ASYMPTOTIC BEHAVIOR OF RECURSIONS VIA FIXED POINT THEORY

KRISTINE EY AND CHRISTIAN POTZSCHE

ABSTRACT. In this paper we provide a formulation of initial value problems for (explicit
and implicit) difference equations in terms of abstract equations in sequence spaces. They
will be solved using appropriate fixed point theorems and we obtain quantitative attractivity
properties.

1. INTRODUCTION

At first glance, it seems to be an almost trivial observation that (honautonomous) differ-
ence equations or recursions like

(1.1) Try1 = fr(or)
can be formulated as operator equations in appropriate sequence spaces. Nevertheless, the
obvious advantage of such a reformulation is based on the fact that a large variety of fixed
point theorems or other tools from nonlinear analysis can be employed in order to study
asymptotic properties for (1.1), instead of, e.g., Lyapunov or Gronwall techniques. Hence,
a dynamical problem reduces to a fixed point problem in an infinite dimensional space.
The ndve approach, though, of characterizing a recursion (1.1) by the operator equation
STx = F(x)
with the forward shift operatotS*z)y, := x4 and the substitution operat(xF(x))k =
frx(zr), is of little use, since initial conditions are not taken into consideration and the typ-
ically non-expansive operatéi™ is technically subtle to handle, i.e., fixed point theorems
for non-expansive maps are sophisticated.

Therefore, this paper features an alternative way, inspired by the pioneering work of
Petropoulou and Siafarikas. Their “functional analytic method” is based on the fact that
(1.1) (and more general equations) allow a characterization as operator equations in a sep-
arable Hilbert space, thus essentially the space of square summable sedticasagell
as in subspaces ¢f. This method has been successfully applied to investigate the asymp-
totic behavior of linear and nonlinear ordinary difference equations (cf. (1) and (2; 3; 4),
resp.), delay difference (cf. (5; 1)) and partial difference equations (cf. (5; 4)). One of
their preferred tools is a fixed point theorem for holomorphic mappings due to Earle and
Hamilton (6) (see also (7, p. 111, Theorem 4.6)).

In the present paper we overcome the deficit that the topology of the sequence spaces
under consideration is given by an inner product. Consequently, for instance we can also
use spaces of merely convergent or even exponentially bounded sequences. Thus, we
obtain criteria for the existence of sub-exponentially decaying solutions. One frequently
encounters such a situation in critical stability problems (e.g., for reduced equations on
center manifolds) or within the framework 6f-stability (cf. (8)).
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We have subdivided this article into essentially three parts. Sections 2—3 are fundamen-
tal for our work and contain some basic results on sequence spaces, difference equations
and the following crucial result:

Theorem 3.3: An initial value problem for a difference equation is equiva-
lent to a fixed point equation in a sequence space.

Criteria based on the contraction mapping principle are presented in Section 4, which pro-
vide assumptions guaranteeing that all solutions of a given equation are in a certain space.
After all, Section 5 contains some further global criteria using fixed point theorems of
Krasnoselskii, Reinermann or Goebel-Kirk type.

Compared to classical methods and techniques in stability theory, the presented ap-
proach features some advantages:

e The verification of attractivity properties for given solutions becomes simple and
technically transparent. Indeed, our proofs typically consist of two steps: One
shows that a nonlinear operator is well-defined on an ambient space, and one de-
duces a structural property guaranteeing the existence of fixed points, like for in-
stance, contractivity, non-expansiveness, complete or strong continuity. In addi-
tion, this yields information on the domain of attraction.

e As demonstrated in (2; 3; 5; 4; 1), the method easily extends for further classes of
discrete equations (delay difference, partial difference equations).

o While (8) obtains criteria fofP-stability in terms of a Lyapunov function, we tackle
the problem directly and impose conditions depending only on the right-hand side
of the equation, which are therefore easy to check.

Indicating a general tendency, our approach seems to be better suited for nonautonomous
equations. On the other hand, it turned out that the methodology exploited in this paper
has disadvantages, which should not be concealed:

e For scalar explicit equations R traditional approaches often yield better results.
This should not surprise; keeping in mind that we lift the problem into an infinite-
dimensional space, itis quite clear that important properties of the reals (e.g., com-
pactness criteria or the order-structure) get lost.

e The present approach requires a certain uniformity of, e.g., Lipschitz or bounded-
ness constants in the time variable, which is a technical issue and not intrinsic for
the problem.

e Properties of the right-hand side defining the difference equations are strongly re-
lated to the obtained fixed point operator. Thus, there are no smoothing properties
of, e.g., integral operators yielding compactness or other convenient attributes.

Let us close the introductory paragraphs by indicating some perspectives. We restricted
ourselves to tools from metric fixed point theory in linear spaces. As a matter of course,
also other techniques from nonlinear analysis seem appropriate to solve our nonlinear equa-
tion encountered in Theorem 3.3; for instance local implicit and inverse function theorems,
nonlinear alternatives or topological methods. We postpone the use of these methods to
later papers. Finally, it is worth to point out that also for ordinary differential equations,
fixed point methods have been applied to stability problems ((9; 10)).

Now we provide our terminology and some standard notions from geometry in Banach
spaces. The real field is denoted Ryand we writeC for the complex numberd, is the
ring of integersN the positive integers anddiscrete intervall is the intersection of a real
interval withZ; particularlyZ! :={k € Z : k <k},andZ; :={k €Z: k < k}.
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Throughout this papefY is a real(F = R) or complex(F = C) Banach space with
norm ||-|| , (or simply ||-||, if no confusion can arise). Writing for another Banach
space, the space of linear bounded mappings betveand ) is £(X,)), we abbre-
viate L(X) := L(X, X) andI is the identity onX’.

We write B,.(z) for the open ball in¥’ with centerz € X and radius- > 0; B, ()
stands for the corresponding closed ball. We w&itefor the interior and? for the topo-
logical closure of a subsét C X.

With a mappingf : Q@ — ) we write Lip f for its Lipschitzconstant andLip, f for the
Lipschitz constant w.r.t. the first argumentfiflepends on more than one argument.

Some of the fixed point theorems we are about to use rely heavily on geometrical proper-
ties of Banach spaces. Hence, the following notions are crucial for our later considerations;
as a reference we recommend and use (11).

Uniform convexity is a key ingredient to derive fixed point results for non-expansive
maps. Themodulus of convexitior X is the functiondx : [0,2] — [0, 1] given by

Sx(t) = inf{l — el gy e By(0), |2 — yl| > t}

(cf., e.g., (11, p. 64, Definition 2.3)) antl is calleduniformly convexif é(¢) > 0 for
t>0.

Writing () for theChebyshev radiugf Q C X (cf. (11, p. 112)), th@ormal structure
coefficientV (X) of X is defined as

N(X):= inf{dfzg)g : Q) C X convex, closed, bounded witfiam © > O}
(cf. (11, p. 114, Definition 2.1)), whertiam Q := sup, ,cq [z — |-

2. SEQUENCE SPACES

In the remaining paper, €2 C X be a subset with € 2. To consolidate notation, we
first define the spac, ) of all sequence® = (¢x)rer With valuesg, € Q and then
define various subspaces#i, ).

2.1. Bounded sequencesA real sequence = (wy)ker With positive values is called a
weight sequencéf

W
Wh41

Y(w) := sup < 00.

kel
With a positive sequence, we define the Banach spacewsbounded sequences

(3 (I, X) = {¢ €Ll X): i}gwgl lpwll < 00}7 1l pse 1,20y = b;:ér];w;l k!l

for simplicity reasons we often writg ||, instead of|-[|, ; ). Obviously, the Banach

space obounded sequencé® (I, X') corresponds to the special case= 1. Moreover,
considering

Lo(L X)) = {d) el X): klijgo llok] = 0}

as normed subspace &P (I, X') yields another Banach space. Sifgél, X') possesses a
Schauder basis, we arrive at

Lemma 2.1. Letdim X < oo. Then a sefS C ¢y(I, X) is relatively compact, if and only
if K is bounded and

lim sup sup ||¢x| = 0.
"0 GeK k>n
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Proof. Using the canonical unit vectoes, = (d,,x)re1 @as Schauder basis 6§(I, R), the
claim follows from (11, p. 34, Theorem 4.1). O

2.2. Summable sequencesWith a realp > 1 we define the Banach spaces @f
summable sequences

(2.1) #(LX):= {asee Z|¢k|p<oo}, 1Bl r.2 = K/ZW;
kel kel

since we do not want to overextend our notation, we usually wig rather than
l[Il¢» (1,)- Compactness i (I, X') can be characterized similarly to Lemma 2.1 as fol-
lows:

Lemma 2.2. Letdim X < oo. Then a sefl C ¢P(I, X) is relatively compact, if and only

if K is bounded and
Jim. sup > lowl” =
k>n

Proof. Again, the canonical unit vectoes, = (d,, ) xer form a Schauder basis 6f(I, R)
and, thus, the proof follows from (11, p. 34, Theorem 4.1). O

If X is uniformly convex, then alsé¥ (I, X') is uniformly convex fop € (1, co) (cf. (12,
p. 63, Theorem 2.4.16)), where8&1, X') are not uniformly convex fop € {1,00}. If
dim X < oo we note thatt is isomorphic td#¥ and we equipt with the Euclidean norm;
then?? (I, X') becomes uniformly convex.

The modulus of convexity,» (1 x) can be obtained from

Serraey(t) =1 — {/1— (£)" forallp € [2,00),

2= (1= waax)t)+5)" + (1= dwax)(t)—5)" forallpe(1,2)
(cf. (11, p. 64, Example 6)), while the corresponding normal structure coefficient is given
by N (¢P(I, X)) = min {2!~1/P,21/P} for p > 1 (cf. (11, p. 128, Theorem 6.3)).

Let Y stand for one of the set8° (I, Q?), ¢y(L, 2) or ¢P(I, 2), denoting the respective
subsets of sequences with valueginWe endow)) with the canonical metric topology
and remark tha}’ is a complete metric space (¥is closed. For positive valued sequences
w € (P(I,R) we have the inclusions

£2°(L, Q) CP(1,02) — £o(I, Q) — £°°(L1, Q)

and actually each of the embeddings is norm one.

3. PRELIMINARIES

Unless otherwise noted, we assulrie a discrete interval which is unbounded above.
Since we are interested in asymptotic behavior, this is a reasonable assumption. We pick
k € Tand suppos€ C X to be a set with) € .

3.1. Difference equations. To denote difference equations (the notioasursionor iter-
ation are also frequently used) we use the notation

(3.1) Tp+1 = fr(@r, 1)

with theright-hand sidefy, : QxQ — Q, k € I. Asequence = (¢k)kez: in Q) satisfying
drr1 = [r(odr, drt1) for k € Z7 is called a(forward) solutionof (3.1). Analogously, a
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backward solutiorhas this property wittZ" replaced byZ_. We say that (3.1) isvell-
posedon )y C Q, ifforall k € 1, £ € Q there exists a unique solutianwith ¢(x) = &.
In this case, lep(x, &) denote theyeneral solutiorof (3.1), i.e.p(k, &) € L(Z}, X) solves
(3.1) and satisfies the initial conditian(x, &), = £ for k € Z, £ € Q.

If f does not depend on its third argument, we denote (3.&xplécit difference equa-
tion, remark that it is trivially well-posed of? and its general solution can be obtained
by

fork =«

. 3
(3.2) o(k, k= { fi—10...0f. (&) fork>r "

3.2. Attractivity notions. In order to introduce an appropriate notion of attractivity et
be a subspace df (I, X). Differing from the standard terminology, we say a difference
equation (3.1) igy-attractive if for eachx € I there exists @ > 0 and a solutionp €
Uz}, ) such that for alt € B,(0) N the following holds:

P(k) =&, bel;
in addition, equation (3.1) is calleghiformly Y-attractive if p > 0 can be chosen in-
dependently ok € I, andglobally Y-attractivewhen¢ € Y holds for all initial values
¢ € Q. This paper provides criteria for globglattractivity.

Concerning these attractivity notions it is worth to point out that (3.1) is not assumed
to possess the trivial solution, i.é),needs not to be a fixed point g§(0,-). Hence,
Y-attractivity is a property of the difference equation (3.1) and not (necessarily) of its
solutions. Nevertheless, this notion of attractivity can easily be attached to individual so-
lutions of (3.1). Thereto, let* € ¢(L, ©?) be a given reference solution of (3.1). In order to
determine attractivity properties of it is convenient to work with thdifference equation
of perturbed motion

(3.3) Try1 = fe(on + Of, g1 + Gray) — fr(Dks Prg)-
Clearly, ¢* is (uniformly, globally)Y-attractive in the standard terminology, if and only if
the zero solution of (3.3) has this property. In particular, our methods apply to (3.3).

We have abstract formulations of certain classical attractivity notions for difference
equations (cf., e.g., (13) or (14, p. 240, Definition 5.4.1)), namely attractivitp/for
lo(ZF, X), exponential stability fop) = ¢>°(Z;}, X) with w, = ~* and~y € (0,1), and
also¢P-stability fory = ¢P(ZF, X).

The notion of¢P-stability has been introduced to difference equations in (8). As the
following example demonstrates, it lies in between attractivity and exponential stability.

Example3.1 Consider the explicit equatiof), 1 = kkﬁl‘k for I = N. Its general solution
is given byo(k, &), = £¢ for k € Tand¢ € R. Hence, the trivial solution i€”(Z, R)-
stable forp > 1, but not/!(Z}, R)- or exponentially stable. Moreover, (8) provides a
similar example of a linear difference equation which is asymptotically stable, bédtnot

stable for any > 1.

3.3. Operator theoretical setting. Let x € 1. It is crucial for our functional analytical
approach to introduce the operators:
e the linearembedding operatoE™ : X — ¢(Z},X), ET¢ = (£,0,0,...),
e the linearright shift operator S :  4(Z},X) — UZF,X), Sto =
(0, Py Prt1s---),
¢ the nonlinearsubstitution operatorfy : ((I,Q2) — (I, X), Fr(o)

(fu(Phs Dh41)) pops
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o Gy: U(Z},Q) x Q— UZT,Q), given by

(3:4) G1(9,€) =BT+ S Fr(d).

The substitution operatat’; depends linearly on the functiorfs. Moreover, if f;, :
Q1 x Q2 — Qs alinear mapping, the@ ; becomes affine linear.

Lemma 3.1. Letx € Tand) be one of the spaces®(Z, X), lo(Z;}, X) or P (Z}, X).
Then one has the inclusiods™ € £(X,Y), S;F € £(Y) with norm

(3.5) HEJFHc(X,e;o(Z:,X)) =Wy, HS»ch(zgo(Z:,x)) < T(w),
||E+||£(X,ZO(Z:,X)) =1, HS'jHﬁ(fo(Zi,X)) <1,
(3.6) ||E+H£(X,€P(ZLX)) =1 HsfjHﬁ(éP(Zi,X)) =L

If dim X < oo, thenE™ € L(X,)) is compact.

Proof. The proof of the norm estimates is left to the reader. In echsetX < oo, the
operatorE™ is finite dimensional, hence compact. O

Let D C Y be a nonempty subset of a Banach sprc€or a self-mapping: : D — D
we define itgteratesrecursively by

GOz) ==z, G"t! = G(G™(z)) forallz € D,necZ].
Proposition 3.2. Letx € T, £ € Q and¢” = (¢)), .+ be a sequence ife. Then the
iteratesG’;(_-,f) of G¢(+€) : UZE, Q) — LZ}, Q) have the representatio@i’} (¢°, &) =
((i)Z)keZif with

or=¢, Orin = fu(df dkya) forallne Z§, ke Zf.
In particular, if (3.1)is explicit, then
ns 10 _ fe—10...0 f(E), if K <k<n+xs,
Gk = { fe—10...0 fimn(9N_,), ifk>n+k.

Remarlk3.1 For explicit equations (3.1) one héif;(gzso,g)k =k, rfork <k <n+k
and, thus, iterating the operat@r; (-, §) yields a successive approximation of solutions to
(3.2).

Proof. The proof is an easy induction argument. |
The basic tool for our whole analysis is given in

Theorem 3.3. Letk € I, £ € Qand¢ = (¢k)kez: be a sequence ift. Theng is a
solution of (3.1)with ¢, = &, if and only if¢ solves the fixed point equation

(3.7 ¢ =Gs(¢,8).
Proof. Let ¢ € £(Z],Q) be a solution of (3.1) witlp,, = £. Then we have:

b =& = (EYE) = (ETE+ STF(9),
and fork > &,

ok = fr1(Br-1,01) = (Ff(9),_, = (ETE+ STFr(9)),-
The converse direction can be shown similarly. |
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Remark3.2 While the above Theorem 3.3 is formulated for forward solutions of (3.1), we
point out that a dual theory holds for backward solutigns ¢(Z, X'). More precisely,

if Iis unbounded below, then a sequerosith ¢,, = £ solves (3.1) orZ_, if and only if

the fixed point relation

¢=E"{+ 5, F(9)
holds, where we have used
e the linear embedding operatst : X — ¢(Z_,X), E~¢ :=(...,0,0,¢),
e the linear left shift operator S, : ¢(Z,,Q) — UZ_.,Q), S ¢ =
(«+rs Prm1,Pn0).
Remark3.3. If the right-hand sidef, does not depend on its first variable, then (3.1) is

a purely algebraic problem and the fixed point equation (3.7) degenerates to the infinite
algebraic system;, = fr_1(¢x) for k < k.

We close this section with certain frequently used assumptions and a convenient termi-
nology on the right-hand side of (3.1) guaranteeing well-definedness, (Lipschitz-) continu-
ity or compactness af s, respectively.

Thereto, lefy be a subset of T, X'). We say the difference equation (3.1) or the function
fi 1 @ xQ — X is Y-admissibleif there exists a sequengé € ) such thatz;(¢*,0) €
V.

Hypothesis 1. We say a functiorf, : 2 x Q — X satisfies the assumption
(B)y witha € [0, 00) and sequences, b, ¢ from subsets of(I, R), if the estimate

1fe(@, )l < an + max {bg 2], crra ly]"}

forall k € 1, z,y € Q holds true,
(L); with sequencesg, [ from subsets of(I, R), if the estimate

1fx(x,y) = fu(@, )| < max{Ly ||z — Z[| , les1 [ly — ll}
forall k € I, z,y € Q holds true.

4. CONTRACTION-LIKE CRITERIA

Throughout this section, we supp@gés another Banach space and consider an abstract
mappingG : D — Y defined on a nonempty subgetC ).

For the sake of completeness and consistency we formulate a slight generalization of
the well-known Banach contraction mapping principle.

Proposition 4.1. Letn € N. If D is closed and=" : D — D is contractive, therz has a
unique fixed point.

Proof. See, for instance, (15, p. 17, (6.3)). O

Lemma 4.2 (well-definedness o:°). Letx € I andw be a weight sequence. If the
function fi, : @ x Q — X satisfies(B); with « € [0,00) anda € (2°(Z},R), b,c €
€ (Z},R), then the operatoGy : (3 (Z;,Q2) x Q — (F(Z], X) is well-defined and
satisfies

1G58, €)l, < max { gl @, T(@) llal, +max { @) 18] 5, el 5, } 1612}
forall ¢ € Qand¢ € ((Z}, Q).
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Proof. Letx € [, £ € Q and¢ € (°(Z}, Q). Provided the involved quantities exist, we
make use of the relation

1G£(, )., “—""max{w;, sup ||fk<¢k,¢k+1>|a,;¢1}

kezZt

which easily follows from the definition af ;. From Hypothesi§B) ; we obtain

Il fie (s Drerr) || @y

- wy _1ye Wit —1\@
< apwp ) JrHlaX{bk e (gnllwp ™)™ s chgr— Ort1|| w
o S (ol ) erir L (o i)
—— wy wl?—i—l o
< apwp +max{bk_ ke Cpy1— o
k+1 WkJrl’ +1wk+1 ” Hw
< X(@)all, +max { @) 0] 5, .l 5, } o) forank ez,

Then, passing over to the least upper bound over all inteflgess Z," shows that the
mappingGy : (X(Z},Q) x Q@ — (2, X) is well-defined satisfying the claimed
norm-estimate. O
Lemma 4.3 (Lipschitz condition on¢2°). Let x € I andw be a weight sequence. If
the functionf;, : Q x Q — X satisfies(L); with L,! € (2 (Z;},R), then the operator
Gy £X(Z5,9) x Q — (Z}f, Xx) fulfills Gy(¢,€) — G(¢,€) € 2(Z}F, x) for all
¢, € £y (Zf,Q) and
(4.1) Lip; Gy < max {1(@) L]z, 1]l< } -
Proof. Letx € I, £ € Q ande, ¢ € £2°(Z}, Q). First of all, by definition of the operator
Gy one has (provided it exists)
- 34 - 7 __
1G1(6.6) ~ G138, & sup || 10, bx1) — (@, dren)|| @

kezt
Now, for k € Z;} we derive from HypothesigL) ; that
| fr(Drs Brg1) — Fr(Prs brogr) || @ity

max { Ly, || or — ér|| @t 1s bt ||rr1 — drsr || @t }

max{Lk L 22 } 6 = 81l,, < max { @) I1Ll15 . Nl } [l = &, -

W1 W41

IN

IN

which yields our claim by passing over to the supremum éverZ;!. O

This yields a prototype result on global attractivity.

Theorem 4.4. Letx € I, w be a weight sequence afilbe closed. If the right-hand side
fr: QxQ — Qof (3.1)is £X(Z},2)-admissible and satisfigd) ; with sequences
L,l € ¢>(Z;},R) so that

(4.2) max {T(W) ||L||eoo(Z::,R) ) ||l||zoo(Z:,R)} <1,

then the difference equatiq8.1) is well-posed o2 with p(k, &) € £2°(ZF, Q) for all
¢ € Q. In particular, (3.1)is globally £2°(Z}, X)-attractive.
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Proof. Letx € T, £ € Q and choose € (>°(Z!, Q). We want to apply Proposition 4.1
with n = 1 and the closed sdb = ¢2°(Z;", Q) to the mapping= (-, £). Since Lemma 4.3
is applicable withw = @, it remains to show thati¢(-,£) : D — D is well-defined.
Thereto, we obtain from the triangle inequality (note that (3.¥yi$Z", 2)-admissible)
and our assumptions,

(4.2)
1G#(0: O, < 1IGr(@" ), + 16—,

thusG(¢,€) € £2°(Z}, X). Moreover, sincef;, has values if2, we haveG (¢, &) € D.
Our assumptions with (4.1) guarantee that(-, ) is a contraction and its unique fixed

point, by Theorem 3.3, is the solution of (3.1). |
Corollary 4.5. If the equation(3.1)is explicit, then assumptiofd.2) can be replaced by
k+n
-1
21>1p Wet1 Jlj[k L; <1 foronen € N.

Proof. With the explicit representation in Proposition 3.2, tith iterateG’; is easily seen
to be a contraction and Proposition 4.1 implies our claim. O

Lemma 4.6(Lipschitz condition orYy). Letx € L. If a functionfy, : Q x Q@ — X satisfies
(L)g with L, 1 € £>(Z;},R), then the operatoty : £o(Z}, Q) x Q — ((Z}, X) fulfills

Gr(9,8) — Gr(¢,€) € bo(Z}, X) for ¢, ¢ € Lo(Z;7,2) and

(4.3) Lip, Gy < maX{”LHeoo(Z;r,R) ) ||l||eoo(Z:,R)} :

Proof. The proof is analogous to Lemma 4.3 and omitted. |

Theorem 4.7. Letx € [ and2 be closed. If the right-hand sidg : 2 x 2 — Q of (3.1)

is lo(Z;}, ©1)-admissible and satisfigd) ; with sequences, ! € (>°(Z;,R) so that

(4.4) e { Ll .y MUl ot ) } < 1

then the difference equatigi.1) is well-posed o2 with ¢(x,&) € 4 (Z;}, Q) for all
¢ € Q. In particular, (3.1)is globally £ (Z;", X)-attractive.

Proof. Using Lemma 4.6 one proceeds as in Theorem 4.4. O

Lemma 4.8(Lipschitz condition orf?). Letx € Tandp > 1. Ifafunctionf; : OxQ — X
satisfieg L) with L, € £>°(Z;},R), then the operatoG'y : (P(Z},Q) x Q — ((Z}, X)
fulfills G (¢, &) — G¢(9,&) € P(Z, X) for all ¢, ¢ € (P(Z}, ) and

(4.5) Lip; Gy < [Ulgoo iz gy + 1Ml oo (2 ) -

Proof. Letx € I, £ € Q and¢, ¢ € (P(ZF, ). We derive from Hypothesi€.) ; that
| £ (Drs Br1) — Fro(Prs Do) ||

max { L ||dr — k|, legr || drr1 — Grsa ||}

LY ||ow — onl|” + 100 | drr1 — G |0 forallk e

and the elementary inequality + s)'/? < t}/P 4 s'/? for realss, t > 0 yields

[VARVAN

k=k

|G r(0,6) — Gf(ﬂgaf)Hp 2 ﬂ Z | fi(Drs Dryr) = fro(Pr, Prrn)]|”
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< ﬂzf:znm&knuzzzﬂ 6601 = dua ]
k=K k=k
< (I +Ll) le = 4|l -
Hence, we are done. O

Theorem 4.9. Letx € I, p > 1 and) be closed. If the right-hand sid& : 2 x Q — Q of
(8.1)is t*(Z;f, Q)-admissible and satisfigd) ; with sequences, ! € (>°(Z;},R) so that

(4.6) el goe (z+ Ry + I Ll oozt ) < 15

then the difference equatiai3.1) is well-posed o2 with p(x, &) € P(Z}F,Q) for all
¢ € Q. In particular, (3.1)is globally ¢?(Z;}, X)-attractive.

Proof. Having Lemma 4.8, one proceeds as in Theorem 4.4. O

Corollary 4.10. If the equation(3.1) is explicit, then the respective assumptidm) or
(4.6)can be replaced by

k+n

sup [[ Z; <1 foronen € N.
k>nj &

Proof. See the proof of Corollary 4.5. O

Corollary 4.11. Under the assumptions of Theorem 4.4, 4.7 or 4.9 the general solution
ok, )k : Q@ — Qof (3.1)is globally Lipschitz for allk € Z;}.

Proof. Let s € I, £,& € Q and denote by one of the seté>(ZF,)), (o(ZF, ) or
(P(Z;,Y). We chooses € Y N ¢(Z;, ) and obtain from Lemma 3.1,
|66, - Gr6.9lly, (B - Dlly < 1B+ [ls - &]|-

ConsequenthG;(¢,-) : & — )Y satisfies a Lipschitz condition. Then, by the uniform
contraction principle (cf. (15, p. 17, (6.2))) also the fixed paitk, -) : Q@ — ) is globally
Lipschitz. By properties of the evaluation map, this carries ovep(te, -), for every
keZt. O

Example4.1 (neural model of Cowen and SteifjVe study a discrete counterpart of a
model from (16) in form of the difference equation

4.7) rh1 = airl + g(y Zﬂljxkﬂ foralli e N

with parametersy; > 0, v;, 3;; € R sat|sfy|ng

0= 5up(o¢l + Z L |6y]) < 1
here, the functio : R — (0,1) is given byg(x) = 1+e, and we have
(4.8) lg'(z)] <1 forallz € R.

We write (4.7) as recursion of the form (3.1)fih= ¢2°(N, [0, o)), with

oo

f(x,y)i == s + gl — Zﬂijyi) foralli e N

i=1
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and show thaf : 2 x Q — Q is well-defined. Thereto, define the sequeage= H%
and forz, z,y,y € 2 we get

fla ) — f@ D) < ailw— 2|+ |9(vi = > Biwi) — 9(vi — Y _ Biji)
i=1 i=1

(4.8) - > - ’
< oy |xi_$i|+2|ﬂij‘|yj—yj| foralli € N.
j=1

Multiplication with @;1 and passing over to the supremum overN gives us

1f (@, y) = f(Z,9)lly < bmax{[le =2, [ly —vlla};
since we evidently havé(z,y); > 0 and f(0,0) € ¢2°(N,R), this impliesf(x,y) € .
Hence, due to the contraction conditibr< 1, equation (4.7) possesses a unigue equilib-
rium ¢* € Q, i.e., f(¢*, ¢*) = ¢*. Every solution of (4.7) approaches this equilibrium
exponentially, which can be seen as follows: Consider the corresponding equation of per-
turbed motion (3.3). lIts right-hand side satisfies the assumptions of Theorem 4.4 with
w= (’Yk)kezg forv € (¢,1).

5. FURTHER GLOBAL CRITERIA

Let Y be a Banach space and consider a iiapD — Y defined on a honempty set
D C Y. ThenG is calledcompletely continuoysf G is continuous and7(S) C Y is
relatively compact for every boundéd C D. We present a generalization of Schauder’s
fixed point theorem due to Krasnoselskii.

Proposition 5.1. LetC' C Y be bounded, closed and convexGlf : C — ) is contractive
andG, : C — )Y is completely continuous, then the stim+ G, : C — C has a fixed
point.

Proof. See for instance (15, p. 70, (9.19)), or (17, p. 163, Theorem 5.2.9) in connection
with (18, p. 496, Example 11.7). |
Lemma 5.2(well-definedness off). Letx € Tandp, g > 1. Ifafunctionf; : QxQ — X
satisfies(B); with @ > 2 anda € (/(Zf,R), b,c € (*(Z],R), then the operator

Gy lUZE,Q) x Q— P(Z}, X) is well-defined and satisfies

(5.1

1G5 (8t ey < N1+ lalleaczz my + (1ol iy + el ) 19115naz g

forall ¢ € Qando € (P(Z},Q).

Proof. Letx € I, £ € Q and¢ € (*(Z;, Q) be given. Then Hypothes{$) s, Lemma 3.1
and Minkowski’s inequality imply

(3.4) >
IGs (6, )y < ||E+§|q+Ff<¢,s,f¢>||q‘3='6’||§||+iznfk(m,mmq
k=k

IN

€11+ ‘*\l > (ax + max {byllgul|; ciral|dnra]|2})”

k=K

< €l + llallg + (ol =+ liello) af > llow]e
k=kr

A
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=&l + llallg + (ol + llell) 1@ llaq
where (2.1) guaranteese (*4(Z;, X). Hence, Lemma 5.2 is verified. O
Lemma 5.3 (complete continuity orf?). Letx € I, p,¢g > 1 anddimX < oco. If a
continuous functiorf;, : @ x Q — X satisfies(B); witha > £ anda € ((ZF,R),
b,c € £y(Z},R), then the operatoG(-,&) : (P(Z},Q) — (4(Z},X) is completely
continuous for al € Q.
Proof. Using Lemma 2.2, the proof follows from (19). O

Theorem 5.4. Letp > 1, dim X < oo and2 C X be closed and convex. Assume the
right-hand sidefy, : 2 x Q — Q of (3.1)allows the decomposition
fe(z,y) = gk(z,y) + by (2, y)
into functionsgy, Ay : Q2 x Q — X with the following properties:
(i) G4(0,0) € ¢7(I, X) and g, satisfieg L), with L, € £>°(I, R),
(i) hy is continuous, satisfigdB), witha =1, a € P(I,R), b, ¢ € £o(I,R) and
10140 1) + l€lleg@ry + Mollese @ry + N1 LN poo 1) < 1-
Then the difference equati@8.1)is globally /7 (I, X)-attractive.
Proof. Let £ € Q. Thanks to our assumptions, we can decompose the opé&ratar
P(I,0) x Q — (I, X) as follows
Gf((ba 5) = GQ(¢7 O) + Gh(¢a g) for all ¢ S EP(]L Q)

and show that Proposition 5.1 is applicable. Above all, we know from Lemma 4.8 that
G,4(+,0) is a contraction. On the other hand, Lemma 5.3 implies@hat, &) is completely
continuous. Now we define

1G4(0,0)[],, + llall,
p= 1
— 0
and choose real constarfts> p, r € (0, (1 — 0)(R — p)] so large that € B,.(0). Then
C = Br(0) N {(L, Q) is a bounded, closed and convex subset’¢l, X'). It remains to
verify that the operato@ ¢ (-, ¢) : C' — C'is well-defined forg € B,.(0) N 2. This follows
from the estimate (see Lemma 4.8 and 5.2)

G2, O < [1G4(0,0) = Gg(0,0)[[ + [[G4(0,0)[| + [|Gr (9, )
L+ LD N8l + G (0, 0)[ + |G (e, €l

€1 + 1G4 (0,0)[| + [lall + o o]l < R
forall ¢ € C, ¢ € B,(0) N Q. Then Proposition 5.1 implies the assertion. O

o = ||l + llell + L0+ 112

(5.1)

o ~
IND ING
o

Lemma 5.5 (well-definedness o). Letx € 1. If afunctionf, : @ x Q@ — X
satisfies(B); with @ > 0, a € ((Z},R) andb,c € ¢(>(Z},R), then the operator
Gy :l(Z,9Q) x Q — Ly(Z}, X) is well-defined and satisfies

(5.2)

1G£8 )z ey < N1+ Nl gy gy 1025 LBl g 5 gy i iy 105
forall ¢ € Qando € (y(Z}, Q).

Proof. The proof is straight-forward and essentially the same as of Lemma 5.2; thus we
omit it. O
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Lemma 5.6 (complete continuity orfy). Letx € Tanddim X < oo. If a continuous
function f, : Q@ x Q — X satisfies(B); with o > 0 anda,b,c € ¢y (Z},R), then the
operatorGy (-, &) : £o(Z;F, Q) — €o(Z}}, X) is completely continuous for &l € €.

Proof. From the above Lemma 5.5 we know th@} : (y(Z;,Q) x @ — (o(Z}, X)

is well-defined. Let{ € Q. In case offP-spaces the continuity of such substitution
operators is shown in (19, Theorem 1.1). The interested reader may check that the cor-
responding arguments also hold in our presgnsetting, yielding thaG;(-,¢) is con-
tinuous. It remains to verify thaf ;(-,£) maps bounded subsefs C /,(Z;}, ) into
relatively subsets ofy(Z;, X). SinceS is bounded, there exists a@ > 0 such that

el < [l 2z 2y < Rforallg € S. W.l.o.g. we assume in HypothesiB); that the

sequences, b, ¢ € {o(ZF,R) are non-increasing. Consequently, for egch S we have

1G (6, )kl & 11 (Dr dri) | < an + max {by Dk ]| s et | nra ]}

< ap +max {b,,c,} R forallk >n>k
and consequently
sup sup [|G (¢, §)kl —— 0.
$ES k>n o

n

Thus, Lemma 2.1 implies that(S,&) C ¢o(Z;}, X) is relatively compact and we have
established Lemma 5.6. O

Theorem 5.7. Letdim X < oo and)2 C X be closed and convex. Assume the right-hand
sidef; : Q x Q — Q of (3.1)allows the decomposition

fe(@,y) = gr(@,y) + hi(z,y)

into functionsgy, Iy : 2 x Q — X with the following properties:

(i) G4(0,0) € £y(L, X) and g, satisfieg L), with L, 1 € 45(I, R),

(i) hy is continuous, satisfigB);, with o > 0, a, b, ¢ € £o(I,R) and

1]l o 1.7) + ll€llgy ) + max {HZHEO(LR) ) HLHZO(HJR)} <L
Then the difference equati@B.1)is globally ¢, (I, X')-attractive.
Proof. Let¢ € Q. We decompose the opera@y : ¢7(I1,Q) x Q@ — (I, X)
Gf(¢a 5) = G9<¢7 0) + Gh(¢a 5) for all ¢ € ep(]L Q)

and apply Proposition 5.1. From Lemma 4.8 we get tHgf-,0) is a contraction and
Lemma 5.3 implies the complete continuity 6%,(-,£). The remaining arguments are
similar to the proof of Theorem 5.4. |

As application of Theorem 5.4 we investigate a linearly implicit partial difference equa-
tion.

Example5.1 (discrete reaction-diffusion equation)et I be a discrete intervak € 1
and n~,n* be integers satisfyingV := n™ —n™ — 2 > 0. We define] :=
{n=+1,...,n" — 1}, the finite dimensional spack := ¢(J,R) = R", choosev € X
and consider the discrete reaction-diffusion equation

Ukt 1,0 = QU1 n—1 + BUpsin + Ypt1n41 + F (0, U -1, -0 Ut —1)s
(5.3) fornel, kez!
equipped with the initial boundary conditiong ,, = v,, foralln € J,

U~ =0, up+ =0 forallk ez}
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under the following assumptions:
(i) There exists a closed convex neighborhébd RY of 0 such that

QUp—1 + Bun + Yunt1 + F(k,n,u) € @ forallu = (up- 41, .., Up+_1) € Q

andk € Z+F,n €],
(ii) the scalarsy, 3,~ € R satisfyay > 0 and

B+ 2\/a7y sgn o cos (ﬁ—;)‘ <1 forallje{l,...,N},
(iii) the nonlinearityF' : T x J x X — R is continuous and linearly bounded

(5.4) |F(k,n,u)| < ap + by Z luj| forallm e N, u= (up-11,...,Up+_1) € Q
jel

with positive sequencese (I, R), b € ¢o(I, R).
The partial difference equation (5.3) can be written as an ordinary difference equation in
the spacet, namely
(5.5) Tpr1 = Azgy1 + Fr(zy),
with the linear operatod € £(X), A := tridiag(a, 8, ) and the substitution operator
Fp: X — X,

(Fe(x))n = f(k,n,z) forallnel].

The assumption (i) yieldg\| < 1 for all A € o(A) and from (20, p. 6, Technical lemma
1) we know that there exists a norm ghsuch that| A|| < 1. Thus, (5.5) can be rewritten
asxpy1 = [ — A]’1 Fy(zx) and therefore the solutions of (5.3) and (5.5) are uniquely
determined and depend continuously on their initial conditions. Finally, Theorem 5.4 is
applicable, since there existsiac Z," such thasup,-- bx < 1 — || 4]|. Hence, (5.5) is
globally /7 (Z}, X)-attractive forx > &. -

We callG : D — Y strongly continuougf for every sequenceér,,),en in D with weak
limit = € D one has the limit relatiotim,, . |G(x,) — G(z)||;, = 0. Then a result of
Reinermann reads as follows:

Proposition 5.8. Let ) be a uniformly convex Banach space and assdme& ) is
bounded, closed, convex.df, : C — Y is non-expansive an@, : C — ) is strongly
continuous, then the su6iy, + G : C — C has a fixed point.

Proof. See (18, p. 501, Theorem 11.B). O

Lemma 5.9(strong continuity ort?). Letx € I, p > 1 anddim X’ < oo. If a function
fr 1 Q@ x Q — X satisfiedB)f witha > 1, a € P(Z},R), b,c € (>°(Z},R),and(L);
with L, 1 € 4y(Z},R), then the operatot7 ¢ (-, &) : (P(Z},Q) — (P(Z}, X) is strongly
continuous for al € Q.

Proof. Let k € I. We subdivide the proof into two steps:
(1) Consider the linear substitution operat@ts T» : (P (Z;}, X) — (P(Z;}, X),
(T1¢)k == Liox, (T20)k = lpr1Pr+1

which, due td, L € ¢y(Z;}, R) are well-defined by Lemma 5.2 and completely continuous
by Lemma 5.3. Thus, (21, Prop. VI-3.3) implies tlfat 75, are strongly continuous, i.e.,
for every sequenc@)™) ey in £P(Z;7, X) with ¢ — ¢ for n — co we have

716" = Tiglly = > LY l16F — oull” —— 0,
k=kr
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IT26™ = Toglly = > 1y 6541 — Sraa||” —= 0.
k=kr

() Let & € Q, ¢ € (P(ZF,Q) and(¢"),en be a sequence iff (Z}, Q) with ¢ — ¢
for n — oo. Then, as in the proof of Lemma 4.8, one has

1G1(8".&) = Gr(.9)l, Sﬂ > LL g — ol + J S 6k = drnl]” —=0
k=wr k=k

by step (I). This implies our claim. O

Theorem 5.10. Letp > 1, dim X < co and2 C X be closed and convex. Assume the
right-hand sidef, : 2 x Q — Q of (3.1) allows the decomposition

fk(xvy) = gk(m>y) + hk(l’,y)
into functionsgy, Ay : Q2 x Q — X with the following properties:
(i) fr satisfieyB); witha =1, a € ¢°(I,R) andb, c € (I, R)
1Bl oo 1,y + ll€llgze 1.y < 1,
(i) gx is P(I, X)-admissible and satisfigd ), with L, € ¢>°(I,R) and
Ul goo ) + 1 LMooy < 15

(iii) hy is ¢P(I, X)-admissible and satisfidd.);, with L, € ¢y(I,R) (here L, may be
different from (ii)).
Then the difference equati@8.1)is globally /7 (I, X)-attractive.

Proof. Due top > 1 the Banach spac® (I, X') is uniformly convex. We choosg € (2,
decomposé&; : P(1,Q) x Q — {(I, X)

G(9,6) = Gg(¢,6) + Gnr(9,0) forall ¢ € £2(L, Q).

and verify the assumptions of Proposition 5.8. Since the mappipngs. are /7 (I, X)-
admissible, using Lemma 4.8 it is not difficult to see t6gi(-, &), Gi,(+,0) : ¢/(1,Q) —
¢P(1,Q) are well-defined. Thanks again to Lemma 4.8, the mapgiyg, &) is non-
expansive, and Lemma 5.9 guarantees éhat, 0) is strongly continuous. The remaining
argument is similarly to the proof of Theorem 5.4. |

Our next example addresses the roughness of the stability result derived in Example 3.1.
Exampleb.2 Consider the scalar implicit difference equation
(5.6) Tpt1 = kL_ka + hi(2r41)

with T = N. To mimic the notation of Theorem 5.10 we defipgx) := 25z, suppose
there exists & > 0 such that

lge(x) + hi(y)| < R forallz,y € [-R, R]

and sef? := [— R, R]. Under the additional assumptions
> [ (0)]P < oo, lim Lip hglg = 0
feen k—o0

it is easy to see that Theorem 5.10 is applicable to (5.6) and we obtain that all solutions
starting in[— R, R] are/?-summable fop > 1. The same result also holds for the explicit
version of (5.6) given by, = ﬁlxk + h ().
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Now suppose there exists a nonnegative sequéhiggcn so that
|G™(x) = G"(Z)|ly < ln|lx — 2]y, forallneN, z,z € D;
in case\ := sup,,cy £n < 0o wWe denote asuniformly A-Lipschitz

Proposition 5.11. Let C' C Y be bounded, closed, convex. A uniformvipschitz map
G : C — C possesses a fixed point, if one of the conditions holds:
(i) A< /N),
(i) Y is uniformly convex and is less than the unique solution € [1,00) of
h(1—dy (k1) =1,
(iif) Y is uniformly convex anim,, ., ¢, = 1.

Proof. (i) See (11, p. 151, Theorem 3.2).
(i) See (11, p. 142, Theorem 1.2).
(iii) See (22, Theorem 3). O

In the remaining part of the paper we deal with the explicit version of (3.1), namely the
equation
(5.7) Trr1 = fr(or)
with a functionf; : Q — Q.

Lemma 5.12(Lipschitz condition or?). Letx € I, n € Nandp > 1. If a function
fr: Q — X satisfied L) with L, € £>°(Z}, R), then the iterate&} : (*(Z}, Q) xQ —
Uz, x) tlfill G (6, &) — G3(,€) € P(Z}, X) forall ¢, ¢ € ¢7(Z,,Q) and

k+4+n
(5.8) Lip, G < sup H L;.

k>k J=k

Proof. Letk € I, £ € Q andg, ¢ € ¢P(ZF,Q). We only establish (5.8), since the other
assertions are immediate from Lemma 4.8. By Proposition 3.2 and Hypofligsi®ne
has

(3:.4) d Z ||fk—1 0...0 fk'—n(d)k—n) = fk—10...0 fk_n(d_)k—n)Hp

k=n+kr

- ﬂ Yo Liye Ly [fken = dial”

k=n-+k
k+n oo k+n
<sup [T L; 2| D lléw — dullP = sup [] Lillé — oll,
k>k oy p k>r
J J
and Lemma 5.12 is established. O

Theorem 5.13. Letp > 1, dimX < oo andQ) C X be closed and convex. Assume
the right-hand sidef;, : Q@ — Q of (5.7) satisfies(B) ; with witha: = 1, a € (I, R),
b e (>(I,R),
1Bl goe (1) < 1,
and (L) with L € ¢>°(I, R), such that one of the following conditions
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(1) sup,enbn < min{zl—%,ﬁ},

(i) sup,ex bn < (/3 andp > 1,

(i) lim, .o ¢, =1andp > 1

holds, where/,, := supy,, Hfi,’j L;. Then the explicit difference equati@.7)is glob-

ally ¢7 (I, X)-attractive.

Proof. Let ¢ € Q be given, defing := 1%‘1‘)” and choose real constanks > p, r €
(0, (1 — ||b])(R — p)) so large that € B,(0). Then the setC := Br(0) N 4(I,Q) is
bounded, closed and convex §A(I, X'). We have to show that;(-,§) : C — C'is
well-defined. This follows from Lemma 5.2, since we have

(6.1)
G (2,0, < liEll+llall, +llollli¢ll, < R forall¢ e C

and¢ € B,.(0) N Q. In addition, by Lemma 5.12 the mappiigy (-, £) is uniformly A-
Lipschitz with A := sup,,cn £,. Then Proposition 5.11 yields the assertion. O
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