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Abstract

The Minimum Message Length (MML) technique is applied to the problem of
estimating the parameters of a multivariate Gaussian model in which the correlation
structure is modelled by a single common factor. Implicit estimator equations are derived
and compared with those obtained from a Maximum Likelihood (ML) analysis. Unlike
ML, the MML estimators remain consistent when used to estimate both the factor
loadings and factor scores.Tests on simulated data show the MML estimates to be on
av erage more accurate than the ML estimates when the former exist. If the data show
little evidence for a factor, the MML estimate collapses. It is shown that the condition for
the existence of an MML estimate is essentially that the log likelihood ratio in favour of
the factor model exceed the value expected under the null (no-factor) hypotheses.

Ke ywords:CONSISTENCY; ESTIMATION; FACTOR ANALYSIS; MINIMUM
MESSAGE LENGTH; MULTIVARIATE ANALYSIS; NUISANCE

1. INTRODUCTION
This work has three aims. The first, but perhaps least important, is to develop

estimators for factor models of multivariate Gaussian distributions which have some
advantages over the Maximum Likelihood (ML) estimators. The second is to develop the
Message Length formula for such models, which can then be used to choose between a
factor model and other models of different structure (e.g. mixtures of uncorrelated
distributions) which might be proposed for the same data. This paper takes only a first
step towards these two goals, as it deals only with a single common factor. The third aim
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is to exhibit the application of the Minimum Message Length (MML) technique to a
slightly irregular problem, and to show how it overcomes a difficulty experienced by ML
estimation. Specifically, MML can estimate the factor loadings and factor scores
simultaneously, whereas ML is unable to do so consistently.

2. PROBLEM AND APPROACH
The data are N independent observations from a K-dimensional distribution,

{
˜
x

n
, n = 1, 2,. . . , N},

˜
x

n
= {xnk, k = 1, . . . ,K}. The model assumed is

xnk = µk + vn ak + σ k r nk

where the variates{vn, {r nk, k = 1, . . . ,K}, n = 1, . . . ,N} are all i.i.d. random variates
from N(0, 1).

We wish to estimate the unknown parameters
˜
v = {vn, n = 1, . . .N} (the ’factor

scores’),
˜
u = { µk, k = 1, . . . ,K} (the means),σ̃ = {σ k, k = 1, . . .K} (the ’specific

variances’σ 2
k ) and

˜
a = {ak, k = 1, . . . ,K} (the ’factor loadings’). This is a single-factor

version of the well-known factor analysis model (Harman, 1967).
Define, for alln andk,

wnk = xnk − µk,
ynk = wnk/σ k,

˜
y

n

= {ynk, k = 1, . . . ,K}

β k = ak/σ k,
˜
β = {β k, k = 1, . . .K}

b2 =
˜
β

2
=

k
Σ β 2

k

v2 =
˜
v2 =

n
Σ v2

n, Y =
n
Σ

˜
y

n ˜
yT

n

, NC2 = largest eignvalue ofY

MML is a Bayesian method which chooses estimates to minimize the length of
a certain encoded form of the data rather than to minimize the expectation of some loss
function involving the true and estimated values. For details and motivation, see Wallace
& Freeman (1987). The coded message is designed to be decodeable by a receiver
having knowledge of the structure of the data (e.g.,N andK), the form but not the
parameters of the model distribution, and the prior density over the unknown parameters.
The message has two parts. Thefirst states estimates of the unknown parameters using a
code optimal for the prior distribution, in the sense of least expected message length. The
second states the data using a code which would be optimal were the estimates correct.

For a sufficiently regular problem with dataz, parameterθ , prior densityh(θ )
and conditional data distributionf (z|θ ) we hav eshown that the lengthL of the message

using estimate
ˆ

θ is approximately

L = − log (h(
ˆ

θ ) / √ qP
P I (

ˆ
θ )) − log f (z|

ˆ
θ ) + P/2

whereP is the number of scalar components ofθ , in our caseN + 3K , qP is a constant

describing the efficiency of a quantizing lattice inP dimensions, andI (
ˆ

θ ) is the Fisher
information, i.e., the determinant of the expected second differentials of minus the log
likelihood with respect to the components ofθ .
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The first term represents the length of the first part of the message, which states
ˆ

θ to within a precision, or rounding-off quantum, of 1/ √ qP
P I (

ˆ
θ ).

The second term gives the length of a message statingz using a code optimal ifθ =
ˆ

θ .
The third term,P/2, gives the expected increase in the latter length due to the truncation

or rounding of
ˆ

θ to finite precision.

3. AMENDMENT OF MML FORMULA
The above approximation forL must be amended to cope with a peculiarity of

the factor model.For the simultaneous estimation of
˜
u,

˜
a, σ̃ and

˜
v, minus the log

likelihood is
1

2
KN log (2π ) + N

k
Σ log σ k + 1

2 n
Σ

k
Σ(xnk − µk − vn ak)

2/σ 2
k

The determinant of the matrix of expected second differentials of this expression with
respect to

˜
u,

˜
a, σ̃ and

˜
v is zero. The problem arises because the length of

˜
a is

confounded with the length of
˜
v: the two vectors appear in the log likelihood only via

their Cartesian product. It does not imply that the notion of message length is
inapplicable to the model, or that the model is indeterminate. Rather, it shows that the
approximation used in deriving the expression forL is inadequate in this case.

The optimum precision for stating an estimate
ˆ

θ in order to minimize the total

message length arises as a compromise. If
ˆ

θ is stated very precisely, the first part of the

message, which states
ˆ

θ , becomes long. However, if
ˆ

θ is stated imprecisely, i.e. if the
stated value is severely rounded, the stated value will not lead to a good code for

encoding the data and the second part of the message will become longer.I (
ˆ

θ ) indicates
how sensitive the length of the second part is to rounding of the estimate, but, in the
derivation of the general expression forL given above, the sensitivity of the prior density

term logh(
ˆ

θ ) to rounding was neglected. Inmost estimation problems, this neglect is of

no consequence, as the log likelihood is a much more rapidly-varying function of
ˆ

θ than

is log h(
ˆ

θ ). In the present problem, however, we hav eN parameters, the components of

˜
v, each of which has anN(0, 1)prior and onlyK data values relevant to its estimation.

The variation of the log prior with respect to eachvn is not negligible compared to the
variation of the log likelihood.

We therefore amend the expression forL to

L = − log (h(
˜
u,

˜
a, σ̃ ) / √ qP

P I1(
ˆ

θ )) − log h(
˜
v) − log f (z|

ˆ
θ ) + P/2 (3.1)

where nowI1(
ˆ

θ ) is the determinant of expected second differentials with respect to the
parameters of
− log (h(

˜
v) f (z|

˜
v,

˜
u,

˜
a, σ̃ )) = T say

I1 reflects the sensitivity to rounding of parameter values of the length of the
parts of the message stating

˜
v and the data, whereasI showed the sensitivity only of the



part stating the data.
The possibility of an amendment of this kind was noted by O’Hagan (1987).

4. THE MML ESTIMATOR
Omitting constant terms

T = N
k
Σ log σ k + 1

2 n
Σ v2

n + 1

2 n
Σ

k
Σ(xnk − µk − vnak)

2/σ 2
k (4.1)

The determinantI1(
ˆ

θ ) is giv en by
I1 = (2N)K (Nv2 − S2)K (1 + b2)N−2 /

k
Πσ 6

k (4.2)

whereS =
n
Σ vn

For the prior densityh(
˜
u,

˜
a, σ̃ ), assumed independent of theN(0, 1)priors for

˜
v, we assume that

˜
u,

˜
β andσ̃ are independent. Each component of

˜
u is assumed to have

a uniform density in some finite range.For the components ofσ̃ we assumeσ k has a

density proportional to 1/σ k over some finite range.For
˜
β , we assume all directions

equally likely, and a prior density proportional to

(1 + b2)
−

K+1

2

The range of
˜
β can be restricted to half ofK-space, since

˜
a and−

˜
a give equivalent

models.
This prior density is mathematically convenient and not unreasonable. It is

proper, and expresses an expectation that for each dimensionk, ak will be of the same
order asσ k, but could be considerably larger. For b2 < 1, it is slowly varying. For
b2 >> 1, it leads to a density forb = |

˜
β | proportional to 1/b2. The resulting prior density

of
˜
a, giv en σ̃ , is proportional to

(1 + b2)
−

K+1

2

k
Π(1/σ k)

With this choice of prior, and omitting constant terms,

L = (N − 1)
k
Σ log σ k + K

2
log (Nv2 − S2) + 1

2
(N + K − 1) log (1+ b2) + 1

2
v2 + 1

2 n
Σ

k
Σ(xnk − µk − vnak)

2/σ 2
k .

Here and subsequently, symbols
˜
u,

˜
a, etc. referto estimates, not true values.

For the MML estimates, which minimize L, we obtain (Wallace & Freeman
1990)
S = 0
uk =

n
Σxnk / N (4.3)

vn =
˜
y

n

.
˜
β / (1+ b2 + K / v2) (4.4)

β k =
n
Σynkvn / (N − 1) (4.5)

˜
β = Y

˜
β / [(N − 1)(1+ b2 + K /v2)] (4.6)

v2 = (b2(N − 1) − K) / (1 + b2) (4.7)
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NC2 = (N − 1)(1+ b2) / [1 − K / ((N − 1)b2)] (4.8)
(N − 1)σ 2

k =
n
Σw2

nk / [(N − 1)(1+ β 2
k)] (4.9)

(N − 1)σ 2
k =

n
Σ(wnk − vnak)

2 + a2
k(N − 1 − v2) (4.10)

In (4.10), the first term is the variance in dimensionk which would be left
’unexplained’ were the estimates used to encode the data exactly the MML estimates.
The second term gives the increase in unexplained variance resulting from the use of
rounded values. Alternatively, one may regard the second term as giving the increase due
to the fact that the true parameter values are not exactly the MML estimates. Thus, the
expression attempts to set (N − 1) times the estimate ofσ 2

k equal to the residual variance
which would remain if the true values of

˜
v and

˜
a were known.

5. A COMPUTATION SCHEME
The mean

˜
u is obtained directly as

n
Σ

˜
x

n
/N.

Explicit formulae for other parameters have not been obtained, but an iterative numerical
solution of equations 4.6, 4.8 and 4.9 is straightforward. We begin by calculating the
covariance matrixV with elements

Vkj =
n
Σwnkwnj

and hence obtain the correlation matrix. An initial guess for
˜
β is taken as the dominant

eigenvector of the correlation matrix with length given by settingb2 equal to the
dominant eigenvalue. Thefollowing steps are then executed repeatedly.

a. If (N − 1)b2 ≤ K , set
˜
β =

˜
o

b. Computeσ 2
k =

n
Σw2

nk/[(N − 1)(1+ β 2
k)] (all k) If

˜
β =

˜
o, exit.

c. ComputeY usingYkj = Vkj/(σ kσ j )

d. Computean updated estimate of
˜
β as

˜
β (new) =Y

˜
β [1 − K /((N − 1)b2)] / [(N − 1)(1+ b2)]

e. If
˜
β (new) sufficiently close to

˜
β , exit.

Otherwise, set
˜
β =

˜
β (new) and return to step (a).

This iteration requires only the covariance or correlation matrix rather than the
full data matrixxnk.
After exit from the iteration,

˜
a may be found usingak = σ k β k, and

˜
v using

vn =
˜
y

n

.
˜
β [1 − K / ((N − 1)b2)] / (1 + b2)

Exit with
˜
β =

˜
o via test (a) indicates that the correlation in the data is too small

to warrant a non-zero factor estimate.A non-zero solution must satisfy 4.8, which gives a
quadratic equation forb2 in terms of the largest eigenvalue NC2 of Y:
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[(N − 1)b2]2 − (NC2 − N + 1)[(N − 1)b2] + KNC2 = 0. (5.1)
The larger root minimizesL. Howev er, real roots exist only if
N(C2 − 1) ≥ 2√ KNC2 − 1 (5.2)

If the data do not permit a solution with a value ofNC2 large enough to satisfy
this condition, the iteration will progessively reduce the length of

˜
β until test (a) causes

exit. In this case,L is minimized by the estimate
˜
β = 0.

6. MAXIMUM LIKELIHOOD ESTIMATION
Maximum Likelihood (ML) estimates can be obtained for all the parameters.

As the lengths of
˜
v and

˜
a are confounded in the likelihood function, some constraint is

needed to remove the indeterminacy. We choose to require
˜
v2 = N.

Alternatively, estimates for
˜
u,

˜
a andσ̃ only may be obtained by integrating out

the
˜
v parameters. Thatis, instead of choosing

˜
v,

˜
u,

˜
a andσ̃ to maximize

f (z|
˜
v,

˜
u,

˜
a, σ̃ ), we may choose

˜
u,

˜
a andσ̃ to maximize

f * ( z|
˜
u,

˜
a, σ̃ ) = ∫ d

˜
v h(

˜
v) f (z|

˜
v,

˜
u,

˜
a, σ̃ ) where

h(
˜
v) =

n
Π 


(1/√ 2π )exp(−v2

n/2)

. We denote the resulting estimates asML *.

For comparison, similar equations defining the three sets of estimates MML,
ML and ML* are set out below. In each case,Y is the covariance matrix scaled by the
σ -estimates of that case, andNC2 is its dominant eigenvalue.
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The MML estimator is known to be infeasible (Mardia et al (1979), p.280),
giving large, inconsistent estimates of

˜
β .

Parameter MML ML ML *

vn: ( 1 − 1/N )
˜
n

y .
˜
β / C2

˜
n

y .
˜
β / C2 not estimated

˜
u:

n
Σ

˜
n

x / N
n
Σ

˜
n

x / N
n
Σ

˜
n

x / N

˜
β :

1 − K / (( N − 1 )b2 )

( N − 1 )( 1 + b2 )
Y

˜
β

1

Nb2
Y

˜
β

1

N( 1 + b2 )
Y

˜
β

σ 2
k : n

Σ w2
nk

( N − 1 )( 1 + β 2
k )

n
Σ w2

nk

N( 1 + β 2
k )

n
Σ w2

nk

N( 1 + β 2
k )

Table 1. Estimators

The ML* estimator corresponds to that described as the ’Maximum Likelihood’
estimator in standard texts, when specialized to a single factor. The standard estimator
derives from the work of Joreskog (1967).

While this estimator is consistent, the tests described below showed that it
yields badly biassed estimates of weak factors, tending to overestimate the factor
strength, and to bias its direction towards a data axis. Consider a sample drawn from a

population with
˜
a =

˜
o,σ k = 1 (all k). Thelikelihood of the estimateˆ

˜
a =

˜
o, ˆσ k = 1 (all k)

is exactly the same as that of the estimateˆ

˜
a = ( ˆ

a1, 0, 0, 0. . . ), σ̂
2

1 = 1 − â
2

1,
ˆσ k = 1 (k > 1),

i.e., an estimate having a non-zero factor aligned with an axis. However, if the sample
exhibits any accidental correlation between variatesx1 andxk(k > 1), the likelihood of

the latter estimate can be increased by slightly realigningˆ

˜
a to fit this correlation. Hence,

if there is no true factor, we expect the ML* likelihood to show local maxima for factor
estimates of length order one, and direction nearly parallel to an axis. This expectation
was confirmed by tests reported in section 8. These local maxima will remain in the
presence of a weak true factor, and have the effect of shifting the maximum of the
likelihood function towards the nearest of the local maxima.

7. TESTS AND RESULTS
The correctness of our implementation of ML* was checked using published

data and results, e.g. Mardia et al. example 9.4.1.
Comparative trials of the MML and ML* estimators were made using

simulated data. Since the model and estimators are scale and location invariant, data sets
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were generated from populations withσ k = 1(all k) and
˜
u =

˜
o. In all cases,

N = 100,K = 5. To generate one data set, 100 artificial observations were made using a
pseudo-random source ofN(0, 1)variates. Thefive scalar values of an observation were
formed from 6 normal variatesr o

. . .r5 asxk = akr o + r k

(k = 1. . . 5),where the true factor vector
˜
a was the same for all 100 observations.

For three trials,
˜
a was held constant for all data sets in the trial, and parallel to

(2,3,4,5,6). Thelengths of
˜
a in the three trials were 1.5, 1.25 and 1.0, and each trial used

1000 data sets. These cases represent strong, weak and barely-detectable factors. For
each trial, statistics were collected for both estimators on the estimates of

˜
a,

˜
β ,

k
Σ log σ k,

and on two measures of the error in the estimateˆ

˜
a. The first measure was (ˆ

˜
a −

˜
a)2, the

second was the squared sine of the angle betweenˆ

˜
a and

˜
a. Since the sign of

˜
a is

immaterial, ˆ

˜
a was rev ersed if

˜
a. ˆ

˜
a < 0. For data sets when the MML estimate of

˜
a was

zero, due to collapse of the iteration, the squared sine of the error angle was arbitrarily set
to 0.8, the expected value for a randomly guessed direction, a choice which certainly did
not favour the MML estimator. The results are summarized in table 1, which gives mean
statistics and their standard errors.

Statistics were also collected on the differences for each data set between the
MML and ML* estimates and errors. These results are also in table 1.

Sin2 error Sin2 error
angle angle

in ˆ
a in ˆ

v

ˆ
a

2 ˆ
β

2

k
Σ log σ k ( ˆ

a − a)2

ML* 2.34 2.82 -0.113 0.106 0.036 0.343
|a| = 1. 5 ±0.01 ±0.06 ±0.006 ±0.002 ±0.001 ±0.002

MML 2.23 2.32 -0.005 0.094 0.031 0.336
±0.01 ±0.02 ±0.006 ±0.002 ±0.001 ±0.002

ML*-MML 0.104 0.51 -0.109 0.011 0.0052 0.008
±0.002 ±0.06 ±0.003 ±0.001 ±0.0005 ±0.001

ML* 1.69 2.57 -0.148 0.125 0.063 0.435
|a| = 1. 25 ±0.01 ±0.09 ±0.008 ±0.003 ±0.002 ±0.002

MML 1.54 1.61 0.000 0.104 0.051 0.421
±0.01 ±0.02 ±0.006 ±0.003 ±0.002 ±0.002

ML*-MML 0.149 1.0 -0.149 0.021 0.012 0.014
±0.003 ±0.1 ±0.005 ±0.003 ±0.002 ±0.001
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ML* 1.20 2.6 -0.21 0.188 0.128 0.575
|a| = 1. 0 ±0.01 ±0.1 ±0.01 ±0.005 ±0.004 ±0.003

MML 0.92 0.95 0.044 0.20 0.160 0.582
±0.01 ±0.02 ±0.006 ±0.01 ±0.007 ±0.005

ML*-MML 0.282 1.7 -0.26 -0.01 -0.020 -0.007
±0.008 ±0.1 ±0.01 ±0.01 ±0.005 ±0.003

ML* 1.23 2.4 -0.20 0.165 0.120 0.561
|a| = 1. 0 ±0.01 ±0.1 ±0.01 ±0.005 ±0.003 ±0.003

MML 1.02 1.06 0.009 0.110 0.088 0.536

( ˆ
a ≠ 0) ±0.01 ±0.01 ±0.006 ±0.003 ±0.002 ±0.003

ML*-MML 0.215 1.3 -0.208 0.055 0.031 0.025
±0.005 ±0.1 ±0.008 ±0.003 ±0.002 ±0.001

Table 2. Av erage estimates and errors on simulated data.
N=100,

˜
a parallel to (2, 3, 4, 5, 6)

As the true value ofσ k is one for allk and all data sets, the true
˜
β equals the

true
˜
a and the true value of

k
Σ log σ k is zero. The tabled results show that the ML*

estimator tends to underestimate theσ k, as shown by negative values of
k
Σ log ˆσ k. It also

tends to overestimate the length of
˜
a. These two effects combine to give an

overestimation of the length of
˜
β which becomes very marked as the true value ofb2 is

reduced. Infact, the ML* estimate ofb2 was on average the same whenb2 = 1. 0as

whenb2 = 1. 5625.Examination of the results for single data sets with small true factors

showed that the ML* estimator has a tendency to align the estimate of
˜
a nearly parallel to

a data axis, and grossly to underestimate the correspondingσ k. No such tendency was

observed in the MML estimator, and the results do show it to hav ea little or no bias

towards underestimatingσ̃ or overestimating
˜
β .

For the smallest true factor, the average estimation errors of the two estimators

as measured by the average values of (ˆa − a)2 and the squared sine of the error angle are

comparable. The1000 data sets in this trial include 101 sets where the MML estimate of

˜
a was zero. For these cases, the MML squared sine error angle was taken as 0.8, and the

av erage results of the third row of table 1 include these cases. The fourth row shows the

effect of omitting these cases. The ML* mean squared sine error angle reduces from



0.128 to 0.120, but the MML mean reduces from 0.160 to 0.088, so over the cases where

the MML estimator gives a non-zero factor, its mean squared sine error angle is 0.031

less than the ML* mean error. Indeed, as may be seen from Figs. 1 & 2, the MML

estimate is almost always the more accurate by both measures.

For larger true factor vectors, the MML estimator gives a zero estimate less

frequently: 3 cases out of 1000 with |
˜
a| = 1. 25,and never in 1000 cases with |

˜
a| = 1. 5. It

retains a significant advantage in accuracy over ML* in estimating
˜
a.

The last column of table 1 attempts to compare the estimates of factor scores.

The ML* estimator does not directly yield an estimate of the factor scores. Mardia et al.

give two estimators for factor scores which may be used after ML* estimates of
˜
u, σ̃ and

˜
a have been obtained, viz.

>0.500| ... . ..... .... .. . ... . -
| . . .  .. .
| . .  . . .  .
| .. .  . .
| . . .  .

0.400| . . .  . . .
| .  . .. . .
| . . .  . ... .
| . .. . .. . .
| . . .  ... .. .. . .. ..

0.300| .. . . .  . .... .... ...
| .. . . . .  . .  ...

ML* | . .. .  ...... ..- .
Error | . . .......- .

| . . ........--,...
0.200| .. . .....-:....

| . .......--.--....
| .- -..-i:i-. .
| ......:.-;i, ....
| ...-,:aOi. . .

0.100| .-.;aO;--... .
| ..-oOI,....
| -BBo-.-. ..
| -:;,:.... .
|.i:--. . .

0.000| -.
|----+----|----+----|----+----|----+----|----+----|
0.000 0.100 0.200 0.300 0.400 >0.500

MML Error

Comparison of squared errors in Factor Load Estimates.

|a| = 1.0, a parallel to (2,3,4,5,6)
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899 cases with non-zero MML estimates.

FIG 1

>0.500| . . .  . . .
| .
| .
| . .
| . . .  . .

0.400| . . . .
| . . .
| . . . .. .
| . . .  .
| . . .... . ..

0.300| .. . .  . . ..
| .. .. ... .

ML* | .. .. .. .. .....
Error | .. . . .. ...... .

| ... . .. .. .......
0.200| . .. -........

| . . ..... .........
| . . ...,.,..
| . .......--.-.
| .......-,i-..

0.100| ....-.::o,.
| ...,,IO-..
| .-oBO-
| .,BO,.
|.oI:

0.000|-i
|----+----|----+----|----+----|----+----|----+----|
0.000 0.100 0.200 0.300 0.400 >0.500

MML Error

Comparison of squared-sine direction errors in Load estimates.

|a| = 1.0, a parallel to (2,3,4,5,6)

899 cases with non-zero MML estimates.

FIG 2

vn =
˜
y

n

.
˜
β / b2 andvn =

˜
y

n

.
˜
β / (1 + b2)

The former maximizes the likelihood for given
ˆ

˜
µ, ˆσ̃ and

ˆ

˜
a, the latter is a sort of Bayes estimate

incorporating the N(0,1) prior forvn. Tests on the trial results showed the latter to be far more

accurate as measured by the average value of(
˜
v − ˆ

˜
v)2. In practice, the relative values or rank

ordering of the factor scores are more likely to be of interest than their absolute values. Table 1,

therefore, gives the squared sine of the angle between
ˆ

˜
v and

˜
v, i.e., one minus the squared product

moment correlation between the estimated and true scores. This measure does not distinguish
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between the two possible ML* estimators, since both give the same direction for
ˆ
v. As was done

for the error in the direction of
ˆ

˜
a, the squared sine error angle for

ˆ

˜
v was set to 0.99, the expected

vaue for a random guess, in those cases where the MML method gav ea zero factor estimate.
Table 1 shows that for|

˜
a| = 1. 25and1. 5, the MML factor scores correlate more highly with the

true values than do the ML* scores.For |
˜
a| = 1. 0, the ML* error is smaller if all cases are

included, but substantially worse in those cases where the MML method found a factor.
Further trials, again each of 1000 cases, were done in which the direction of

˜
a was

chosen at random for each case. The MML method failed to find a factor in 15, 44 and 219 cases
in the trials with|

˜
a| = 1. 5, 1. 25and1. 0. Table 2 summarizes the results for the cases where the

MML method found a factor. Again, the MML estimates are on average more accurate by all

measures. TheML* average estimates of
˜
β

2
are noteworthy, being over twice the true values in

all trials.

Sin2 error Sin2 error
angle angle

in ˆ
a in ˆ

v

ˆ
a

2 ˆ
β

2

k
Σ log σ k ( ˆ

a − a)2

ML* 2.40 5.4 -0.22 0.130 0.043 0.354
|a| = 1. 5 ±0.02 ±0.2 ±0.01 ±0.003 ±0.001 ±0.003

MML 2.10 2.05 0.057 0.118 0.037 0.343
985 cases ±0.02 ±0.02 ±0.007 ±0.003 ±0.001 ±0.002

ML*-MML 0.004 3.4 -0.28 0.011 0.006 0.011
±0.003 ±0.2 ±0.01 ±0.003 ±0.001 ±0.001

ML* 1.73 4.8 -0.28 0.162 0.081 0.457
|a| = 1. 25 ±0.01 ±0.2 ±0.01 ±0.005 ±0.003 ±0.003

MML 1.43 1.42 0.036 0.125 0.064 0.435
966 cases ±0.01 ±0.02 ±0.006 ±0.003 ±0.002 ±0.003

ML*-MML 0.30 3.4 -0.31 0.037 0.017 0.022
±0.01 ±0.2 ±0.01 ±0.003 ±0.002 ±0.002

ML* 1.33 4.5 -0.35 0.198 0.129 0.564
|a| = 1. 0 ±0.01 ±0.2 ±0.02 ±0.006 ±0.004 ±0.004

MML 1.00 1.02 0.013 0.120 0.098 0.534
781 cases ±0.01 ±0.01 ±0.007 ±0.003 ±0.003 ±0.003

ML*-MML 0.33 3.5 -0.36 0.077 0.031 0.030
±0.01 ±0.2 ±0.01 ±0.004 ±0.003 ±0.002

Table 3. Av erage estimates and errors on simulated data.

N=100,
˜
a direction random. Cases with ˆ

˜
a(MML) =

˜
o omitted.
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8. SIGNIFICANCE

A single-factor model and estimates for a data set would in practice not be

adopted unless the data gav egrounds for preferring them to a simpler model which

assumed no correlation among theK data dimensions. The log likelihood ratio between

the single-factor modelH1 with estimate
˜
β and the uncorrelated (no-factor) modelH0 for

the same data isλ where

2λ = N(
k
Σ log (1+ β 2

k) − log(1+ b2))

UnderH0, 2λ has, for largeN, a chi-squared distribution withK degrees of freedom.

There would be no reason to prefer the more complexH1 unless 2λ at least exceededK .

The condition

k
Σ log (1+ β 2

k) − log (1+ b2) > K /N

depends on the direction as well as the length of
˜
β . Howev er, the direction dependence is

usually weak.For largeN and smallb2 the condition can be written to orderb4 as

b4(1 −
k
Σ (β 2

k / b2)2) > 2K /N.

Unlessβ 2
k / b2 is close to zero for all but one or two dimensions, theΣ term is much less

than 1 and the condition is approximatelyb2 > √ 2K /N

The MML estimator gives a non-zero ˆ

˜
a only if

N(C2 − 1) ≥ 2√ KNC2 − 1

The exact form of this condition depends on the prior density function for
˜
β ,

but for largeN >> K and any smooth prior it is approximately

C2 − 1 ≥ 2√ K /N

WhenC2 is just large enough to satisfy this condition, the quadratic equation

5.1 forb2 gives approximately

b2 = (C2 − 1)/2

Hence the condition for a non-zero MML estimate can be written

b2 > √ K /N approximately(8.1)

so it is of the same order as the likelihood ratio test for a significant factor.

Of the 1000 cases tried with |
˜
a| = 1, random direction, 219 cases gav ea zero

MML estimate. Of these, all but 9 gav eML* estimates with 2λ less than 13.0, and all the

781 cases having a non-zero MML estimate gav eML* estimates with 2λ greater than

11.8.
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A set of 2000 artificial cases with no true factor, K=5, N=100 was analysed.

The distribution of ML* 2λ values did not conform closely to a chi-squared distribution

with 5 degrees of freedom. The mean was 6.97± 0.08 and 8.5% exceeded 12.0. The

av erage ML* estimate of
˜
a2 was 0.773± 0.006 and of

˜
β

2
, 5.9 ± 0.1. 110of the 2000

cases gav enon-zero MML estimates.For these cases, the average MML estimate of
˜
a2

was 0.49± 0.01, and of
˜
β

2
, 0.58± 0.01. TheMML method is clearly less prone to the

discovery of non-existent factors. All110 cases had ML* estimates with 2λ > 11. 8.

A Bayesian choice between single-factor and uncorrelated models is discussed

in the next section.

9. MESSAGE LENGTHS

The derivation in section 4 of the MML estimator omitted various constant

terms from the expression for the message lengthL, as they are irrelevant to the

estimation. They are not irrelevant when the value ofL for the single-factor model is

compared with the message lengths for other models of the same data, so we now obtain

a full expression forL in equation 3.1 assuming use of the MML estimates.

We hav e

− log h(
˜
u,

˜
a, σ̃ ) =

k
Σ log (MkSk) + 2

k
Σ log σ k + log BK +

K + 1

2
log (1+ b2)

whereMk is the prior range ofµk, Sk is the prior range of logσ k, and Bk is the

normalization constant for the prior of
˜
β .

BK =
π K /2

Γ(K /2)

∞

0
∫ db bK−1 / (1 + b2)

K+1

2

BK is easily calculated using the recurrence

BK = 2π BK−2/(K − 1); B1 = π /2, B2 = π .

From 4.2,
1

2
log I1 = K

2
log (2N) + K

2
log (Nv2) + N − 2

2
log (1+ b2) − 3

k
Σ log σ k

From Wallace & Freeman (1987), with error less than 0.4,
P

2
log qp + P/2 = − (P/2) log (2π ) − γ + 1

2
log (Pπ )

whereP = N + 3K , γ is Euler’s constant.

Also, − log h(
˜
v) = (N/2) log (2π ) + v2/2

and − log f (z|
ˆ

θ ) = (NK/2) log (2π ) + N
k
Σ log σ k + 1

2 n
Σ

k
Σ (ynk − vnβ k)

2

From (4.10),
n
Σ

k
Σ (ynk − vnβ k)

2 = K(N − 1) − b2(N − 1) + v2b2

14



Combining from− log f (z|
ˆ

θ ) and − log h(
˜
v) the terms

1

2 n
Σ

k
Σ(ynk − vnβ 2

k) + v2/2 gives

1

2
[K(N − 1) − b2(N − 1) + v2(1 + b2)]

Using (4.7) gives
1

2
[K(N − 1) − b2(N − 1) + b2(N + K − 1) − K − Kb2] = K(N − 2)/2

Combining all terms gives

L =
k
Σ log (MkSk) + log BK + K

2
[log 2 + (N − 3) log (2π ) + N − 2] + K log N

+ 1

2
log (Pπ ) − γ + (N − 1)

k
Σ log σ k + 1

2
(N + K − 1) log (1+ b2) + K

2
log v2

The message length for an uncorrelated modelxnk = µk + σ kr nk using the same

priors for
˜
u andσ̃ is

L0 =
k
Σ log (MkSk) + K log N + K

2
(log 2 + (N − 2) log (2π ) + N − 1) + 1

2
log (2Kπ )

− γ + (N − 1)
k
Σ log σ k

where here the estimatesσ k are those for the uncorrelated model,

σ 2
k =

n
Σ w2

nk/(N − 1)

If the two models, single factor and uncorrelated, are regarded as equally likely

a priori, the MML approach will prefer the model giving the shorter message length. The

differenceL0 − L is analogous to the log posterior odds ratio in favour of the factor

model. Using(4.7),

L0 − L = K

2
log (2π e) − log BK − 1

2
log ((N + 3K)/(2K)) − K

2
log (b2(N − 1) − K)

+ 1

2
(N − 1)

 k
Σ log (1+ β 2

k) − log (1+ b2)


For largeN >> K , the condition thatL0 − L be positive, i.e. that the factor

model be preferred, is of order

b4 > (2K /N) log (Nb2)

Recalling that the log likelihood ratio is given by

λ = 1

2
N

 k
Σ log (1+ β 2

k) − log(1+ b2)


the conditionL0 − L > 0 has the asymptotic behaviorλ >
1

2
K log N which is of

Schwarz type rather than Akaike type. (SeeWallace & Freeman 1987.)

10. ALTERNATIVES

The following alternatives to our analysis are briefly considered at the request

of a referee.
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10.1 Alternative
˜
β Priors

We consider only spherically - symmetric priors where the message length can

be written as

L = − log g(b) + F(b, θ̃ ,
˜
u, σ̃ ,

˜
v, z)

whereb = |
˜
β | and θ̃ describes the direction of

˜
β . Noteg(b) is the prior density of

˜
β , not

of b. By considering the second differentiald2F / db2 where other parameters are

allowed to vary withb to minimizeL, it can be shown that the "bias" in the estimate ofb

introduced by use of the priorg(b) rather than a (locally) constant prior density is, to first

order

Bg = (g′ (b) / g(b)) / (d2F / db2)

The dominant term ind2F / db2 is v2 / (1+ b2). Notethatv2 ≈ N.

For our "Cauchy" prior,Bg ≈ − (K + 1)b / N so the fractional bias is not severe,

and of lower order than the order 1/√ N expected estimation error. By contrast, a prior

with an exponential tail can introduce a large bias.For a multivariate Normal prior with

unit covariance,Bg ≈ − b(1 + b2) / N, so the bias is large for large factors, and was

obvious in numerical experiments. Unlessthe context justifies strong prior expectations

about
˜
β , our prior seems a good choice.

10.2 MMLWithout
˜
v Estimation

Earlier, we hav ecompared MML estimates, which include estimates of
˜
v, with

ML* estimates from a model which does not include
˜
v, but rather asserts only that the

population covariance has the (scaled) form (I +
˜
β

˜
β T). This"*" model is conceptually

distinct from the full factor model, since it hypothesises no hidden variable mechanism

for the covariance structure, so there is no reason to expect that any general estimation

principle will give identical
˜
β estimates when applied to the full and * models.For

instance, ML usually gives acceptable estimates for large factors on the * model but not

on the full.

MML was applied to the * model. The resulting Fisher determinant is

relatively complicated, so L was minimized numerically. The MML* estimates so

obtained were always close, but not identical, to the MML estimates from the full model.

It can be shown that if MML is applied to the full model, but with the message form

constrained so that the first part first states the estimates of
˜
u, θ̃ , σ̃ and

˜
a, and then states

16



the estimate of
˜
v, the resulting

˜
u, σ̃ and

˜
a estimates are identical to the MML* estimates.

The constraint on the message form is not severe: the
˜
u, σ̃ and

˜
a estimates must be coded

to be decodable without knowledge of
˜
v, but since onlyv = |

˜
v| is of importance for the

efficient coding ofσ̃ and
˜
a, and as, for largeN, the decoder can accurately anticipate the

likely value ofv, the constraint involves little loss of coding efficiency. It is thus not

surprising that MML* is close to MML. In particular, the MML* estimate is zero unless

(8.1) is satisfied.For all data tested, the difference in message length under the * model

between the MML* and MML estimates was less than 0.5 bit. Since the difference is

analogous to the log posterior odds ratio, the MML estimates from the full model were

always acceptable under the * model.

For data for which the factor model is appropriate, there seems no reason to

prefer the MML* estimator.

10.3 Posterior Mean

With a quadratic loss function on the chosen parameters, the minimum-loss

estimate is the mean of the posterior distribution. If a completely spherically-symmetric

prior is used for
˜
β (or

˜
a), the sign ambiguity of the factor gives a zero posterior mean

under full or * models. The prior can be restricted to a half-sphere, e.g., by requiring

b1 > 0, thus giving a non-zero posterior mean, but the choice of restriction appears

necessarily arbitrary, and this arbitrary choice will affect the estimate.We therefore did

not pursue this alternative.

10.4 Posterior Mode

For the * model, the posterior mode is close to the ML* estimate, since ourσ̃

and
˜
β priors are slowly varying. For the full model, where the prior now includes the

Normal prior for
˜
v, the posterior mode occurs at the absurd valuev2 = K + 1, and with

˜
β

almost aligned with an axis. The behaviour is similar to ML. These results were verified

in numerical experiments.

11. CONCLUSION

An MML estimator has been developed for a single-factor model of

multivariate Gaussian data, and an expression obtained for its message length. The
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estimator gives simultaneous estimates of the factor loadings and factor scores. A

maximum-likelihood estimator for factor loadings and factor scores is inconsistent. The

standard ’maximum likelihood’ estimator for factor models, which we have termed ML*,

does not estimate factor scores. Of course, having obtained ML* estimates of
˜
u,

˜
a andσ̃ ,

one can then estimate the factor scores{vn} by choosing values which maximize the

likelihood holding
˜
u,

˜
a andσ̃ fixed at their ML* estimates, but there seems little logical

justification for this process. The ML* estimates of
˜
a andσ̃ do not maximize the

likelihood holding{vn} fixed at these values.

On simulated data, the MML estimates prove on average more accurate than

ML* whenever a significant factor was evident in the data. When the data gives little

evidence for a common factor, the MML estimate of the factor is zero, whereas the ML*

estimate tends to show a large factor almost parallel to a data axis.

The fact that the MML method gives estimates of factor scores as well as factor

loadings, and that its loading and score estimates are more accurate, is evidence of its

superiority to the maximum likelihood method.
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