range of tension values (Figs. 3f, 4a), the noise was
reduced, and topographic features emerged that are meaningful
for applications.

The level of detail represented by the DSM was then set
by tuning the tension and smoothing parameters [21]. For
example, the surface computed with 8���� D?D and V � D
F J
was still noisy but it captured what appear to be mailboxes on
the edge of the road (Fig. 3a,e). For applications that require
smooth dune surface with clearly defined dune crests, a surface
computed with 8'� > D D and V � J F D was more useful, as it
allowed us to use curvatures for extraction of crests while the
small features were smoothed out (Figs. 3b, 5). Bare ground
data from the 2001 survey had most of the small features
already removed along with vegetation, as illustrated by the
detail of the 1m resolution DGM approximated by RST (Fig.
3c) and 6m resolution DGM product derived by the standard
methods that smoothed out most of the road (Fig. 3d).

For a constant value of smoothing parameter and chang-
ing tension, smoothing effect increases automatically as the
tension decreases, minimizing the possibility for unacceptable
overshoots. This effect is illustrated by the relation between the
changing tension parameter and surface deviations for a con-
stant smoothing parameter V �ZD
F J (Fig. 4a). The deviations in
open areas were low both for DSM and DGM, but they rapidly
increased for DSM computed with low values of tension in
the vegetated areas due to high values of curvatures. Higher
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Fig. 3. Elevation surface along the road: (a) 1999 DSM with � � ���	��
 � ���
 � ; (b) 1999 DSM with � � � �	��
 ����� 
 � ; (c) 2001 DGM � ��� �	��
 �����
 � , (d) 2001 DGM at lower (6m) resolution; (e) aerial photo with highlighted
driveways; (f) relation between the tension parameter and mean absolute error
(MAE) and deviation (MAD) for the road area.

DSM deviations in vegetated areas may be appropriate because
the surface is not very well defined and measurement errors
are higher. Maps of spatial distribution of deviations (Fig. 4b)
illustrate that the bare dune surface and the road had deviations
lower than the published data accuracy for both DSM and
DGM for almost all tested values of tension. Analysis of
relationship between the tension/smoothing parameters and
DSM accuracy using on-ground RTK-GPS measurements (per-
formed in 2004 with 0.10 m published vertical accuracy) on a
paved road showed the highest error for low tension parameter
(Fig. 3f). Error decreased when tension was increased until it
reached minimum for 8 � > D D
1 V � D
F J (Fig. 3f). Further
increase in tension leads to slow increase in error; however,
the error remains very low (less than 0.08 m) for a wide
range of parameters, confirming the high accuracy of both the
lidar measurements and the RST approximation method when
applied to the paved road. The surface deviations decrease
steadily with increasing tension, with the values below the
error for most of the tested tension values. The 2001 data
have higher error (RMSE=MAE=0.26 m), with substantially
higher mean bias error (MBE) when compared to the 1999
data (MBE=0.26m compared to MBE=0.05m).
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Fig. 4. Deviations between the DSM and given data: (a) relation between
MAD and tension in open areas (sand, pavement), areas with vegetation, and
for the entire DSM; (b) slope pattern for lower tension, (c) noisy slope pattern
for high tension, (d) spatial distribution of deviations; point symbols are the
data measured by RTK-GPS used for evaluation of accuracy in graph Fig. 3f.

B. Extraction of topographic features

In the study of a dune field, located within the Jockey’s
Ridge state park in North Carolina, USA, the high resolution
DSM, DGM and topographic parameters were used to extract
features that are indicators of dune migration [17], [21].
The optimal parameters for extraction of dune crests were8E� > D D
1 V � D5F J . At this level of detail, the crests can be
defined as grid cells with profile curvature � � # D5F D D�� " D �
and elevation � #���" . Map algebra was used to combine the
dune crests extracted from the 1999 DSM and 2001 DGM
(Fig. 5) and identify the migrating and stable sections of the
dune crests. The resulting map was then used to measure
the horizontal migration rates that reached 15m/year in some
locations [17]. The slip faces were extracted as areas with
slope � # > G�� and � #���" , and new slip faces were identified
in 2001 DGM compared to 1999 surface.

The second study used the 1998-2000 lidar data to quantify
beach erosion on the Bald Head Island located near the mouth
of the Cape Fear river, North Carolina. Profile curvature,
derived along with approximation of 2m resolution DSMs,
was used as an indicator of beach morphological change. The
curvature map for 1998 beach includes a subtle pattern of
parallel convex and concave strips, indicating the presence of
berms, typical for stable beach (Fig. 6a). The beach morphol-
ogy significantly changed in year 2000, with higher values
of slopes and curvatures and a single concave strip, typical
for a beach scarp that developed due to rapid beach erosion
(Fig. 6b). The change in morphology was accompanied by
shoreline and volume change with significant loss of sand that
puts several homes into the high risk zone.
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Fig. 5. Horizontal dune migration between 1999 and 2001 represented by
dune crests extracted from 1m resolution DSM/DGM using profile curvature.

IV. CONCLUSION

The evaluation of the RST method has demonstrated its
flexibility and accuracy for approximation and analysis of high
resolution, lidar-based DSM/DGM. For a given grid cell size,
the level of detail represented by DGM/DSM can be selected
by tuning the tension parameter. Introduction of a small value
of smoothing improves stability and accuracy of the method
for a wide range of tension values. Availability of the method
within the open source GIS [18], provides full access to the
source code and opportunities for further improvements of its
capabilities.
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