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ABSTRACT. In this paper we provide a formulation of initial value problems for (explicit
and implicit) difference equations in terms of abstract equations in sequence spaces. They
will be solved using appropriate fixed point theorems and we obtain quantitative attractivity
properties.

1. INTRODUCTION

At first glance, it seems to be an almost trivial observation that (nonautonomous) differ-
ence equations or recursions like

(1.1) xk+1 = fk(xk)

can be formulated as operator equations in appropriate sequence spaces. Nevertheless, the
obvious advantage of such a reformulation is based on the fact that a large variety of fixed
point theorems or other tools from nonlinear analysis can be employed in order to study
asymptotic properties for (1.1), instead of, e.g., Lyapunov or Gronwall techniques. Hence,
a dynamical problem reduces to a fixed point problem in an infinite dimensional space.
The näıve approach, though, of characterizing a recursion (1.1) by the operator equation

S+x = F (x)

with the forward shift operator(S+x)k := xk+1 and the substitution operator
(
F (x)

)
k

:=
fk(xk), is of little use, since initial conditions are not taken into consideration and the typ-
ically non-expansive operatorS+ is technically subtle to handle, i.e., fixed point theorems
for non-expansive maps are sophisticated.

Therefore, this paper features an alternative way, inspired by the pioneering work of
Petropoulou and Siafarikas. Their “functional analytic method” is based on the fact that
(1.1) (and more general equations) allow a characterization as operator equations in a sep-
arable Hilbert space, thus essentially the space of square summable sequences`2, as well
as in subspaces of`2. This method has been successfully applied to investigate the asymp-
totic behavior of linear and nonlinear ordinary difference equations (cf. (1) and (2; 3; 4),
resp.), delay difference (cf. (5; 1)) and partial difference equations (cf. (5; 4)). One of
their preferred tools is a fixed point theorem for holomorphic mappings due to Earle and
Hamilton (6) (see also (7, p. 111, Theorem 4.6)).

In the present paper we overcome the deficit that the topology of the sequence spaces
under consideration is given by an inner product. Consequently, for instance we can also
use spaces of merely convergent or even exponentially bounded sequences. Thus, we
obtain criteria for the existence of sub-exponentially decaying solutions. One frequently
encounters such a situation in critical stability problems (e.g., for reduced equations on
center manifolds) or within the framework of`p-stability (cf. (8)).
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We have subdivided this article into essentially three parts. Sections 2–3 are fundamen-
tal for our work and contain some basic results on sequence spaces, difference equations
and the following crucial result:

Theorem 3.3: An initial value problem for a difference equation is equiva-
lent to a fixed point equation in a sequence space.

Criteria based on the contraction mapping principle are presented in Section 4, which pro-
vide assumptions guaranteeing that all solutions of a given equation are in a certain space.
After all, Section 5 contains some further global criteria using fixed point theorems of
Krasnoselskii, Reinermann or Goebel-Kirk type.

Compared to classical methods and techniques in stability theory, the presented ap-
proach features some advantages:

• The verification of attractivity properties for given solutions becomes simple and
technically transparent. Indeed, our proofs typically consist of two steps: One
shows that a nonlinear operator is well-defined on an ambient space, and one de-
duces a structural property guaranteeing the existence of fixed points, like for in-
stance, contractivity, non-expansiveness, complete or strong continuity. In addi-
tion, this yields information on the domain of attraction.

• As demonstrated in (2; 3; 5; 4; 1), the method easily extends for further classes of
discrete equations (delay difference, partial difference equations).

• While (8) obtains criteria for̀p-stability in terms of a Lyapunov function, we tackle
the problem directly and impose conditions depending only on the right-hand side
of the equation, which are therefore easy to check.

Indicating a general tendency, our approach seems to be better suited for nonautonomous
equations. On the other hand, it turned out that the methodology exploited in this paper
has disadvantages, which should not be concealed:

• For scalar explicit equations inR traditional approaches often yield better results.
This should not surprise; keeping in mind that we lift the problem into an infinite-
dimensional space, it is quite clear that important properties of the reals (e.g., com-
pactness criteria or the order-structure) get lost.

• The present approach requires a certain uniformity of, e.g., Lipschitz or bounded-
ness constants in the time variable, which is a technical issue and not intrinsic for
the problem.

• Properties of the right-hand side defining the difference equations are strongly re-
lated to the obtained fixed point operator. Thus, there are no smoothing properties
of, e.g., integral operators yielding compactness or other convenient attributes.

Let us close the introductory paragraphs by indicating some perspectives. We restricted
ourselves to tools from metric fixed point theory in linear spaces. As a matter of course,
also other techniques from nonlinear analysis seem appropriate to solve our nonlinear equa-
tion encountered in Theorem 3.3; for instance local implicit and inverse function theorems,
nonlinear alternatives or topological methods. We postpone the use of these methods to
later papers. Finally, it is worth to point out that also for ordinary differential equations,
fixed point methods have been applied to stability problems ((9; 10)).

Now we provide our terminology and some standard notions from geometry in Banach
spaces. The real field is denoted byR and we writeC for the complex numbers;Z is the
ring of integers,N the positive integers and adiscrete intervalI is the intersection of a real
interval withZ; particularlyZ+

κ := {k ∈ Z : κ ≤ k}, andZ−κ := {k ∈ Z : k ≤ κ}.
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Throughout this paper,X is a real(F = R) or complex(F = C) Banach space with
norm ‖·‖X (or simply ‖·‖, if no confusion can arise). WritingY for another Banach
space, the space of linear bounded mappings betweenX andY is L(X ,Y), we abbre-
viateL(X ) := L(X ,X ) andIX is the identity onX .

We write Br(x) for the open ball inX with centerx ∈ X and radiusr ≥ 0; B̄r(x)
stands for the corresponding closed ball. We writeΩ◦ for the interior and̄Ω for the topo-
logical closure of a subsetΩ ⊆ X .

With a mappingf : Ω → Y we writeLip f for its Lipschitzconstant andLip1 f for the
Lipschitz constant w.r.t. the first argument, iff depends on more than one argument.

Some of the fixed point theorems we are about to use rely heavily on geometrical proper-
ties of Banach spaces. Hence, the following notions are crucial for our later considerations;
as a reference we recommend and use (11).

Uniform convexity is a key ingredient to derive fixed point results for non-expansive
maps. Themodulus of convexityfor X is the functionδX : [0, 2] → [0, 1] given by

δX (t) := inf
{

1− ‖x+y‖
2 : x, y ∈ B̄1(0), ‖x− y‖ ≥ t

}

(cf., e.g., (11, p. 64, Definition 2.3)) andX is calleduniformly convex, if δX (t) > 0 for
t > 0.

Writing r(Ω) for theChebyshev radiusof Ω ⊆ X (cf. (11, p. 112)), thenormal structure
coefficientN(X ) of X is defined as

N(X ) := inf
{

diam Ω
r(Ω) : Ω ⊆ X convex, closed, bounded withdiamΩ > 0

}

(cf. (11, p. 114, Definition 2.1)), wherediamΩ := supx,y∈Ω ‖x− y‖.

2. SEQUENCE SPACES

In the remaining paper, letΩ ⊆ X be a subset with0 ∈ Ω. To consolidate notation, we
first define the spacè(I,Ω) of all sequencesφ = (φk)k∈I with valuesφk ∈ Ω and then
define various subspaces of`(I, Ω).

2.1. Bounded sequences.A real sequenceω = (ωk)k∈I with positive values is called a
weight sequence, if

Υ(ω) := sup
k∈I

ωk

ωk+1
< ∞.

With a positive sequenceω, we define the Banach space ofω-bounded sequences

`∞ω (I,X ) :=
{

φ ∈ `(I,X ) : sup
k∈I

ω−1
k ‖φk‖ < ∞

}
, ‖φ‖`∞ω (I,X ) := sup

k∈I
ω−1

k ‖φk‖ ;

for simplicity reasons we often write‖·‖ω instead of‖·‖`∞ω (I,X ). Obviously, the Banach
space ofbounded sequences`∞(I,X ) corresponds to the special caseωk = 1. Moreover,
considering

`0(I,X ) :=
{

φ ∈ `(I,X ) : lim
k→∞

‖φk‖ = 0
}

as normed subspace of`∞(I,X ) yields another Banach space. Since`0(I,X ) possesses a
Schauder basis, we arrive at

Lemma 2.1. LetdimX < ∞. Then a setK ⊆ `0(I,X ) is relatively compact, if and only
if K is bounded and

lim
n→∞

sup
φ∈K

sup
k>n

‖φk‖ = 0.
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Proof. Using the canonical unit vectorsen = (δn,k)k∈I as Schauder basis of`0(I,R), the
claim follows from (11, p. 34, Theorem 4.1). ¤

2.2. Summable sequences.With a real p ≥ 1 we define the Banach spaces ofp-
summable sequences

`p(I,X ) :=

{
φ ∈ `(I,X ) :

∑

k∈I
‖φk‖p

< ∞
}

, ‖φ‖`p(I,X ) := p

√∑

k∈I
‖φk‖p;(2.1)

since we do not want to overextend our notation, we usually write‖·‖p rather than
‖·‖`p(I,X ). Compactness iǹp(I,X ) can be characterized similarly to Lemma 2.1 as fol-
lows:

Lemma 2.2. LetdimX < ∞. Then a setK ⊆ `p(I,X ) is relatively compact, if and only
if K is bounded and

lim
n→∞

sup
φ∈K

p

√∑

k>n

‖φk‖p = 0.

Proof. Again, the canonical unit vectorsen = (δn,k)k∈I form a Schauder basis of`p(I,R)
and, thus, the proof follows from (11, p. 34, Theorem 4.1). ¤

If X is uniformly convex, then alsòp(I,X ) is uniformly convex forp ∈ (1,∞) (cf. (12,
p. 63, Theorem 2.4.16)), whereas`p(I,X ) are not uniformly convex forp ∈ {1,∞}. If
dimX < ∞we note thatX is isomorphic toFN and we equipX with the Euclidean norm;
then`p(I,X ) becomes uniformly convex.

The modulus of convexityδ`p(I,X ) can be obtained from

δ`p(I,X )(t) = 1− p

√
1− (

t
2

)p
for all p ∈ [2,∞) ,

2 =
(
1− δ`p(I,X )(t) + t

2

)p +
(
1− δ`p(I,X )(t)− t

2

)p
for all p ∈ (1, 2)

(cf. (11, p. 64, Example 6)), while the corresponding normal structure coefficient is given
by N(`p(I,X )) = min

{
21−1/p, 21/p

}
for p ≥ 1 (cf. (11, p. 128, Theorem 6.3)).

Let Y stand for one of the sets̀∞ω (I,Ω), `0(I,Ω) or `p(I, Ω), denoting the respective
subsets of sequences with values inΩ. We endowY with the canonical metric topology
and remark thatY is a complete metric space, ifΩ is closed. For positive valued sequences
ω ∈ `p(I,R) we have the inclusions

`∞ω (I,Ω) ⊆ `p(I, Ω) ↪→ `0(I,Ω) ↪→ `∞(I,Ω)

and actually each of the embeddings is norm one.

3. PRELIMINARIES

Unless otherwise noted, we assumeI is a discrete interval which is unbounded above.
Since we are interested in asymptotic behavior, this is a reasonable assumption. We pick
κ ∈ I and supposeΩ ⊆ X to be a set with0 ∈ Ω.

3.1. Difference equations.To denote difference equations (the notionsrecursionor iter-
ationare also frequently used) we use the notation

(3.1) xk+1 = fk(xk, xk+1)

with theright-hand sidefk : Ω×Ω → Ω, k ∈ I. A sequenceφ = (φk)k∈Z+
κ

in Ω satisfying
φk+1 = fk(φk, φk+1) for k ∈ Z+

κ is called a(forward) solutionof (3.1). Analogously, a
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backward solutionhas this property withZ+
κ replaced byZ−κ . We say that (3.1) iswell-

posedonΩ0 ⊆ Ω, if for all κ ∈ I, ξ ∈ Ω0 there exists a unique solutionφ with φ(κ) = ξ.
In this case, letϕ(κ, ξ) denote thegeneral solutionof (3.1), i.e.ϕ(κ, ξ) ∈ `(Z+

κ ,X ) solves
(3.1) and satisfies the initial conditionϕ(κ, ξ)κ = ξ for κ ∈ Z, ξ ∈ Ω0.

If f does not depend on its third argument, we denote (3.1) asexplicit difference equa-
tion, remark that it is trivially well-posed onΩ and its general solution can be obtained
by

(3.2) ϕ(κ, ξ)k :=
{

ξ for k = κ
fk−1 ◦ . . . ◦ fκ(ξ) for k > κ

.

3.2. Attractivity notions. In order to introduce an appropriate notion of attractivity, letY
be a subspace of̀0(I,X ). Differing from the standard terminology, we say a difference
equation (3.1) isY-attractive, if for eachκ ∈ I there exists aρ > 0 and a solutionφ ∈
`(Z+

κ , Ω) such that for allξ ∈ Bρ(0) ∩ Ω the following holds:

φ(κ) = ξ, φ ∈ Y;

in addition, equation (3.1) is calleduniformlyY-attractive, if ρ > 0 can be chosen in-
dependently ofκ ∈ I, andglobally Y-attractivewhenφ ∈ Y holds for all initial values
ξ ∈ Ω. This paper provides criteria for globalY-attractivity.

Concerning these attractivity notions it is worth to point out that (3.1) is not assumed
to possess the trivial solution, i.e.,0 needs not to be a fixed point offk(0, ·). Hence,
Y-attractivity is a property of the difference equation (3.1) and not (necessarily) of its
solutions. Nevertheless, this notion of attractivity can easily be attached to individual so-
lutions of (3.1). Thereto, letφ∗ ∈ `(I,Ω) be a given reference solution of (3.1). In order to
determine attractivity properties ofφ∗ it is convenient to work with thedifference equation
of perturbed motion

(3.3) xk+1 = fk(xk + φ∗k, xk+1 + φ∗k+1)− fk(φ∗k, φ∗k+1).

Clearly,φ∗ is (uniformly, globally)Y-attractive in the standard terminology, if and only if
the zero solution of (3.3) has this property. In particular, our methods apply to (3.3).

We have abstract formulations of certain classical attractivity notions for difference
equations (cf., e.g., (13) or (14, p. 240, Definition 5.4.1)), namely attractivity forY =
`0(Z+

κ ,X ), exponential stability forY = `∞ω (Z+
κ ,X ) with ωk = γk andγ ∈ (0, 1), and

also`p-stability forY = `p(Z+
κ ,X ).

The notion of`p-stability has been introduced to difference equations in (8). As the
following example demonstrates, it lies in between attractivity and exponential stability.

Example3.1. Consider the explicit equationxk+1 = k
k+1xk for I = N. Its general solution

is given byϕ(κ, ξ)k = κ
k ξ for κ ∈ I andξ ∈ R. Hence, the trivial solution is̀p(Z+

κ ,R)-
stable forp > 1, but not`1(Z+

κ ,R)- or exponentially stable. Moreover, (8) provides a
similar example of a linear difference equation which is asymptotically stable, but not`p-
stable for anyp ≥ 1.

3.3. Operator theoretical setting. Let κ ∈ I. It is crucial for our functional analytical
approach to introduce the operators:

• the linearembedding operatorE+ : X → `(Z+
κ ,X ), E+ξ := (ξ, 0, 0, . . . ),

• the linear right shift operator S+
κ : `(Z+

κ ,X ) → `(Z+
κ ,X ), S+

κ φ :=
(0, φκ, φκ+1, . . .),

• the nonlinearsubstitution operatorFf : `(I, Ω) → `(I,X ), Ff (φ) :=(
fk(φk, φk+1)

)
k∈I,
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• Gf : `(Z+
κ , Ω)× Ω → `(Z+

κ , Ω), given by

(3.4) Gf (φ, ξ) := E+ξ + S+
κ Ff (φ).

The substitution operatorGf depends linearly on the functionsfk. Moreover, if fk :
Ω× Ω → Ω is a linear mapping, thenGf becomes affine linear.

Lemma 3.1. Letκ ∈ I andY be one of the spaces`∞ω (Z+
κ ,X ), `0(Z+

κ ,X ) or `p(Z+
κ ,X ).

Then one has the inclusionsE+ ∈ L(X ,Y), S+
κ ∈ L(Y) with norm

∥∥E+
∥∥
L(X ,`∞ω (Z+

κ ,X ))
= ω−1

κ ,
∥∥S+

κ

∥∥
L(`∞ω (Z+

κ ,X ))
≤ Υ(ω),(3.5)

∥∥E+
∥∥
L(X ,`0(Z+

κ ,X ))
= 1,

∥∥S+
κ

∥∥
L(`0(Z+

κ ,X ))
≤ 1,

∥∥E+
∥∥
L(X ,`p(Z+

κ ,X ))
= 1,

∥∥S+
κ

∥∥
L(`p(Z+

κ ,X ))
≤ 1.(3.6)

If dimX < ∞, thenE+ ∈ L(X ,Y) is compact.

Proof. The proof of the norm estimates is left to the reader. In casedimX < ∞, the
operatorE+ is finite dimensional, hence compact. ¤

Let D ⊆ Y be a nonempty subset of a Banach spaceY. For a self-mappingG : D → D
we define itsiteratesrecursively by

G0(x) := x, Gn+1 := G(Gn(x)) for all x ∈ D, n ∈ Z+
0 .

Proposition 3.2. Let κ ∈ I, ξ ∈ Ω and φ0 = (φ0
k)k∈Z+

κ
be a sequence inΩ. Then the

iteratesGn
f (·, ξ) of Gf (·, ξ) : `(Z+

κ , Ω) → `(Z+
κ ,Ω) have the representationGn

f (φ0, ξ) =
(φn

k )k∈Z+
κ

with

φn
κ = ξ, φn+1

k+1 = fk(φn
k , φn

k+1) for all n ∈ Z+
0 , k ∈ Z+

κ .

In particular, if (3.1) is explicit, then

Gn
f (φ0, ξ)k =

{
fk−1 ◦ . . . ◦ fκ(ξ), if κ ≤ k < n + κ,

fk−1 ◦ . . . ◦ fk−n(φ0
k−n), if k ≥ n + κ.

Remark3.1. For explicit equations (3.1) one hasGn
f (φ0, ξ)k = ϕ(κ, ξ)k for κ ≤ k < n+κ

and, thus, iterating the operatorGf (·, ξ) yields a successive approximation of solutions to
(3.1).

Proof. The proof is an easy induction argument. ¤

The basic tool for our whole analysis is given in

Theorem 3.3. Let κ ∈ I, ξ ∈ Ω and φ = (φk)k∈Z+
κ

be a sequence inΩ. Thenφ is a
solution of (3.1)with φκ = ξ, if and only ifφ solves the fixed point equation

(3.7) φ = Gf (φ, ξ).

Proof. Let φ ∈ `(Z+
κ ,Ω) be a solution of (3.1) withφκ = ξ. Then we have:

φκ = ξ =
(
E+ξ

)
κ

=
(
E+ξ + S+

κ Ff (φ)
)
κ

and fork > κ,

φk = fk−1(φk−1, φk) =
(
Ff (φ)

)
k−1

=
(
E+ξ + S+

κ Ff (φ)
)
k
.

The converse direction can be shown similarly. ¤
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Remark3.2. While the above Theorem 3.3 is formulated for forward solutions of (3.1), we
point out that a dual theory holds for backward solutionsφ ∈ `(Z−κ ,X ). More precisely,
if I is unbounded below, then a sequenceφ with φκ = ξ solves (3.1) onZ−κ , if and only if
the fixed point relation

φ = E−ξ + S−κ Ff (φ)

holds, where we have used

• the linear embedding operatorE− : X → `(Z−κ ,X ), E−ξ := (. . . , 0, 0, ξ),
• the linear left shift operator S−κ : `(Z−κ , Ω) → `(Z−κ , Ω), S−κ φ :=

(. . . , φκ−1, φκ, 0).

Remark3.3. If the right-hand sidefk does not depend on its first variable, then (3.1) is
a purely algebraic problem and the fixed point equation (3.7) degenerates to the infinite
algebraic systemφk = fk−1(φk) for κ < k.

We close this section with certain frequently used assumptions and a convenient termi-
nology on the right-hand side of (3.1) guaranteeing well-definedness, (Lipschitz-) continu-
ity or compactness ofGf , respectively.

Thereto, letY be a subset of̀(I,X ). We say the difference equation (3.1) or the function
fk : Ω×Ω → X isY-admissible, if there exists a sequenceφ∗ ∈ Y such thatGf (φ∗, 0) ∈
Y.

Hypothesis 1. We say a functionfk : Ω× Ω → X satisfies the assumption

(B)f with α ∈ [0,∞) and sequencesa, b, c from subsets of̀(I,R), if the estimate

‖fk(x, y)‖ ≤ ak + max {bk ‖x‖α
, ck+1 ‖y‖α}

for all k ∈ I, x, y ∈ Ω holds true,
(L)f with sequencesL, l from subsets of̀(I,R), if the estimate

‖fk(x, y)− fk(x̄, ȳ)‖ ≤ max {Lk ‖x− x̄‖ , lk+1 ‖y − ȳ‖}
for all k ∈ I, x, y ∈ Ω holds true.

4. CONTRACTION-LIKE CRITERIA

Throughout this section, we supposeY is another Banach space and consider an abstract
mappingG : D → Y defined on a nonempty subsetD ⊆ Y.

For the sake of completeness and consistency we formulate a slight generalization of
the well-known Banach contraction mapping principle.

Proposition 4.1. Letn ∈ N. If D is closed andGn : D → D is contractive, thenG has a
unique fixed point.

Proof. See, for instance, (15, p. 17, (6.3)). ¤

Lemma 4.2 (well-definedness oǹ∞ω ). Let κ ∈ I and ω̄ be a weight sequence. If the
functionfk : Ω × Ω → X satisfies(B)f with α ∈ [0,∞) and a ∈ `∞ω (Z+

κ ,R), b, c ∈
`∞̄ω

ωα
(Z+

κ ,R), then the operatorGf : `∞ω (Z+
κ , Ω) × Ω → `∞ω̄ (Z+

κ ,X ) is well-defined and

satisfies

‖Gf (φ, ξ)‖ω̄ ≤ max
{
‖ξ‖ ω̄−1

κ , Υ(ω̄) ‖a‖ω + max
{

Υ(ω̄) ‖b‖ ω̄
ωα

, ‖c‖ ω̄
ωα

}
‖φ‖α

ω

}

for all ξ ∈ Ω andφ ∈ `∞ω (Z+
κ , Ω).
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Proof. Let κ ∈ I, ξ ∈ Ω andφ ∈ `∞ω (Z+
κ ,Ω). Provided the involved quantities exist, we

make use of the relation

‖Gf (φ, ξ)‖ω̄

(3.4)= max

{
‖ξ‖ ω̄−1

κ , sup
k∈Z+

κ

‖fk(φk, φk+1)‖ ω̄−1
k+1

}

which easily follows from the definition ofGf . From Hypothesis(B)f we obtain

‖fk(φk, φk+1)‖ ω̄−1
k+1

≤ akω̄−1
k+1 + max

{
bk

ωα
k

ω̄k+1

(‖φk‖ω−1
k

)α
, ck+1

ωα
k+1

ω̄k+1

(‖φk+1‖ω−1
k+1

)α
}

≤ akω̄−1
k+1 + max

{
bk

ωα
k

ω̄k+1
, ck+1

ωα
k+1

ω̄k+1

}
‖φ‖α

ω

≤ Υ(ω̄) ‖a‖ω + max
{

Υ(ω̄) ‖b‖ ω̄
ωα

, ‖c‖ ω̄
ωα

}
‖φ‖α

ω for all k ∈ Z+
κ .

Then, passing over to the least upper bound over all integersk ∈ Z+
κ shows that the

mappingGf : `∞ω (Z+
κ , Ω) × Ω → `∞ω (Z+

κ ,X ) is well-defined satisfying the claimed
norm-estimate. ¤

Lemma 4.3 (Lipschitz condition oǹ ∞
ω ). Let κ ∈ I and ω̄ be a weight sequence. If

the functionfk : Ω × Ω → X satisfies(L)f with L, l ∈ `∞̄ω
ω

(Z+
κ ,R), then the operator

Gf : `∞ω (Z+
κ ,Ω) × Ω → `(Z+

κ ,X ) fulfills Gf (φ, ξ) − Gf (φ̄, ξ) ∈ `∞ω̄ (Z+
κ ,X ) for all

φ, φ̄ ∈ `∞ω (Z+
κ , Ω) and

(4.1) Lip1 Gf ≤ max
{

Υ(ω̄) ‖L‖ ω̄
ω

, ‖l‖ ω̄
ω

}
.

Proof. Let κ ∈ I, ξ ∈ Ω andφ, φ̄ ∈ `∞ω (Z+
κ , Ω). First of all, by definition of the operator

Gf one has (provided it exists)
∥∥Gf (φ, ξ)−Gf (φ̄, ξ)

∥∥
ω̄

(3.4)= sup
k∈Z+

κ

∥∥fk(φk, φk+1)− fk(φ̄k, φ̄k+1)
∥∥ ω̄−1

k+1.

Now, for k ∈ Z+
κ we derive from Hypothesis(L)f that

∥∥fk(φk, φk+1)− fk(φ̄k, φ̄k+1)
∥∥ ω̄−1

k+1

≤ max
{
Lk

∥∥φk − φ̄k

∥∥ ω̄−1
k+1, lk+1

∥∥φk+1 − φ̄k+1

∥∥ ω̄−1
k+1

}

≤ max
{

Lk
ωk

ω̄k+1
, lk+1

ωk+1

ω̄k+1

} ∥∥φ− φ̄
∥∥

ω
≤ max

{
Υ(ω̄) ‖L‖ ω̄

ω
, ‖l‖ ω̄

ω

} ∥∥φ− φ̄
∥∥

ω
,

which yields our claim by passing over to the supremum overk ∈ Z+
κ . ¤

This yields a prototype result on global attractivity.

Theorem 4.4. Let κ ∈ I, ω be a weight sequence andΩ be closed. If the right-hand side
fk : Ω × Ω → Ω of (3.1) is `∞ω (Z+

κ , Ω)-admissible and satisfies(L)f with sequences
L, l ∈ `∞(Z+

κ ,R) so that

(4.2) max
{

Υ(ω) ‖L‖`∞(Z+
κ ,R) , ‖l‖`∞(Z+

κ ,R)

}
< 1,

then the difference equation(3.1) is well-posed onΩ with ϕ(κ, ξ) ∈ `∞ω (Z+
κ , Ω) for all

ξ ∈ Ω. In particular, (3.1) is globally`∞ω (Z+
κ ,X )-attractive.
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Proof. Let κ ∈ I, ξ ∈ Ω and chooseφ ∈ `∞ω (Z+
κ ,Ω). We want to apply Proposition 4.1

with n = 1 and the closed setD = `∞ω (Z+
κ ,Ω) to the mappingGf (·, ξ). Since Lemma 4.3

is applicable withω = ω̄, it remains to show thatGf (·, ξ) : D → D is well-defined.
Thereto, we obtain from the triangle inequality (note that (3.1) is`∞ω (Z+

κ , Ω)-admissible)
and our assumptions,

‖Gf (φ, ξ)‖ω

(4.1)
≤ ‖Gf (φ∗, ξ)‖ω + ‖φ− φ∗‖ω ,

thusGf (φ, ξ) ∈ `∞ω (Z+
κ ,X ). Moreover, sincefk has values inΩ, we haveGf (φ, ξ) ∈ D.

Our assumptions with (4.1) guarantee thatGf (·, ξ) is a contraction and its unique fixed
point, by Theorem 3.3, is the solution of (3.1). ¤

Corollary 4.5. If the equation(3.1) is explicit, then assumption(4.2)can be replaced by

sup
k≥κ

ω−1
k+1

k+n∏

j=k

Lj < 1 for onen ∈ N.

Proof. With the explicit representation in Proposition 3.2, thenth iterateGn
f is easily seen

to be a contraction and Proposition 4.1 implies our claim. ¤

Lemma 4.6(Lipschitz condition oǹ 0). Letκ ∈ I. If a functionfk : Ω×Ω → X satisfies
(L)f with L, l ∈ `∞(Z+

κ ,R), then the operatorGf : `0(Z+
κ , Ω) × Ω → `(Z+

κ ,X ) fulfills
Gf (φ, ξ)−Gf (φ̄, ξ) ∈ `0(Z+

κ ,X ) for φ, φ̄ ∈ `0(Z+
κ , Ω) and

(4.3) Lip1 Gf ≤ max
{
‖L‖`∞(Z+

κ ,R) , ‖l‖`∞(Z+
κ ,R)

}
.

Proof. The proof is analogous to Lemma 4.3 and omitted. ¤

Theorem 4.7. Letκ ∈ I andΩ be closed. If the right-hand sidefk : Ω× Ω → Ω of (3.1)
is `0(Z+

κ , Ω)-admissible and satisfies(L)f with sequencesL, l ∈ `∞(Z+
κ ,R) so that

(4.4) max
{
‖L‖`∞(Z+

κ ,R) , ‖l‖`∞(Z+
κ ,R)

}
< 1,

then the difference equation(3.1) is well-posed onΩ with ϕ(κ, ξ) ∈ `0(Z+
κ ,Ω) for all

ξ ∈ Ω. In particular, (3.1) is globally`0(Z+
κ ,X )-attractive.

Proof. Using Lemma 4.6 one proceeds as in Theorem 4.4. ¤

Lemma 4.8(Lipschitz condition oǹp). Letκ ∈ I andp ≥ 1. If a functionfk : Ω×Ω → X
satisfies(L)f with L, l ∈ `∞(Z+

κ ,R), then the operatorGf : `p(Z+
κ , Ω)×Ω → `(Z+

κ ,X )
fulfills Gf (φ, ξ)−Gf (φ̄, ξ) ∈ `p(Z+

κ ,X ) for all φ, φ̄ ∈ `p(Z+
κ ,Ω) and

(4.5) Lip1 Gf ≤ ‖l‖`∞(Z+
κ ,R) + ‖L‖`∞(Z+

κ ,R) .

Proof. Let κ ∈ I, ξ ∈ Ω andφ, φ̄ ∈ `p(Z+
κ , Ω). We derive from Hypothesis(L)f that

∥∥fk(φk, φk+1)− fk(φ̄k, φ̄k+1)
∥∥p

≤ max
{
Lk

∥∥φk − φ̄k

∥∥ , lk+1

∥∥φk+1 − φ̄k+1

∥∥}p

≤ Lp
k

∥∥φk − φ̄k

∥∥p + lpk+1

∥∥φk+1 − φ̄k+1

∥∥p
for all k ∈ Z+

κ

and the elementary inequality(t + s)1/p ≤ t1/p + s1/p for realss, t ≥ 0 yields

∥∥Gf (φ, ξ)−Gf (φ̄, ξ)
∥∥

p

(3.4)= p

√√√√
∞∑

k=κ

∥∥fk(φk, φk+1)− fk(φ̄k, φ̄k+1)
∥∥p
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≤ p

√√√√
∞∑

k=κ

Lp
k

∥∥φk − φ̄k

∥∥p +
∞∑

k=κ

lpk+1

∥∥φk+1 − φ̄k+1

∥∥p

≤ (‖l‖1 + ‖L‖1)
∥∥φ− φ̄

∥∥
p
.

Hence, we are done. ¤

Theorem 4.9. Letκ ∈ I, p ≥ 1 andΩ be closed. If the right-hand sidefk : Ω×Ω → Ω of
(3.1) is `p(Z+

κ , Ω)-admissible and satisfies(L)f with sequencesL, l ∈ `∞(Z+
κ ,R) so that

(4.6) ‖l‖`∞(Z+
κ ,R) + ‖L‖`∞(Z+

κ ,R) < 1,

then the difference equation(3.1) is well-posed onΩ with ϕ(κ, ξ) ∈ `p(Z+
κ , Ω) for all

ξ ∈ Ω. In particular, (3.1) is globally`p(Z+
κ ,X )-attractive.

Proof. Having Lemma 4.8, one proceeds as in Theorem 4.4. ¤

Corollary 4.10. If the equation(3.1) is explicit, then the respective assumption(4.4) or
(4.6)can be replaced by

sup
k≥κ

k+n∏

j=k

Lj < 1 for onen ∈ N.

Proof. See the proof of Corollary 4.5. ¤

Corollary 4.11. Under the assumptions of Theorem 4.4, 4.7 or 4.9 the general solution
ϕ(κ, ·)k : Ω → Ω of (3.1) is globally Lipschitz for allk ∈ Z+

κ .

Proof. Let κ ∈ I, ξ, ξ̄ ∈ Ω and denote byY one of the sets̀∞ω (Z+
κ ,Y), `0(Z+

κ ,Y) or
`p(Z+

κ ,Y). We chooseφ ∈ Y ∩ `(Z+
κ , Ω) and obtain from Lemma 3.1,

∥∥Gf (φ, ξ)−Gf (φ, ξ̄)
∥∥
Y

(3.4)=
∥∥E+(ξ − ξ̄)

∥∥
Y ≤

∥∥E+
∥∥∥∥ξ − ξ̄

∥∥ .

ConsequentlyGf (φ, ·) : Ω → Y satisfies a Lipschitz condition. Then, by the uniform
contraction principle (cf. (15, p. 17, (6.2))) also the fixed pointϕ(κ, ·) : Ω → Y is globally
Lipschitz. By properties of the evaluation map, this carries over toϕ(κ, ·)k for every
k ∈ Z+

κ . ¤

Example4.1 (neural model of Cowen and Stein). We study a discrete counterpart of a
model from (16) in form of the difference equation

(4.7) xi
k+1 = αix

i
k + g(γi −

∞∑

j=1

βijx
j
k+1) for all i ∈ N

with parametersαi ≥ 0, γi, βij ∈ R satisfying

` := sup
i∈N

(
αi +

∞∑

j=1

1+eγi

1+eγj |βij |
)

< 1;

here, the functiong : R→ (0, 1) is given byg(x) := 1
1+ex and we have

(4.8) |g′(x)| ≤ 1 for all x ∈ R.

We write (4.7) as recursion of the form (3.1) inΩ = `∞ω̄ (N, [0,∞)), with

f(x, y)i := αixi + g(γi −
∞∑

i=1

βijyi) for all i ∈ N
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and show thatf : Ω× Ω → Ω is well-defined. Thereto, define the sequenceω̄i := 1
1+eγi

,
and forx, x̄, y, ȳ ∈ Ω we get

|f(x, y)i − f(x̄, ȳ)i| ≤ αi |xi − x̄i|+
∣∣∣∣∣g(γi −

∞∑

i=1

βijyi)− g(γi −
∞∑

i=1

βij ȳi)

∣∣∣∣∣
(4.8)
≤ αi |xi − x̄i|+

∞∑

j=1

|βij | |yj − ȳj | for all i ∈ N.

Multiplication with ω̄−1
i and passing over to the supremum overi ∈ N gives us

‖f(x, y)− f(x̄, ȳ)‖ω̄ ≤ ` max {‖x− x̄‖ω̄ , ‖y − ȳ‖ω̄} ;

since we evidently havef(x, y)i ≥ 0 andf(0, 0) ∈ `∞ω̄ (N,R), this impliesf(x, y) ∈ Ω.
Hence, due to the contraction condition` < 1, equation (4.7) possesses a unique equilib-
rium φ∗ ∈ Ω, i.e., f(φ∗, φ∗) = φ∗. Every solution of (4.7) approaches this equilibrium
exponentially, which can be seen as follows: Consider the corresponding equation of per-
turbed motion (3.3). Its right-hand side satisfies the assumptions of Theorem 4.4 with
ω = (γk)k∈Z+

0
for γ ∈ (`, 1).

5. FURTHER GLOBAL CRITERIA

Let Y be a Banach space and consider a mapG : D → Y defined on a nonempty set
D ⊆ Y . ThenG is calledcompletely continuous, if G is continuous andG(S) ⊆ Y is
relatively compact for every boundedS ⊆ D. We present a generalization of Schauder’s
fixed point theorem due to Krasnoselskii.

Proposition 5.1. LetC ⊆ Y be bounded, closed and convex. IfG0 : C → Y is contractive
andG1 : C → Y is completely continuous, then the sumG0 + G1 : C → C has a fixed
point.

Proof. See for instance (15, p. 70, (9.19)), or (17, p. 163, Theorem 5.2.9) in connection
with (18, p. 496, Example 11.7). ¤
Lemma 5.2(well-definedness oǹp). Letκ ∈ I andp, q ≥ 1. If a functionfk : Ω×Ω → X
satisfies(B)f with α ≥ p

q and a ∈ `q(Z+
κ ,R), b, c ∈ `∞(Z+

κ ,R), then the operator

Gf : `q(Z+
κ ,Ω)× Ω → `p(Z+

κ ,X ) is well-defined and satisfies
(5.1)

‖Gf (φ, ξ)‖`q(Z+
κ ,R) ≤ ‖ξ‖+ ‖a‖`q(Z+

κ ,R) +
(
‖b‖`∞(Z+

κ ,R) + ‖c‖`∞(Z+
κ ,R)

)
‖φ‖α

`αq(Z+
κ ,R)

for all ξ ∈ Ω andφ ∈ `p(Z+
κ ,Ω).

Proof. Let κ ∈ I, ξ ∈ Ω andφ ∈ `p(Z+
κ ,Ω) be given. Then Hypothesis(B)f , Lemma 3.1

and Minkowski’s inequality imply

‖Gf (φ, ξ)‖q

(3.4)
≤ ‖E+ξ‖q + ‖Ff (φ, S+

κ φ)‖q
(3.6)= ‖ξ‖+ q

√√√√
∞∑

k=κ

‖fk(φk, φk+1)‖q

≤ ‖ξ‖+ q

√√√√
∞∑

k=κ

(ak + max {bk‖φk‖α; ck+1‖φk+1‖α})q

≤ ‖ξ‖+ ‖a‖q + (‖b‖1 + ‖c‖1) q

√√√√
∞∑

k=κ

‖φk‖αq
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= ‖ξ‖+ ‖a‖q + (‖b‖1 + ‖c‖1)‖φ‖α
αq,

where (2.1) guaranteesφ ∈ `αq(Z+
κ ,X ). Hence, Lemma 5.2 is verified. ¤

Lemma 5.3 (complete continuity oǹp). Let κ ∈ I, p, q ≥ 1 and dimX < ∞. If a
continuous functionfk : Ω × Ω → X satisfies(B)f with α ≥ p

q and a ∈ `q(Z+
κ ,R),

b, c ∈ `0(Z+
κ ,R), then the operatorGf (·, ξ) : `p(Z+

κ , Ω) → `q(Z+
κ ,X ) is completely

continuous for allξ ∈ Ω.

Proof. Using Lemma 2.2, the proof follows from (19). ¤
Theorem 5.4. Let p ≥ 1, dimX < ∞ and Ω ⊆ X be closed and convex. Assume the
right-hand sidefk : Ω× Ω → Ω of (3.1)allows the decomposition

fk(x, y) = gk(x, y) + hk(x, y)

into functionsgk, hk : Ω× Ω → X with the following properties:

(i) Gg(0, 0) ∈ `p(I,X ) andgk satisfies(L)g with L, l ∈ `∞(I,R),
(ii) hk is continuous, satisfies(B)h with α = 1, a ∈ `p(I,R), b, c ∈ `0(I,R) and

‖b‖`0(I,R) + ‖c‖`0(I,R) + ‖l‖`∞(I,R) + ‖L‖`∞(I,R) < 1.

Then the difference equation(3.1) is globally`p(I,X )-attractive.

Proof. Let ξ ∈ Ω. Thanks to our assumptions, we can decompose the operatorGf :
`p(I,Ω)× Ω → `(I,X ) as follows

Gf (φ, ξ) = Gg(φ, 0) + Gh(φ, ξ) for all φ ∈ `p(I,Ω)

and show that Proposition 5.1 is applicable. Above all, we know from Lemma 4.8 that
Gg(·, 0) is a contraction. On the other hand, Lemma 5.3 implies thatGh(·, ξ) is completely
continuous. Now we define

σ := ‖b‖+ ‖c‖+ ‖L‖+ ‖l‖ , ρ :=
‖Gg(0, 0)‖p + ‖a‖p

1− σ

and choose real constantsR > ρ, r ∈ (0, (1− σ)(R− ρ)] so large thatξ ∈ B̄r(0). Then
C := B̄R(0) ∩ `(I, Ω) is a bounded, closed and convex subset of`p(I,X ). It remains to
verify that the operatorGf (·, ξ) : C → C is well-defined forξ ∈ B̄r(0) ∩Ω. This follows
from the estimate (see Lemma 4.8 and 5.2)

‖Gf (φ, ξ)‖ ≤ ‖Gg(φ, 0)−Gg(0, 0)‖+ ‖Gg(0, 0)‖+ ‖Gh(φ, ξ)‖
(4.5)
≤ (‖l‖+ ‖L‖) ‖φ‖+ ‖Gg(0, 0)‖+ ‖Gh(φ, ξ)‖

(5.1)
≤ ‖ξ‖+ ‖Gg(0, 0)‖+ ‖a‖+ σ ‖φ‖ ≤ R

for all φ ∈ C, ξ ∈ B̄r(0) ∩ Ω. Then Proposition 5.1 implies the assertion. ¤
Lemma 5.5 (well-definedness oǹ0). Let κ ∈ I. If a function fk : Ω × Ω → X
satisfies(B)f with α > 0, a ∈ `0(Z+

κ ,R) and b, c ∈ `∞(Z+
κ ,R), then the operator

Gf : `0(Z+
κ , Ω)× Ω → `0(Z+

κ ,X ) is well-defined and satisfies
(5.2)

‖Gf (φ, ξ)‖`0(Z+
κ ,X ) ≤ ‖ξ‖+‖a‖`0(Z+

κ ,R)+max
{
‖b‖`∞(Z+

κ ,R) , ‖c‖`∞(Z+
κ ,R)

}
‖φ‖α

`0(Z+
κ ,R)

for all ξ ∈ Ω andφ ∈ `0(Z+
κ , Ω).

Proof. The proof is straight-forward and essentially the same as of Lemma 5.2; thus we
omit it. ¤
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Lemma 5.6 (complete continuity oǹ0). Let κ ∈ I and dimX < ∞. If a continuous
functionfk : Ω × Ω → X satisfies(B)f with α > 0 anda, b, c ∈ `0(Z+

κ ,R), then the
operatorGf (·, ξ) : `0(Z+

κ , Ω) → `0(Z+
κ ,X ) is completely continuous for allξ ∈ Ω.

Proof. From the above Lemma 5.5 we know thatGf : `0(Z+
κ , Ω) × Ω → `0(Z+

κ ,X )
is well-defined. Letξ ∈ Ω. In case of`p-spaces the continuity of such substitution
operators is shown in (19, Theorem 1.1). The interested reader may check that the cor-
responding arguments also hold in our present`0-setting, yielding thatGf (·, ξ) is con-
tinuous. It remains to verify thatGf (·, ξ) maps bounded subsetsS ⊆ `0(Z+

κ , Ω) into
relatively subsets of̀0(Z+

κ ,X ). SinceS is bounded, there exists anR ≥ 0 such that
‖φk‖ ≤ ‖φ‖`0(Z+

κ ,X ) ≤ R for all φ ∈ S. W.l.o.g. we assume in Hypothesis(B)f that the
sequencesa, b, c ∈ `0(Z+

κ ,R) are non-increasing. Consequently, for eachφ ∈ S we have

‖Gf (φ, ξ)k‖ (3.4)= ‖fk(φk, φk+1)‖ ≤ ak + max {bk ‖φk‖α
, ck+1 ‖φk+1‖α}

≤ an + max {bn, cn}Rα for all k > n ≥ κ

and consequently
sup
φ∈S

sup
k>n

‖Gf (φ, ξ)k‖ −−−−→
n→∞

0.

Thus, Lemma 2.1 implies thatGf (S, ξ) ⊆ `0(Z+
κ ,X ) is relatively compact and we have

established Lemma 5.6. ¤
Theorem 5.7. LetdimX < ∞ andΩ ⊆ X be closed and convex. Assume the right-hand
sidefk : Ω× Ω → Ω of (3.1)allows the decomposition

fk(x, y) = gk(x, y) + hk(x, y)

into functionsgk, hk : Ω× Ω → X with the following properties:

(i) Gg(0, 0) ∈ `0(I,X ) andgk satisfies(L)g with L, l ∈ `0(I,R),
(ii) hk is continuous, satisfies(B)h with α > 0, a, b, c ∈ `0(I,R) and

‖b‖`0(I,R) + ‖c‖`0(I,R) + max
{
‖l‖`0(I,R) , ‖L‖`0(I,R)

}
< 1.

Then the difference equation(3.1) is globally`0(I,X )-attractive.

Proof. Let ξ ∈ Ω. We decompose the operatorGf : `p(I, Ω)× Ω → `(I,X )

Gf (φ, ξ) = Gg(φ, 0) + Gh(φ, ξ) for all φ ∈ `p(I,Ω)

and apply Proposition 5.1. From Lemma 4.8 we get thatGg(·, 0) is a contraction and
Lemma 5.3 implies the complete continuity ofGh(·, ξ). The remaining arguments are
similar to the proof of Theorem 5.4. ¤

As application of Theorem 5.4 we investigate a linearly implicit partial difference equa-
tion.

Example5.1 (discrete reaction-diffusion equation). Let I be a discrete interval,κ ∈ I
and n−, n+ be integers satisfyingN := n+ − n− − 2 > 0. We defineJ :=
{n− + 1, . . . , n+ − 1}, the finite dimensional spaceX := `(J,R) ∼= RN , chooseυ ∈ X
and consider the discrete reaction-diffusion equation

uk+1,n = αuk+1,n−1 + βuk+1,n + γuk+1,n+1 + F (k, n, uk,n−+1, . . . , uk,n+−1),

for n ∈ J, k ∈ Z+
κ(5.3)

equipped with the initial boundary conditionsuκ,n = υn for all n ∈ J,
uk,n− = 0, uk,n+ = 0 for all k ∈ Z+

κ
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under the following assumptions:

(i) There exists a closed convex neighborhoodΩ ⊆ RN of 0 such that

αun−1 + βun + γun+1 + F (k, n, u) ∈ Ω for all u = (un−+1, . . . , un+−1) ∈ Ω

andk ∈ Z+
κ , n ∈ J,

(ii) the scalarsα, β, γ ∈ R satisfyαγ > 0 and∣∣∣β + 2
√

αγ sgnα cos
(

jπ
N+1

)∣∣∣ < 1 for all j ∈ {1, . . . , N} ,

(iii) the nonlinearityF : I× J×X → R is continuous and linearly bounded

(5.4) |F (k, n, u)| ≤ ak + bk

∑

j∈J
|uj | for all n ∈ N, u = (un−+1, . . . , un+−1) ∈ Ω

with positive sequencesa ∈ `p(I,R), b ∈ `0(I,R).
The partial difference equation (5.3) can be written as an ordinary difference equation in
the spaceX , namely

(5.5) xk+1 = Axk+1 + Fk(xk),

with the linear operatorA ∈ L(X ), A := tridiag(α, β, γ) and the substitution operator
Fk : X → X ,

(Fk(x))n := f(k, n, x) for all n ∈ J.
The assumption (ii) yields|λ| < 1 for all λ ∈ σ(A) and from (20, p. 6, Technical lemma
1) we know that there exists a norm onX such that‖A‖ < 1. Thus, (5.5) can be rewritten
asxk+1 = [I −A]−1

Fk(xk) and therefore the solutions of (5.3) and (5.5) are uniquely
determined and depend continuously on their initial conditions. Finally, Theorem 5.4 is
applicable, since there exists aκ̄ ∈ Z+

κ such thatsupk≥κ̄ bk < 1 − ‖A‖. Hence, (5.5) is
globally `p(Z+

κ ,X )-attractive forκ ≥ κ̄.

We callG : D → Y strongly continuous, if for every sequence(xn)n∈N in D with weak
limit x ∈ D one has the limit relationlimn→∞ ‖G(xn)−G(x)‖Y = 0. Then a result of
Reinermann reads as follows:

Proposition 5.8. Let Y be a uniformly convex Banach space and assumeC ⊆ Y is
bounded, closed, convex. IfG0 : C → Y is non-expansive andG1 : C → Y is strongly
continuous, then the sumG0 + G1 : C → C has a fixed point.

Proof. See (18, p. 501, Theorem 11.B). ¤
Lemma 5.9 (strong continuity oǹ p). Let κ ∈ I, p > 1 anddimX < ∞. If a function
fk : Ω × Ω → X satisfies(B)f with α ≥ 1, a ∈ `p(Z+

κ ,R), b, c ∈ `∞(Z+
κ ,R), and(L)f

with L, l ∈ `0(Z+
κ ,R), then the operatorGf (·, ξ) : `p(Z+

κ ,Ω) → `p(Z+
κ ,X ) is strongly

continuous for allξ ∈ Ω.

Proof. Let κ ∈ I. We subdivide the proof into two steps:
(I) Consider the linear substitution operatorsT1, T2 : `p(Z+

κ ,X ) → `p(Z+
κ ,X ),

(T1φ)k := Lkφk, (T2φ)k := lk+1φk+1

which, due tol, L ∈ `0(Z+
κ ,R) are well-defined by Lemma 5.2 and completely continuous

by Lemma 5.3. Thus, (21, Prop. VI-3.3) implies thatT1, T2 are strongly continuous, i.e.,
for every sequence(φn)n∈N in `p(Z+

κ ,X ) with φn ⇀ φ for n →∞ we have

‖T1φ
n − T1φ‖p

p =
∞∑

k=κ

Lp
k ‖φn

k − φk‖p −−−−→
n→∞

0,
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‖T2φ
n − T2φ‖p

p =
∞∑

k=κ

lpk+1

∥∥φn
k+1 − φk+1

∥∥p −−−−→
n→∞

0.

(II) Let ξ ∈ Ω, φ ∈ `p(Z+
κ , Ω) and(φn)n∈N be a sequence iǹp(Z+

κ , Ω) with φn ⇀ φ
for n →∞. Then, as in the proof of Lemma 4.8, one has

‖Gf (φn, ξ)−Gf (φ, ξ)‖p ≤ p

√√√√
∞∑

k=κ

Lp
k ‖φn

k − φk‖p + p

√√√√
∞∑

k=κ

lpk+1

∥∥φn
k+1 − φk+1

∥∥p −−−−→
n→∞

0

by step (I). This implies our claim. ¤

Theorem 5.10. Let p > 1, dimX < ∞ andΩ ⊆ X be closed and convex. Assume the
right-hand sidefk : Ω× Ω → Ω of (3.1)allows the decomposition

fk(x, y) = gk(x, y) + hk(x, y)

into functionsgk, hk : Ω× Ω → X with the following properties:

(i) fk satisfies(B)f with α = 1, a ∈ `p(I,R) andb, c ∈ `∞(I,R)

‖b‖`∞(I,R) + ‖c‖`∞(I,R) < 1,

(ii) gk is `p(I,X )-admissible and satisfies(L)g with L, l ∈ `∞(I,R) and

‖l‖`∞(I,R) + ‖L‖`∞(I,R) ≤ 1,

(iii) hk is `p(I,X )-admissible and satisfies(L)h with L, l ∈ `0(I,R) (hereL, l may be
different from (ii)).

Then the difference equation(3.1) is globally`p(I,X )-attractive.

Proof. Due top > 1 the Banach spacèp(I,X ) is uniformly convex. We chooseξ ∈ Ω,
decomposeGf : `p(I, Ω)× Ω → `(I,X )

Gf (φ, ξ) = Gg(φ, ξ) + Gh(φ, 0) for all φ ∈ `p(I, Ω).

and verify the assumptions of Proposition 5.8. Since the mappingsgk, hk are`p(I,X )-
admissible, using Lemma 4.8 it is not difficult to see thatGg(·, ξ), Gh(·, 0) : `p(I,Ω) →
`p(I,Ω) are well-defined. Thanks again to Lemma 4.8, the mappingGg(·, ξ) is non-
expansive, and Lemma 5.9 guarantees thatGh(·, 0) is strongly continuous. The remaining
argument is similarly to the proof of Theorem 5.4. ¤

Our next example addresses the roughness of the stability result derived in Example 3.1.

Example5.2. Consider the scalar implicit difference equation

(5.6) xk+1 = k
k+1xk + hk(xk+1)

with I = N. To mimic the notation of Theorem 5.10 we definegk(x) := k
k+1x, suppose

there exists aR > 0 such that

|gk(x) + hk(y)| ≤ R for all x, y ∈ [−R, R]

and setΩ := [−R, R]. Under the additional assumptions
∑

k∈N
|hk(0)|p < ∞, lim

k→∞
Lip hk|Ω = 0

it is easy to see that Theorem 5.10 is applicable to (5.6) and we obtain that all solutions
starting in[−R, R] are`p-summable forp > 1. The same result also holds for the explicit
version of (5.6) given byxk+1 = k

k+1xk + hk(xk).
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Now suppose there exists a nonnegative sequence(`n)n∈N so that

‖Gn(x)−Gn(x̄)‖Y ≤ `n ‖x− x̄‖Y for all n ∈ N, x, x̄ ∈ D;

in caseλ := supn∈N `n < ∞ we denoteG asuniformlyλ-Lipschitz.

Proposition 5.11. Let C ⊆ Y be bounded, closed, convex. A uniformlyλ-Lipschitz map
G : C → C possesses a fixed point, if one of the conditions holds:

(i) λ <
√

N(Y),
(ii) Y is uniformly convex andλ is less than the unique solutionh ∈ [

1
2 ,∞)

of
h

(
1− δY

(
h−1

))
= 1,

(iii) Y is uniformly convex andlimn→∞ `n = 1.

Proof. (i) See (11, p. 151, Theorem 3.2).
(ii) See (11, p. 142, Theorem 1.2).
(iii) See (22, Theorem 3). ¤

In the remaining part of the paper we deal with the explicit version of (3.1), namely the
equation

(5.7) xk+1 = fk(xk)

with a functionfk : Ω → Ω.

Lemma 5.12(Lipschitz condition oǹ p). Let κ ∈ I, n ∈ N and p ≥ 1. If a function
fk : Ω → X satisfies(L)f withL, l ∈ `∞(Z+

κ ,R), then the iteratesGn
f : `p(Z+

κ ,Ω)×Ω →
`(Z+

κ ,X ) fulfill Gn
f (φ, ξ)−Gn

f (φ̄, ξ) ∈ `p(Z+
κ ,X ) for all φ, φ̄ ∈ `p(Z+

κ ,Ω) and

(5.8) Lip1 Gn
f ≤ sup

k≥κ

k+n∏

j=k

Lj .

Proof. Let κ ∈ I, ξ ∈ Ω andφ, φ̄ ∈ `p(Z+
κ , Ω). We only establish (5.8), since the other

assertions are immediate from Lemma 4.8. By Proposition 3.2 and Hypothesis(L)f one
has ∥∥Gn

f (φ, ξ)−Gn
f (φ̄, ξ)

∥∥
p

(3.4)= p

√√√√
∞∑

k=n+κ

∥∥fk−1 ◦ . . . ◦ fk−n(φk−n)− fk−1 ◦ . . . ◦ fk−n(φ̄k−n)
∥∥p

≤ p

√√√√
∞∑

k=n+κ

Lp
k−1 · . . . · Lp

k−n

∥∥φk−n − φ̄k−n

∥∥p

≤ sup
k≥κ

k+n∏

j=k

Lj
p

√√√√
∞∑

k=κ

‖φk − φ̄k‖p = sup
k≥κ

k+n∏

j=k

Lj‖φ− φ̄‖p

and Lemma 5.12 is established. ¤

Theorem 5.13. Let p ≥ 1, dimX < ∞ and Ω ⊆ X be closed and convex. Assume
the right-hand sidefk : Ω → Ω of (5.7) satisfies(B)f with with α = 1, a ∈ `p(I,R),
b ∈ `∞(I,R),

‖b‖`∞(I,R) < 1,

and(L)f with L ∈ `∞(I,R), such that one of the following conditions
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(i) supn∈N `n <

√
min

{
21− 1

p , 2
1
p

}
,

(ii) supn∈N `n < p

√
3
2 andp > 1,

(iii) limn→∞ `n = 1 andp > 1

holds, wherè n := supk≥κ

∏k+n
j=k Lj . Then the explicit difference equation(5.7) is glob-

ally `p(I,X )-attractive.

Proof. Let ξ ∈ Ω be given, defineρ := ‖a‖
1−‖b‖ and choose real constantsR > ρ, r ∈

(0, (1− ‖b‖)(R− ρ)) so large thatξ ∈ B̄r(0). Then the setC := B̄R(0) ∩ `(I, Ω) is
bounded, closed and convex in`p(I,X ). We have to show thatGf (·, ξ) : C → C is
well-defined. This follows from Lemma 5.2, since we have

‖Gf (φ, ξ)‖p

(5.1)
≤ ‖ξ‖+ ‖a‖p + ‖b‖ ‖φ‖p ≤ R for all φ ∈ C

andξ ∈ B̄r(0) ∩ Ω. In addition, by Lemma 5.12 the mappingGf (·, ξ) is uniformly λ-
Lipschitz withλ := supn∈N `n. Then Proposition 5.11 yields the assertion. ¤
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