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ABSTRACT
Interoperability of programming languages is the ability for
two or more languages to interact as part of the same system.
Frequently, this means passing messages and data between
potentially very different languages. The differences in these
languages pose a serious barrier to creating an interoperative
system.

However, interoperability is important to many existing
systems today, as particular programming languages have
emerged to target particular problem domains. In partic-
ular, client/server architecture and many distributed com-
puting systems utilize multiple languages for differing parts
of their system.

As no single approach is likely to address all problems that
could arise, several tools and approaches have emerged to
address different aspects of cross language communication.
Two broad categories of these tools are virtual machines and
markup languages. These two tools are used concurrently
in many systems today, reflecting their different strengths.

Keywords
interoperability, language interoperability, programming lan-
guages, virtual machines, markup languages

1. INTRODUCTION
Interoperability, colloquially shortened to interop, is the

ability for two or more systems to work together. This defi-
nition is very broad, covering anything from groups of people
to businesses or bureaucratic systems to pieces of hardware.
This paper will discuss interoperability between program-
ming languages. While this narrows the field significantly,
programming language interop is still a very broad topic.

For instance, web browsers frequently perform some kind
of interop. Information to be displayed on a web page is
handled by a browser’s interpretation of HTML, while any
real-time aspect of the page will be handled by a language
like JavaScript, again run from within the browser. If there
is more computation to be done, or if a database needs to
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be consulted, the client browser will communicate with a
server, often written in languages like Java or C.

Likewise, these servers may be written in several lan-
guages themselves. A blog hosting service, Kidblog1, uses
a server written in both Java and Clojure, where Java han-
dles translation between the client and server while Clojure
handles the rest of the server-side logic.

The challenges that arise when dealing with interoperabil-
ity can be many, and sometimes surprising [3]. The tools
and approaches used to overcome these challenges are like-
wise many. In the interest of brevity, we will look at a small
subset of these challenges, along with two primary tools used
to deal with them.

In Section 2 we explore further why interoperability is
desirable, what advantages it can confer, and where it can
be useful. This will touch on differing language capabilities,
ease of use, hardware independence, and implications for
distributed computing.

Next, Sections 3 and 4 will describe two particular tools
that are commonly used to achieve interoperability. These
tools will be virtual machines, paying particular attention
to the Java Virtual Maching (JVM) and .NET’s Common
Language Runtime (CLR), and markup languages, with fo-
cus on XML and Starlink, a markup language and a system
that makes use of it.

Section 5 will detail particular challenges involved with
interoperability and two approaches to handling them. Fol-
lowing a general description of the approach, we will look
at how each tool can be used to implement that approach,
along with strengths and weaknesses of each setting.

Section 6 will look at a few of the performance implica-
tions of the tools discussed.

We’ll wrap up in Section 7 with some conclusions.

2. INTEROPERABILITY
The primary importance of interoperability lies in the

varying capabilities of different languages. Programming
languages are optimized for particular tasks, and different
languages perform better in different situations.

Some languages are constructed to tackle specific prob-
lems, but provide reduced support for others. Erlang, for
instance, is one of the primary languages used in distributed
computing. It was built to handle remote procedure calls
(RPCs), and does so simply and powerfully. However, in-
tensive string manipulation in Erlang can be a challenge:
Strings are not first class types in Erlang, nor do they even

1kidblog.org
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have a distinct type [4]. Strings in Erlang are treated as char-
acter arrays, and while there is a module for string manip-
ulation, it is very light-weight. Here, interoperability with
another language can help provide more complex options for
string manipulation.

Still others allow access in ways that are hidden in other
languages. The memory access model in C, for instance, dif-
fers from many other high-level languages presently in use.
C enables very fine-grained memory access and control, and
places all of this control in the programmer’s hands. Like-
wise, assembly languages allow direct access to hardware
and the underlying storage mechanisms. This low-level con-
trol can be useful when dealing with systems with minimal
memory or when access to device drivers is needed, such as
in GPU computation. However, these languages have high
learning curves, and programs using them may have security
concerns if not done correctly.

The difficulty involved in learning a language is not a mi-
nor concern either. Developer time and energy are impor-
tant considerations when designing a system. For example,
if we have a system built in COBOL, and we want to build
a web interface. If the system has been in the company for
a while, it is distinctly possible that the original developers
are no longer on staff, and that the new team is unfamiliar
with both the code base and the language itself. In such a
case, it may be faster or less expensive to have the developers
create a bridge to the old system in a language they know,
and build the web interface to interact with the bridge.

Apart from the capabilities of the languages involved, in-
teroperability is often related to hardware independence.
The problems faced in achieving language independence and
hardware independence are frequently similar, or have sim-
ilar solutions. For instance, fuzzy controllers, which in part
translate real-world input to fuzzy sets, are often strictly tied
to the hardware they will be implemented upon. FML, the
Fuzzy Markup Language, was developed as a way to fully de-
scribe such a controller in a hardware-independent manner.
Part of this hardware independence involves independence
from any particular implementing language; as such, a fuzzy
controller specified in FML is capable of being implemented
in or potentially across several different languages. [1]

In client/server architecture, such as in Kidblog, the client-
side and server-side environments are likely written in dif-
ferent languages, and guaranteed to be on different ma-
chines. Kidblog handles communication between the two
using JSON (JavaScript Object Notation, discussed in Sec-
tion 4). On the client-side, JavaScript marshals blog posts
into JSON objects, which are then sent to the server. There,
they are converted to Java objects, which Clojure can then
act on. Since Java is statically-typed (which stores type in-
formation) and JavaScript is dynamically-typed (and only
checks the types as needed), JSON is used to help translate
between the two. We’ll take a closer look at this in Section
5.1.

3. VIRTUAL MACHINES
The term virtual machine (VM) refers to software that

models the operating system of a computer or the underlying
physical hardware. Effectively, VMs are indistinguishable
from the OS or hardware they are emulating, which allows
them to run programs not runable by the native OS, or with
restrictions not enforced by the native OS or hardware. The
focus of this paper will be on virtual machines that act as a

Figure 1: VM architecture in the CLR [9]

runtime environment for a single process, sometimes called
process VMs. These VMs in particular provide a buffer be-
tween their hosted process and the hardware, which in part
frees the process from the details of the host hardware or
OS, allowing a program to run the same on any hardware
that has a version of the virtual machine. [13]

There are two major advantages to virtual machines. The
first of these is a type safety mechanism. Virtual machines
such as the Java Virtual Machine (JVM) and .NET’s Com-
mon Language Runtime (CLR) have a base set of types.2

The VMs can use these type systems to ensure the correct-
ness of participating languages and gives languages a com-
mon ground for their type information.

The second advantage lies in the VM’s intermediate lan-
guage. These are low-level languages, designed to be both
compact and efficiently compiled to machine code, and are
what is actually run by the virtual machine. As shown in
Figure 1, any high-level language can be run on a virtual
machine, as long as there is a compiler to translate that
language into the VM’s intermediate language.

These languages are still an abstraction of machine code,
and so they still require an interpreter or a compiler for exe-
cution. Virtual machines contain interpreters for their inter-
mediate language, but also utilize a run-time optimization
method called Just-In-Time (JIT) compilation. Most of the
code is still interpreted, but portions of code are monitored
for frequent use. High-usage sections of code are compiled
to machine language for quicker access. This allows for spe-
cific optimizations based on the current input and hardware,
which are rarely known before execution. [12]

The JVM and CLR will be our main subjects when dis-
cussing virtual machines. While similar in certain ways,
these two VMs were designed for different purposes.

The JVM3 was designed alongside Java for the purpose
of hardware independence. Since the intent of Java was to
be run on the web, there was no way of knowing what kind
of hardware would end up running a piece of code, or even
what kind of browser would be hosting that code. The JVM
was built to ensure that compiled Java programs could be
run correctly independent of hardware concerns. The solu-
tion was the JVM. Eventually, other languages began using

2In the CLR, this is actually called the Common Type Sys-
tem, or CTS. It is implicit and unnamed in the JVM.
3References to ”The JVM” refer to the general concept of
Java’s virtual machine. There are many implementations
of JVMs, which follow certain specifications but implement
certain concepts in different ways and may support different
operating systems. [10, 11]
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Fig. 10. A merged automaton for SLP and mDNS protocols

B. SLP to UPnP

UPnP uses two protocols to perform discovery: SSDP
multicasts a lookup request and receives an SSDP response.
A further HTTP request is then needed to retrieve the URL
of the service from this device. Hence, in this case seven
models were loaded into the framework: i) the SLP MDL,
ii) the SLP coloured automaton, iii) the SSDP MDL, iv) the
SSDP coloured automaton, v) the HTTP MDL, vi) the HTTP
coloured automaton, and vii) the merged automaton for the
three protocols. An important difference here is that SSDP
and HTTP are text messages and as such require a different
MDL and corresponding parser and composer. Fig. 11 shows
the SSDP MDL, this identifies the general boundaries of fields
“e.g.\r\n” (chars 13,10) because there is no fixed layout or
ordering of fields. The inner field boundary (e.g. the ‘:’ split
- char 58) then takes the field label from the left and the field
value from the right to build a field in the abstract message.
When the SLP client was executed, the merged automaton
successfully sent an SLP SrvReply message composed of
the content from the SSDP and HTTP fields.

C. Analysis

Originally we stated that we required the following from
the Starlink framework:

• We require transparent interoperability. In the case study,
the legacy protocols are implemented and deployed in-
dependently of the Starlink, they are never aware of
the framework and hence the case studies show that
transparent interoperability has been achieved.

• Offer rich translations. The case studies show that we can
translate correctly between three different protocols that
are heterogeneous in terms of protocol sequences, e.g.
SLP compared to UPnP, and heterogeneous in terms of
message content e.g. binary to text messages.

1 <Types>
2 <Method>String<Method>
3 <URI>String<URI>
4 <Version>String<Version>
5 <ST>String<ST>
6 <MX>Integer<MX>
7 . . .
8 </Types>
9

10 <Header type=SSDP>
11 <Method>32</Method>
12 <URI>32</URI>
13 <Version>13,10</Version>
14 <Fields>13,10:58</Fields>
15 </Header>
16
17 <Message type=SSDP M�Search>
18 <Rule>Method=M-SEARCH</Rule>
19 </Message>
20
21 <Message type=SSDP Resp>
22 <Rule>Method=HTTP/1.1</Rule>
23 </Message>

Fig. 11. MDL specification of SSDP

• Minimise development effort. In the cases we only need
to provide high-level models, there is no low-level pro-
gramming. Further, we are able to reuse the models across
the cases i.e. we only need to model SLP once and then
write only the merged automata for the particular case
(typically, these automata are around 100 lines of XML,
but this depends on the complexity of the translation).

VI. PERFORMANCE EVALUATION

Starlink performances are evaluated by investigating the
time taken to perform interoperability translation. We then
compare this to the typical responsiveness of discovery pro-
tocols in terms of the time taken to return a service reply
to a lookup request. Fig. 12(a) shows the results of the bench
measures of the individual protocols (these are measures of the
legacy applications implemented using OpenSLP for SLP, the
Apple Windows SDK for Bonjour and Cyberlink for UPnP).
To obtain the measures, we calculated the time from when the
client sent the message until the response was received. For
each case, we repeated the experiment 100 times and took
the min, max, median of these results. All experiments were
performed with the client and the service on the same machine
(3 Ghz CPU, 2Gb memory running Windows Vista Operating
System, the Java VM was version 1.6.2) to avoid measuring
additional network latency, which may not be constant.

Subsequently, we measured the time taken to translate from
one protocol to another within the Starlink framework. This
measures the time from when the message was first received
by the framework until the translated output response was sent
on the output socket. Fig 12(b) shows these measures. We
can see from the results that there is a significant but varied
expense to additional translation: in case 6 it is approximately
a 600 percentage increase in response time, while in case
1 it is 5 percent. This is because the cost of translation is
bounded by the response of the legacy protocols; if SLP takes
6 seconds to respond that is added to the translation. However,
in the domain of service discovery protocols the timeout of the

454

Figure 2: A Starlink Message Description Language
specification (taken from [2])

the JVM for their runtime, but this was not the primary
consideration of the original development team.

In contrast, the CLR was developed to support a host of
languages, and was designed in part with the intent of facil-
itating interoperability between them. The purpose of the
virtual machine in this context was to intentionally provide
the common ground for languages based on the CLR, giving
them access to features promoting interop, such as the Com-
mon Type System and metadata engine (discussed further
in Section 5.1).

4. MARKUP LANGUAGES
Markup languages (MLs) are primarily used for describ-

ing data. There are a range of markup languages cover-
ing several use cases, from document display or creation to
data transfer and storage. For instance, HTML (HyperText
Markup Language) is used to convey content information
for web pages, while TEX is a language used to describe the
layout and formatting of text documents. Others, such as
JSON and YAML, were designed for modeling data in ways
consistent with object oriented design4.

One of the major players in the world of markup languages
is XML, the Extensible Markup Language. XML’s method
of describing data is to enclose the relevant data within tags
(see Fig. 2). Tags are easily distinguishable from the data
they contain, called elements. Tags and elements are con-
sidered separately when the XML is read. In Figure 2, the
fields Method, URI, and Version are made distinct from the
actual data with angled brackets. Also note that elements
can be nested: lines 11 through 14 are contained within the
Header tag. This allows XML to describe full records or
objects, which will be important in Section 5.1.

The eponymous extensibility of XML comes in the form of
defining new tags. Systems using XML are not constrained
to using the tags built in to XML, but can create new ones
based on the data they will be handling. This allows for the
creation of new markup languages based on XML, but built
for a specific purpose. FML is one example of this, as are

4JSON and YAML in particular are sometimes called Data
Description Languages for this reason

the MDLs in the Starlink framework.
Starlink itself is much more than just a markup language.

It is a software framework designed to achieve distributed in-
teroperability between existing systems with different com-
munications protocols. One of the core features of Starlink is
XML-based markup languages called the Message Descrip-
tion Languages (MDLs). MDLs are used to model incoming
network messages in such a way that an abstract message
(defined by the MDL), from one protocol can be translated
to an abstract message for another. [2]

5. HANDLING INTEROP
When building a system with interoperating languages,

there are several aspects of the system that designers need to
account for. Of particular importance is the lowest common
denominator (LCD) constraint.

The LCD in this case is the largest subset of concepts that
can be translated across the languages in use. These con-
cepts include data types and underlying data structures. For
example, consider a system where a key/value map would
be useful, but one of the languages involved only has sup-
port for arrays. This restriction is part of the system’s LCD,
and limits the functionality of the overall system. Here, this
can be dealt with in several ways: Remove the restricting
language from the system, remove the use of maps and just
use arrays instead, or find ways to model maps as arrays.
The first two options are rarely preferable. If a particular
language is present in a system, it usually has a contribution
not easily matched by any other language. Likewise, maps
may be the ideal way to store the particular data being used,
while arrays will be insufficient.

Finding a method of translating a concept from one lan-
guage to the other is preferable, but may not always be pos-
sible, or as straightforward as in the above example. In some
cases, achieving the translation can mean a loss of informa-
tion or a loss of precision. C, for instance, has no concept of
booleans. Zero is treated as false, while any other number is
treated as true. When interoperating with a language that
does use booleans, precision of booleans is lost. A num-
ber could be just a number, or it could be True. On C’s
end, information could be lost if a true/false test is made
to determine if a variable contains a number, and act upon
that number if it does. If C receives a True from another
language, it may read it as one.

For issues like these, there are two concepts that help en-
able this translation with minimal loss: metadata and stan-
dards.

5.1 Metadata and Data Type Conversion
When passing data between two languages, a system must

have a way of ensuring that the type systems of its compo-
nent languages are respected. Additionally, it must ensure
that type information is not lost when data moves from a
statically-typed language to a dynamically-typed language,
so that information is available when the data moves the
other way.

Metadata is a method by which this can be accomplished [6].
Simply put, metadata is data describing data. This can be
almost anything, as long as it is connected to the data and
conveys information beyond what the data can convey by
itself. In the case of statically-typed languages, the type
information included as part of a variable declaration is a
kind of metadata, as in Figure 3. There we can also see that
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Class Person

string name = "Cliff"

date dateOfBirth = 4/16/1978

int height = 74

double weight = 212

end

Figure 3: A Person class in an abstract statically-
typed language

Class Person

var name = "Cliff"

var dateOfBirth = 4/16/1978

var height = 74

var weight = 212

end

Figure 4: A Person class in an abstract dynamically-
typed language

there is a difference in the representation of the height and
weight fields, despite both fields being a number.

VMs and metadata
There are two primary ways virtual machines handle meta-
data: language type specifications and metadata files. Both
of these are handled by a compiler at compile time. Once
the system has been compiled to the intermediate language,
each part will necessarily conform to the same syntax and
language rules. Logic may look different based on origi-
nating high-level language, but all will behave within the
constraints of the intermediate language.

As mentioned above, the explicit type information in
statically-typed languages, like Java or C# is a kind of
metadata. This metadata is entirely for use by their com-
pilers, to assist with translation to the intermediate lan-
guage. In weakly or dynamically typed languages like Ruby
and JavaScript, this metadata does not exist (Figure 4).
Since these languages perform run-time type checks instead
of compilation-time checks, significantly more code is gen-
erated by their compilers to handle type checking, and they
cannot take advantage of the intermediate language’s prim-
itive type system [7].

Compilers for both the JVM and CLR also generate meta-
data alongside the intermediate code. The JVM stores this
metadata in the same file as the code, while the CLR stores
it in a separate file in the same location. This metadata is
used by the run-time interpreter for type checking and to
assist with JIT optimization, but can also be accessed by
other tools such as debuggers and profilers [5].

MLs and metadata
Metadata is the strong point of markup languages, as they
are designed around the same concept of describing data.
Essentially, the fields in a markup language (tags, in the
case of XML-based languages) act as metadata for the data
they are attached to.

When translating into an object for another programming
language, a markup language can use nested elements to rep-
resent objects or other data structures. For instance, Figure
5 is an XML representation of the person object shown in

<Person>

<name> Cliff </name>

<birthdate> 4/16/1978 </birthdate>

<height> 74 </height>

<weight> 212 </weight>

</Person>

Figure 5: An XML description of a person

Figures 3 and 4. Each tag in Figure 5 translates directly to
a variable name in either of the programming languages.

The real metadata in a markup language can be stored in
a number of ways. In Starlink’s MDLs, for example, the type
information of elements is stored in a <types> tag before the
definition of the data itself. Figure 7 is an example of this
method, and could be used in translating from the XML in
Figure 5 to the statically-typed pseudo-language in Figure
3.

5.2 Standards and Interfaces
Metadata is the core of successful interoperability. But

if two systems attempting to communicate are expecting
differently tagged data, they will still fail to interoperate.
Metadata alone is not enough, and standards are a key mech-
anism for ensuring effective communication.

There are two aspects to standards. One is agreement on
similar data types, the other is the reaction to or approach to
handling those types once received. Ide and Pustejovsky [6]
refer to this difference as syntactic interoperability (agree-
ment on data type and communication protocols) and se-
mantic interoperability (the ability to act on data received
in a way unsurprising to other components of a system).
While syntactic interop can be handled in part by metadata,
semantic interop can require knowledge of more detailed as-
pects of the components in a system.

Shetty and Vadivel [8] demonstrate an example of a fail-
ure in semantic interoperability even while retaining some
(though not all) syntactic interoperability between Java and
.NET5 web services. While they found several syntactic
mismatches, such as the lack of unsigned numbers in Java,
there were issues even where the systems supported the same
types. In particular, Shetty and Vadivel noted that null
values were handled in largely incompatible ways. When
given an array with a null element, Java interpreted the el-
ement as a null object, and printed null when that element
was requested. In contrast, .NET interpreted the element
as empty, and printed an empty string when the element
was requested. Additionally, they found that precision of
decimal, double, and float types differed between platforms.
When asked to add and display 4.111111 and 8.888888, the
Java client returned the precise 12.999999, while the .NET
client returned 13.

Though these two services were handling the same data,
represented by the same types, they behaved differently
when asked to act upon that data. As Shetty and Vadivel
point out, this has implications for clients who don’t know
which service architecture they will be interacting with [8].

5Languages run on the CLR
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VMs and Standardization
Although the above study found issues between two differ-
ent virtual machines, systems run on homogeneous virtual
machines architecture actually have an advantage. Systems
on a virtual machine already have a standard implemented
in the form of the intermediate language. Because the inter-
mediate language has a full language specification, including
both a type system and data interpretation behavior, it can
act as a description for required behavior. Moreover, once
a system has been compiled into the intermediate language,
the behavior of the different components is constrained by
that virtual machine’s behavior.

This is not a perfect solution however, as it still requires
that the high-level languages have conventions for accessing
other high-level language components. These conventions
are tied to compilers at least, so grammar for calling other
languages on a particular VM can be included as part of
a new compiler specification without affecting other imple-
mentations of that language.

As an example of this, Java was not initially intended to
call other languages, and making calls to non-Java languages
can be a difficult proposition [3]. However, new JVM lan-
guages like Clojure and JRuby inherently provide support
for accessing Java classes.

MLs and Standardization
Semantic interop is somewhat more straightforward to at-
tain with markup languages. Although not built in, many
markup languages have a notion of schema, such as in Fig. 6,
which can be used to regulate correct formatting. Messages
sent in the markup language can be checked against these
schema to ensure both that they contain the right fields in
the right places (ie, a nested field is contained by the correct
super field), as well as that those fields contain the correct
type of data. As Figure 6 shows, type metadata can be
stored within the schema specifications.

It should be noted that schema and similar mechanisms
are themselves simply a standard, and are not expressly en-
forced or singular. XML has several schema languages as-
sociated with it, one of which is the W3C6 recommended
standard. Figure 6 is a schema conforming to the W3C
standard.

6. PERFORMANCE
Regardless of how the system is built or the interop imple-

mented, an interoperating system will always accrue some
overhead. There may be unexpected costs from translat-
ing between languages, which can appear in places such as
execution speed or program storage space.

The main issue faced in virtual machines is the LCD con-
straint. Because all languages eventually end up running
in the same language, care must be taken that higher-level
languages can be reasonably translated to the intermediate.
Li, White, and Singer [7] show that in the Java Virtual Ma-
chine, non-Java languages rely heavily on existing Java code
libraries in order to mitigate performance difficulties. Ad-
ditionally, they found that non-Java languages produced se-
quences of bytecode distinct from those produced from Java
source code. For dynamically-typed languages like Ruby,
these sequences are significantly longer than bytecode from
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<?xml version="1.0" encoding="utf-8"?>

<xs:schema elementFormDefault="qualified"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="Person">

<xs:complexType>

<xs:sequence>

<xs:element name="name" type="xs:string" />

<xs:element name="birthdate" type="xs:date" />

<xs:element name="height" type="xs:double" />

<xs:element name="weight" type="xs:double" />

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

Figure 6: A W3C-style XML schema for the person
in Figure 5.

<types>

<name>string</name>

<birthdate>date</birthdate>

<height>integer</height>

<weight>double</weight>

</types>

Figure 7: The Starlink method of defining types in
XML

an equivalent Java class. Additionally, JRuby bytecode con-
tains none of the built-in type operators, which are used to
optimize performance. This has some potential performance
and space implications when comparing JRuby and Java.

While we are not aware of a similar study focusing on lan-
guages on the CLR, the CLR was designed both with inter-
operability in mind and with an awareness that dynamically-
typed languages would be running on it. From these two
points, it seems reasonable to assume that the CLR’s in-
termediate language and interpreter are designed to handle
dynamic types more efficiently or concisely.

The primary concern for markup languages is in transla-
tion time. Because systems involving MLs usually also in-
volve different languages at runtime, they also require trans-
lating between two or three languages during execution.

Bromberg et al’s report on the Starlink framework, which
handles three translations per message, showed a non-
negligible time lapse between when the initial message was
received by Starlink and when Starlink returned a reply to
that protocol [2].

7. CONCLUSIONS
Virtual machines and markup languages have their own

strengths and weaknesses in different use cases.
Virtual machines are much more feasible for systems be-

ing built from scratch, where all language decisions are in
the hands of the developers. They may also be available
to existing programs on a VM which a developer wishes to
extend to a larger system; in this case, the extended system
merely need be built on the same virtual machine, and it
will be able to interoperate with the pre-existing software.

In comparison, markup languages are better suited to
dealing with preexisting or legacy systems, where there is
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too much code to make rewriting a feasible option, or where
parts of the source are simply unavailable, potentially due to
working with a third-party software. Likewise, if the existing
system cannot target a particular virtual machine, perhaps
because a compiler from that language to that VM doesn’t
exist, recompiling the existing program is not feasible.

Additionally, markup languages have an advantage in dis-
tributed system environments, where they can be used in
sending data over the network. This is particularly impor-
tant in client/server architecture, where servers have few, if
any, guarantees about the hardware or sometimes even the
software being run by the clients. A markup language can
act as an intermediary, providing the data in a language-
and hardware-free way.

These two tools are not mutually exclusive, and can even
be complementary. A real-world system is more likely to
make use of both virtual machines and markup languages
to cover relevant aspects of their system than to rely on just
a single approach.

In the end, the decision to built a system from multiple
languages is not a simple one. Building such a systems re-
quires additional effort over a single language system, with
considerations involving additional time or knowledge re-
quirements for the developers, which languages to use, and
how to effectively implement the interoperability between
those languages. In systems involving several specialized do-
mains, or in systems utilizing diverse hardware, the benefits
of interoperability may well outweigh the costs of achieving
it.
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