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GENERALIZING KONIG'S INFINITY LEMMA

ROBERT H. COWEN

1 Introduction D. Kόnig's famous lemma on trees has many applications;
in graph theory it is used to extend certain results from finite to infinite
graphs (see Nash-Williams [7]); in logic it can be used to prove that a
denumerable set of propositional formulas is satisfiable if every finite
subset is (see, for example, Van Fraassen [9]). This last result, known as
the compactness theorem for propositional logic, is even true when
"denumerable" is replaced by "infinite" and thus it seems reasonable to
ask whether the stronger form can be obtained from a generalized Kόnig's
lemma. We shall show that this is indeed the case.

2 Preliminary definitions By a (rooted) tree we shall mean a connected
undirected graph without circuits, one of whose vertices is designated the
origin (see Ore [8]). The number of vertices on the unique path connecting
a vertex υ with the origin is called the level of υ, \(υ). Thus the set of
vertices of a tree is decomposed into an at most denumerable set of levels
with the origin being the sole vertex at level one. A vertex y' is a
successor of a vertex υ if v and v' are connected by an edge and l(z;') =
\(v) + 1.

A tree will be called finite if the set of its vertices is finite, otherwise
infinite) it will be called locally finite if each vertex has only finitely many
successors. Equivalently, a tree is locally finite iff each of its levels is
finite. A branch of a tree is any maximal path beginning at the origin. If
vertices υ and v' are on the same branch, then υ1 dominates υ if \(vf) ^ \(v).
Kbnig's lemma states that any locally finite infinite tree has an infinite
branch. Of course "infinite" in this context means denumerable since
locally finite trees have at most denumerably many vertices. Finally, for
any set A, A denotes the cardinality of A.

3 Main results Let £7 be a collection of locally finite trees.1 By a vertex
or a level of ZJ we mean a vertex or a level of some tree in 75. Also, if v,
v1 are vertices of ZJ, then vr dominates v in V if vr dominates υ in some

1. It is not assumed that the trees in v are pairwise disjoint.

Received September 29, 1975



244 ROBERT H. COWEN

tree of 75. Let S be a set of vertices of 75. S will be said to pierce a level I
of 75 if sTΓl = 1. S is consistent in 75 if for every t>, vf in S, there is a t>"
which dominates them both in 75. The first theorem is our generalization of
Kό'nig's lemma.

Theorem 1 Let 75 be a collection of locally finite trees such that for any
finite set of levels of 75 there is a consistent set of vertices piercing those
levels. Then there is a consistent set of vertices piercing the entire set of
levels of 75,

Proof: Call a set G of vertices of 75 good if for every finite G 0 CG and
every finite set of levels, L, there exists a consistent set of vertices G',
with Gf ̂ > Go, and Gr pierces the levels in L.

The hypothesis implies that the empty set of vertices is good. Also
"goodness" is a property of finite character; hence, by Tukey's lemma
(see [3], p. 31) , there exists a maximal good set G*. The proof will be
completed by showing G* pierces all levels of 75, since any good set is
clearly consistent.

Suppose not, suppose G* fails to pierce level I = {υu . . ., vn}. Since
G* is maximal, none of G* U {vt } can be good, 1 < i ^ n. Therefore there
exists for each such i, a finite G, C G* and a finite set of levels L, such
that no consistent G, with G =) G, U {pi}, pierces the levels in Li. We show

n n

this is impossible. Let G' = U G{ and V = U Lf . Since G* is good and G'
ί = l ί = l

is a finite subset of G*, there exists a consistent G, with G 3 Gr, which
pierces the levels in V U {Z}. If GO 1= {VJ}, then G =) G, U {p; } and G
pierces L7! Contradiction. Therefore G* pierces all levels of 75.

Corollary (D. Kδ'nig) A locally finite, infinite tree has an infinite branch.

Proof: Let 75 be the set consisting of the tree itself; then a set of vertices
of 75 is consistent iff the vertices in the set belong to the same branch of
the tree. Because the tree is infinite it has, for any finite set of levels, a
branch whose vertices pierce these levels. Theorem 1 now gives a
consistent set of vertices piercing all levels of 75, that is, an infinite
branch.

Next we derive the compactness theorem for propositional logic from
Theorem 1.

Theorem 2 Let K be an infinite set of propositional formulas, every finite
subset of which is satisfiable. Then K is satisfiable.

Proof: For any finite W c K, let Pw be the propositional variables
occurring in W and let Vw be the finite set of valuations of Pw which satisfy
W. We define a set, 75, of locally finite trees as follows. The levels of 75
shall consist of the Vw together with {0}, where 0 is the empty set. If
PFC wr, where W, W are finite subsets of K we form a tree with levels
{Ŝ}> V̂> Vw' i n t n e following way. The origin is 0 and every valuation in
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Vw is connected to φ>\ whereas/in Vw/ is connected t o / \*Pψ2 in Vψ. ZJ shall
consist of all such trees. Given any finite set of levels {VWl, . . ., VWn], let
fe vw1u...uWn> then {fΪPWι, . . ., f^PwJ is consistent (since any pair is
dominated by / in ZJ) and pierces the VWi, 1 ̂  i ^ n. By Theorem 1, there
exists a set of valuations which satisfy the finite subsets of K and such that
any two are the restrictions of a single valuation, that is, they must agree
on common variables. Therefore we have a single valuation satisfying all
of if.

An examination of the above proof shows that it really has very little
to do with propositional logic per se; if we abstract what is required to
allow the proof to go through we obtain the following compactness result for
finite sets of functions. The proof is virtually identical to the above and so
is omitted.

Theorem 3 Let {W, ̂ ) be a directed3 partially ordered set and for each
weW, let Fw be a finite, non-empty, set of functions with domain Uw.
Suppose w1 ^ w2 and fe Fw^ implies f ί"UWιe FWi. Then there exists a func-
tion f such thatf \ Uwe Fw for every we W.

Theorems 1-3 are equivalent4 to each other and to P.I., the prime ideal
theorem for Boolean algebras; this is easy to establish using our results in
[l] where some strong forms of Rado's selection lemma were shown to be
equivalent to P.I. Moreover, the proof of Theorem 2 from Theorem 1 only
required a consideration of trees with three levels and thus we could
restrict ZJ in Theorem 1 to trees with at most three levels without limiting
its potency. There is another natural way of restricting ZJ in Theorem 1
and the rest of this paper will be devoted to its consideration.

If ZJ is a collection of trees, we define the order of ZJ, o(Z7), to be the
least cardinal ^ such that no tree in ZJ contains a vertex with more than U
successors. If ZJ consists of locally finite trees, o(Z7) ̂  80 Let Tn be the
assertion of Theorem 1 only for ZJ with o(ZJ) =n, n 2L positive integer.
Clearly Tm -* Tn, m ^ n. We shall show that T3 -> P.I.

Let {A^i€ι be a collection of sets and S, a symmetric binary relation on

U Ai. A choice function, /, for {Ai}ieι is said to be S-consistent if f(i)Sf(j),
iel

for all i, j in 7, with i Φ j. Los and Ryll-Nardzewski [5] derived the follow-
ing finite consistent choice principle from a consistent choice principle for
compact spaces.

Theorem 4 Let {Ai}ieI be a collection of finite sets and S a symmetric

binary relation on UAf. Suppose that for every finite W c /, there is an
i€l

2. / f Pγ/ means the function which is the restriction of /to Pψ.

3. A partially ordered set is directed iff every pair of elements in the set has an
upper bound in the set.

4. Equivalent, in this context, means without using the Axiom of Choice.
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S-consistent choice function for {Ai\ieW. Then there is an S-consistent
choice function for {Ai\m.

If in the above theorem, we require Aj ^ n, for all iel, a restricted
finite consistent choice principle is obtained; we denote this restricted
principle by Fn. In [6], Los and Ryll-Nardzewski show that Fn —» P.l ,
n^4. We shall show that F3 -+ P.I. and Tn -> Fn, thus establishing Tn -»
P.l , n ^ 3. The proof that F3 — P.I. depends on results of Lauchli [4] which
connect the coloring of infinite graphs and P.I.

A graph is said to be n-colorable if there is a function, /, mapping the
vertices to {0, . . ., n - 1} such that f(v) Φ f(vr) if υ and v' are connected by
an edge. Pn will denote the statement, proved by De Bruijn and Erdόs [2],
that a graph is n-colorable if every finite subgraph is n-colorable. Lauchli
[4] shown that Pn — P.I., n > 3.

Theorem 5 Fn-> Pn,n a positive integer.

Proof: Let G= (V, R) be a graph, where V is the set of vertices and R, the
set of edges and assume every finite subgraph of G is n-colorable. If
W<z V, G ΪW denotes the subgraph (W, RO(WxW)). For each ve V, let
Av- {(v, 0), . . ., (v, n - 1)}. Define a relation S on U A^by

(v,i) S(v',j) =dfvRv' - iΦj.

Given any finite W c: V and any n-coloring, /, of GΪW, let f*(υ) =
{v, f(v))y υ e W. Clearly/* is an S-consistent choice function for {Λ êH/. By
Fn, there is an S-consistent choice function, h*, for {AXev Define h on V
by h*(v) = (υ, h(ϋ)), υ e V, Suppose vRυ'; since h* is S-consistent,
(v, h(v)) S(vr, h(vr)) and therefore, by the definition of S, h{υ) Φ h{υf), that is,
h n-colors G.

Theorem 6 Fn -> P.I., n ^ 3.

Proof: Follows immediately from Theorem 5 and the aforementioned
theorem of Lauchli.

Theorem 7 Tn-> Fn, n a positive integer.

Proof: Suppose there exists S-consistent choice functions for all finite
subcollections of {A, }f e /, where Ai < n, ie I, and for any finite We. /let Fw

be the set of S-consistent choice functions for {Af }f.fϊy. Assuming Tn, we
shall show that there is an S-consistent choice function for {Ai\uι.

Suppose Wis a finite subset of /. A sequence of subsets of W, Wu . . .,
Wk, is a W-tower if Wγ is a singleton, Wk = W and Wi+1 = W{ u {j}, i = 1, . . .,
k - 1. For each such W-tower we form a tree as follows: the origin is 0,
level i + 1 is FW{ and any feFWi is connected to /^W^ -i which belongs to
Fwi-l9 2^ i^k. Since W{ - W^ = {j} and f(j) e Aj, Aj ^n, each vertex of
the tree has at most n successors. Therefore if V is the set of all such
trees, o(C) = n. m

If {FWv . . ., FWJ is any finite set of levels of Z7, let V = U W{ and let
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fe Fv. Since / will dominate / Is W{ in all trees formed from F-towers
containing Wi9 {f t*Wu . . . , / Γ Wm] is a consistent set of vertices piercing
each Fwiy i = 1, . . ., m. Therefore, by Tn, there is a consistent set F such
that F Γ) Fw = 1, for all finite W c /. Since any two functions in F are both
restrictions of the same function, F uniquely determines an S-consistent
choice function for {Ai}.€l.

Theorem 8 Tn -» P.I., n > 3.

Proof: Theorem 8 now follows from Theorem 6 and Theorem 7.

Finally we inquire whether or not T2 or F2 implies P.I.?
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