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Abstract

Fast Downward is a classical planning system based on tiewwgsarch. It can deal with gen-
eral deterministic planning problems encoded in the pritiposl fragment of PDDL2.2, including
advanced features like ADL conditions and effects and ddrpredicates (axioms). Like other
well-known planners such as HSP and FF, Fast Downward isgrgssion planner, searching the
space of world states of a planning task in the forward dioectHowever, unlike other PDDL plan-
ning systems, Fast Downward does not use the propositidbBLRepresentation of a planning
task directly. Instead, the input is first translated intoadternative representation callealulti-
valued planning taskswvhich makes many of the implicit constraints of a propositl planning
task explicit. Exploiting this alternative representati¢-ast Downward uses hierarchical decom-
positions of planning tasks for computing its heuristicdtion, called thecausal graph heuristic
which is very different from traditional HSP-like heuris$ibased on ignoring negative interactions
of operators.

In this article, we give a full account of Fast Downward’s egach to solving multi-valued
planning tasks. We extend our earlier discussion of theatagraph heuristic to tasks involving
axioms and conditional effects and present some novel igebs for search control that are used
within Fast Downward’s best-first search algorithpreferred operatorsransfer the idea of help-
ful actions from local search to global best-first seaddferred evaluatiomf heuristic functions
mitigates the negative effect of large branching factorsearch performance, amaulti-heuristic
best-first searcttombines several heuristic evaluation functions withirnngle search algorithm
in an orthogonal way. We also describe efficient data strestior fast state expansiosuccessor
generatorsandaxiom evaluatorsand present a new non-heuristic search algorithm cétledsed
iterative-broadening searghwhich utilizes the information encoded in causal grapha imovel
way.

Fast Downward has proven remarkably successful: It won theesSical” (i. e., propositional,
non-optimising) track of the 4th International Planningn@metition at ICAPS 2004, following in
the footsteps of planners such as FF and LPG. Our experirshotg that it also performs very
well on the benchmarks of the earlier planning competitiang provide some insights about the
usefulness of the new search enhancements.

1. Introduction

Consider a typical transportation planning task: The pastevice must deliver a number of parcels
to their respective destinations using its vehicle fleetas@nd trucks. Let us assume that a car
serves all the locations of one city, and that differentesitare connected via highways that are
served by trucks. For the sake of simplicity, let us furthesuane that travelling on each segment of
road or highway incurs the same cost. This is not a highlyisgalassumption, but for the purposes
of exposition it will do. There can be any number of parcetsstpd at arbitrary locations and with

(©2006 Al Access Foundation. All rights reserved.



HELMERT

)
&)

C1

-~ - -

Figure 1: A transportation planning task. Deliver paneefrom C' to G and parcep, from F' to E,
using the carsgy, co, c3 and truckt. The cars may only use inner-city roads (thin edges),
the truck may only use the highway (thick edge).

arbitrary destinations. Moreover, cities can be of varysize, there can be one or several cars
within each city, and there can be one or several trucks adimugethe cities. Cars will never leave
a city. Fig. 1 shows an example task of this kind with two eitiaree cars and a single truck. There
are two parcels to be delivered, one of whigh)(must be moved between the two cities, while the
other (o) can stay within its initial city.

The astute reader familiar with the planning literaturel Wive noticed by now that we are
essentially describing thedGisTicsdomain, a standard benchmark for classical planning system
extended to roadmaps that are not complete graphs. (Parpofpositional STRIPS-like encoding
of the task is shown in Fig. 2.

How would human planners go about solving tasks of this kixdf likely, they would use a
hierarchical approach: Fox, it is clear that the parcel needs to be moved between citieih is
only possible by using the truck. Since in our example eaighcein access the highway at only one
location, we see that we must first load the parcel into somatdts initial location, then drop it off
at the first city’s highway access location, load it into theck, drop it off at the other city’s highway
access location, load it into the only car in that city, an@lfindrop it off at its destination. We
can commit to this “high-level” plan for delivering;, without worrying about “lower-level” aspects
such as path planning for the cars. It is obvious to usahggood solution will have this structure,
since the parcel can only change its location in a few cledafined ways (Fig. 3). The same figure
shows that the only reasonable plans for getpndo its destination require loading it into the car
in its initial city and dropping it off at its target locatiolhere is no point in ever loading it into the
truck or into any of the cars in the left city.

So say we have committed to the (partially ordered, as momtsrad the two parcels can be
interleaved) “high-level plan” shown in Fig. 5. All we neeal do to complete the plan is choose
a linearization of the high-level steps and fill in movemesftghe vehicle fleet between them. We
have thus decomposed the planning task into a number of glollepns. The parcel scheduling
problem (where, and by which vehicles, a parcel should baéddand unloaded) is separated from
the path planning problem for each vehicle in the fleet (howntwe it from point X to Y). Both
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Variables:
at-pl-a, at-pl-b, at-pl-c, at-pl-d, at-pl-e, at-pl-f, at-pl-g,
at - p2-a, at-p2-b, at-p2-c, at-p2-d, at-p2-e, at-p2-f, at-p2-g,
at-cl-a, at-cl-b, at-cl-c, at-cl-d,
at-c2-a, at-c2-b, at-c2-c, at-c2-d,
at-c3-e, at-c3-f, at-c3-g,
at-t-d, at-t-e,
in-pl-cl, in-pl-c2, in-pl-c3, in-pl-t,
i n-p2-cl, in-p2-c2, in-p2-c3, in-p2-t
Init:
at-pl-c, at-p2-f, at-cl-a, at-c2-b, at-c3-g, at-t-e
Goal:
at-pl-g, at-p2-e
Operatordri ve-cl-a-d:
PRE: at-cl-a ADD: at-cl-d DEL: at-cl-a
Operatordri ve-cl- b-d:
PRE: at-cl-b ADD: at-cl-d DEL: at-cl-b
Operatordri ve-cl-c-d:
PRE: at-cl-c ADD: at-cl-d DEL: at-cl-c

Operator | oad-cl1-pl-a:

PRE: at-cl-a, at-pl-a ADD: in-pl-cl DEL: at-pl-a
Operator | oad-c1-pl-b:

PRE: at-cl-b, at-pl-b ADD: in-pl-cl DEL: at-pl-b
Operator | oad-c1-pl-c:

PRE: at-cl-c, at-pl-c ADD: in-pl-cl DEL: at-pl-c

Operator unl oad- c1- pl- a:

PRE: at-cl-a, in-pl-cl ADD: at-pl-a DEL: in-pl-cl
Operator unl oad- c1- pl-b:

PRE: at-cl-b, in-pl-cl1 ADD: at-pl-b DEL: in-pl-cl
Operator unl oad- c1- pl-c:

PRE: at-cl-c, in-pl-cl ADD: at-pl-c DEL: in-pl-cl

Figure 2: Part of a typical propositional encoding of thengjgortation planning task (no actual
PDDL syntax).
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Figure 3: Domain transition graph for the parcelsandps. Indicates how a parcel can change
its state. For example, the arcs betweenPdtand “in t” correspond to the actions of
loading/unloading the parcel at locatidhwith the truckz.

()
O OO0
©
Figure 4: Domain transition graphs for the carsandc, (left), truck ¢ (centre), and cats (right).

Note how each graph corresponds to the part of the roadmapahae traversed by the
respective vehicle.

Figure 5: High-level plan for the transportation planniagk.

| oad L unl oad | oad unl oad | oad unl oad
cl-pl-c cl-pl-d t-pl-d t-pl-e c3-pl-e c3-pl-g
| oad unl oad
c3-p2-f c3-p2-e
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Figure 6: Causal dependencies in the transportation pigrask.

of these are graph search problems, and the correspondipipgare shown in Fig. 3 and Fig. 4.
Graphs of this kind will be formally introduced a@®main transition graphs Section 5.

Of course these graph search problems interact, but thgydmlso in limited ways: State
transitions for the parcels have associated conditionsrdagg the vehicle fleet, which need to be
considered in addition to the actual path planning in Fig-&. example, a parcel can only change
state from “at locatiord” to “inside carc;” if the carc; is at locationA. However, state transitions
for the vehicles have no associated conditions from othets pH the planning task, and hence
moving a vehicle from one location to another is indeed ag aadinding a path in the associated
domain transition graph. We say that the parcels ltaesal dependenciem the vehicles because
there are operators that change the state of the parcelsaaedpheconditions on the state of the
vehicles. Indeed, these are the only causal dependendigis task, since parcels do not depend on
other parcels and vehicles do not depend on anything exeepiselves (Fig. 6). The set of causal
dependencies of a planning task is visualized icéssal graph

We argue that humans often solve planning tasks in the blgal fashion outlined in the pre-
ceding paragraphs, and that algorithmic approaches toraptanning can usefully apply similar
ideas. Indeed, as we will show in the following section, weerast the first to introduce domain tran-
sition graphs and causal graphs. However, earlier work maest exclusively focused oacyclic
causal graphs, and for a good reason: If the causal graph lainaipg task exhibits a cycle, hi-
erarchical decomposition is not possible, because thershlgms that must be solved to achieve
an operator precondition are not necessarily smaller tharotiginal task. As far as we are aware,
we were the first (Helmert, 2004) to presergeneralplanning algorithm that focuses on exploit-
ing hierarchical information from causal graphs. Howeweir,causal graph heuristi@lso requires
acyclicity; in the general case, it considers a relaxed mifem problem in which some operator
preconditions are ignored to break causal cycles.

Knowing that cycles in causal graphs are undesirable, wedatoser look at the transportation
planning task. Let us recall our informal definition of caug@aphs: The causal graph of a planning
task contains a vertex for each state variable and arcs feorables that occur in preconditions to
variables that occur in effects of the same operator. Savamay have given the impression that
the causal graph of the example task has the well-behavext stewn in Fig. 6. Unfortunately,
having a closer look at the STRIPS encoding in Fig. 2, we saethiis is not the case: The correct
causal graph, shown in Fig. 7, looks very messy. This disgsrep between the intuitive and actual
graph is due to the fact that in our informal account of “hursyie” problem solving, we made
use of (non-binary) state variables like “the location of ed or “the state of parcep,”, while
STRIPS-level state variables correspond to (binary) abgation propositions like “parcel; is



HELMERT

[ ]

Figure 7: Causal graph for the STRIPS encoding of the trattesjian planning task.

at locationA”. It would be much nicer if we were given a multi-valued enoagdof the planning
task that explicitly contains a variable for “the locatiohoar c;” and similar properties. Indeed,
the nice looking acyclic graph in Fig. 6 is the causal grapthefmulti-valued encoding shown in
Fig. 8.

Having provided some intuition for its underlying concegdtt us now state our design goal
for the Fast Downward planning systero develop an algorithm that efficiently solves general
propositional planning tasks by exploiting the hierarcdistructure inherent in causal graphgve
need to overcome three major obstacles in this undertaking:

e First, propositionally encoded planning tasks usuallyehaesry unstructured causal graphs.
However, the intuitive dependencies often become visiblericodings with multi-valued
state variables. To exploit this fact in an automated PDRnping system, we have devised
an automatic algorithm for “translating” (or reformulaginpropositional tasks to multi-valued
ones. The translation algorithm can be considered indegelydfrom the rest of the plan-
ner; in fact, it is now also used as part of other planningesyst (van den Briel, Vossen, &
Kambhampati, 2005). To keep the article focused, waataliscuss the translation algorithm
here, referring to our earlier work for some of its centradad (Edelkamp & Helmert, 1999).
Instead, we consider its outputpaulti-valued planning taskas a base formalism.

e Second, no matter how clever the encoding is, most planmisigstare not completely hier-
archical in nature. To deal with causal cycles, we consid&xations where some causal
dependencies are ignored and use solutions to the relarbtepr within a heuristic search
algorithm.

e Third, even for planning tasks that can be solved hieraatlyicfinding such a solution is dif-
ficult (indeed, stillPSPACE-complete). For this reason, our heuristic function onlgsiders
a fragment of a task at a time, namely subproblems inducedsinygée state variable and its
predecessors in the causal graph. Eiesiplanning problem is still NP-complete, so that we
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Variables:
pl, p2 € {at-a, at-b, at-c, at-d, at-e, at-f, at-g,
in-cl,in-c2,in-c3,in-t}
cl, c2 € {at-a, at-b, at-c, at-d}

c3 € {at-e, at-f, at-g}

t € {at-d, at-e}
Init:

pl = at-c, p2 = at-f

cl =at-a,c2 = at-b, c3 = at-g,t = at-e
Goal:

pl = at-g, p2 at-e
Operatordri ve-cl-a-d:

PRE:cl = at-a EFF:cl = at-d
Operatordri ve-cl- b-d:

PRE:cl1l = at-b EFF:cl = at-d
Operatordri ve-cl-c-d:
PRE:cl = at-c EFF.cl1l = at-d

Operator | oad-cl1-pl-a:

PRE:cl = at-a, pl = at-a EFF.pl = in-cl
Operator | oad-c1-pl-b:

PRE:cl = at-b, pl = at-b EFF: pl = in-cl
Operator | oad-cl-pl-c:

PRE:cl = at-c, pl = at-¢c EFF.pl = in-cl
Operator unl oad- c1- pl- a:

PRE:cl = at-a, pl =in-cl EFF:.pl = at-a
Operator unl oad- c1- pl-b:

PRE:cl = at-b, p1l =in-cl EFF:.pl = at-b
Operator unl oad- c1- pl-c:

PRE:cl = at-c, pl =in-cl EFF:.pl = at-c

Figure 8: Part of an encoding of the transportation plantérsg with multi-valued state variables.
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are content with an incomplete solution algorithm withie tieuristic solver. This solution
algorithm has theoretical shortcomings but never failethysactice.

Having introduced the rationale of our approach, we discakded work in the next section.
This is followed by an overview of the general architectufrthe Fast Downward planning system in
Section 3. The planning system consists of three compongatslation knowledge compilatign
andsearch The translation component converts PDDL2.2 tasks to raltied planning tasks,
which we formally introduce in Section 4. The knowledge cdatfpn component is discussed in
Section 5, the search component in Section 6. We conclude avitresentation of experimental
results in Section 7 and some discussion in Section 8.

2. Related Work

As a planning system based on heuristic forward search,Fashward is clearly related to other
heuristic planners such as HSP (Bonet & Geffner, 2001) orHidifthann & Nebel, 2001) on the
architectural level. However, in this section we focus omkatbat is related on theonceptualevel,

i. e., work that uses similar forms of hierarchical deconifpms of causal graphs and work that uses
similar forms of search in domain transition graphs.

2.1 Causal Graphs and Abstraction

The termcausal grapHfirst appears in the literature in the work by Williams and Bky1997), but
the general idea is considerably older. The approach oétubically decomposing planning tasks
is arguably as old as the field of Al Planning itself, havingtfisurfaced in Newell and Simon'’s
(1963) work on the General Problem Solver.

Still, it took a long time for these notions to evolve to thaipdern form. Sacerdoti's (1974)
ABSTRIPS algorithm introduced the conceptatistraction spacefor STRIPS-like planning tasks.
An abstraction space of a STRIPS task is the state space afsiracted taskwhich is obtained
by removing all preconditions from the operators of the ioidd) task that belong to a given set of
propositions (which arabstracted away' To solve a planning task, ABSTRIPS first generates a
plan for an abstracted task, then refines this plan by imgedoncrete plans between the abstract
plan steps that “bridge the gap” between abstract statestisfysng the operator preconditions
which were ignored at the abstract level. The idea is easlyetalized to several levels of ab-
straction forming arabstraction hierarchywith a very abstract level at the top where almost all
preconditions are ignored, successively introducing npoeeonditions at every layer until the final
layer of the hierarchy equals the original planning task.

One problem with this approach to planning is that in gendirate is no guarantee that the
abstract plans bear any resemblance to reasonable coplenese For example, if abstraction spaces
are chosen badly, it is quite possible that finding a congiztie that satisfies the precondition of the
first operator in the abstract plan is more difficult than sajvhe original goal at the concrete level.
Such shortcomings spawned a large amount of research omdperfies of abstraction hierarchies
and how they can be generated automatically.

1. In later work by other authors, propositions which areti@zsed away are also removed from the operator effects.
This only makes a difference in subtle cases that requirprigence of axioms; we do not distinguish between these
two kinds of abstraction here.
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Tenenberg (1991) gives one of the first formal accounts optieperties of different kinds of
abstraction. Among other contributions, he defines theadledupward solution propertywhich
can be informally stated as: “If there exists a concretet&miuthen there also exists an abstract
solution”. Rather surprisingly, not all abstractions ddesed at the time satisfied this very basic
property, without which one would be loathe to call a givesitestspace an “abstraction” of another
state space.

A limitation of the upward solution property is that it stateo relationship between the concrete
and abstract plan at all. For ABSTRIPS-style hierarchidahping to be successful, the abstract
plan must bear some resemblance to a concrete one; othdiveise is little point in trying to
refine it. Indeed, Tenenberg introduces stronger versibtiseoupward solution property, but more
relevant to Fast Downward is Knoblock’s (1994) work on trdered monotonicity propertyAn
abstraction space satisfies the ordered monotonicity projife roughly speaking, any concrete
solution can be derived from some abstract solution whiwileg the actions in the abstract plan
intact and relevant to the concrete plan. Clearly, this iery ¥mportant property for ABSTRIPS-
like hierarchical planning.

Itis in Knoblock’s article that causal graphs first surfagithough he does not introduce a name
for them). Translated to our terminology, Knoblock proveas following relationship between
useful abstractions and causal grapkfsthe causal graph contains no path from a variable that
is not abstracted away to a variable that is abstracted avilagn the abstraction has the ordered
monotonicity propertyln particular, this means that for acyclic causal graphis,pbssible to devise
an abstraction hierarchy where only one new variable i@thtced at each level.

Besides these theoretical contributions, Knoblock prssarplanning system called ALPINE
which computes an abstraction hierarchy for a planning fesk its causal graph and exploits
this within a hierarchical refinement planner. Although thanning method is very different, the
derivation of the abstraction hierarchy is very similar tsEDownward’s method for generating
hierarchical decompositions of planning tasks (Secti@y.5.

By itself, the ordered monotonicity property is not suffiti¢o guarantee good performance
of a hierarchical planning approach. It guarantees thatyex@ncrete solution can be obtained in
a natural way from an abstract solution, but it does not quemthat all abstract solutions can
be refined to concrete ones. Such a guarantee is providedeldotinward refinement property
introduced by Bacchus and Yang (1994).

The downward refinement property can rarely be guaranteexttmal planning domains, so
Bacchus and Yang develop an analytical model for the pedaga of hierarchical planning in sit-
uations where a given abstract plan can only be refined wittrtaio probabilityp < 1. Based on
this analysis, they present an extension to ALPINE calleGHIPOINT, which selects an abstrac-
tion hierarchy with high refinement probability among thadisat satisfy the ordered monotonicity
property. In practice, it is not feasible to compute the exfivient probability, so HIGHPOINT ap-
proximates this value based on the notiorkedry necessary connectivity

2.2 Causal Graphs and Unary STRIPS Operators

Causal graphs are first given a hame by Jonsson and Back$tré95, 1998b), who call them
dependency graph3 hey study a fragment of propositional STRIPS with negationditions which

has the interesting property that plan existence can balelédn polynomial time, but minimal
solutions to a task can be exponentially long, so that norotyal planning algorithm exists. They
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present arincrementalplanning algorithm with polynomial delay, i.e., a plannialgorithm that
decides within polynomial time whether or not a given task &aolution, and, if so, generates such
a solution step by step, requiring only polynomial time betw any two subsequent stéps.

The fragment of STRIPS covered by Jonsson and Backstralg&rithm is called3S and is
defined by the requirement that the causal graph of the taakyislic and each state variables
is static symmetrically reversibleor splitting. Static variables are those for which it is easy to
guarantee that they never change their value in any solptam These variables can be detected
and compiled away easilySymmetrically reversibleariables are those where for each operator
which makes them true there is a corresponding operatoridathtical preconditions which makes
them false, and vice versa. In other words, a variable is sgmaoally reversible iff its domain
transition graph is undirected. Finally, a variablés splitting iff its removal from the causal graph
weakly disconnects its positive successors (those vasalhich appear in effects of operators of
which v is a precondition) from its negative successors (thosebbes which appear in effects of
operators of which-v is a precondition).

Williams and Nayak (1997) independently prove that incratak(or, in their settingreactive
planning is a polynomial problem in a STRIPS-like settingewehcausal graphs are acyclic and
all operators are reversible. If all operators are revégsjaccording to the definition by Williams
and Nayak), all variables are symmetrically reversiblec¢ading to the definition by Jonsson and
Backstrom), so this is actually a special case of the pres/result. However, Williams and Nayak’s
work applies to a more general formalism than propositidiBRIPS, so that the approaches are
not directly comparable.

More recently, Domshlak and Brafman provide a detailed astof the complexity of find-
ing plans in the propositional STRIPS (with negation) folisma with unary operators and acyclic
graphs (Domshlak & Brafman, 2002; Brafman & Domshlak, 2003mong other results, they
prove that the restriction to unary operators and acyclaphs does not reduce the complexity
of plan existence: the problem BSPACE-complete, just like unrestricted propositional STRIPS
planning (Bylander, 1994). They also show that for singlpreected causal graphs, shortest plans
cannot be exponentially long, but the problem is 8tH-complete. For an even more restricted class
of causal graphs, namely polytrees of bounded indegreg piesent a polynomial planning algo-
rithm. More generally, their analysis relates the compieaf STRIPS planning in unary domains
to thenumber of path# their causal graph.

2.3 Multi-Valued Planning Tasks

With the exception of Williams and Nayak's paper, all the kdiscussed so far exclusively deals
with propositional planning problems, where all state variables assume vdtaesa binary do-
main. As we observed in the introduction, the question oppsitional vs. multi-valued encodings
usually has a strong impact on the connectivity of the cagisadh of a task. In fact, apart from the
trivial M ovie domain, none of the common planning benchmarks exhibitcgarlia causal graph

2. However, there is no guarantee that the length of the gegrbisolution is polynomially related to the length of an
optimal solution; it might be exponentially longer. Themed, the algorithm might spend exponential time on tasks
that can be solved in polynomial time.

3. According to our formal definition of causal graphs in $@mtt5.2, operators with several effects always induce
cycles in the causal graph, aecyclic causal graphmpliesunary operators Some researchers define causal graphs
differently, so we name both properties explicitly here.

10
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when considering its propositional representation. Bytiast, the multi-valued encoding of our
introductory example does have an acyclic causal graph.

Due to the dominance of the PDDL (and previously, STRIPShédism, non-binary state vari-
ables are not studied very often in the classical plannitegdiure. One of the most important ex-
ceptions to this rule is the work on the SAlanning formalism, of which the papers by Backstrom
and Nebel (1995) and Jonsson and Backstrom (1998a) arerele@gant to Fast Downward. The
SAS" planning formalism is basically equivalent to thrulti-valued planning taskae introduce
in Section 4 apart from the fact that it does not include dativariables (axioms) or conditional
effects. Backstrom and Nebel analyse the complexity dbua subclasses of the SASormal-
ism and discover three propertiasn@riness post-uniguenesandsingle-valuedne3shat together
allow optimal planning in polynomial time. One of these thpgoperties (unariness) is related to
acyclicity of causal graphs, and one (post-uniquenesslésa particularly simple shape of domain
transition graphs (namely, in post-unique tasks, all dontr@nsition graphs must be simple cycles
or trees).

Backstrom and Nebel do not analyse domain transitionlgrégrmally. Indeed, the term is only
introduced in the later article by Jonsson and Backstrd®98a), which refines the earlier results
by introducing five additional restrictions for SASasks, all of which are related to properties of
domain transition graphs.

Neither of these two articles discusses the notion of cagraghs. Indeed, the only earlier work
we are aware of which includdmthcausal graphs and domain transition graphs as central ptence
is the article by Domshlak and Dinitz (2001) on ttate-transition suppofSTS) problem, which
is essentially equivalent to SASplanning with unary operators. In the context of STS, domain
transition graphs are callestrategy graphsand causal graphs are callddpendence graphgut
apart from minor details, the semantics of the two formadisare identical. Domshlak and Dinitz
provide a map of the complexity of the STS problem in termshaf shape of its causal graph,
showing that the problem NP-complete or worse for almost all non-trivial cases. Onernesting
result is that if the causal graph is a simple chaimaiodes and all variables are three-valued,
the length of minimal plans can already grow(a&™). By contrastpropositionaltasks with the
same causal graph shape admit polynomial planning algasiticcording to the result by Brafman
and Domshlak (2003), because such causal graphs are pslytith a constant indegree bound
(namely, a bound of).

To summarize and conclude our discussion of related workplserve that the central con-
cepts of Fast Downward and the causal graph heuristic, sicausal graphs and domain transition
graphs, are firmly rooted in previous work. However, Fast Deard is the first attempt to marry
hierarchical problem decomposition to the use of multizeal state variables within a general plan-
ning framework. It is also the first attempt to apply techmiggimilar to those of Knoblock (1994)
and Bacchus and Yang (1994) within a heuristic search pfanne

The significance of this latter point should not be undemested: For classical approaches to
hierarchical problem decomposition, it is imperative thatabstraction satisfies the ordered mono-
tonicity property, and it is important that the probability being able to refine an abstract plan
to a concrete plan is high, as the analysis by Bacchus and famgs. Unfortunately, non-trivial
abstraction hierarchies are rarely ordered monotonic,exgth more rarely guarantee high refine-
ment probabilities. Within a heuristic approach, these Strhaves” turn into “nice-to-haves”: If
an abstraction hierarchy is not ordered monotonic or if astralot plan considered by the heuristic
evaluator is not refinable, this merely reduces the quafith@ heuristic estimate, rather than caus-

11
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: Knowledge
- Translation - Compilation p—- Search  —-
e Normalization e Domain transition e Causal graph heuristic
¢ Invariant synthesis graphs e FF heuristic
e Grounding e Causal graph e Greedy best-first search
e Translation to MPT e Successor generator e Multi-heuristic best-first search
e Axiom evaluator e Focused iterative-broadening search

Figure 9: The three phases of Fast Downward’s execution.

ing the search to fail (in the worst case) or spend a long tigieg to salvage non-refinable abstract
plans (in the not much better case).

3. Fast Downward

We will now describe the overall architecture of the plani&st Downward is a classical planning
system based on the ideas of heuristic forward search anartfiécal problem decomposition. It
can deal with the full range of propositional PDDL2.2 (Fox &g, 2003; Edelkamp & Hoffmann,
2004), i. e., in addition to STRIPS planning, it supportsteaby formulae in operator preconditions
and goal conditions, and it can deal with conditional andensially quantified effects and derived
predicates (axioms).

The name of the planner derives from two sources: Of counse,ab these sources is Hoff-
mann’s very successful FF (“Fast Forward”) planner (Hoffima& Nebel, 2001). Like FF, Fast
Downward is a heuristic progression planner, i. e., it cotapplans by heuristic search in the space
of world states reachable from the initial situation. Hoe\xompared to FF, Fast Downward uses
a very different heuristic evaluation function called teusal graph heuristicThe heuristic eval-
uator proceeds “downward” in so far as it tries to solve plagrtasks in the hierarchical fashion
outlined in the introduction. Starting from top-level geathe algorithm recurses further and further
down the causal graph until all remaining subproblems asecliaaph search tasks.

Similar to FF, the planner has shown excellent performaiibe: original implementation of the
causal graph heuristic, plugged into a standard best-8estch algorithm, outperformed the previ-
ous champions in that area, FF and LPG (Gerevini, Saetti, &&e2003), on the set of STRIPS
benchmarks from the first three international planning cetitipns (Helmert, 2004). Fast Down-
ward itself followed in the footsteps of FF and LPG by winnihg propositional, non-optimizing
track of the 4th International Planning Competition at IGABOO4 (referred to as IPC4 from now
on).

As mentioned in the introduction, Fast Downward solves anileg task in three phases (Fig. 9):

e Thetranslation component is responsible for transforming the PDDL2.2 ripto a non-
binary form which is more amenable to hierarchical planrépgroaches. It applies a num-
ber of normalizations to compile away syntactic constrli&es disjunctions which are not
directly supported by the causal graph heuristic and pergagrounding of axioms and oper-
ators. Most importantly, it uses invariant synthesis methto find groups of related propo-
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sitions which can be encoded as a single multi-valued viaridthe output of the translation
component is anulti-valued planning tasldefined in the following section.

e The knowledge compilatiomomponent generates four kinds of data structures that gplay
central role during searclidomain transition graphencode how, and under what conditions,
state variables can change their values. Ghasal graphrepresents the hierarchical depen-
dencies between the different state variables. Jieessor generatas an efficient data
structure for determining the set of applicable operatora given state. Finally, thexiom
evaluatoris an efficient data structure for computing the values ofveérvariables. The
knowledge compilation component is described in Section 5.

e Thesearchcomponent implements three different search algorithntltihe actual planning.
Two of these algorithms make use of heuristic evaluatiorttions: One is the well-known
greedy best-first search algorithm, using the causal graphidtic. The other is calleahulti-
heuristic best-first searcha variant of greedy best-first search that tries to combaversi
heuristic evaluators in an orthogonal way; in the case of Basvnward, it uses the causal
graph and FF heuristics. The third search algorithm is ddtbeused iterative-broadening
search it is closely related to Ginsberg and Harvey’s (1992) itiseabroadening. It is not
a heuristic search algorithm in the sense that it does noamsexplicit heuristic evaluation
function. Instead, it uses the information encoded in thesabgraph to estimate the “useful-
ness” of operators towards satisfying the goals of the takk.search component is described
in Section 6.

4. Multi-Valued Planning Tasks

Let us now formally introduce the problem of planning with llrualued state variables. Our
formalism is based on the SA$lanning model (Backstrom & Nebel, 1995; Jonsson & B#cks,
1998a), but extends it with axioms and conditional effects.

Definition 1 Multi-valued planning tasks (MPTs)
A multi-valued planning task (MPT)s given by a 5-tuplél = (V, sq, s«, A, O) with the following
components:

e V is a finite set ofstate variables each with an associated finite domdin,. State vari-
ables are partitioned intfluents (affected by operators) arderived variablegcomputed by
evaluating axioms). The domains of derived variables musiain theundefined valuel .

A partial variable assignmenor partial stateover is a functions on some subset df such
that s(v) € D, wherevers(v) is defined. A partial state is called axtended staté it is
defined for all variables i and areduced stater stateif it is defined for all fluents .
In the context of partial variable assignments, we write- d for the variable-value pairing
(v,d) orv — d.

e s is a state ovel/ called theinitial state.
e s, is a partial variable assignment ovét called thegoal.
e Ais afinite set of (MPTaxiomsover). Axioms are triples of the forrfcond v, d), where

cond is a partial variable assignment called tt@ndition or bodyof the axiomy is a derived
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variable called theaffected variableandd € D, is called thederived valuefor v. The pair
(v,d) is called theheadof the axiom and can be written as= d.

The axiom setd is partitioned into a totally ordered set @xiom layersA; < --- < A
such that within the same layer, each affected variable nmdy loe associated with a single
value in axiom heads and bodies. In other words, within theesgayer, axioms with the
same affected variable but different derived values arbifluten, and if a variable appears
in an axiom head, then it may not appear with a different vatua body. This is called the
layering property

e O is a finite set of (MPTpperatorsover V. An operator(pre, effy consists of a partial
variable assignment pre ovéi called itsprecondition and a finite set oéffectseff. Effects
are triples(cond v, d), where cond is a (possibly empty) partial variable assigninualled
the effect condition v is a fluent called thaffected variableandd € D, is called thenew
valuefor v.

For axioms and effects, we also use the notation cend := d in place of(cond v, d).
To provide a formal semantics for MPT planning, we first neetbtmalize axioms:

Definition 2 Extended states defined by a state
Lets be a state of an MPTI with axiomsA, layered as4; < --- < Aj. Theextended state defined
by s, written as.A(s), is the results’ of the following algorithm:

algorithm evaluate-axioms{y, ..., A, s):
for each variablev:
S(v) = s(v) if vis afluent variable
" |L if visaderived variable
forie {1,... k}:
while there exists an axiorftond— v := d) € A; with condC s’ and s'(v) # d:
Choose such an axiogond— v := d.
s'():=d

In other words, axioms are evaluated in a layer-by-laydniasusing fixed point computations,
which is very similar to the semantics of stratified logic grams. It is easy to see that the layering
property from Definition 1 guarantees that the algorithrmieates and produces a deterministic
result. Having defined the semantics of axioms, we can noweldfie state space of an MPT:

Definition 3 MPT state spaces

Thestate spac®f an MPTII = (V, s, s4, .4, O), denoted asS(I1), is a directed graph. Its vertex
set is the set of states Pf and it contains an ar¢s, s') iff there exists some operat@ore, eff) € O
such that:

e pre C A(s),
e s'(v) = d for all effects cond— v := d € eff such that cond- A(s), and

e s'(v) = s(v) for all other fluents.
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Finally, we can define the MPT planning problem:

Definition 4 MPT planning
MPT-PLAN EX is the following decision problem: Given an MPTTwith initial state s and goal
s+, doesS(II) contain a path froms, to some state’ with s, C A(s')?

MPT-PLANNING is the following search problem: Given an MPITwith initial state sy and goal
s, compute a path i (II) from s, to some state’ with s, C .A(s’), or prove that none exists.

The MPT-R.ANEX problem is easily shown to B@SPACE-hard because it generalizes the plan
existence problem for propositional STRIPS, which is knawive PSPACE-complete (Bylander,
1994). Itis also easy to see that the addition of multi-vdldemains, axioms and conditional effects
does not increase the theoretical complexity of MPT plaghieyond propositional STRIPS. Thus,
we conclude our formal introduction of MPT planning by gtgtthat MPT-RANEX is PSPACE
complete, and turn to the practical side of things in theofelhg section.

5. Knowledge Compilation

The purpose of the knowledge compilation component is tohgestage for the search algorithms
by compiling the critical information about the planningkanto a number of data structures for ef-
ficient access. In other contexts, computations of this kiredoften callegbreprocessingHowever,
“preprocessing” is such a nondescript word that it can messichlly anything. For this reason, we
prefer a term that puts a stronger emphasis on the role ofrtbdule: To rephrase the critical infor-
mation about the planning task in such a way that it is digeasieful to the search algorithms. Of
the three building blocks of Fast Downward (translationpwiedge compilation, search), it is the
least time-critical part, always requiring less time theanslation and being dominated by search
for all but the most trivial tasks.

Knowledge compilation comprises three items. First anérfurst, we compute théomain
transition graphof each state variable. The domain transition graph for & stariable encodes
under what circumstances that variable can change its Makiefrom which values in the domain
there are transitions to which other values, which opesaboraxioms are responsible for the tran-
sition, and which conditions on other state variables as@ated with the transition. Domain
transition graphs are described in Section 5.1. They aratmateoncept for the computation of the
causal graph heuristic, described in Section 6.1.

Second, we compute tloausal graptof the planning task. Where domain transition graphs en-
code dependencies between values for a given state vatiladleausal graph encodes dependencies
between different state variables. For example, if a gieeation in a planning task can be unlocked
by means of a key that can be carried by the agent, then theblanepresenting the lock state of
the location is dependent on the variable that represen&thehor not the key is being carried.
This dependency is encoded as an arc in the causal graph.daikain transition graphs, causal
graphs are a central concept for the computation of the tauwaph heuristic, giving it its name.
The causal graph heuristic requires causal graphs to béd@dyor this reason, the knowledge com-
pilation component also generates an acyclic subgrapheafel causal graph when cycles occur.
This amounts to a relaxation of the planning task where sopeeator preconditions are ignored.
In addition to their usefulness for the causal graph haarishusal graphs are also a key concept
of thefocused iterative-broadening searalgorithm introduced in Section 6.5. We discuss causal
graphs in Section 5.2.
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Third, we compute two data structures that are useful forfanyard-searching algorithm for
MPTs, calledsuccessor generatoi@nd axiom evaluators Successor generators compute the set
of applicable operators in a given world state, and axiontuatars compute the values of derived
variables for a given reduced state. Both are designed tbalpjob as quickly as possible, which
is especially important for the focused iterative-broadgrsearch algorithm, which does not com-
pute heuristic estimates and thus requires the basic dpesdor expanding a search node to be
implemented efficiently. These data structures are digclissSection 5.3.

5.1 Domain Transition Graphs

The domain transition graph of a state variable is a reptatien of the ways in which the variable
can change its value, and of the conditions that must befisdti®r such value changes to be al-
lowed. Domain transition graphs were introduced by JonsswhBackstrom (1998a) in the context
of SAS' planning. Our formalization of domain transition graphagelizes the original definition
to planning tasks involving axioms and conditional effects

Definition 5 Domain transition graphs

LetIl = (V, so, s«, A, O) be a multi-valued planning task, and ke V be a state variable dfl.
Thedomain transition graphof v, in symbols DT@v), is a labelled directed graph with vertex

setD,. If vis a fluent, DTGu) contains the following arcs:

e For each effect cond- v := d’ of an operatoro with precondition pre such that pte cond
contains some condition = d, an arc fromd to d’ labelled with preJ cond\ {v = d}.

e For each effect cond~ v := d’ of an operatoro with precondition pre such that pte cond
does not contain the condition= d for anyd € D,, an arc from eachi € D, \ {d'} to d’
labelled with preu cond.

If v is a derived variable, DT() contains the following arcs:

e For each axiom cond- v := d’ € A such that cond contains some conditior= d, an arc
fromd to d’ labelled with cond\ {v = d}.

e For each axiom cond- v := d’ € A such that cond does not contain the conditior= d
for anyd € D,, an arc from eachl € D, \ {d’} to d’ labelled with cond.

Arcs of domain transition graphs are calléthnsitions Their labels are referred to as the
conditionsof the transition.

Domain transition graphs can be weighted, in which case deafisition has an associated
non-negative integer weight. Unless stated otherwise, sgarae that all transitions derived from
operators have weight 1 and all transitions derived fronoaxé have weight 0.

The definition is somewhat lengthy, but its informal contisndéasy to grasp: The domain tran-
sition graph forv contains a transition frord to d’ if there exists some operator or axiom that can
change the value af from d to d’. Such a transition is labelled with the conditionsather state
variables that must be true if the transition shall be applidultiple transitions between the same
values using different conditions are allowed and occuguently.

We have already seen domain transition graphs in the inttody section (Figs. 3 and 4), al-
though they were only introduced informally and did not shibwe arc labels usually associated

16



THE FAST DOWNWARD PLANNING SYSTEM

r = (3,1), k = carried

Figure 10: Domain transition graphs of eR® task. Top left: DTG(r) (robot); right: DTG(k)
(key); bottom left:DTG(d) (door).

with transitions. Fig. 10 shows some examples from a simg& tn the @QID domain, featur-
ing a3 x 2 grid with a single initially locked location in the centre thfe upper row, unlockable
by a single key. In the MPT encoding of the task, there arectktate variables: variablewith
D, = { (z,y) | z € {1,2,3}, y € {1,2} } encodes the location of the robot, varialilevith
Dy = D, U {carried} encodes the state of the key, and variableith D; = {closedopen}
encodes the state of the initially locked grid location.

If all operators of an MPT are unary (i. e., only have a sindleat) and we leave aside axioms
for a moment, then there is a strong correspondence betvineestdte space of an MPT and its
domain transition graphs. Since vertices in domain traeorsigraphs correspond to values of state
variables, a given state is represented by selecting otexviereach domain transition graph, called
the active vertexof this state variable. Applying an operator means changfiegactive vertex
of some state variable by performing a transition in the egponding domain transition graph.
Whether or not such a transition is allowed depends on itglition, which is checked against the
active vertices of the other domain transition graphs.

Let us use the 8D example to illustrate this correspondence. Consider dialistate where
the robot is at locatioitl, 1), the key is at locatiori3, 2), and the door is locked. We represent this
by placing pebbles on the appropriate vertices of the thoeeaih transition graphs. We want to
move the pebble in the domain transition graph of the key ¢ation (2,1). This can be done by
moving the robot pebble to vertéx, 2), then(2, 2), then(3, 2), moving the key pebble to the vertex
carried, moving the robot pebble back to vertéx 2), moving the door pebble topen moving the
robot pebble to vertef2, 1) and finally moving the key pebble to vertex 1).
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d=openr=(1,1)

d=openr=(3,1)

Figure 11: Domain transition graphs for tfreezingvariable in the @ID task, normal (left) and
extended (right). Note that only the extended graph shows thochange state from
“freezing” (T) to “not freezing” (L).

The example shows how plan execution can be viewed as simeoltis traversal of domain
transition graphs (cf. Domshlak & Dinitz, 2001). This is anpiortant notion for Fast Downward
because the causal graph heuristic computes its heursdtinates by solving subproblems of the
planning task by looking for paths in domain transition dr&pn basically the way we have de-
scribed.

As mentioned before, this view of MPT planning is only conmelg accurate for unary tasks
without axioms, for which the domain transition graphs ageled a complete representation of the
state space. For non-unary operators, we would need td ‘tmitain transitions in different domain
transition graphs which belong to the same operator. Theskl ¢hen only be executed together.
For axioms, we would need to mark certain transitions as ‘ttagory”, requiring that they be taken
whenever possible. (This is only intended as a rough anadmglyleaves out details like layered
axioms.)

In our previous work (Helmert, 2004), we have successfulipliad this view of planning to
STRIPS tasks. Extending the notion to plans with conditi@&ficts provides no challenges be-
cause domain transition graphs always consider planniegatgrs one effect at a time, in which
case effect condition can simply be seen as part of the apepatcondition. However, axioms
provide a challenge that is easily overlooked. If we wantharge the value of a fluent fromto
d’', the domain transition graph contains all the importanbrimfation; just find a path frond to d’
and try to find out how the associated conditions can be agtiie€onsider the same problem for
a derived state variable. Let us assume that unlocking tteitm in the Q1D example leads to a
drought, causing the robot to freeze if it enters a horizbntdjacent location. We could encode
this with a new derived variabl¢ (for freezing with domainD; = {T, L}, defined by the axioms
d=openr=(1,1) — f:=T andd =openr = (3,1) — f := T. The domain transition graph
DTG(f) is depicted in Fig. 11 (left).

The problem with that domain transition graph is that it doestell us how we can change the
state of variablef from T to L. In general, in MPTs derived from STRIPS tasks where derived
predicates occur negatively in any condition, the domaindition graph does not contain sufficient
information for changing the value of a derived variablenirttrue” to “false”. Derived variables
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never assume the valuedue to aderivationof this value; because of negation as failure semantics,
they only assume the valilsy defaultif no other valuecan be derived. If we want to reason about
ways of setting the value of a derived variableltpwe will need to make this information explicit.

In logical notation, whether or not a derived variable asssira given value by triggering an
axiom at a given layer is determined by a formula in disjurecthormal form, with one disjunct
for each axiom setting the value. For example, our axidms openr = (1,1) — f := T and
d =openr = (3,1) — f:= T correspond to the DNF formulg/ = openA r = (1,1)) V (d =
open\r = (3,1)). If we want to know when these rules dottrigger, we must negate this formula,
leading to the CNF formulé&d # openvr # (1,1))A(d # openvr # (3,1)). To be able to encode
this information in the domain transition graph, we needeplaice the inequalities with equalities
and translate the formula back to DNF. Since such transftiorms can increase the formula size
dramatically, we apply simplifications along the way, reimngwduplicated and dominated disjuncts.
The result in this case is the DNF formule= closedv r = (2,1) Vr = (1,2) Vr = (2,2) Vr =
(3,2).

A domain transition graph for a derived variable which hasrbenriched to contain the possible
ways of causing the variable to assume the valus called arextended domain transition graph
as shown for the & D example in Fig. 11 (right). Since computing the extended @iartransition
graph can be costly and is not always necessary, the know/lealgpilation component scans the
conditions of the planning task (axioms, operator prectm and effect conditions, goal) for
occurrences of pairings of the type= | for derived variables). Extended domain transition
graphs are only computed for those derived variables fockvtihey are required.

Note that negative occurrences of derived variables cacadas Ifu, v andw are derived
variables with domai T, L} and the condition» = L is present in some operator precondition,
and moreoverw is defined by the axiomm = T,w = T — v := T, thenv assumes the valug
whenever or w do, so we would require extended domain transition graphs emdw as well.

On the other hand, multiple layers of negation as failure @amcel each other out: If derived
variablev only occurs in conditions of the formm= _L but never in positive form and is defined by
the axiomu = L, w = L — v := T, then we do not necessarily require extended domain tiansit
graphs foru andw.

In general, whether or not we need extended domain trangitiaphs for a derived variable is
determined by the following rules:

e If v is a derived variable for which the conditian= d for d # 1 appears in an operator
precondition, effect condition or in the goal, theiis used positively

e If v is a derived variable for which the conditian= L appears in an operator precondition,
effect condition or in the goal, thenis used negatively

e If v is a derived variable for which the conditian= d for d # 1 appears in the body of an
axiom whose head is used positively (negatively), thesused positively (negatively).

e If v is a derived variable for which the conditian= | appears in the body of an axiom
whose head is used positively (negatively), thda used negatively (positively).

The knowledge compilation component computes extendedotoimansition graphs for all de-
rived variables which are used negatively and (standardjailo transition graphs for all other state
variables. Normal domain transition graphs are computeddigg through the set of axioms and
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the set of operator effects following Definition 5, which &asonably straight-forward; the com-
putation of extended domain transition graphs has beemedthbove. Therefore, the algorithmic
aspects of this topic should not require further discussion

5.2 Causal Graphs

Causal graphs have been introduced informally in the intctidn. Here is a formal definition.

Definition 6 Causal graphs
Let IT be a multi-valued planning task with variable 3t Thecausal graphof II, in symbols
CG(II), is the directed graph with vertex sgtcontaining an arc(v,v’) iff v # +" and one of the
following conditions is true:

e The domain transition graph af has a transition with some condition an
e The set of affected variables in the effect list of some apemacludes bothy andv’.

In the first case, we say that an arc is induced kyaasition condition In the second case we say
that it is induced byo-occurring effects

Of course, arcs induced by transition conditions and ardadad by co-occurring effects are
not mutually exclusive. The same causal graph arc can beaeddor both reasons.

Informally, the causal graph contains an arc from a sourdabi to a target variable if changes
in the value of the target variable can depend on the valubekburce variable. Such arcs are
included also if this dependency is of the form ofeffecton the source variable. This agrees with
the definition ofdependency graphisy Jonsson and Backstrom (1998b), although these authors
distinguish between the two different ways in which an arthemgraph can be introduced by using
labelled arcs.

Whether or not co-occurring effects should induce arcs éndhusal graph depends on the in-
tended semantics: If such arcs are not included, the setishtgraph ancestoe(v) of a variable
v are precisely those variables which are relevant if our gotd change the value af Plans for
this goal can be computed without considering any variatlgsideandv), by eliminating all vari-
ables outsidandv) from the planning task and simplifying axioms and operasmsordingly. We
call this theachievability definitiorof causal graphs, because causal graphs encode what gariabl
are important for achieving a given assignment to a statelar

However, with the achievability definition, a planner thatyoconsidersaangv) while generating
an action sequence that achieves a given valuationrftaly modify variables outside ahc(v), i. e.,
the generated plans have side effects which could desteyqusly achieved goals or otherwise
have a negative impact on overall planning. Therefore, veéeprour definition, which we call the
separability definitiorof causal graphs.

5.2.1 AcycLic CAUSAL GRAPHS

Following the separability definition of causal graphsysa a subproblem over variablesiq(v)
is always possible without changing any values outsidanafv). This leads us to the following
observation.
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Observation 7 Acyclic causal graphs and strongly connected domain traisi graphs

LetII be an MPT such that C(@l) is acyclic, all domain transition graphs are strongly contes,
there are no derived variables, and no trivially false cdimtis occur in operators or goals. Then
IT has a solution.

By trivially false conditions, we mean conditions of the kifd = d,v = d'} for d # d'.
Note the similarity of Observation 7 to the results of Willia and Nayak (1997) on planning in do-
mains with unary operators, acyclic causal graphs and sidlertransitions. Under the separability
definition of causal graphs, acyclic causal graphs implyrineas of operators because operators
with several effects introduce causal cycles. Moreoveonst connectedness of domain transition
graphs is closely related to Williams’ and Nayak’s revatiibproperty, although it is a weaker
requirement.

The truth of the observation can easily be seen inductivétiie planning task has only one state
variable and the domain transition graph is strongly cotetecdhen any state (of the one variable)
can be transformed into any other state by applying grapttkeachniques. If the planning task
has several state variables and the causal graph is aoyelipick a sink of the causal graph, i.e.,
a variablev without outgoing arcs, and check if a goal is defined for thasiable. If not, we
remove the variable from the task, thus reducing the proliemne with fewer state variables,
solved recursively. If yes, we search for a path fregw) to s, (v) in the domain transition graph
of v, which is guaranteed to exist because the graph is stroglyected. This yields a “high-level
plan” for settingv to s,(v) which can be fleshed out by recursively inserting the plansétting
the variables of the predecessorsvdh the causal graph to the values required for the transtion
that form the high-level plan. Once the desired value tfas been set; can be eliminated from
the planning task and the remaining problem can be solvadsizely.

The algorithm is shown in Fig. 12. Although it is backtrackd, it can require exponential
time to execute because the generated plans can be ex@adlgdotig. This is unavoidable; even
for MPTs that satisfy the conditions of Observation 7, sbsirplans can be exponentially long. A
family of planning tasks with this property is given in theopf of Theorem 4.4 in the article by
Backstrom and Nebel (1995).

This method for solving multi-valued planning tasks is esisdly planning by refinementWe
begin by constructing a very abstract skeleton plan, whichérely a path in some domain transition
graph, then lower the level of abstraction by adding opesaio satisfy the preconditions required
for the transitions taken by the path. Strong connectedokdemain transition graphs guarantees
that every abstract plan can actually be refined to a conptate This is precisely Bacchus and
Yang's (1994)downward refinement proper{gf. Section 2.1).

5.2.2 (ENERATING AND PRUNING CAUSAL GRAPHS

The usefulness of causal graphs for planning by refinemeamitimited to the acyclic case. Con-
sider a subse¥’ of the task variables which contains all its causal grapleetegants. In general, if
we restrict the task t®” by removing all occurrences of other variables from thdahstate, goal,
operators and axioms, we obtain an abstraction of the @ilgiroblem which satisfies Knoblock’s
(1994) ordered monotonicity property (Section 2.1).

Unfortunately, one major problem with this approach is thatrequirement to include all causal
graph descendants is quite limiting. It is not uncommon lier ¢ausal graph of a planning task to
be strongly connected, in which case this technique willatiotv us to abstract away any variables
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algorithm solve-easy-MPTY, sg, s«, O):
if 5, = 0:
{ The goal is empty: the empty plan is a solutign.
return ().
else
Letv € V be a variable not occurring in preconditions or effect ctinds inO.
{ Such a variable always exists if the causal graph of the taakyclic. }

V=V \ {v}.

O’ := {0 € O|odoes not affect }.

plan:= ()

if s,(v) is defined:
Letty, ..., t; be a path of transitions IDTG(v) from sy(v) t0 s, (v).
{t1, ..., tx is a“high-level plan” that reaches the goal igr

but ignores preconditions on other variablés.
foreacht e {t1,...,tc}:
{ Recursively find a plan that achieves the conditions ¢f
Let condando be the condition and operator associated with
Let s;, be the state reached after executptan, restricted to)’.
Extendplan by solve-easy-MPTV', s;, cond O').
Extendplan by o.
{ After dealing withv, recursively plan for goals on the remaining variablgs.
Let s, be the state reached after executolgn, restricted to”.
s’ = s, restricted to)".
Extendplan by solve-easy-MP{V', s, s, O").
return plan

Figure 12: Planning algorithm for MPTs with acyclic causeadgh and strongly connected domain
transition graphs.
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at all. However, in a heuristic approach, we are free to dijfthe planning task. In particular,
by ignoring some operator preconditions for the purposdseofistic evaluation, we can make an
arbitrary causal graph acyclic. Clearly, the more aspedisereal task we ignore, the worse we can
expect our heuristic to approximate the actual goal digta@onsidering this, our aim is to ignore
as little information as possible. We will now explain hovistis done.

The knowledge compilation component begins its causallgmpcessing by generating the
“full” causal graph (Definition 6). One consequence of thegasability definition of causal graphs
is that all state variables which are not ancestors of vesgaimentioned in the goal are completely
irrelevant. Therefore, having computed the graph, we tltenpmite the causal graph ancestors of
all variables in the goal. Any state variables which are woinfl to be goal ancestors are elimi-
nated from the planning task and causal graph, and assbcipgFators and axioms are removed.
Afterwards, we compute pruned causal graphan acyclic subgraph of the causal graph with the
same vertex set. We try do this in such a fashion that “impéttzausal dependencies are retained
whenever possible. More specifically, we apply the follogviadgorithm.

First, we compute the strongly connected components ofdlisat graph. Cycles only occur
within strongly connected components, so each componenbealealt with separately. Second,
for each connected component, we compute a total okden the vertices, retaining only those
arcs(v,v’) for whichv < o', If v < v/, we say that’ has ahigher levelthanv. The total order is
computed in the following way:

1. We assign a weight to each arc in the causal graph. The ta&figim arc isn if it is induced
by n axioms or operators. The lower the cumulated weight of tlkeriming arcs of a vertex,
the fewer conditions are ignored by assigning a low levehis vertex.

2. We then pick a vertex with minimal cumulated weight of incoming arcs and sele@itthe
lowest level, i. e., we set < v’ for all other vertices/ in the strongly connected component.

3. Sincev has been dealt with, we remove the vertex and its incidestfesm consideration for
the rest of the ordering algorithm.

4. The remaining problem is solved by iteratively applyihg same technique to order the other
vertices until only a single vertex remains.

The reader will notice that the pruning choices within a sty connected component are
performed by a greedy algorithm. We could also try to find sétscs of minimal total weight such
that eliminating these arcs results in an acyclic graph. él@n this is arNP-equivalent problem,
even in the case of unweighted graphs (Garey & Johnson, p@@8lem GT8).

After generating the pruned causal graph, we also prunedhmuh transition graphs by remov-
ing from the transition labels ddTG(v) all conditions on variables’ with v < v'. These are the
conditions that are ignored by the heuristic computatianalfy, we simplify the domain transition
graphs by removinglominated transitionslf ¢ and¢’ are transitions between the same two values
of a variable, and the condition @fis a proper subset of the condition 8f then transitiort is
easier to apply thati, so that we remové. Similarly, if there are several transitions with identica
conditions, we only keep one of them.

4. This simplification is closely related to Knoblock’s eriion for theproblem-specifiordered monotonicity property
(Knoblock, 1994).
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Figure 13: Causal graph of adGisTicstask. State variable§ anda; encode the locations of
trucks and airplanes, state variabjgshe locations of packages.

Figure 14: Causal graph of aVTERY task (left) and of a relaxed version of the task (right). Stat
variablesf; encode the fuel at a location, state varialdlesndc; encode the locations
and remaining capacities of trucks, and state variabjescode the locations of pack-
ages.

5.2.3 QAusAL GRAPH EXAMPLES

To give some impression of the types of causal graphs typit@lnd in the standard benchmarks
and the effects of pruning, we show some examples of inargagiaph complexity.

As our first and simplest example, Fig. 13 shows the causphgsha task from the bGisTICS
domain, featuring two trucks, two airplanes and two package can be seen, the graph is acyclic,
so it requires no pruning for the causal graph heuristicc&ilmoGisTicstasks also feature strongly
connected domain transition graphs, they can even be sblyd¢de polynomialsolve-easy-MPT
algorithm.

As a slightly more complicated example, the next figure, Eiy.shows a task from the ¥&-
TERY domain with three locations, two trucks and two packagese Gdusal graph contains a
number of cycles, but these are mostly local. By pruning &as verticesl; to f;, we ignore the
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ek

Figure 15: Causal graph of arR®D task (left) and of a relaxed version of the task (right). &tat
variabler encodes the location of the robatencodes the status of the robot arm (empty
or carrying a key)] encodes the status of the locked location (locked or opem)ia
andk, encode the locations of the two keys.

fact that we must move trucks to certain locations if we wantise up fuel at that location. As
using up fuel is not a very useful thing to do, this is not a loigslin information. By pruning arcs
from verticesp; to c;, we ignore the fact that vehicles can only increase or deerdéiaeir current
capacity by unloading or loading packages. Compared toigtmsr based on ignoring delete ef-
fects, this is not a great loss in information, since igngrilelete effects in the MSTERY domain
almost amounts to ignoring capacity and fuel constrainisgather. By pruning just these arcs,
we can eliminate all cycles in the causal graph, so thesMERY domain can be considered fairly
well-behaved.

A worse case is shown in Fig. 15, which shows an example fr@anGRiD domain with an
arbitrary number of locations, of which a single one is latk&here are two keys, one of which
can unlock the locked location. Eliminating cycles hereurezs a few minor relaxations regarding
the status of the robot arm (empty or non-empty), but alsoroag@r simplification, namely the
elimination of the arc froml to r representing the fact that the robot can only enter the bcke
location if it has been unlocked.

As a (nearly) worst-case example, consider a task in thed& swoRLD domain (no figure). A
typical MPT encoding uses one state variabl®r encoding whether or not the hand is empty and
two state variables per block in the task: For ikt block, t; encodes whether or not the block is
lying on the table, and; encodes which block is lying on top of it, or if it is clear oribg held by
the arm. In the causal graph of such a task, variadias ingoing arcs from and outgoing arcs to all
other state variables, and all state varialtleare connected to each other in both directions. Only
the state variables, have a slightly simpler connection structure, being onlgrexcted toh and
to b; for the same value af. Any relaxation of the problem that eliminates cycles frdma tausal
graph loses a large amount of information, and it is not $sirgy that the EPOT domain, which
includes a RocksSWORLD subproblem, is the one for which the precursor of Fast Dowdvared
worst (Helmert, 2004). Still, it should be pointed out th&mmers that ignore delete effects have
similar problems with BockswoRLD-like domains, as the comparison between the FF and causal
graph heuristics in the same article shows.
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5.3 Successor Generators and Axiom Evaluators

In addition to good heuristic guidance, a forward searclpilagning system needs efficient methods
for generating successor states if it is to be applied to grechmark suite from the international
planning competitions. For some domains, our causal grapidiic or other popular methods
like the FF heuristic provide excellent goal estimates,syifitplanning can be too time-consuming
because of very long plans and vast branching factors.

The variant of best-first search implemented in Fast Dowdwiaes not compute the heuristic
estimate for each state that is generated. Essentiallyistielevaluations are only computed for
closed nodes, while computation is deferred for nodes orsétaech frontier. For domains with
strong heuristic guidance and large branching factorsntimber of nodes on the frontier can by
far dominate the number of nodes in the closed set. As a casérity consider the problem instance
SATELLITE #29. For solving this task, the default configuration of Hastvnward only computes
heuristic estimates for 67 597 world states while adding238381 states to the frontier. Clearly,
determining the set of applicable operators quickly is @faal importance in such a scenatrio.

In some BTELLITE tasks, there are almost 1 000 000 ground operators, so wédstrgLto
avoid individually checking each operator for applicalili Similarly, in the biggest PSR tasks,
more than 100000 axioms must be evaluated in each state tputerthe values of the derived
variables, so this computation must be made efficient. Femdlpurposes, Fast Downward uses two
data structures callesliccessor generatoendaxiom evaluators

5.3.1 SUCCESSORGENERATORS

Successor generators are recursive data structures weitarsio decision trees. The internal nodes
have associated conditions, which can be likened to thesidesi in a decision tree, and the leaves
have associated operator lists which can be likened to & stassified samples in a decision tree
leaf. They are formally defined as follows.

Definition 8 Successor generators
A successor generatdor an MPTIIL = (V, sq, s«, A, O) is a tree consisting aselector nodesind
generator nodes

A selector node is an internal node of the tree. It has an aaset variablev € V called the
selection variable Moreover, it hagD, |+ 1 children accessed via labelled edges, one edge labelled
v = d for each valued € D,, and one edge labelled. The latter edge is called théon't care
edgeof the selector.

A generator node is a leaf node of the tree. It has an assatisae of operators fron® called
the set ofyenerated operators

Each operatoro € O must occur in exactly one generator node, and the set of ealgsdl
leading from the root to this node (excluding don't care esjgaust equal the precondition of

Given a successor generator for an MHTand a states of II, we can compute the set of
applicable operators inby traversing the successor generator as follows, stafitomg the root:

e At a selector node with selection variahigfollow the edgey = s(v) and the don'’t care edge.

e At a generator node, report the generated operators acabldi
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algorithm evaluate-axiom-layes( A;):
for eachaxioma € A;:
a.counter:= |a.cond
for each variablev:
for eachaxioma € A; with a conditionv = s(v) in the body:
a.counter:= a.counter— 1
while there exists an axiom € A; with a.counter= 0 that was not yet considered:
Let (v, d) be the head of such an axiom.
if s(v) #d:
s(v) :=d
for each axioma € A; with a conditionv = d in the body:
a.counter:= a.counter— 1

Figure 16: Computing the values of the derived variablesgivan planning state.

To build a successor generator fdr we apply a top-down algorithm which considers the task
variables in an arbitrary ordef, < vs < --- < v,. Atthe root node, we choosg as selection vari-
able and classify the set of operators according to theogumditions with respect to;. Operators
with a preconditiorv; = d will be represented in the child of the root accessed by tige @dth the
corresponding label, while operators without precondgi@nv; will be represented in the child
of the root accessed by the don't care edge. In the childreheofoot, we choose,; as selection
variable, in the grandchildrers, and so on.

There is one exception to this rule to avoid creating unrsargsselection nodes: If no operator
in a certain branch of the tree has a conditionvgrthenwv; is not considered as a selection variable
in this branch. The construction of a branch ends when alhlbbes have been considered, at which
stage a generator node is created for the operators assbueidh that branch.

5.3.2 AXIOM EVALUATORS

Axiom evaluators are a simple data structure used for effiigmplementing the well-known
marking algorithmfor propositional Horn logic (Dowling & Gallier, 1984), exhded and modified
for the layered logic programs that correspond to the axioha MPT. They consist of two parts.
Firstly, an indexing data structure maps a given variable® pairing and a given axiom layer to
the set of axioms in the given layer in whose body the pairpgears. Secondly, a set of counters,
one for each axiom, counts the number of conditions of theraxhat have not yet been derived.

Within Fast Downward, axioms are evaluated in two stepstFall derived variables are set to
their default valuel.. Second, algorithnevaluate-axiom-layefFig. 16) is executed for each axiom
layer in sequence to determine the final values of the dekaédbles.

We assume that the reader is familiar enough with the maritiggrithm not to require much
explanation, so we only point out that the test whether oramodxiom is ready to trigger is imple-
mented by means of a queue in which axioms are put as sooniasdheter reaches 0. The actual
implementation okvaluate-axiom-layewithin Fast Downward initializes axiom counters slightly
more efficiently than indicated by the pseudo-code. Howedkeris a minor technical detail, so we
turn to the remaining piece of Fast Downward’s architecttlre search component.
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6. Search

Unlike the translation and knowledge compilation compdsefor which there is only a single
mode of execution, the search component of Fast Downwargedarm its work in various alter-
native ways. There are three basic search algorithms tosehivom:

1. Greedy best-first searchthis is the standard textbook algorithm (Russell & Norvi§03),
modified with a technique calledeferred heuristic evaluatioto mitigate the negative influ-
ence of wide branching. We have also extended the algorithdeal withpreferred opera-
tors, similar to FF's helpful actions (Hoffmann & Nebel, 2001) eWliscuss greedy best-first
search in Section 6.3. Fast Downward uses this algorithretbey with the causal graph
heuristic, discussed in Section 6.1.

2. Multi-heuristic best-first searchfhis is a variation of greedy best-first search which evalsiat
search states using multiple heuristic estimators, miaint separate open lists for each.
Like our variant of greedy best-first search, it supportsube ofpreferred operatorsMulti-
heuristic best-first search is discussed in Section 6.4t Bagnward uses this algorithm
together with the causal graph and FF heuristics, discussgdctions 6.1 and 6.2.

3. Focused iterative-broadening searcithis is a simple search algorithm that does not use
heuristic estimators, and instead reduces the vast seaafts@ossibilities by focusing on
a limited operator set derived from the causal graph. It igxgperimental algorithm; in the
future, we hope to further develop the basic idea of thisrtlygm into a more robust method.
Focused iterative-broadening search is discussed indBe@th.

For the two heuristic search algorithms, a second choice musnade regarding the use of
preferred operatorsThere are five options supported by the planner:

1. Do not use preferred operators.

2. Use thenhelpful transitionsof the causal graph heuristic as preferred operators.
3. Use thenhelpful actionsof the FF heuristic as preferred operators.
4

. Use helpful transitions as preferred operators, falthlagk to helpful actions if there are no
helpful transitions in the current search state.

5. Use both helpful transitions and helpful actions as preteoperators.

Each of these five options can be combined with any of the twoistee search algorithms,
so that there is a total of eleven possible settings for tlaeckecomponent, ten using one of the
heuristic algorithms and one using focused iterative-theming search.

In addition to these basic settings, the search componenbe@onfigured to execute several
alternative configurations in parallel by making use of aerimal scheduler. Both configurations of
Fast Downward that participated in IPC4 made use of thisifedly running one configuration of
the heuristic search algorithms in parallel with focusedative-broadening search. As its heuristic
search algorithm, the configuratidiast Downwardemployed greedy best-first search with helpful
transitions, falling back to helpful actions when neceggaption 4.). The configuratioRast Di-
agonally Downwarcemployed multi-heuristic best-first search using helpfamsitions and helpful
actions as preferred operators (option 5.).
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To avoid confusion between the complete Fast Downward pignsystem and the particular
configuration called “Fast Downward”, we will refer to theGR planner configurations &D and
FDD for the rest of this paper. The name of the planning systemve®ote is never abbreviated.

6.1 The Causal Graph Heuristic

The causal graph heuristiés the centrepiece of Fast Downward’s heuristic searchrendit esti-
mates the cost of reaching the goal from a given search stateling a number of subproblems of
the planning task which are derived by looking at small “vang” of the (pruned) causal graph. For
some additional intuitions about the design of the heuwriatid a discussion of theoretical aspects,
we refer to the article in which the heuristic was first intuodd (Helmert, 2004).

6.1.1 ONCEPTUAL VIEW OF THE CAUSAL GRAPH HEURISTIC

For each state variable and each pair of valueg d’ € D,, the causal graph heuristic computes
a heuristic estimateost,(d, d’) for the cost of changing the value offrom d to d’, assuming that
all other state variables carry the same values as in themustate. (This is a simplification. Cost
estimates are not computed for state variables valuesd for which they are never required. We
ignore this fact when discussing the heuristic on the coetpevel.) The heuristic estimate of
a given states is the sum over the costsost,(s(v), s«(v)) for all variablesv for which a goal
conditions, (v) is defined.

Conceptually, cost estimates are computed one variatde th# other, traversing the (pruned)
causal graph in a bottom-up fashion. By bottom-up, we meanwie start with the variables that
have no predecessors in the causal graphs; we call this ofdemputation “bottom-up” because
we consider variables that can change their state of their aecordlow-leve| while variables
whose state transitions require the help of other variabda® more complex transition semantics
and are thus considerddgh-level Note that in our figures depicting causal graphgh-level
variables are typically displayed near thattom

For variables without predecessors in the causal grepsi,(d, d') simply equals the cost of
a shortest path frord to d’ in the (pruned) domain transition grafiiTG(v). For other variables,
cost estimates are also computed by graph search in the ddraasition graph. However, the
conditions of transitions must be taken into account dupath planning, so that in addition to
counting the number of transitions required to reach thémkg#on value, we also consider the costs
for achieving the value changes of the other variables sacg$o set up the transition conditions.

The important point here is that in computing the valaest, (d, d'), we completely consider
all interactions of the state variablewith its predecessors in the causal graph. If changing the
value fromd to d’ requires several steps and each of these steps has an &sbgoiadition on a
variablev’, then we realize that’ must assume the values required by those conditioesquence
For example, ifv represents a package in a transportation task that must bednfimm A to B by
means of a vehicle located &t then we recognize that the vehicle must first move fiGno A
and then fromA to B in order to drop the package &. This is very different to the way HSP-
or FF-based heuristics work on such examples. However, Weaamsider interactions with the
immediatepredecessors afin the causal graph. Interactions that occur via severglglayers are
not captured by the heuristic estimator.

In essence, we computest,(d, d’) by solving a particular subproblem of the MPT, induced by
the variablev and its predecessors in the pruned causal graph. For thisahlbm, we assume that
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algorithm compute-costs-bottom-uli( s):
for each variablev of II, traversing the pruned causal graph in bottom-up order:
Let )’ be the set of immediate predecessors of the pruned causal graph.
for each pair of values(d, d') € D, x D,;:
Generate a planning task, 4 o with the following components:
— Variables: V' U {v}.
— Initial state: v = d andv’ = s(¢') forall v’ € V'.
—Goal:v=d'.
— Axioms and operators:
1. Those corresponding to transitions in the pruned DT@. of
2. For all variables’ € V' and values:, ¢’ € D,/, an operator
with preconditionv’ = e, effectv’ = ¢’ and costosf, (e, ¢’).
{ Note that all variables’ € V' have been considered previously,
so that their cost values are known.
Setcost,(d, d’) to the cost of a plam that solvedI, 4 .

Figure 17: Thecompute-costs-bottom-ugdgorithm, a high-level description of the causal graph
heuristic.

v is initially set tod, we wantv to assume the valu#, and all other state variables carry the same
value as in the current state. We call this planning probleeidcal subproblem fow, d andd’, or
thelocal subproblem fow andd if we leave the target valué€ open.

For a formalization of these intuitive notions of how tbestestimates are generated, consider
the pseudo-code in Fig. 17. It does not reflect the way theigteuvalues are actually computed
within Fast Downward; the algorithm in the figure would be o expensive to evaluate for each
search state. However, it computes the same cost valuestBB@&anward does, provided that the
algorithm generating the plamsin the last line of the algorithm is the same one as the onefesed
the “real” cost estimator.

6.1.2 GOMPUTATION OF THE CAUSAL GRAPH HEURISTIC

The actual computation of the causal graph heuristic tesgethe causal graph in a top-down direc-
tion starting from the goal variables, rather than bottgmstarting from variables without causal

predecessors. In fact, this top-down traversal of the dagnaph is the reason for Fast Downward’s
name.

Computing cost estimates in a top-down traversal impliaswhile the algorithm is computing
plans for local subproblems of a given variable, it typigalbes not yet know the costs for changing
the state of its causal predecessors. The algoritbmpute-costaddresses this by evaluating the
cost values of dependent variables through recursive atiats of itself.

For a given variable-value pairing= d, we always compute the costsst, (d, d') for all values
of d’ € D, at the same time, similar to the way Dijkstra’s algorithm guites the shortest path not
from a single source to a single destination vertex, but facsingle source to all possible destination
vertices. Computing the costs for all valuesibfs not (much) more expensive than computing only
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one of these values, and once all cost values have been detdimve can cache them and re-use
them if they are needed again later during other parts of tinepeitation of the heuristic value for
the current state.

In fact, the similarity to shortest path problems is not sfip&l but runs quite deeply. If we
ignore the recursive calls for computing cost values of depet variablescompute-costss ba-
sically an implementation of Dijkstra’s algorithm for thangle-source shortest path problem on
domain transition graphs. The only difference to the “ragualgorithm lies in the fact that we do
not know the cost for using an arc in advance. Transitionseoivdd variables have a base cost
of 0 and transitions of fluents have a base cost of 1, but intiaddio the base cost, we must pay
the cost for achieving the conditions associated with asttimm. However, the cost for achieving a
given conditionv’ = ¢’ depends on the current valu®f that state variable at the time the transition
is taken. Thus, we can only compute the real cost for a tiansithce we know the values of the
dependent state variables in the relevant situation.

Of course, there are many different ways of taking transgithrough domain transition graphs,
all potentially leading to different values for the depemidgtate variables. When we first introduced
the causal graph heuristic, we showed that deciding plastandge for the local subproblemsN®-
complete (Helmert, 2004), so we are content with an apprelaghdoes not lead to a complete
planning algorithm, as long as it works well for the subpewh$ we face in practice.

The approach we have chosen is to achieve each value of at&blev in the local subproblem
for v andd as quickly as possible, following a greedy policy. In theteahof the Dijkstra algorithm,
this means that we start by finding the cheapest possibletplarake a transition frord to some
other valued’. Once we have found the cheapest possible plarwe commit to it, annotating the
vertexd' of the domain transition graph with the local state obtaibgdapplying planr, to the
current state. In the next step, we look for the cheapestiljegsian to achieve another valdé,
by either considering transitions that start from the alitialued, or by considering transitions that
continue the planry by moving to a neighbour of’. This process is iterated until all vertices of
the domain transition graph have been reached or no furtgress is possible.

Our implementation follows Dijkstra’s algorithm (Fig. 18We have implemented the prior-
ity queue as a vector of buckets for maximal speed and usehe ¢acavoid generating the same
cost,(d, d’) value twice for the same state. In addition to this, we usebajlcache that is shared
throughout the whole planning process so that we need to gtntpe valuesost,(d, d’) for vari-
ablesv with few ancestors in the pruned causal graph only once.gNhaitcost, (d, d') only depends
on the current values of the ancestors gf

Apart from these and some other technical consideratioigs, 1B gives an accurate account
of Fast Downward’s implementation of the causal graph Is&iari For more details, including
complexity considerations and a worked-out example, werrif the original description of the
algorithm (Helmert, 2004).

6.1.3 SATES WITH INFINITE HEURISTIC VALUE

We noted that Fast Downward uses an incomplete planningitilgofor determining solutions to
local planning problems. Therefore, there can be stateish cost,(s(v), s«(v)) = oo even though
the goal conditiorv = s,(v) can still be reached. This means that we cannot trust infuaitees
returned by the causal graph heuristic. In our experiena¢es with infinite heuristic evaluation
from which it is still possible to reach the goal are rare, soimdeed treat such statesdead ends
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algorithm compute-cost$, s, v, d):
Let V' be the set of immediate predecessors of the pruned causal graph Hf
Let DTG be the pruned domain transition graphvof
cost,(d,d) :=0
cost,(d,d") := oo forall d' € D, \ {d}
local-state; := s restricted to)’
unreached= D,
while unreachedcontains a valué’' € D, with cost,(d, d’') < oc:
Choose such a valu# € unreachedminimizing cost,(d, d').
unreached= unreached, {d'}
for eachtransitiont in DTG leading fromd’ to somed” € unreached
transition-cost:= 0 if v is a derived variablel if v is a fluent
for each pairv’ = ¢’ in the condition oft:
e := local-statey (v')
call compute-costdl, s, v', e).
transition-cost:= transition-cost+ cost, (e, ¢’)
if cost,(d,d’) + transition-cost< cost,(d,d"):
cost,(d,d") := cost,(d, d') + transition-cost
local-stateys := local-statey
for each pairv’ = ¢’ in the condition oft:
local-statey: (v') := ¢’

Figure 18: Fast Downward’s implementation of the causagblgtzeuristic: theeompute-costalgo-
rithm for computing the estimatesst, (d, d’) for all valuesd’ € D, in a states of an

MPT II.
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If it turns out thatall states at the search frontier are dead ends, we cannot mitkerforogress
with the causal graph heuristic. In this case, we use a soead-dnd detection routine to verify the
heuristic assessment. If it turns out that all frontierestadre indeed dead ends, then we report the
problem as unsolvable. Otherwise, search is restartedtiétrF heuristic (cf. Section 6.2), which
is sound for purposes of dead-end detection.

The dead-end detection routine has been originally deedldpr STRIPS-like tasks. However,
extending it to full MPTs is easy; in fact, no changes to the @gorithm are required, as it works
at the level of domain transition graphs and is still soundemvhpplied to tasks with conditional
effects and axioms. Since it is not a central aspect of Fastridard, we do not discuss it here,
referring to our earlier work instead (Helmert, 2004).

6.1.4 HELPFUL TRANSITIONS

Inspired by Hoffmann’s very successful usehalpful actionswithin the FF planner (Hoffmann &
Nebel, 2001), we have extended our algorithm for computirggdausal graph heuristic so that in
addition to the heuristic estimate, it also generates afsapmlicable operators considered useful
for steering search towards the goal.

To compute helpful actions in FF, Hoffmann’s algorithm gees a plan for the relaxed plan-
ning task defined by the current search state and considese tiperatorielpful which belong to
the relaxed plan and are applicable in the current state.

Our approach follows a similar idea. After computing the fiigic estimatecost,(s(v), s, (v))
for a variablev for which a goal condition is defined, we look into the domaansition graph of
v to trace the path of transitions leading frorfv) to s, (v) that gave rise to the cost estimate. In
particular, we consider the first transition on this pathrtstg ats(v). If this transition corresponds
to an applicable operator, we consider that operatoelpful transitionand continue to check the
next goal. If the transition does not correspond to an agple operator because it has associated
conditions of the form/ = ¢’ which are not currently satisfied, then we recursively lookelp-
ful transitions in the domain transition graph of each suahable’, checking the path that was
generated during the computationaafst, (s(v'), ).

The recursive process continues until we have found allfbketpansitions. Unlike the case
for FF, where helpful actions can be found for all non-goatesd, we might not find any helpful
transition at all. It may be the case that a transition doésagespond to an applicable operator
even though it has no associated conditions; this can happen some operator preconditions are
not represented in the pruned domain transition graph degdies in the causal graph. Even so,
we have found helpful transitions to be a useful tool in guidour best-first search algorithms.

6.2 The FF Heuristic

The FF heuristicis named after Hoffmann’s planning algorithm of the same @&amthe context
of which it was originally introduced (Hoffmann & Nebel, 200 It is based on the notion of
relaxed planning taskihat ignorenegative interactionsin the context of MPTs, ignoring negative
interactions means that we assume that each state varmbleotd several values simultaneously.
An operator effect or axiom that sets a variabléo a valued in the original task corresponds to

5. In practice, we have never observed the causal graphstieud fail on a solvable task. Therefore, the fallback
mechanism is only used for some unsolvable tasks in thedWic-FuLL ADL domain which are not recognized by
our dead-end detection technique.
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an effect or axiom thaaddsthe valued to the range of values assumedbin the relaxed task. A
conditionv = d in the original task corresponds to a condition requirihtp be an element of the
set of values currently assumed tyn the relaxed task.

It is easy to see that applying some operator in a solvakdeedlplanning task can never render
it unsolvable. It can only lead to more operators being applie and more goals being true, if it has
any significant effect at all. For this reason, relaxed plagriasks can be solved efficiently, even
though optimal solutions are stilP-hard to compute (Bylander, 1994). A plan for the relaxation
of a planning task is calledralaxed planfor that task.

The FF heuristic estimates the goal distance of a world $tatgenerating a relaxed plan for
the task of reaching the goal from this world state. The nunob@perators in the generated plan
is then used as the heuristic estimate. Our implementafitimed=F heuristic does not necessarily
generate the same, or even an equally long, relaxed plan. &s & experiments, this did not turn
out to be problematic, as both implementations appear tqbelly informative.

While the FF heuristic was originally introduced for ADL dains, extending it to tasks involv-
ing derived predicates is straight-forward. One possibieresion is to simply assume that each
derived predicate is initially set to its default valueand treat axioms as relaxed operators of cost
0. In a slightly more complicated, but also more accurate@guh, derived variables are initialized
to their actual value in a given world state, allowing theaxeld planner to achieve the value
(or other values) by applying the transitions of the extehdemain transition graph of the derived
variable. We have followed the second approach.

In addition to heuristic estimates, the FF heuristic caa besexploited for restricting or biasing
the choice of operators to apply in a given world stat& he set ohelpful actionsof s consists of
all those operators of the relaxed plan computedfilvat are applicable in that state. As mentioned
in the introduction to this section, Fast Downward can befigoned to treat helpful actions as
preferred operators.

There is a wealth of work on the FF heuristic in the literatie® we do not discuss it further.
For a more thorough treatment, we point to the referencesfrttdmn & Nebel, 2001; Hoffmann,
2001, 2002, 2005).

6.3 Greedy Best-First Search in Fast Downward

Fast Downward usegreedy best-first search with a closed kst its default search algorithm. We
assume that the reader is familiar with the algorithm andrrief the literature for details (Russell &
Norvig, 2003).

Our implementation of greedy best-first search differs ftbmtextbook algorithm in two ways.
First, it can treat helpful transitions computed by the ehgsaph heuristic or helpful actions com-
puted by the FF heuristic gseferred operatorsSecond, it performgeferred heuristic evaluation
to reduce the influence of large branching factors. We now tardescribing these two search
enhancements.

6.3.1 RREFERREDOPERATORS

To make use of helpful transitions computed by the causadrgheeuristic or helpful actions com-
puted by the FF heuristic, our variant of greedy best-firatrd®e supports the use of so-callpe-
ferred operators The set of preferred operators of a given state is a subgbedet of applicable
operators for this state. Which operators are considereteped depends on the settings for the
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search component, as discussed earlier. The intuitiomtgdreferred operators is that a randomly
picked successor state is more likely to be closer to theifdas generated by a preferred opera-
tor, in which case we call it preferred successoPreferred successors should be considered before
non-preferred ones on average.

Our search algorithm implements this preference by maiirtgitwo separate open lists, one
containingall successors of expanded states and one contagmafgrred successors exclusively.
The search algorithm alternates between expanding a regutaessor and a preferred successor.
On even iterations it will consider the one open list, on agdations the other. No matter which
open list a state is taken from, all its successors are plactt first open list, and the preferred
successors are additionally placed in the second oper{(@$tcourse we could limit the first open
list to only contain non-preferred successors; howevgiically the total number of successors is
vast and the number of preferred successors is tiny. Thexeitois cheaper to add all successors
to the first open list and detect duplicates upon expansian sitcan through the list of successors
determining for each element whether or not it is prefejred.

Since the number of preferred successors is smaller thatothenumber of successors, this
means that preferred successors are typically expandel eautier than others. This is especially
important in domains where heuristic guidance is weak ad &f time is spent exploring plateaus.
When faced with plateaus, Fast Downward’s open lists opdrat first-in-first-out fashion. (In
other words: For a constant heuristic function, our seailgordhm behaves like breadth-first
search.) Preferred operators typically offer much bettences of escaping from plateaus since
they lead to significantly lower effective branching fastor

6.3.2 DEFERREDHEURISTIC EVALUATION

Upon expanding a state the textbook version of greedy best-first search compiteséuristic
evaluation of all successor statessond sorts them into the open list accordingly. This can be
wasteful if s has many successors and heuristic evaluations are cegtlgadnditions that are often
true for heuristic search approaches to planning.

This is where our second modification comes into play. If aceasor with a better heuristic
estimate thars is generated early and leads to a promising path towardsdak ge would like
to avoid generating the other successors. Let us assume tw 1000 successors, and that
the 10th successor afbeing generated, has a better heuristic estimate ¢h&urthermore, let us
assume that the goal can be reached fsbon a path with non-increasing heuristic estimates. Then
we would like to avoid computing heuristic values for the 3&@r successors afaltogether.

Deferred heuristic evaluation achieves thisrmt computing heuristic estimates for the succes-
sors of an expanded statemmediately. Instead, the successorss@re placed in the open list
together with the heuristic estimaté states, and their own heuristic estimates are only computed
when and if they are expanded, at which time it is used folirgptheir successors into the open
list, and so on. In general, each state is sorted into the ligteaccording to the heuristic evaluation
of its parent, with the initial state being an exception. dntf we do not need to put the successor
state itself into the open list, since we do not require ifge@sentation before we want to evaluate
its heuristic estimate. Instead, we save memory by storirg @ reference to the parent state and
the operator transforming the parent state into the suocesate in the open list.

It might not be clear how this approach can lead to signifisavings in time, since deferred
evaluation also means that information is only availabterlaThe potential savings become most
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apparent when considering deferred heuristic evaluatigather with the use of preferred operators:
If an improving successa¥ of a states is reached by a preferred operator, it is likely that it widl b
expanded (via the second open list) long before most ottemressors — or even most siblings —
of s. In the situation described above, where there exists dmmeasing path from’ to the goal,
heuristic evaluations will never be computed for most sasoes ofs. In fact, deferred heuristic
evaluation can significantly improve search performancenewhen preferred operators are not
used, especially in tasks where branching factors are kmdehe heuristic estimate is informative.

At first glance, deferred heuristic evaluation might appetaited to another technique for re-
ducing the effort of expanding a node within a best-first geaigorithm, namely Awith Partial
Expansion (Yoshizumi, Miura, & Ishida, 2000). Howeversthigorithm is designed for reducing
the spacerequirements of best-first search at the expense of additimuristic evaluations: When
expanding a node, Awith Partial Expansion computes the heuristic valualbfsuccessors, but
only stores those in the open queue whose heuristic valldsefaw a certairrelevance threshold
In later iterations, it might turn out that the threshold ve®sen too low, in which case the node
needs to be re-expanded and the heuristic values of its ssarsere-evaluated. In general; #ith
Partial Expansion will never compute fewer heuristic eatiés than standard*Abut it will usually
require less memory.

However, for heuristic search approaches to planning (endialy for Fast Downward), heuris-
tic evaluations are usually so costly in time that memorysimring open and closed lists is not a
limiting factor. We are thus willing to trade off memory witime in the opposite way: Deferred
heuristic evaluation normally leads to more node expamssard higher space requirements than
standard best-first search because the heuristic valud§arsguiding the search are less informa-
tive (they evaluate the predecessor of a search node ratethe node itself). However, heuristic
computations are only required for nodes that are actuaityaved from the open queue rather than
for all nodes on the fringe, and the latter are usually sigaiftly more numerous.

6.4 Multi-Heuristic Best-First Search

As an alternative to greedy best-first search, Fast Downsapgorts an extended algorithm called
multi-heuristic best-first searchThis algorithm differs from greedy best-first search inute of
multiple heuristic estimators, based on our observatia different heuristic estimators have dif-
ferent weaknesses. It may be the case that a given heusssidgfficient for directing the search
towards the goal except for one part of the plan, where it gietsk on a plateau. Another heuristic
might have similar characteristics, but get stuck in anogiaet of the search space.

Various ways of combining heuristics have been proposedhénliterature, typically adding
together or taking the maximum of the individual heuristgtimates. We believe that it is often
beneficialnot to combine the different heuristic estimates into a singlmerical value. Instead,
we propose maintaining separateopen list for each heuristic estimator, which is sorted atiog
to the respective heuristic. The search algorithm altemaetween expanding a state from each
open list. Whenever a state is expanded, estimates ardatat@ccording t@achheuristic, and
the successors are put into each open list.

When Fast Downward is configured to use multi-heuristic fiestt search, it computes esti-
mates both for the causal graph heuristic and FF heuristigntaining two open lists. Of course,
the approach can be combined with the use of preferred apsra this case, the search algorithm
maintains four open lists, as each heuristic distinguitle®een normal and preferred successors.
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algorithm reach-one-goal(, v, d, cond):
foreachd € {0,1, ..., max-threshold:

Let Oy be the set of operators &f whose modification distance with respectto
is at most.

Assign the cost to each operatas € Oy with modification distance with
respect ta.

Call theuniform-cost-searclalgorithm with a closed list, using the operator s,
to find a state satisfyingu = d} U cond

return the plan if uniform-cost-search succeeded.

Figure 19: Theeach-one-goaprocedure for reaching a state with= d. The valuemax-threshold
is equal to the maximal modification distance of any operaitr respect ta.

6.5 Focused Iterative-Broadening Search

The focused iterative-broadening searakgorithm is the most experimental piece of Fast Down-
ward’s search arsenal. In its present form, the algorithomiuitable for many planning domains,
especially those containing comparatively few differepidlg. Yet we think that it might contain the
nucleus for a successful approach to domain-independantiplg which is very different to most
current methods, so we include it for completeness and asraesof inspiration.

The algorithm is intended as a first step towards develomagch techniques that emphasize the
idea of using heuristic criteria locally, for limiting thetsof operators to apply, rather than globally,
for choosing which states to expand from a global set of opetes We made first experiments in
this direction after observing the large boost in perforaeathat can be obtained by using preferred
operators in heuristic search. The algorithm performegrssingly well in some of the standard
benchmark domains, while performing badly in most others.

As the name suggests, the algoritfmcuseghe search by concentrating on one goal at a time,
and by restricting its attention to operators which are sgegly important for reaching that goal:

Definition 9 Modification distances
LetII be an MPT, leb be an operator ofl, and letv be a variable ofl.

Themaodification distanceof o with respect taw is defined as the minimum, over all variables
v’ that occur as affected variables in the effect lisbpbf the distance from’ to v in CG(II).

For example, operators that modifydirectly have a modification distance of 0 with respect to
v, operators that modify variables which occur in precowndisi of operators modifying have a
modification distance of 1, and so on. We assume that in oadehdange the value of a variable,
operators with a low modification distance with respect te #ariable are most useful.

Fig. 19 shows theeach-one-goaprocedure for achieving a single goal of an MPT. For the time
being, assume that tteond parameter is alway8. The procedure makes use of the assumption
that high modification distance implies low usefulness i tways. First, operators with high
modification distance with respect to the goal variable amsiered to have a higher associated
cost, and are hence applied less frequently. Second, operahose modification distance is beyond
a certain threshold are forbidden completely. Instead obsing a threshold a priori, the algorithm
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first tries to find a solution with the lowest possible thrddhaf 0, increasing the threshold by 1
whenever the previous search has failed. Thi#orm-cost-searckalgorithm mentioned in Fig. 19
is the standard textbook method (Russell & Norvig, 2003).

Although we were ignorant of this fact at the time our alguritwas conceived, the core idea of
reach-one-goals not new: Ginsberg and Harvey (1992) present a searchitpahiallediterative
broadening which is also based on the idea of repeatedly doing a sequ#nminformed searches
with an ever-growing set of operators. Their work demornetdhe superiority of iterative broad-
ening over standard depth-bounded search both empiriaatyanalytically under the reasonable
assumption that the choices made at each branching poiegasdly importanf. The original it-
erative broadening algorithm applies to scenarios wittamyt knowledge of the problem domain,
so it chooses the set of operators which may be applied af egarch node randomly, rather than
using heuristic information from the causal graph as in asec However, Ginsberg and Harvey
already discuss the potential incorporation of heurisiits the operator selection. The introduc-
tion of operator costs (in the form of modification distarydesiew, but it is a fairly straightforward
extension where heuristic information is available.

The focused iterative-broadening search algorithm is dasethereach-one-goamethod; the
idea is to achieve the goals of the planning task one afteother, by using theéeach-one-goal
algorithm as the core subroutine for satisfying individgahls. Since it is not obvious what a good
order of achieving the goals would be, one invocatiomeafch-one-goals started for each goal in
parallel. As each one-goal solver focuses on the (suppgseslevant operators for reaching its
particular goal, there is hope that the number of statesiderexd before a goal is reached is small.
Once one of the one-goal solvers reaches its goal, theirgsplan is reported and all sub-searches
are stopped. The overall search algorithm commits to thisqdahe plan; the situation in which
the first goal has been reached is considered a new initial. sta

From this situation, we try to satisfy the second goal, byeomore starting parallel invocations
of reach-one-goafor each possible second goal. Of course, this can lead tiia@ish where the
search algorithm oscillates between goals, first achiegoada, then abandoning it in favour of goal
b, without any sign of making real progress. Therefore, we aeinthatreach-one-goahchieves
the second godh additionto the one we reached first, by setting ttendargument accordingly.
Once two goals have been reached, the sub-searches arestgguiad, sub-searches for the third
goal are started, and so on, until all goals have been reached

In some sense, our focusing technique is similar to the besmtis algorithm (Lowerre, 1976),
which also performs a fixed number of concurrent searchegadiol @ommitting to a particular path
in the search space too early. Beam search uses a heuristiiofu to evaluate which branches of
search should be abandoned and where new branches shoylavireesl. While focused iterative-
broadening search does not appear to use heuristic ewalsati first glance, the number of satisfied
goals of a state is used as an evaluation criterion in esdigrttie same way. One important differ-
ence to beam search is our use of modification distancesveetata particular goal, which means
that the different “beams” explore the state space in catalély different ways.

There is one final twist: To motivateach-one-goahot to needlessly wander away from sat-
isfied goals, we forbid applying operators that undo any efgheviously achieved goals ¢ond
This is an old idea calledoal protection(Joslin & Roach, 1989). It is well-known that protecting

6. See the original analysis for a precise definition of “diguienportant” (Ginsberg & Harvey, 1992). While Ginsberg
and Harvey’s assumption is certainly not valid in practige find it much more convincing than the competing model
where goal states are uniformly distributed across thechdange.
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algorithm reach-one-goal(, v, d, cond):
foreachd € {0,1, ..., max-threshold:
Let Oy be the set of operators &f whose modification distance with respectto
is at mosty and which do not affect any state variable occurringand
Assign the cost to each operatas € Oy with modification distance with
respect ta.
Call theuniform-cost-searclalgorithm with a closed list, using the operator &g,
to find a state satisfyingp = d} U cond
return the plan if uniform-cost-search succeeded.
foreachd € {0,1, ..., max-threshold:
Let Oy be the set of operators &f whose modification distance with respectto
is at most.
Assign the cost to each operatas € Oy with modification distance with
respect ta.
Call theuniform-cost-searclalgorithm with a closed list, using the operator &g,
to find a state satisfyingp = d} U cond
return the plan if uniform-cost-search succeeded.

Figure 20: Thaeach-one-goaprocedure for reaching a state with= d (corrected).

goals renders a search algorithm incomplete, even in gtatees where all operators are reversible
and local search approaches like focused iterative-broagesearch would be otherwise complete.
In particular, search must fail in planning tasks which aseserializable(Korf, 1987). Therefore,

if the first solution attempt fails, the algorithm is rest&attwithout goal protection. The complete

procedure is shown in Fig. 20, which concludes our discassfd-ast Downward’s search compo-

nent.

7. Experiments

To evaluate the performance of Fast Downward, and spedyfite differences between the various
configurations of the search component, we have performedrder of experiments on the set of
benchmarks from the previous international planning cditipes. The purpose of these experi-
ments is to compare Fast Downward to the state of the art inlPpl&nning, and to contrast the
performance of the different search algorithms of Fast Deand (greedy best-first search with and
without preferred operators, multi-heuristic best-firsach with and without preferred operators,
and focused iterative-broadening search).

To clearly state the purpose of our experiments, let us adut put two areas worthy of study
that we donot choose to investigate here:

e We do not compare the causal graph heuristic to other himstistuch as the FF or HSP
heuristics. Such a comparison would require evaluatingdifierent heuristics within oth-
erwise identical planning systems. We have performed soaxperiment before (Helmert,
2004) and thus prefer to dedicate this section to an evaluafithe complete Fast Downward
planning system, rather than just its heuristic function.
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e We do not give a final answer to the questishy Fast Downward performs well or badly in
the domains we analyse. Where we do observe bad performamdey to give a plausible
explanation for this, but we do not conduct a full-blown stad heuristic quality in the spirit
of Hoffmann’s work on the FF antd™ heuristics (Hoffmann, 2005). While we do believe that
much could be learned from such an investigation, it is a mafolertaking that would go
beyond the scope of this article.

Our aim in this section is to evaluate the Fast Downward mamas a whole, so there are a
number of algorithmic questions which we do not address.ekample, one might wonder what (if
any) speed-up can be obtained by using successor genavagorsimpler methods which test each
operator for applicability whenever a node is expanded. tA@oquestion concerns the extent to
which deferred heuristic evaluation affects search perforce. To keep this section at a reasonable
length, we do not discuss either of these questions here elEywve have conducted experiments
addressing them, and include their results in an electrappendix to this papér.

7.1 Benchmark Set

The benchmark set we use consists of all propositional pigntasks from the fully automated
tracks of the first four international planning competisdmosted at AIPS 1998, AIPS 2000, AIPS
2002 and ICAPS 2004. The set of benchmark domains is showigir2fE. Altogether, the bench-
mark suite comprises 1442 tasks. (The numbers in Fig. 21 pdd 1462, but the 20 SELLITE
instances that were introduced for IPC3 were also part obmehmark set of IPC4, so we only
count them once.)

We distinguish between three classes of domains:

e STRIPS domainsthese domains do not feature derived predicates or conditaffects, and
all conditions appearing in goal and operators are conjoingtof positive literals.

¢ ADL domains:These domains make use of conditional effects in their aépegad/or contain
more general conditions than simple conjunctions in the&ig and operators. However, they
do not require axioms.

e PDDL2.2 domains:These domains use the full range of propositional PDDL2@uiding
those features present in ADL domains and axioms.

At IPC4, some domains were presented in diffefentulations meaning that the same real-
world task was encoded in several different ways. Partidgpavere asked to only work on one
formulation per domain, being able to choose their pretefoemulation for a given domain freely.
For example, the RPORTdomain was available in a STRIPS formulation and an ADL fdation.

However, the organizers did not strictly follow the rule afnsidering different encodings of
the same real-world task differefarmulations rather than different domains proper. Namely, for
the PSR-MDDLE and RROMELA domains, encodings with and without axioms were availadid,
these were considered as different domains on the grouatithié encodings without axioms were

7. Seehttp://wmv. j ai r.org/. The short summary is that successor generators speed rgh $saup to two
orders of magnitude in extreme cases like the largeseSLITE tasks, but have little impact on performance most of
the time. Deferred heuristic evaluation is very benefigiddme domains, with speed-ups of more than one order of
magnitude being common, is somewhat beneficial in the nigjofidomains, with speed-ups between 2 and 4, and
is very rarely detrimental to performance.
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Competition
IPC1 (AIPS 1998)

IPC2 (AIPS 2000)

IPC3 (AIPS 2002)

IPC4 (ICAPS 2004)

THE FAST DOWNWARD PLANNING SYSTEM

Domain

ASEMBLY
GRID
GRIPPER
LoGISTICS
MovIE
MYSTERY
MPRIME

BOCKSWORLD
FREECELL
LoGIsTICS
MICONIC-STRIPS
MicoNIC-SIMPLEADL
MicoNIc-FULLADL
SCHEDULE

BPOT
DRIVERLOG
FREECELL
ROVERS
SATELLITE
ZENOTRAVEL

ARPORT

Class

ADL
STRIPS
STRIPS
STRIPS
STRIPS
STRIPS
STRIPS

STRIPS

STRIPS

STRIPS
STRIPS
ADL
ADL
ADL

STRIPS
STRIPS
STRIPS
STRIPS
STRIPS
STRIPS

STRIPS

PROMELA-OPTICALTELEGRAPH PDDL2.2

PROMELA-PHILOSOPHERS
PIPESWORLD-NOTANKAGE

PIPESWORLD TANKAGE
PSR-S4ALL
PSR-MDDLE
PSR-LARGE

SATELLITE

PDDL2.2
STRIPS
STRIPS
STRIPS

PDDL2.2

PDDL2.2
STRIPS

Number of tasks

30
5
20
35
30
30
35

35
60
28
150
150
150
150

22
20
20
20
20
20

50
48
48
50
50
50
50
50
36

Figure 21: Planning domains of the first four internationalnming competitions.
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much larger and hence likely more difficult to solve. We aphlg formulation vs. encoding view
more strictly and thus only consider one PSRBMLE domain and one domain for each of the two
PROMELA variants, ROMELA-PHILOSOPHERSand FROMELA-OPTICALTELEGRAPH

Of the IPC1 benchmark set, all tasks are solvable exceptfdvitsTERY instances. Of the
IPC2 benchmark set, all tasks are solvable except for 1¢aWic-FULLADL instances. All
IPC3 benchmarks are solvable. For IPC4, we have not chedkedtances of the PESWORLD
TANKAGE domain, but we assume that all are tasks are solvable.

If run in any of the heuristic search modes, Fast Downward/gsahe unsolvability of the
unsolvable M'sTERY and MicoNIc-FULLADL tasks by using the dead-end detection routine de-
scribed in our earlier article on the causal graph heurigtielmert, 2004), or in some cases in the
MicoNic-FULLADL domain by exhaustively searching all states with a fiite heuristic. Of
course, if an unsolvable task is proved unsolvable by therga we report this as a “successfully
solved” instance in the experimental results.

7.2 Experimental Setup

As discussed in Section 6, there are eleven possible coafigns of Fast Downward’'s search
component. However, not all of them are equally reasondbbe.example, if we use FF's helpful
actions, it would seem wasteful not to use the FF heuristimase, since these two are calculated
together. Therefore, for the greedy best-first search set@pexclude configurations where FF
helpful actions are always computed. For the multi-heigrisest-first search setup, we exclude
configurations where only one type of preferred operatocsisidered, but not the other, since this
would seem to be a very arbitrary choice. This leaves us withdifferent configurations of the
planner:

1. G: Use greedy best-first search without preferred operators.
2. G + P: Use greedy best-first search with helpful transitions aégored operators.

3. G + P*: Use greedy best-first search with helpful transitions afeored operators. Use
helpful actions as preferred operators in states with npfaketransitions.

4. M: Use multi-heuristic best-first search without preferrea@tors.

5. M + P: Use multi-heuristic best-first search with helpful trdiwgis and helpful actions as
preferred operators.

6. F: Use focused iterative-broadening search.

We apply each of these planner configurations to each of td@ bénchmark tasks, using a
computer with a 3.066 GHz Intel Xeon CPU — the same machineihs used at IPC4 — and set
a memory limit of 1 GB and a timeout of 300 seconds.

To compare Fast Downward to the state of the art, we try toeselach benchmark with the
best-performing planners from the literature. Unfort@hatthis involves some intricacies: some
planners are not publicly available, and others only covers#ricted subset of PDDL2.2. For the
main experiment, we thus partition the benchmark domaitw tiree sets depending on which
planners are available for comparison.
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Domain Task Configuration Preprocessing Search
FREECELL (IPC2) probfreecell-10-1 M+P 9.30s 298.64s
GRID pr ob05 M 10.04s 291.01s
MPRIME probl4 M 22.38s 291.67s
PSR-LARGE p30-s179-n30-13-f30 G+P 43.43s 265.29s
SATELLITE (IPC4) p33-HC-pfilel3 M+P 180.74s 169.09s

Figure 22: Tasks which could be solved by some configuratioRast Downward with a search
timeout of 300 seconds, but not with a total processing timed 300 seconds. The
column “preprocessing” shows the total time for transkatmd knowledge compilation.

7.3 Translation and Knowledge Compilation vs. Search

Of course, the results we report for Fast Downward includstittne spent in all three components
of the planner: translation, knowledge compilation, aratrcle. Therefore, in the following presen-
tation of results, we only consider a task solved if th&l processing time is below 300 seconds.
However, we have also investigated which tasks can be salithch timeout of 300 seconds for the
searchcomponent alone, allowing the other components to use dmnaaybamount of resources. It
turns out that this only makes a difference in five cases, wfoshich could have been solved in a
total time below 310 seconds (Fig. 22). Only in one of these ¢i&ses, a &ELLITE instance of
exorbitant size, did search take less time than the othepptveses combined. These results show
that the search component is the only time-critical part agtFDownward in practice. Therefore,
we do not report separate performance results for the iddalicomponents.

7.4 STRIPS Domains from IPC1-3

Let us now present the results of the main experiment. Wambgbm listing runtimes for individ-
ual planning tasks due to the prohibitively large amountaifd These are available as an electronic
appendix to this articl&.Instead, we report the following information:

e Tables showing the number of tagkat solvedoy each planner within the 300 second timeout.
Here, we present individual results for each domain.

e Graphs showing the number of tasks solved in a given time bly panner. Here, we do not
present separate results for each domain, as this wouldreggo many graphs.

We do not discuss plan lengths; our observations in thisdeggg similar to those made for the
original implementation of the causal graph heuristic (hiett, 2004).

Fig. 23 shows the number of unsolved tasks for each of the BSRIlomains from IPC1-3.
Figs. 24 and 25 show the number of tasks solved by each planthen a given time bound between
0 and 300 seconds. In addition to the six configurations of Baenward under consideration, the
table includes four other columns.

Under the heading “Any”, we include results for a hypothatimeta-planner that guesses the
best of the six configuration of Fast Downward for each inpaktand then executes Fast Downward

8. http://ww.jair.org/
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Domain #Tasks| G G+P G+P* M M+P F |Any| CG FF LPG
BLOCKSWORLD 35| 0 0 0 0 0 171 O 0 4 0
DEPOT 22| 12 13 13 12 8 11| 7 14 3 0
DRIVERLOG 20 2 0 0 1 0 1 0 3 5 0
FREECELL (IPC2) 60| 4 4 12 11 12 40| 3 2 3 55
FREECELL (IPC3) 200 O 0 5 1 2 14| 0 0 2 19
GRID 5| 1 2 1 1 0 4 0 1 0 1
GRIPPER 201 O 0 0 0 0 0 0 0 0 0
LoaGIsTICS(IPC1) 35 1 0 0 4 0 26| O 0 0 4
LoaGisTICcS(IPC2) 28/ 0 0 0 0 0 0 0 0 0 0
MicoNIC-STRIPS 150, O 0 0 0 0 0 0 0 0 0
MovIE 30| O 0 0 0 0 0 0 0 0 0
MYSTERY 30| 1 2 1 0 0 13| 0 1 12 15
MPRIME 35| O 0 0 2 0 14| O 1 3 7
ROVERS 20 2 0 0 0 0 2 0 3 0 0
SATELLITE (IPC3) 200 1 0 0 0 0 6 0 0 0 0
ZENOTRAVEL 201 O 0 0 0 0 0 0 0 0 0
Total 550 24 21 32 32 22 148 10| 25 32 101

Figure 23: Number of unsolved tasks for the STRIPS domaom i#PC1, IPC2, and IPC3.

550 (100%) : T T T T

495 (90%)

Solved Tasks

440 80%) | |

g T M + P (Fast Downward) -------
0 -
385 (70%) - G (Fast Downward) --------
G + Pt (Fast Downward) -
M (Fast Downward) ----—---
F (Fast Downward) -------
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Figure 24: Number of tasks solved vs. runtime for the STRIB®¥8ains from IPC1, IPC2 and IPC3.
This graph shows the results for the various configuratidrisast Downward.
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Figure 25: Number of tasks solved vs. runtime for the STRI®¥8ains from IPC1, IPC2 and IPC3.
This graph shows the results for CG, FF and LPG and the hypoah&Any” planner
which always chooses the best configuration of Fast DownwEing result for greedy
best-first search with helpful transitions is repeated &mecof comparison with Fig. 24.
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with this setting. Under the heading “CG”, we report the tesfor our first implementation of the
causal graph heuristic (Helmert, 2004Finally, “FF” and “LPG” refer to the well-known planners
(Hoffmann & Nebel, 2001; Gerevini et al., 2003) which won fadly-automated tracks of IPC2
and IPC3. They were chosen for comparison on this benchneatieszause they showed the best
performance by far of all publicly available planners we &mented with. For LPG, which uses a
randomized search strategy, we attempted to solve eacfitagknes and report the median result.

The results show excellent performance of Fast Downwarchinsiet of benchmarks. Com-
pared to CG, which was already shown to solve more tasks tRamé LPG on this benchmark set
(Helmert, 2004), we get another slight improvement for lodilthe planner configurations. One of
the configurations, multi-heuristic best-first search ggreferred operators, solves all benchmarks
in all domains except BPOT and FREECELL Even more importantly, the number of tasks not
solved by any of the Fast Downward configurations is as snsallla Note that the planning com-
petitions typically allowed a planner to spend 30 minutegach task; under these time constraints,
we could allocate five minutes to each of the six configuratiohFast Downward, getting results
which are at least as good as those reported for the “Any”n#anResults might even be better
under a cleverer allocation scheme.

Even the configuration using focused iterative-broadesiegrch performs comparatively well
on these benchmarks, although it cannot compete with ther gllanners. Not surprisingly, this
version of the planner has difficulties in domains with mamead ends (REECELL, MYSTERY,
MPRIME) or where goal ordering is very important (BCKSWORLD, DEPOT). It also fares com-
paratively badly in domains with very large instances, nigrheoGisTICS(IPC1) and STELLITE.
The reader should keep in mind that FF and LPG are excellaninplg systems; of all the other
planners we experimented with, including all those thatensewarded prizes at the first three plan-
ning competitions, none solved more benchmarks from tliggthan focused iterative-broadening
search.

The one domain that proves quite resistant to Fast Downwamdution attempts in any config-
uration is DEPOT. As we already observed in the initial experiments with thesal graph heuristic
(Helmert, 2004), we believe that one key problem here isfaat Downward, unlike FF, does not
use any goal ordering techniques, which are very importatitis domain. The fact that the domain
includes a BockswoRLD-like subproblem is also problematic, as it gives rise tyEnse causal
graphs as we demonstrated in Section 5.2.3.

7.5 ADL Domains from IPC1-3

Second, we present results for the ADL domains of the firgehmanning competitions. This is a
much smaller group than the previous, including only foumadmns. This time, we cannot consider
CG or LPG, since neither CG nor the publicly available versid LPG supports ADL domains.
Therefore, we compare to FF exclusively. Again, we repaetriimber of unsolved tasks in each
domain (Fig. 26) and present graphs showing how quicklydskd are solved (Figs. 27 and 28).
These results do not look as good as for the first group of dasndResults in both McoNIC
domains are good, even improving on those of FF. Howevegdyrbest-first search performs very
badly in the AssemBLY domain, and all configurations perform badly in theH&DbULE domain.

9. Apart from missing support for ADL and axioms, CG is vemniar to Fast Downward using greedy best-first search
and no preferred operators (configurati®h The translation and knowledge compilation componergsasentially
identical. The older search component mainly differs froastfDownward in that it does not use deferred heuristic
evaluation.
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Domain #Tasks| G G+P G+P* M M+P F |Any| FF
ASSEMBLY 30| 28 27 25 3 0 30| O 0
MIicoONICc-SIMPLEADL 150| O 0 0 0 0 0 0 0
MicoNIc-FULLADL 150 9 8 9 9 8 90| 6 12
SCHEDULE 150|134 93 93 132 28 113 25 0
Total 480 | 171 128 127 144 36 23831 | 12

Figure 26: Number of unsolved tasks for the ADL domains fr&t@1, IPC2 and IPC3.
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Figure 27: Number of tasks solved vs. runtime for the ADL domadrom IPC1, IPC2 and IPC3.
This graph shows the results for the various configuratidrisast Downward.
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Figure 28: Number of tasks solved vs. runtime for the ADL domadrom IPC1, IPC2 and IPC3.
This graph shows the results for FF and the hypothetical "Asignner which always
chooses the best configuration of Fast Downward. The regulinfilti-heuristic best-
first search with preferred operators is repeated for easeraparison with Fig. 27.
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Currently, we have no good explanation for thegEmBLY behaviour. For the SHEDULE do-
main, the weak performance again seems to be related tongigsial ordering techniques: In
many SHEDULE tasks, several goals are defined for the same object whiclorlgrbe satisfied
in a certain order. For instance, for objects that shouldy@drical, polished and painted, these
three goals must be satisfied in precisely this order: ma&imgbject cylindrical reverts the effects
of polishing and painting, and polishing reverts the effgcpainting. Not recognising these con-
straints, the heuristic search algorithm assumes to be ¢tothe goal when an object is already
polished and painted but not cylindrical, and is loathe an$form the object into cylindrical shape
because this would undo the already achieved goals. Witle sodimentary manual goal ordering,
ignoring painting goals until all other goals have beens$iaii, the number of tasks not solved by
multi-heuristic best-first search with preferred operatdrops from 28 to 3. These three failures
appear to be due to the remaining ordering problems withrdagecylindrical and polished objects.

7.6 Domains from IPC4

Third and finally, we present results for the IPC4 domainset@e do not compare to FF: for these
benchmarks, FF does not perform as well as the best plamoengtie competition. Besides, several
of the IPC4 competitors are extensions of FF or hybrids uBiRgs part of a bigger system, so FF-
based planning is well-represented even if we limit ourrdite to the IPC4 planners. For this
comparison, we chose the four most successful competi@goticpants besides Fast Downward,
namely LPG-TD, SGPlan, Macro-FF and YAHSP (cf. the resultd@ffmann & Edelkamp, 2005).
Similar to the previous two experiments, we report the nundfeinsolved tasks in each domain
(Fig. 29) and present graphs showing how quickly the tasksalved (Figs. 30 and 31).

Fast Downward is competitive with the other planners acdogsains, and better than all others
in some. The PESwoORLDdomains are the only ones in which any of the other plannerstise-
ably better than the two competition versions of Fast Dowdwdhis is the case for YAHSP in both
PiPEsSwORLDdomain variants and for SGPlan inFRSWORLD-NOTANKAGE. The RPESWORLD
domain is not very hierarchical in nature; this might be a domwhere the decomposition ap-
proach of the causal graph heuristic is not very appropridtee results of the heuristic search
configurations in the ROMELA-OPTICALTELEGRAPH domain are extremely bad and require fur-
ther investigation.

Interestingly, focused iterative-broadening searchqreré very well on some of the bench-
marks from this suite. One of the reasons for this is that inyrad the tasks of the IPC4 suite, there
are many individual goals which are easy to serialize andbearolved mostly independentfy.
Comparing the configuratio® to G + P and especialyM to M + P, we also observe that us-
ing preferred operators is very useful for these benchmankesn more so than in the two previous
experiments.

As a final remark, we observe that if we implemented the “Angtaaplanner by calling the six
Fast Downward configurations in a round-robin fashion, weil@btain a planning system that
could solve all but 54 of the IPC4 benchmarks withifi-& = 30 minute timeout. This is almost on
par with the top performer of IPC4, Fast Diagonally Downwavtlich solved all but 52 of the IPC4
benchmarks under the same timeout. Thus, this is a benchsesaffior which exploring different
planner configurations definitely pays off.

10. We have devised an experiment which shows that if thigguty is artificially violated by a simple goal reformulatio
the performance of the algorithm degrades quickly; seelderenic appendix for details.
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Domain #Tasks| G G+P G+Pt M M+P F |Any
AIRPORT 50| 28 30 17 18 14 0, 0
PIPESWORLD-NOTANKAGE 50| 24 25 23 14 7 101 7
PIPESWORLD TANKAGE 50| 36 36 36 34 17 34| 14
PROMELA-OPTICALTELEGRAPH 48 | 48 47 48 47 46 13| 13
PROMELA-PHILOSOPHERS 48| O 0 0 16 0 21| O
PSR-S1ALL 50| O 0 0 0 0 1 0
PSR-MDDLE 50| O 0 0 0 0 22| 0
PSR-LARGE 50| 22 20 22 23 22 39| 20
SATELLITE (IPC4) 36| 8 0 0 8 3 221 0
Total 432 | 166 158 146 160 109 162 54
Domain FD FDD | LPG-TD Macro-FF SGPlan YAHSP
AIRPORT 0 0 7 30 6 17
PIPESWORLD-NOTANKAGE 11 7 10 12 0 0
PIPESWORLD TANKAGE 34 19 29 29 20 13
PROMELA-OPTICALTELEGRAPH | 22 22 37 31 29 36
PROMELA-PHILOSOPHERS 0 0 1 36 0 19
PSR-S1ALL 0 0 2 50 6 3
PSR-MDDLE 0 0 0 19 4 50
PSR-LARGE 22 22 50 50 39 50
SATELLITE (IPC4) 0 3 1 0 6 0
Total 89 73 137 257 110 188

Figure 29: Number of unsolved tasks for the IPC4 domainsulRefor the various configurations
of Fast Downward are listed in the upper part, results forabeapetition participants
in the lower part. “FD” and “FDD” denote the versions of Fasivilhward that partic-
ipated in IPC4 under the names “Fast Downward” and “Fast @atly Downward”
(cf. Section 6).
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Figure 30: Number of tasks solved vs. runtime for the IPC4 @iosx This graph shows the results
for the various configurations of Fast Downward.
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Figure 31: Number of tasks solved vs. runtime for the IPC4 @os This graph shows the results
for the hypothetical “Any” planner which always chooses tiest configuration of Fast
Downward, the competition configurations of Fast Downwand the best four other
participants.
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7.7 Conclusions from the Experiment

How can we interpret these experimental results? Our firstlosion is that Fast Downward is
clearly competitive with the state of the art. This is espligitrue for the configuration using
multi-heuristic best-first search with preferred operat®i+P), which outperforms all competing
planning systems both on the set of STRIPS domains from IB@td on the domains from IPC4.
If it were not for the problems in the@&1EDULE domain, the same would be true for the remaining
group of benchmarks, the ADL domains from IPC1-3.

With regard to the second objective of the investigatiomlwating the relative strengths of the
different planner configurations, ti+P configuration emerges as a clear-cut winner. In 23 out of
29 domains, no other configuration solves more tasks, arikeuthle other configurations, there is
only one domain (ROMELA-OPTICALTELEGRAPH) in which it performs very badly. We conclude
that both multi-heuristic best-first search and the use efigored operators are promising extensions
to heuristic planners.

This is particularly true for preferred operators. Indeafler theM+P configuration, the two
variants of greedy best-first search with preferred opesatbow the next best overall performance,
both in terms of the number of domains where they are amontptheerformers and in terms of
the total number of tasks solved. Comparfddo G+P, there are ten domains in which the variant
using preferred operators solves more tasks than the onesmg them; the opposite is true in five
domains. Compariniyl to M+P, the difference is even more striking, with the preferre@rmaor
variant outperforming the other in fifteen domains, whilenigeworse in two (in both of which it
only solves one task less). These are convincing argumentsd use of preferred operators.

8. Summary and Discussion

Before we turn to discussion, let us briefly summarize thdrdmutions of this article. As a moti-
vating starting point, we explained that planning taskerm&xhibit a simpler structure if expressed
with multi-valued state variablesather than the traditional propositional representetioNe then
introducedFast Downward a planning system based on the idea of converting tasksainalti-
valued formalism and exploiting the causal information enfying such encodings.

Fast Downward processes PDDL planning tasks in three stalfesskipped the first of these
stagesitranslation which automatically transforms a PDDL task into an equmélmulti-valued
planning task with a nicer causal structure. We explainedither workings of the second stage,
knowledge compilatigrdemonstrating in depth what kind of knowledge the planménaets from
the problem representation, discussitausal graphsdomain transition graphssuccessor gen-
eratorsand axiom evaluators During our discussion of Fast Downwardgarchcomponent, we
introduced its heuristic search algorithms, which use dlobnique ofdeferred heuristic evaluation
to reduce the number of states for which a heuristic goahdest estimate must be computed. In
addition to greedy best-first search, Fast Downward emplogsnulti-heuristic best-first search
algorithm to usefully integrate the information of two histic estimators, namely theausal graph
heuristic and FF heuristic Both heuristic search algorithms can utilize preferendermation
about operators. We also introduced Fast Downward’s exysetialfocused iterative-broadening
searchalgorithm, which is based on the idea of pruning the set ofaipes to only consider those
successor states which are likely to lead towards a spedét g

We thus tried to give a complete account of the Fast Downwkagning system’s approach to
solving multi-valued planning tasks, including its motiea, architecture, and algorithmic founda-
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tions. In the previous section, we demonstrated its engdiiehaviour, showing good performance
across the whole range of propositional benchmarks fronpteeious planning competitions.

Among all the novel algorithms and search enhancementastied in this article, there are two
aspects of Fast Downward which we consider of central ingpae and which we would like to
emphasize. One of them is the use of multi-valued state blasafor PDDL-style planning. We
believe that multi-valued representations are much mouetsired and hence much more amenable
to automated reasoning — be it for the purposes of heuristiduation, problem decomposition,
or other aspects of planning such as goal ordering or eiracif landmarks. The other central
idea is the use of hierarchical decompositions within a iséarplanning framework. Hierarchical
approaches to domain-independent planning have a coabldepotential, but since the work of
Knoblock (1994) and Bacchus and Yang (1994), little work besn published. With Fast Down-
ward, we hope to renew interest in this area, which we believee a very promising ground for
further advances in automated planning.

For the future, there are several aspects of Fast Downwaitdwth would like to investigate
further. First, we intend to experiment with other searcthtéques along the lines of focused
iterative-broadening search, which emphasize heuristievaluating operator usefulness rather
than heuristically evaluating states.

Second, we would like to come up with an efficient heuristicrfalti-valued planning tasks
which does not require pruning cycles of the causal graphalexperiments in this direction have
shown that it is difficult to achieve this goal without losittge performance of Fast Downward’s
heuristic estimator, but perhaps better heuristic acgucaa outweigh worse per-state performance
in many cases.

Third, we want to investigate in how far the performance & thanner could be improved
by encoding some domains differently. In some cases, n@g@iset of state variables which are
closely interrelated into a single state variable whose alars the product of the domains of the
original state variables might be beneficial. Also, we wartest if hand-tailored encodings lead to
better performance than automatically derived ones, asd, ihow large the performance gap is.

Fourth and finally, we would like to evaluate the behaviourthe causal graph heuristic in
specific planning domains both empirically and theorelyc&bllowing Hoffmann’s work on the FF
heuristic (Hoffmann, 2001, 2002, 2005). Hopefully, thidlwive some indication when we can
expect good performance from the causal graph heuristicrdugah it is advisable to look for other
approaches.
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