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Abstract

The Minimum Message Length (MML) technique is applied to the problem of
estimating the parameters of a mudtiate Gaussian model in which the correlation
structure is modelled by a single common factarplicit estimator equations are dedl
and compared with those obtained from a Maximum Likelihood (ML) analysis. Unlike
ML, the MML estimators remain consistent when used to estimate both the factor
loadings and factor score3ests on simulated data shéhe MML estimates to be on
aveage more accurate than the ML estimates when the foraser & the data show
little evidence for a factpthe MML estimate collapses. It is shown that the condition for
the existence of an MML estimate is essentially that the log likelihood ratwanrfof
the factor model exceed the value expected under the null (no-factor) hypotheses.

Keywords: CONSISTENCY ESTIMATION; FACTOR ANALY SIS; MINIMUM
MESSAGE LENGTH; MULTIVARIATE ANALYSIS; NUISANCE

1. INTRODUCTION

This work has three aims. The first, but perhaps least important, isdlole
estimators for factor models of mutriate Gaussian distributions whichveesome
advantageswer the Maximum Likelihood (ML) estimators. The second is teeltg the
Message Length formula for such models, which can then be used to choose between a
factor model and other models of different structure (e.g. mixtures of uncorrelated
distributions) which might be proposed for the same data. This paper takes only a first
step tavards these tw goals, as it deals only with a single common faciidre third aim
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is to exhibit the application of the Minimum Message Length (MML) technique to a
slightly irregular problem, and to siwdow it overcomes a difficulty experienced by ML
estimation. Specifical))MML can estimate the factor loadings and factor scores
simultaneouslywhereas ML is unable to do so consistently.

2. PROBLEM AND APPROACH
The data are N independent observations from a K-dimensional distribution,
{x,n=1,2,...,N}, X ={Xn, k=1,... K}. The model assumed is
n n

Xnk = Mk Vi @ + 0y 'k
where the variatefg/,,, {rn. k=1,...,K}, n=1,...,N} are all i.i.d. random variates
from N(O, 1).

We wish to estimate the unknown parameters{v,, n=1,...N} (the 'factor

scores’)u ={u, k=1,...,K} (the means)y ={o,,k =1,...K} (the 'specific
variances'oy) anda ={ay, k=1, ...,K} (the 'factor loadings’). This is a single-factor

version of the well-known factor analysis model (Harman, 1967).
Define, for alln andk,

Whk = Xnk ~ Hks

Yok = Wodo, Y ={Yn k=1,...,K}

,BKZak/Uk’ g:{ﬂk,kzl,...K}

2
b®=p" =3 B¢

V=V =32,
n

Y=2y y', NC? = largest eigualue ofY

n n

MML is a Bayesian method which chooses estimates to minimize the length of
a certain encoded form of the data rather than to minimize the expectation of some loss
function involving the true and estimatealues. Br details and motgtion, see Wallace
& Freeman (1987). The coded message is designed to be decodeable byea recei
having knowledge of the structure of the data (&gandK), the form but not the
parameters of the model distribution, and the prior densiytbe unknown parameters.
The message hasdwvparts. Thefirst states estimates of the unknown parameters using a
code optimal for the prior distribution, in the sense of least expected message length. The
second states the data using a code which would be optimal were the estimates correct.

For a afficiently regular problem with data paramete®, prior densityh(8)
and conditional data distributiof(z|6) we haveshown that the length of the message

using estimat® is approximately
L =—-1log (&) / /921 (8)) - log f(z2l6) + P2
whereP is the number of scalar component®pin our caseN + 3K, gy is a constant

describing the efficierycof a quantizing lattice irP dimensions, andl(9) is the Fisher
information, i.e., the determinant of the expected second differentials of minus the log
likelihood with respect to the componentsgof



The first term represents the length of the first part of the message, which states

éto within a precision, or rounding{fafuantum, of 1l \/EEI (é).

The second term ggs the length of a message statingsing a code optimal & = 6.
The third termP/2, gives the expected increase in the latter length due to the truncation

or rounding o to finite precision.

3. AMENDMENT OF MML FORMULA
The abw@e gproximation forL must be amended to cope with a peculiarity of
the factor model For the simultaneous estimationwfa, ¢ andv, minus the log

likelihood is
% KN log (27) + N X log o + % % 3 (Xn = Hi = Vi ay)’lo?
n
The determinant of the matrix of expected second differentials of this expression with
respect tay, a, o andv is zero. The problem arises because the leng#hof
confounded with the length of the two vectors appear in the log likelihood only via

their Cartesian product. It does not imply that the notion of message length is
inapplicable to the model, or that the model is indeterminate. Rétdeows that the
approximation used in deriving the expressionlfas inadequate in this case.

The optimum precision for stating an estim@ia order to minimize the total
message length arises as a compromisé.idfstated very preciselihe first part of the

message, which statésbecomes long. Hower, if 6 is stated imprecisely.e. if the
stated value is serely rounded, the stated value will not lead to a good code for

encoding the data and the second part of the message will become Idayerdicates
how sensitve the length of the second part is to rounding of the estimate, but, in the
derivation of the general expression forgiven ebove, the sensitivity of the prior density

term logh(8) to rounding was rglected. Inrmost estimation problems, this neglect is of
no consequence, as the log likelihood is a much more rapidly-varying functichani

is log h(8). Inthe present problem, howe, we haveN parameters, the components of
v, each of which has aN(0, 1) prior and onlyK data values relant to its estimation.

The variation of the log prior with respect to eaghs not negligible compared to the
variation of the log likelihood.
We therefore amend the expression foto

L =~log (h(u,a, @)/ Va&1:(6)) - log h(v) - log f(zle) + P2 (3.1)

where now l(6A?) is the determinant of expected second differentials with respect to the
parameters of
—log (h(v)f(zlv,u,a,0)) =T say

I, reflects the sensitivity to rounding of parameter values of the length of the
parts of the message statvmgnd the data, whereashowed the sensitivity only of the



part stating the data.
The possibility of an amendment of this kind was noted by O’Hagan (1987).

4. THE MML ESTIMATOR
Omitting constant terms

1 1
T=Nz log o} + 5% V2 + 5 %%Xnk - u —Vaa)ilo?  (4.1)
The determinant, () is given by
L= @N)X(NZ - DK 1+ )N 2 o (4.2)
k
whereS=2 v,
n
For the prior densityh(u, a, g), assumed independent of tN€0, 1) priors for

v, we assume thati, § andg are independent. Each componentia$ assumed to ha

a wniform density in some finite rang&or the components af we assume, has a

density proportional to &j over some finite rangeFor 5, we asume all directions

equally likely and a prior density proportional to
K+1

1+b%) 2
The range of3 can be restricted to half f-space, sinca and-a give ejuivalent

models.

This prior density is mathematically agmient and not unreasonable. It is
proper and expresses an expectation that for each dimeksianwill be of the same
order asoy, but could be considerably largeffor b? < 1, it is dowly varying. For
b? > 1, it leads to a density fdr = | 3| proportional to 1°. The resulting prior density

of a, given g, is proportional to

(1+b% = [1(L/oy)
With this choice of prigrand omitting constanli terms,
L=(N-1)Zlog oy + g log (NV2 — S?) + %(N +K - 1) log (1+ b?) + %vz + % =5 (X = = Vi)l
Here and subsequentlymbolsu, a, etc. referto estimates, not true values.

For the MML estimates, which minimize L, we obtain (Wallace & Freeman

1990)

S=0

Ug = %Xnk/ N (43)

Vo =Y . B/ (1+b7+K/V?) (4.4)

lgk = %ynkvn/(N - 1) (4-5)
B=YBI[(N=-1)(1+b*+KN?)] (4.6)

v2 = (b*(N - 1) - K)/(1+b? (4.7)



NC?=(N-1)(1+b?/[1-K/((N - 1)b%)] (4.8)
(N-1)og = %Wﬁk/[(N - 1)1+ B7)] (4.9)

(N = 1)o7 = Z(wyy ~ Vo )? + 8N - 1-V?) (4.10)

In (4.10), the first term is the variance in dimendtamhich would be left
'unexplained’ were the estimates used to encode the data exactly the MML estimates.
The second term gts the increase in unexplained variance resulting from the use of
rounded ®alues. Alternatiely, one may rgard the second term as giving the increase due
to the fact that the true parameter values are not exactly the MML estimates. Thus, the
expression attempts to séfl ¢ 1) times the estimate of equal to the residual variance
which would remain if the true valueswanda were known.

5. ACOMPUTATION SCHEME
The mearu is obtained directly a& x /N.
n n

Explicit formulae for other parametersvearnt been obtained, but an itekatirumerical
solution of equations 4.6, 4.8 and 4.9 is straightéody We begn by calculating the
covariance matrixV with elements

Vi = %Wnkwnj

and hence obtain the correlation matrix. An initial guesgfertaken as the dominant

eigervector of the correlation matrix with lengthvgh by sttingb? equal to the
dominant eigevalue. Thefollowing steps are therxecuted repeatedly.

a. If(N-1b*<K,setp=0

b. Computes? = XWA /(N -1)(1+32)] (allk) If B8 =0, exit.
- .

C. Computé( USinngj = VkJ/(UkaJ)

d. Computean updated estimate gfas

B (new) =Y B [1 - K/((N = 1)b?)]/[(N - 1)(1+b?)]

e. If g (new) sufficiently close tg, exit.
Otherwise, sef = g (new) and return to step (a).

This iteration requires only the waiance or correlation matrix rather than the
full data matrixx.
After exit from the iterationa may be found using, = o, By, and v using

Vo =Y. B[1L-K/(N-1)b)]/(1+b%
n
Exit with g = o via test (a) indicates that the correlation in the data is too small

to warrant a non-zero factor estima# non-zero solution must satisfy 4.8, whiclves a
quadratic equation fds® in terms of the largest eigeaiue NC? of Y:
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[(N -1)b?%? - (NC?- N +1)[(N-1)b%] + KNC?=0. (5.1)
The larger root minimizek. Howeve, real roots exist only if
N(C%2-1)22VKNC?2-1 (5.2
If the data do not permit a solution with a value\Ng? large enough to satisfy
this condition, the iteration will progessly reduce the length of until test (a) causes

ext. In this casel is minimized by the estimaie = 0.

6. MAXIMUM LIKELIHOOD ESTIMATION
Maximum Likelihood (ML) estimates can be obtained for all the parameters.
As the lengths of anda are confounded in the likelihood function, some constraint is

needed to reme the indeterminac We dhoose to requircj!2 =N.
Alternatively, estimates folu, a andg only may be obtained by integrating out
thev parameters. Thas, instead of choosing u, a andg to maximize

f(zlv,u, a, ), we may choosg, a andg to maximize
f*(zu a0)= j dv h(v) f(zlv,u,a, g)where

h(v) =1 glﬁén)exq—vﬁIZ)g We cenote the resulting estimatesMk *.
n

For comparison, similar equations defining the three sets of estimates MML,
ML and ML* are set out bela. In each caseY is the coariance matrix scaled by the
o-estimates of that case, aN€? is its dominant eigemlue.



The MML estimator is known to be infeasible (Mardia et al (1979), p.280),
giving large, inconsistent estimates/of

*

Paameter MML ML ML
Vp (1-1N)y.B/C? y.BIC? not estimated
n n

u: 2 XIN 2 XIN 2 XIN

n n n n n n
_ 1-K/((N-1)b?) 1 1

s (N-1)(1+b?) - NbZY’{g N(1+b2)Y’§
> Way > Way > Way

JE n n n

(N-1)(1+5) N(1+pB8)  N(1+p5)

Table 1. Estimators

The ML* estimator corresponds to that described as the 'Maximum Likelihood’
estimator in standard texts, when specialized to a single .faldterstandard estimator
derives from the work of Joreskog (1967).

While this estimator is consistent, the tests describedvisblowed that it
yields badly biassed estimates of weak factors, tendingetesiimate the factor
strength, and to bias its directiomi@ds a data axis. Consider a sample drawn from a

population witha = 0, g, = 1 (all k). Thelikelihood of the estimat(:a = 0,0y =1 (all k)
is exactly the same as that of the estin@e(él, 0,0,0.. .)c}i =1- :ei &k =1(k>1),
i.e., an estimate having a non-zero factor aligned with an axis. \gvifehe sample
exhibits ary accidental correlation between variatgsand x, (k > 1), the likelihood of

the latter estimate can be increased by slightly realigaiodfit this correlation. Hence,

if there is no true factowe expect the ML* likelihood to she local maxima for factor
estimates of length order one, and direction nearly parallel to an axis. This expectation
was onfirmed by tests reported in section 8. These local maxima will remain in the
presence of a weak true fagtand hare the effect of shifting the maximum of the
likelihood function tevards the nearest of the local maxima.

7. TESTSAND RESULTS

The correctness of our implementation of ML* was checked using published
data and results, e.g. Mardia et al. example 9.4.1.

Comparatie trials of the MML and ML* estimators were made using
simulated data. Since the model and estimators are scale and locar@ntndata sets



were generated from populations with= 1(all k) andu = 0. In dl cases,

N =100,K =5. To generate one data set, 100 artificial observations were made using a
pseudo-random source Nf(O, 1)variates. Thdive salar values of an observation were
formed from 6 normal variate@g - - -rs asx, = ayr, + Iy

(k =1...5),where the true factor vectarwas the same for all 100 observations.

For three trialsa was held constant for all data sets in the trial, and parallel to
(2,3,4,5,6). Théengths ofain the three trials were 1.5, 1.25 and 1.0, and each trial used

1000 data sets. These cases represent strong, weak and barely-detettaisle br
each trial, statistics were collected for both estimators on the estimqieg,c% log oy,

and on tvo measures of the error in the estim::;ueThe first measure wa{a € a)?, the
second was the squared sine of the angle beté/aeda. Since the sign o is

immaterial,é was revased ifa. é < 0. For data sets when the MML estimateaoivas

zero, due to collapse of the iteration, the squared sine of the error angle was arbitrarily set
to 0.8, the expected value for a randomly guessed direction, a choice which certainly did
not favaur the MML estimatar The results are summarized in table 1, whickegmean
statistics and their standard errors.

Statistics were also collected on the differences for each data set between the
MML and ML* estimates and errors. These results are also in table 1.

Sir? error | Sirf error

a | Slogoy | (a-ay éngAle f';lngle
k ina inv

ML* 2.34 2.82 -0.113 0.106 0.036 0.343
laj]=1.5 +0.01 +0.06 +0.006 +0.002 +0.001 +0.002
MML 2.23 2.32 -0.005 0.094 0.031 0.336
+0.01 +0.02 +0.006 +0.002 +0.001 +0.002

ML*-MML 0.104 0.51 -0.109 0.011 0.0052 0.008
+0.002 | +0.06 +0.003 +0.001 +0.0005 +0.001
ML* 1.69 2.57 -0.148 0.125 0.063 0.435
la] =1.25 +0.01 +0.09 +0.008 +0.003 +0.002 +0.002
MML 1.54 1.61 0.000 0.104 0.051 0.421
+0.01 +0.02 +0.006 +0.003 +0.002 +0.002

ML*-MML 0.149 1.0 -0.149 0.021 0.012 0.014
+0.003 | £0.1 +0.005 +0.003 +0.002 +0.001




ML* | 1.20 2.6 -0.21 0.188 0.128 0.575
laj=1.0 +0.01 | +0.1 | +0.01 | +0.005 | 20.004 +0.003
MML | 092 | 0.95| 0044 0.20 0.160 0.582
+0.01 | +0.02 | +0.006 | +0.01 | =0.007 +0.005

ML*MML | 0.282 | 1.7 | -0.26 001 | -0.020 -0.007
+0.008 | 0.1 | +0.01 | #0.01 | =+0.005 +0.003

ML* | 1.23 2.4 -0.20 0.165 0.120 0.561
laj=1.0 +0.01 | +0.1 | #0.01 | #0.005 | +0.003 +0.003
MML | 1.02 1.06 | 0.009 | 0.110 0.088 0.536
(a#0) +0.01 | +0.01 | +0.006 | +0.003 | +0.002 +0.003
ML*MML | 0.215 | 1.3 | -0.208 0.055| 0.031 0.025
+0.005 | +0.1 | +0.008 | +0.003 | +0.002 +0.001

Table 2. Average estimates and errorson simulated data.
N=100, a parallel to (2, 3, 4, 5, 6)

As the true value afy is one for allk and all data sets, the trigeequals the
truea and the true value (ikf log o, is zero. The tabled results sithat the ML*

estimator tends to underestimate theas fiown by ngdive \alues of% log &k. It also

tends to gerestimate the length @. These tw efects combine to ge an

overestimation of the length ¢f which becomes very marked as the true value? i

reduced. Irfact, the ML* estimate ob? was on aerage the same wheif = 1. Oas
whenb? = 1. 5625. Examination of the results for single data sets with small true factors
showed that the ML* estimator has a tendetocdign the estimate of nearly parallel to

a data axis, and grossly to underestimate the correspoaginjo such tendengwas
observed in the MML estimataand the results do shaoit to havea little or no bias
towards underestimating or overestimatingp.

For the smallest true factathe arerage estimation errors of the avestimators

as measured by theeage values ofé(— a)? and the squared sine of the error angle are
comparable. Th&000 data sets in this trial include 101 sets where the MML estimate of
awas zero. For these cases, the MML squared sine error angle was taken as 0.8, and the

avaage results of the third woof table 1 include these cases. The fourtl shows the
effect of omitting these cases. The ML* mean squared sine error angle reduces from



0.128 to 0.120, but the MML mean reduces from 0.160 to 0.08&esthe cases where
the MML estimator gies a ron-zero factqrits mean squared sine error angle is 0.031
less than the ML* mean erroindeed, as may be seen from Figs. 1 & 2, the MML
estimate is almost\abys the more accurate by both measures.

For larger true factor vectors, the MML estimatovesi a 2ro estimate less
frequently: 3 cases out of 1000 with + 1. 25,and neer in 1000 cases witha] = 1. 5. It

retains a significant advantage in accyrager ML* in estimatinga.

The last column of table 1 attempts to compare the estimates of factor scores.
The ML* estimator does not directly yield an estimate of the factor scores. Mardia et al.
give Wwo estimators for factor scores which may be used after ML* estimaigsooand

a have keen obtained, viz.
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Conparison of squared errors in Factor Load Estinates.

|a] = 1.0, a parallel to (2,3,4,5,6)
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899 cases with non-zero MWL estinnates.

FIG 1
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Conparison of squared-sine direction errors in Load estinates.
|a] = 1.0, a parallel to (2,3,4,5,6)
899 cases wth non-zero MW estinmates.

FIG 2
Va=Y.B/b*andv, =y .8/ (1+b?
n

n

The former maximizes the likelihood forvgn ,u c:f andz:i, the latter is a sort of Bayes estimate

incorporating the N(0,1) prior for,,. Tests on the trial results showed the latter to be far more
accurate as measured by tiverage value ofv — V). In practice, the relatie values or rank

ordering of the factor scores are more likely to be of interest than their absallugs.vable 1,
therefore, gres the squared sine of the angle betwgamdy, i.e., one minus the squared product

moment correlation between the estimated and true scores. This measure does not distinguish

11



between the tev possible ML* estimators, since bothvgithe same direction for. Aswas done
for the error in the direction @, the squared sine error angle fowas st to 0.99, the expected

vaue for a random guess, in those cases where the MML me#ived gero factor estimate.
Table 1 shows that fda| = 1. 25and1. 5 the MML factor scores correlate more highly with the

true values than do the ML* scoreBor |a| = 1. O the ML* error is smaller if all cases are

included, but substantially worse in those cases where the MML method found a factor.
Further trials, again each of 1000 cases, were done in which the directiovesf

chosen at random for each case. The MML method failed to find a factor in 15, 44 and 219 cases
in the trials withla| = 1. 5, 1. 25and1. O Table 2 summarizes the results for the cases where the

MML method found a factorAgan, the MML estimates are owe&age more accurate by all
2
measures. TheIL* average estimates g8 are notavorthy, being over twice the true values in

all trials.
Sir? error | Sirf error
2 | £ zioge | a-ap| g | ande
k ina inv
ML* 2.40 54 -0.22 0.130 0.043 0.354
laj=1.5 +0.02 +0.2 +0.01 +0.003 +0.001 +0.003
MML 2.10 2.05 0.057 0.118 0.037 0.343
985 cases| +0.02 +0.02 +0.007 +0.003 +0.001 +0.002
ML*-MML 0.004 3.4 -0.28 0.011 0.006 0.011
+0.003 | £0.2 +0.01 +0.003 +0.001 +0.001
ML* 1.73 4.8 -0.28 0.162 0.081 0.457
la] =1.25 +0.01 +0.2 +0.01 +0.005 +0.003 +0.003
MML 1.43 1.42 0.036 0.125 0.064 0.435
966 cases| +0.01 +0.02 +0.006 +0.003 +0.002 +0.003
ML*-MML 0.30 3.4 -0.31 0.037 0.017 0.022
+0.01 +0.2 +0.01 +0.003 +0.002 +0.002
ML* 1.33 4.5 -0.35 0.198 0.129 0.564
laj]=1.0 +0.01 +0.2 +0.02 +0.006 +0.004 +0.004
MML 1.00 1.02 0.013 0.120 0.098 0.534
781 cases| +0.01 +0.01 +0.007 +0.003 +0.003 +0.003
ML*-MML 0.33 3.5 -0.36 0.077 0.031 0.030
+0.01 +0.2 +0.01 +0.004 +0.003 +0.002

Table 3. Average estimates and errorson simulated data.
N=100, a direction random. Caseswith a(MML) = o omitted.
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8. SIGNIFICANCE

A single-factor model and estimates for a data set would in practice not be
adopted unless the datavggrounds for preferring them to a simpler model which
assumed no correlation among telata dimensions. The log likelihood ratio between
the single-factor modeti; with estimates and the uncorrelated (no-factor) modtj for

the same data is where

24 =N(Z log (1+ B2) - log(1+b?)

UnderH,, 21 has, for largeN, a dhi-squared distribution witkk degrees of freedom.
There would be no reason to prefer the more comidlednless 2 at least exceeded.
The condition

> log (1+ B2) - log (1+b%) > K/N

depends on the direction as well as the lengih. dfloweve, the direction dependence is

usually weak.For largeN and smalb? the condition can be written to ordetas

b*(1 - > (B2 1 b%)?) > 2K/N.

Unlessp? / b? is close to zero for all but one ordwimensions, th& term is much less
than 1 and the condition is approximatbfy> VZK/N

The MML estimator gies a mn-zeroé only if

N(C?-1)=2VKNC2 - 1
The exact form of this condition depends on the prior density functigs, for

but for largeN > K and ay smooth prior it is approximately
C?-12>2VKIN
WhenC? is just large enough to satisfy this condition, the quadratic equation
5.1 forb? gives goproximately
b? = (C2-1)/2
Hence the condition for a non-zero MML estimate can be written
b? > VK/N approximately(8.1)
so it is of the same order as the likelihood ratio test for a significant factor.
Of the 1000 cases tried with| F 1, random direction, 219 casesvga z2ro

MML estimate. Of these, all but ageML* estimates with 2 less than 13.0, and all the
781 cases having a non-zero MML estimaeglML* estimates with 2 greater than
11.8.
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A set of 2000 artificial cases with no true facté=5, N=100 was analysed.
The distribution of ML* 2 values did not conform closely to a chi-squared distribution
with 5 degrees of freedom. The mean was & 9708 and 8.5% exceeded 12.0. The

2
avaage ML* estimate o0& was 0.773+ 0.006 and ofg,59+0.1. 110of the 2000
cases gvenon-zero MML estimateskor these cases, theeiage MML estimate 0{12

was 049+ 0.01, and of@z, 0.58+ 0.01. TheMML method is clearly less prone to the

discovery of non-existentdctors. All110 cases had ML* estimates with 2 11. 8.
A Bayesian choice between single-factor and uncorrelated models is discussed
in the next section.
9. MESSAGE LENGTHS
The dervation in section 4 of the MML estimator omitted various constant
terms from the expression for the message lehgts hey are irrelevant to the
estimation. Thgare not irreleant when the value df for the single-factor model is
compared with the message lengths for other models of the same data, soabéaimo
a full expression folL in equation 3.1 assuming use of the MML estimates.

We have
K+1

—logh(u,a,0) = % log (M S) +2 % log oy +log Bk + log (1+ b?)

whereM, is the prior range ofy, S, is the prior range of log,, and B, is the
normalization constant for the prior Gf

n_K/Z

Bx = rki2)
Bk is easily calculated using the recurrence

Bk =2mBx /(K -1); B, =m/2,B, =1

From 4.2,% log I, = g log (2N) + g log (NV?) + % log (1+b?) -3 > log o,

K+1

[db Bt [a+v¥)z
0

From Wallace & Freeman (1987), with error less than 0.4,
g log q, + P12 = - (P/2) log (27) - y + % log (P77)

whereP = N + 3K, y is Eulers constant.

Also, - log h(v) = (N/2) log (2m) + v?/2

and - log f(z|é) = (NK/2) log (27) + N % log o + % %% (Yrk = VaBi)?
From (4.10), 2 2 (Y~ VoBi)? = K(N = 1) — b*(N - 1) + v?b?
n
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Combining from- log f (z|é) and - log h(v) the terms

2 E(ynk - VnIBE) + V212 gives

= N

SIK(N-1)- b?(N - 1) + V3(1 + b?)]
Using (4.7) gi’&% [K(N-1)-b*(N-1)+b*(N+K -1)- K - Kb?] = K(N - 2)/2
Combining all terms gies

L = log (MiSy + log BK+§[|og 2+ (N -3)log (27) + N -2] + K log N
+%Iog (Pn)—y+(N—1)§|ogak+%(N+K—1) log (1+|o2)+§|ogv2

The message length for an uncorrelated mage¥ u, + oy r using the same
priors foru andg is

Lo = 2 log (M,S) + K log N + gaog 2+(N-2)log (27) + N - 1) + % log (2K 77)
—y +(N-1)2log oy
where here the estimateg are those for the uncorrelated model,
ot = z w3 /(N = 1)
If the two models, single factor and uncorrelated, agaméed as equally likely
a priori, the MML approach will prefer the model giving the shorter message length. The

differencel, — L is analogous to the log posterior odds raticawvofir of the factor
model. Using4.7),

Ly-L = g log (277€) - log By — % log ((N +3K)/(2K)) - g log (b%(N - 1) - K)

+ % (N - 1)% log (1+ B2) - log (1+ bz)g
For largeN > K, the condition that, — L be positve, i.e. that the factor
model be preferred, is of order
b* > (2K/N) log (Nb?)
Recalling that the log likelihood ratio isvgn by

_1 2y _ 2y

=3 N% log (1+ B;) —log(1+b )D
the conditionL, — L > 0 has the asymptotic behavidr> % K log N which is of
Schwarz type rather than Akailtype. (SeeNallace & Freeman 1987.)

10. ALTERNATIVES
The following alternaties to aur analysis are briefly considered at the request

of a referee.
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10.1 AIternatiqu Priors

We aonsider only spherically - symmetric priors where the message length can
be written as
L =-logg(b) +F(b,8,u,0,v,2)

whereb = || and ¢ describes the direction . Noteg(b) is the prior density of3, not

of b. By considering the second different@F / db? where other parameters are
allowed to vary withb to minimizeL, it can be shown that the "bias" in the estimatb of
introduced by use of the prigKb) rather than a (locally) constant prior density is, to first
order

By = (g’ (b)/ g(b)) / (d*F / db?)
The dominant term id?F / db? is v?/ (1 +b?). Notethatv®= N.

For our "Cauchy" prior,B, = — (K +1)b/ N so the fractional bias is notvaee,
and of lower order than the orde’VN expected estimation erroBy contrast, a prior
with an exponential tail can introduce a large biga. a multivariate Normal prior with
unit covariance,By = —b(1 + b?)/ N, so te bias is large for large factors, and was
obvious in numericabgeriments. Unlesthe context justifies strong prior expectations
aboutg, our prior seems a good choice.

10.2 MMLWithoutv Estimation
Earlier, we havecompared MML estimates, which include estimateg, @fith
ML* estimates from a model which does not inclugéut rather asserts only that the

population cwariance has the (scaled) form+« 3 ,@T). This™" model is conceptually

distinct from the full factor model, since it hypothesises no hidden variable mechanism
for the cwvariance structure, so there is no reason to expect thageaeral estimation
principle will give identical 3 estimates when applied to the full and * modéier

instance, ML usually ges acceptable estimates for large factors on the * model but not
on the full.

MML was applied to the * model. The resulting Fisher determinant is
relatively complicated, so L was minimized numericallihe MML* estimates so
obtained were alays close, but not identical, to the MML estimates from the full model.
It can be shown that if MML is applied to the full model, but with the message form
constrained so that the first part first states the estimateg,af anda, and then states
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the estimate o¥, the resultingy, o anda estimates are identical to the MML* estimates.
The constraint on the message form is neérge theu, o anda estimates must be coded
to be decodable without knowledgewtut since onlw = |v| is of importance for the

efficient coding ol anda, and as, for largeN, the decoder can accurately anticipate the

likely value ofv, the constraint wmolves little loss of coding efficiec It is thus not
surprising that MML* is close to MML. In particulathe MML* estimate is zero unless
(8.1) is satisfiedFor all data tested, the difference in message length under the * model
between the MML* and MML estimates was less than 0.5 bit. Since the difference is
analogous to the log posterior odds ratio, the MML estimates from the full model were
always acceptable under the * model.

For data for which the factor model is appropriate, there seems no reason to
prefer the MML* estimator.

10.3 Psterior Mean

With a quadratic loss function on the chosen parameters, the minimum-loss
estimate is the mean of the posterior disttitn. If a ompletely spherically-symmetric
prior is used fo (or a), the sign ambiguity of the factorvgs a 2ro posterior mean

under full or * models. The prior can be restricted to a half-sphere, e.g., by requiring
b; > 0, thus giving a non-zero posterior mean, but the choice of restriction appears
necessarily arbitrarynd this arbitrary choice will affect the estima®e therefore did
not pursue this alterna®.

10.4 Psterior Mode

For the * model, the posterior mode is close to the ML* estimate, since our
and g priors are slowly @rying. For the full model, where the prior wancludes the
Normal prior fory, the posterior mode occurs at the absurd vefueK + 1, and withg
almost aligned with an axis. The behaviour is similar to ML. These results were verified

in numerical experiments.

11. CONCLUSION
An MML estimator has been dgoped for a single-factor model of
multivariate Gaussian data, and an expression obtained for its message length. The
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estimator gres Smultaneous estimates of the factor loadings and factor scores. A
maximume-likelihood estimator for factor loadings and factor scores is inconsistent. The
standard 'maximum likelihood’ estimator for factor models, which we ltermed ML*,
does not estimate factor scores. Of course, having obtained ML* estimatesaridg,

one can then estimate the factor scéwe} by choosing values which maximize the
likelihood holdingu, a andg fixed at their ML* estimates, but there seems little logical

justification for this process. The ML* estimatesacdndg do not maximize the

likelihood holding{v,} fixed at these values.

On simulated data, the MML estimatesy@an average more accurate than
ML* whenever a sgnificant factor was evident in the data. When the datesdjitle
evidence for a common factdhe MML estimate of the factor is zero, whereas the ML*
estimate tends to stva large factor almost parallel to a data axis.

The fact that the MML methodgs estimates of factor scores as well as factor
loadings, and that its loading and score estimates are more accurate, is evidence of its
superiority to the maximum likelihood method.
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