
International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-3, Issue-2, December 2013

110

Challenges on Performance Analysis and

Enhancement of Multi - Core Architecture, a

Solution Parallel Programming Languages

Surendra Kumar Shukla, Vishal Trivedi, Ayush Choukse

 Abstract— Performance of computer is major concern in

computer architecture. Mores law has gone now, we can not

increase the speed of single processor as it has problem of

power requirement. So we need to move on multi core

processors. Comiler is a main parameter who can give the

deatil of parallelism on source code. In this paper we have

proposed a scheme where we are utilizing the comiler for

detecting and increasing the execution speed of souce code.

Index Terms— complier , performance , multi-core

architecture

I. INTRODUCTION

Hardware technology advancement is in very high rate[1].

It has created a great challenge to the software developers

to make the software in such a way that user can feel that

his application is running faster in the high speed hard

ware. Hard ware technology is growing specially in

microprocessor area, microprocessors are now coming in

dual, tri, quad, hexa,octo core chips to even hundred of

cores.

It is good news that the processors performance is

increasing but flip -side is that, applications are not capable

to take the advantage of the processing speed[2]. Sequential

programming languages are not capable to exploit the

power of multi-core architectures. Applications must be

redesign so that processors parallel ability can be utilized.

In parallel programming for solving the problem, we are

making the program, that program instructions are

executed by more than one CPU at a time independently.

Designing and developing parallel programs are manual

process. Programmers itself have to identify the parallelism

and then he itself have to implement it. But parallel

programming have many pitfalls, race conditions, mutual

exclusion, dead lock, thread synchronization and load

balancing, all these impacts the run time performance, and

all these are very hard to fix.

So we can say that processing speed which we can gain

from the parallel programs is depends on the total number

of cores, also the size of problem and the way it is broken

into parts, then how many parts are parallel.

 Manuscript received December, 2013.

Surendra Kumar Shukla, Department of CSE, DAVV, /SCSIT/ , Indore,

India

Vishal TRivedi, Department of Information Technology RGPV,

University, Chemeli Devi School of Engineering Indore, India.

Ayush Choukse, Department of CSE, RGPV, University, Chemeli Devi

School of Engineering Indore, India

II. REVIEW OF THE WORK

 (i) Multi core Processors- A Necessity [3]

One important aspect in increasing the performance of the

mulicore architecture the speed up. Speed up can be

achieved by increasing the clock speed of the processor. By

increasing the more core can also increase the speed up. If

we will increase the number of cores then the problems are

coming on memory and cache coherence. And

communication between cores is also a problem. cache

coherence protocol and interconnection network have

solved these problems, but some problems are still remain.

until programmer will not write the parallel applications, it

will not be possible to utilize the multi core architecture for

the high performance computing are number of library are

available for the programmer to write the parallel programs

i.e. OpenMP, openCL, MPI. All these library mainly

concentrates on shared memory multi-core architecture. But

when a core reads the data from the main memory, he

should have to ensure that he is reading the updated data or

not.

 (ii) Compiler support for work-stealing parallel run time

systems[4].

All computers embedded, mainstream, and high-end-are

being built using multi core chips, the need for improved

productivity in parallel program has taken on a new

urgency. Paper specifies that the advent of multi core

processors has lead to the emerging of different kinds of

programming models to use the parallel processing power

available. they have classified the parallel programming

models into three categories, these categories are based on

their approach to exploit the parallelism. Three

classifications are (a) Programming language approach (b)

directive based approach (c) library approach. They have

specified that programming languages should have to

execute the task asynchronously. Here task means

independent unit of work. Since task are independent they

can be executed independently. But these task may have to

coordinate to other task also. This task coordination

activity leads to the scheduling problem of the tasks.

Solution of this problem is that we need to create the thread

for each task, and then these task can coordinate to each

other with the help of thread synchronization. But this will

be the burden to the operating system, as he need to do the

activity of thread synchronization. Another problem of this

approach is that when there are more threads, as compared

to the number of processors, some of these threads will

remain ideal. As we know that threads takes lot of

Challenges on Performance Analysis and Enhancement of Multi-Core Architecture, a Solution Parallel

Programming Languages

111

resources, like memory and may also lead to deadlocks and

resource overflow. One another overhead of this solution is

to create a thread when task is executed, and destroy the

thread when task will be executed completely.

(iii) Performance evaluation of MPI UPC and openMP

on multi core architectures[5].

This paper specifies that the current trend to multicore

architectures underscores the need of parallelism. This

research work evaluated performance against unified

parallel c (UPC) and openMP on multicore architectures.

Result shows that MPI is best choice for multicore systems,

with both hybrid shared and distributed memory, because it

takes highest advantage of data locality. Here data locality

is a key performance factor.

(iv) Exploiting parallelism of multicore architecture [6].

In this research paper, they have specified that the biggest

challenge today is how to exploit the parallelism in the

multicore architecture. If threads can be synchronized

efficiently, and data exchange between the threads is proper

then we can exploit the parallelism. Hardwares are

advanced, they have the scope of parallelism, but softwares

are not well advanced, they all are not utilizing hard ware

properly. Biggest problem of multicore architecture is

synchronization. Transitional memory concept is used here

to synchronize the multi-threaded program. problem was

now that how to synchronize two threads, because both

these are at different cores. Solution previously given was

the locking, but course grain locks are not scalable, and fine

grain locks are hard to design. Transitional memory system

have ability to remove the drawback of the locking

methods.

Transitional memory allows to bundle lot of operations and

put all these into thread, bundle is similar to the transaction

of database systems. Transactional memory allows to the

programmer to define read-modify-write operations. These

operations are applied to different memory locations, in

multiprocessor environment. For the implementation of this

cache coherence protocol is used.

But for the implementation of this scheme is required to

add new instructions to the processor an also small

auxiliary transactional cache memory . Advantage of this

scheme is that it access shared memory very less, because it

does not uses the explicit locks.

(v) Intelligent Hotspot prediction for Network-On-chip-

Based Multi core systems[7].

hot spot is a router in Network-On-chip-Based Multi core

systems, it gets the data when other networked elements

will get much data which they can not consume. Hot spot is

a problem, physically it is a router. It contains the data

which exceeds their buffer size. this paper is focusing on

the issues, who are responsible for the creation of the hot-

spot in the on-chip multi core systems. if hot spot will be

generated it will affect the performance of the network, and

indirectly it affects the performance of the multi-core

architecture. Prediction of hot-spot in the network is a

difficult task, because generation of hot-spot depends on the

nature of the application. For the prevention of hot-spots

technique described in this paper is based on the artificial

neural network(ANN). ANN based technique predicts and

avoids the hot spots in the network.

ANN is dynamic method it takes on line-statics data and

predicts about the hot-spots. ANN method provides enough

time to the multi-core systems, so that they can do some

thing so that hot-spots can not be created.

ANN mechanism predicts the location, where the hot-spot

can be generated. ANN based predictor can predict about

the hot-spot accuracy ranging from 65% to 92%. it uses

buffer utilization data for the prediction of the hot-spot.

ANN was trained by synthetic traffic model.

Small ANN architecture can predict hot-spot formation

with accuracy ranges between 65% and

92%, in future other parameters can also be used I.e link

utilization, and topology to improve the

training of ANN. If we need to improve the performance of

network-on -chip-based multi-core systems hot spot is a

key challenge. It should be overcome by the ANN based

methods.

(vi) Understanding off-chip memory contention of

parallel programs in multi-core system [8]

Memory contention is an important performance issue in

multi-core architecture. Parallel applications suffers

because of the off-line memory contention. If problem size

is small then less off-chip contention and busty memory

traffic, if problem size is big then more off-chip contention

and non-busty memory traffic. On the basis of three

parameters growth of memory contention, number of active

cores, problem size this paper has proposed an analytical

model. This analytical model shows, how the memory

contention affects, with respect to number of active cores &

the problem size, for UMA & NUMA memory access.

Memory contention increases exponentially with number of

active cores. But if we will use additional memory

controller, the memory contention will be reduced. Memory

contention increases the number of processor cycles. In this

paper they had did the analysis on pentadiagonal solver SP

from NPB bench mark, with a large matrix. They have did

the analysis with the machine having 24 cores. This paper

is inspired by a series of observations derived from

experiments on state of the art UMA and NUMA systems

using 8,24 and 48 cores previous research has stated that

memory traffic is always busty, this paper discovered that

the burstiness of memory traffic depends on the problem

size.

Program with large size and higher memory requirement

leads to large memory contention factors but have non-

busty memory traffic. Here they have proposed analytical

queuing model for programs with large contention in both

UMA & NUMA multiprocessor system.

Analytical model was validated against the two parallel

program benchmarks NPB and PARSEC.

Model has high-accuracy and differs from measurements by

5-14% for problems with large contention in the range of

problem size and number of cores used in the experiments,

NPB, PARSEC, parallel programs.

In a multiprocess system, increasing the number of cores

generally also increases memory contention, reason is that,

if number of cores will be increased, then it will also

increase the load in the interconnection network. More

cores will try to use the interconnection network at a time.

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-3, Issue-2, December 2013

112

If there is only one core, so 100% bandwidth is available to

that core. If two cores are in the network, so probability of

first core to get the channel is ½.paper has given the

improvements when using the analytical approach,On small

program size , AMD NUMA, 48 core processor observed

50% increase of memory contention.

On program with large memory requirement, memory

contention increased as 1000% on 24 cores on an inter

NUMA system. These tests have been did on SP.C

program.

Results shown in this paper are, if problem size is small,

less cache miss, then less main memory access, so less

traffic and also busty traffic.

If size of the problem is large, more cache miss, more main

memory access, so non-busty traffic.

The model proposed in this paper has following limitations-

accuracy is decreased for the programs, where less degree

of contention is exist. Second limitation is accuracy is

decreased for the programs, for low memory requirement.

This model is best for the programs, where the memory

requirement is higher. Other alternative solutions can also

be there, we can use one special processor who can predict

the contention, & perform off-line input output activity for

the memory. But as it all depends on the application. So

further work can be done on this.

(vii)Task oriented programming: A suitable programming

model for multi-core and distributed systems[9].

This paper describes the importance of task-oriented

programming languages, to improve the performance of

multi-core architectures. Programming languages available,

for the multi-core & distributed systems are not efficient.

To in crease the performance of the multi-core

architectures, we should have to use new programming

models., like task-oriented programming.

Older programming languages using multi-threading

library p-thread, which is more complex and also low level.

Creation of thread involves the system calls, which

degrades the performance of the system. Instead of that we

should have to focus on the task-oriented programming.

OpenMP programming interface is the solution available

for the multi-core architecture, but internally openMP is

also using the pthread library. openMP must also have to

handle the synchronization & concurrency.

MPI has more than 500 functions and hence it is extremely

hard for a scientist who needs high performance computing

to program his solution. In task oriented programming task

and required data both have given to the remote computer

and remote computer executes the task and returns it to the

needy computer is data scheduling. If data is available far

away from the task, it will put higher penalty on the

performance of the multi-core architecture.

(viii) Resource management on multi-core system: The

Actor approach [10].

Applications running on a system must have to be assigned,

small portion of the resource and give them feel that it is

running on individual, no one other than that application is

running on the system. With this we can know the

performance of that application, how much time that

application

is taking. Same concept can be used in the multi-core

architecture, where we can assign the application to those

cores where we want to test the performance of application.

We can do this with the help of the virtualization.

Virtualization is an old concept, where each application has

alloted to the virtual environment, that virtual environment

is consist with the help of one or more virtual machines.

These virtual machines are mapped to the actual

machine/physical machine. This concept is use ful in

mobile phones, embedded applications where we need to

decide, which task we need to give more part of the

resource and to whom less resource.

After giving the resource to an application we need to check

the quality of service with the help of feedback, this

feedback will be given by the resource manager. The actors

project is useful to portion the application with the help of

the resource manager and then distribute these application

to different cores. In future this work can be extended for

the heterogeneous multi-core architecture.

(ix) Improving Multi-Core Performance Using Mixed-

Cell Cache Architecture[11].

In this research work, they have presented that todays

multicore architecture related devices are have requirement

of less power, if we want that whole device should consume

less power, we should have to minimize the power of

individual core. Bit lowering the cache voltage causes the

reliability issue. This paper states that we need to make two

type of cells in the cache one which is required less voltage

and one which is required higher voltage, thus it gives the

concept of Mixed-cell. This paper shows the improvement

of the multicore architecture when storing the modified

data in the robust cell(cell required more power), and other

data in the less-robust cell.

 Mixed-cell cache architectures enable low-voltage

operation for a fraction of the cache composed of robust

 cells. This trade off allows using the entire cache when

 operations at high voltage, but loses capacity at low

voltage. This study improves the performance of multi core

architecture by 17% and reducing the power requirement by

50% of L1 cache.

(x) Multi2Sim: A Simulation Framework to Evaluate

Multicore-Multithreaded Processors[12]

This research paper have focused on the study of three

major performance elements, processor cores, memory

hierarchy, interconnection network. If there will be one

simulator who can simulate and can show us that how cores

are utilized by the threads at run time we can propose a new

design scheme. In the same way memory hierarchy is also a

important factor, how cache is utilizes by the processor.

And the interconnection network, can also be simulated

with this simulator. This researchers have given the option

of more number of multicore architectures can be proposed

with the help of the simulator. Main problem is that the

environment if we want to make of multicore architecture is

very costly.

(xi) Cache-Based Memory Copy Hardware Accelerator

for Multicore Systems[13]

for improving the performance of the multicore

architecture, this paper has focused on the one important

Challenges on Performance Analysis and Enhancement of Multi-Core Architecture, a Solution Parallel

Programming Languages

113

issue that is data movement between main memory and

cache memory. If we can increase the speed of data

movement speed this is called Accelerator scheme. In this

paper they have used the theory called open-queuing theory

so that the can study how performance can be improved

with the help of the accelerator concept. accelerator

provides speedups from 2.96 to

 4.61 for the receiver-side of the TCP/IP stack, reduces the

number of instructions from 26 percent to 44 percent and

achieves a higher

 cache hit rate Utilizing the analytical analysis, this

accelerator reduces in the average number of cycles

executed per instruction up to 50 percent for one of the

CPUs in the multicore system

Limitation of this scheme was that it can improve the

performance only in case we are doing copy operation

between the main memory and the cache memory.

But this scheme is not applied when real time updation is

done in main memory and the cache memory. Because now

a days our multi core architectures are used in real time

applications. So in future research can be done on

accelerator for the updation in cache and memory at real

time or run time.

 (xii)Performance prediction and improvement

techniques for parallel programs in multi processors[14]

Magnus Broberg has developed some techniques to analyze

the sequential program, and then visualize it through the

tool he has developed. Visualization process shows, if same

program will be executed in the parallel machine, what

hurdles, performance limitation will arise.

Magnus Broberg has tested their tool with the help of the

uniprocessor. Main motivation was that, a developer creates

the programs in sequential machine. He has tried to develop

the parallel program in sequential machine.

III. PROPOSED SOLUTION

Figure 5.1 Proposed methodology used in the Performance

improvement.

In the proposed research work, we will take a problem then

select the type of solution is available for the problem. If

type of solution is sequential, then it will produce the serial

source code. For finding the scope of parallelism, we need

to use the Intelligent compiler. Compiler will try to detect

the instructions in the source code who are independent.

Then compiler will make another file based on the serial

source code, that new file is having the scope of

parallelism, and multi core architecture can utilize that

parallelism for the performance improvement. After the

execution of that partial parallel code speedup will be note

down. Then we will analyze the speedup. During the

analysis, we will focus whether our source code have used

all the cores or not. If some cores was ideal, we will try to

find out the reason of that why cores was ideal. Reason may

be lack of parallelism, inter thread communication

problem, data availability. After this analysis we will make

the changes in the source code with the help of the

intelligent compiler. Changed code will be again given to

the multi core machine. This process will be repeated till

we will not get the improved speed up.

If the problem solution is made with the help of parallel

programming languages, then the code will be directly

given to the multi core machine. Speed up will be noted

down. Then the analysis will be done for the speed up. A

list of performance barrier factors will be checked, I.e

interconnection network delay, cache-coherence. After the

analysis we will try to find out who is problematic area in

the multi core architecture whose can be corrected for the

performance. A visual scheme can be used to check for this.

We need to use a simulator who can detect the problem and

can suggest for the improvement.

IV. EXPECTED OUTCOME OF THE PROPOSED WORK

(a) We will Find the concurrency in a program, by the

intelligent compiler.

(b) We will find the efficient task scheduling strategy who

will help in exploiting the power of multi core

architecture.

(c). We will solve the data locality problem, with the help

of efficient cache allocation stretgy.

(d) We will come with higher performance in the multi

core architecture in terms of speed up.

(e) We will use the capability of parallel programming

languages for the performance improvement, we will

tell what features are more important for the

performance improvement.

(g) We will find out which API is efficient in process

communication MPI, openMP.

(h) We ill suggest the synchronization constructs and

protocols that enable programmers write program free

from deadlock and race conditions.

V. CONCLUSION

Multicore architecture performance improvement have big

requirement. There are so many performance parameters

available for performance improvement, we have discussed

here only comipler. In future simulator can be implemented

for this concept. Manual parallelism identification is a very

tedious job. Automated tools are the requirement for the

identification of parallelism.

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-3, Issue-2, December 2013

114

REFERENCES

[1] http://software.intel.com/en-us/blogs/2008/12/31/top-10-challenges-in-

parallel-computing

[2] Advanced Computer Architecture, parallelism, scalability,

programmability, Kai hwang 2nd ed. McGraw-Hill, 01-Feb-2003

[3] Bryan Schauer “Multi core Processors – A Necessity” Pro Quest

Discovery Guides, September 2008

[4] Raghavan Raman, “Compiler Support for Work-Stealing Parallel

Runtime Systems”, Ph.D. dissertation, Dept. Computer Science, Rice

University, Houston, Texas , May 2009

[5]. Damian A. Mallon, et. al, “Performance Evaluation of MPI, UPC and

OpenMP on Multicore Architectures” in under Project TIN2007-

67537-C03-02, spain.

[6]. Dmitri Perelman, “Exploiting Parallelism of Multi-Core

Architectures”, Ph.D dissertation, Department of Electrical

Engineering, Israel Institute of technology , Haifa Israel September

2012.

[7]. Kakoullie, E. et. al, “Intelligent Hotspot Prediction for Network-on-

Chip-Based Multicore Systems” in computer aided Design of

Integrated Circuits and Systems, IEEE Transactions on, vol.61 no.3 ,

pp. 418 – 431, 2012.

[8]. Tudor, B.M. And Young Meng Teo, “Understanding Off-Chip

Memory Contention of Parallel Programs in Multicore Systems”, IEEE

Conference in Parallel Processing (ICCP), Taipei , Singapore, 2011,

pp. 602 - 611

[9]. Shahrivari, S & Sharifi, M, “Task-Oriented Programming: A Suitable

Programming Model for Multicore and Distributed Systems”, IEEE

Conference in Parallel and Distributed Computing (ISPDC), Cluj

Napoca, Iran, 2011, pp. 139 - 144 .

[10]. Bini, E et. Al, Resource Management on Multicore Systems: The

ACTORS Approach, published in IEEE Conference in Micro, 2011,

pp. 72-81.

[11]. Khan, Samira M,et. Al “Improving Multi-Core Performance Using

Mixed-Cell Cache Architecture”, in High Performance Computer

Architecture (HPCA2013), IEEE 19th International Symposium,

Shenzhen, China, 2013, pp. 119 - 130

[12]. Ubal, R et.al “Multi2Sim: A Simulation Framework to Evaluate

Multicore-Multithreaded Processors”, in Computer Architecture and

High Performance Computing,19th International Symposium, Rio

Grande do Sul, 2007 pp. 62-68

[13]. Durate, F and Wong, S “Cache-Based Memory Copy Hardware

Accelerator for Multicore Systems”, Published in Computers, IEEE

Transactions, (Volume:59 , issue:11), 2010, pp. 1494-1507.

[14] Magnus Broberg, “Performance prediction and improvement

techniques for parallel programs in multi processors”, Ph.D

dissertation, Department of software Engg. & computer sc., Blekinge

institute of technology Sweden, 2002

Surendra Kumar Shukla has completed his UG

degree from SGSITS Indore in computer Engineering and

completed his Masters of Engineering from IET DAVV Indore in

Computer Engineering Branch and presently pursuing PhD from

DAVV Indore ,He published many research papers in various

national and international conferences , he is doing research work

in the area of multi core architectures , he won the gold medal

from IET DAVV for his studies in the year 2011

 Vishal Trivedi Completed his BE degree from RGPV Bhopal

in Information Technology Branch, after that he completed his

Masters of Engineering from DAVV Indore in Information

Security Branch, he is a member of CSI , and published research

papers in international journals

Ayush Choukse has completed Be from Chameli Devi Group of

Institutions RGPV University Bhopal in year 2013 .

