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Abstract. Re-identification of individuals across camera networks with
limited or no overlapping fields of view remains challenging in spite of
significant research efforts. In this paper, we propose the use, and ex-
tensively evaluate the performance, of four alternatives for re-ID clas-
sification: regularized Pairwise Constrained Component Analysis, ker-
nel Local Fisher Discriminant Analysis, Marginal Fisher Analysis and a
ranking ensemble voting scheme, used in conjunction with different sizes
of sets of histogram-based features and linear, χ2 and RBF-χ2 kernels.
Comparisons against the state-of-art show significant improvements in
performance measured both in terms of Cumulative Match Characteris-
tic curves (CMC) and Proportion of Uncertainty Removed (PUR) scores
on the challenging VIPeR, iLIDS, CAVIAR and 3DPeS datasets.

1 Introduction

Surveillance systems for large public spaces (i.e. airport terminals, train stations,
etc.) use networks of cameras to maximize their coverage area. However, due to
economical and infrastructural reasons, these cameras often have very little or
no overlapping field of view. Thus, recognizing individuals across cameras is a
critical component when tracking in the network.

The task of re-identification (re-ID) can be formalized as the problem of
matching a given probe image against a gallery of candidate images. As illus-
trated in Figure 1(a), this is a very challenging task since images of the same
individual can be very different due to variations in pose, viewpoint, and illumi-
nation. Moreover, due to the (relatively low) resolution and the placement of the
cameras, different individuals may appear very similar and with little or none vis-
ible faces, preventing the use of biometric and soft-biometric approaches [9,24].

A good overview of existing re-ID methods can be found in [7, 10, 13, 23, 29]
and references therein. The three most important aspects in re-ID are i) the
features used, ii) the matching procedure, and iii) the performance evaluation.
Most re-ID approaches use appearance-based features that are viewpoint quasi-
invariant [2,3,5,11,12,14,25] such as color and texture descriptors. However, the
number and support of features used varies greatly across approaches making it
difficult to compare their impact on performance. Using standard metrics such
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(a) (b)

Fig. 1. The re-ID problem. (a) Challenges (left to right): low resolution, occlusion,
viewpoint, pose, and illumination variations and similar appearance of different people.
(b) Projecting the data improves classification performance.

as Euclidean distance to match images based on this type of features results
in poor performance due to the large variations in pose and illumination and
limited training data. Thus, recent approaches [18,20,21,29,31] design classifiers
to learn specialized metrics (see Figure 1(b)), that enforce features from the same
individual to be closer than features from different individuals. Yet, state-of-the-
art performance remains low, slightly above 30% for the best match. Performance
is often reported on standard datasets that bring in different biases. Moreover,
the number of datasets and the experimental evaluation protocols used vary
greatly across approaches, making difficult to compare them.

This paper focuses on all aspects of the problem, feature extraction, distance
learning for re-ID classification, and performance evaluation. In particular:

– We explore the effect of the size and location of support regions for commonly
used histogram-based feature vectors may have on classification performance.

– We propose four kernel-based distance learning approaches to improve re-ID
classification accuracy when the data space is under-sampled: regularized
Pairwise Constrained Component Analysis (rPCCA), kernel Local Fisher
Discriminant Classifier (kLFDA), Marginal Fisher Analysis (MFA) [26], and
a ranking ensemble voting (REV) scheme.

– We provide a comprehensive performance evaluation using four sets of fea-
tures, three kernels (linear, χ2 and RBF-χ2) and four challenging re-ID
datasets: VIPeR [14], CAVIAR [8], 3DPeS [4] and iLIDS [30]. Using this
protocol, we compare the proposed methods against four state-of-the-art
methods: Pairwise Constrained Component Analysis (PCCA) [20], Local
Fisher Discriminant Analysis (LDFA) [21], SVMML [18] and KISSME [15].

Our experiments not only allow us to compare previously published classification
techniques using a common set of features and datasets (an experiment that to
the best of our knowledge has not been reported so far) but also show that
the classification methods proposed here result in a significant improvement in
performance over the state-of-the-art.
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2 Related Work

Re-ID data samples consist of images of individuals, cropped such that the target
occupies most of the image. The most commonly used features are inspired on a
“bag-of-words” approach and are histograms based using local support regions
within the target’s bounding box [10]. Yet, the number of support regions and
the dimension of the feature vector can vary widely. For example, Mignon and
Jurie [20] use feature vectors of dimension 2,580 while [21] use feature vectors
of dimension 22,506. In our experiments we evaluate the effect of these choices
on re-ID accuracy performance. As shown in our experiments, using too many
of these features can decrease performance.

Most re-ID approaches can be formalized as a supervised metric/distance
learning algorithm where a projection matrix P is sought so that the projected
Mahalanobis-like distance DM(xik ,xjk) = (xi − xj)

TM(xi − xj), where M =
PTP, is small when feature vectors xik and xjk represent the same person and
large otherwise.

The best reported performance on the VIPeR dataset [18] was achieved using
an adaptive boundary approach that jointly learns the distance metric and an
adaptive thresholding rule. However, a drawback of this approach is that it scales
poorly since its computational complexity is O(d2) where d is the dimension of
the feature vector xik . An alternative approach is to use a logistic function to
approximate the hinge loss so that the global optimum still can be achieved
by iteratively gradient search along P as in Pairwise Constrained Component
Analysis (PCCA) [20] and in (PRDC) [29]. However, these methods are prone to
over fitting. We propose to address this problem by introducing a regularization
term that uses the additional degrees of freedom available in the problem to
maximize the inter-class margin.

The state-of-the-art performance on the CAVIAR and the 3DPeS datasets
was achieved by using a Local Fisher Discriminant Classifier (LFDA) as pro-
posed by Pedagadi et al. [21]. While this approach has a closed form solution for
the Mahalanobis matrix, it requires an eigenanalysis of a d × d scatter matrix.
For large d, [21] proposed to first reduce the dimensionality of the data using
principal component analysis (PCA). However, PCA can eliminate discriminant
features defeating the benefits of LFDA. We propose instead to use a kernel
approach to preserve discriminant features while reducing the dimension of the
problem to a N×N eigendecomposition, where N << d is the number of images.

2.1 Notation

For the sake of clarity, we list the notation used in this paper here. xi ∈ Rd is a
feature vector representing the ith image. li ∈ {1, · · · , c} is the identity label for
the ith image. A pair of samples (xik ,xjk) has associated a class label yk = 1 if
li = lj and yk = −1, otherwise. N << d, Nc and N ′ ≤ N2 represent the total
number of samples, the number of images with label c, and the number of pairs
of images used, respectively1. φ(x) is a mapping from feature to Kernel space.

1 We will use all possible positive pairs but only a fraction of the negative ones.
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3 Proposed Methods

In this section we propose four possible approaches towards increasing accuracy
performance. The first approach, rPCCA, is a new iterative procedure that intro-
duces a regularization term to maximize the inter-class margin to the hinge loss
PCCA approach. The second approach, kLDFA, is a new closed-form method
that uses a kernel trick to handle large dimensional feature vectors while maxi-
mizing a Fischer optimization criteria. The third approach is to use the Marginal
Fisher Analysis method introduced in [26] which to best of our knowledge has
not been used for re-ID before. Finally, we also propose a new ensemble approach
where the results of multiple classifiers are combined to exploit their individual
strengths.

3.1 Regularized PCCA (rPCCA)

In [20] Mignon and Jurie proposed to use PCCA with an approximation to
the hinge loss to learn the projected metric. Their motivation was that the
projected distances between samples from the same class should be smaller than
a given threshold T while the distances between inter-class samples should be
larger than T . To this effect, without loss of generality, they set T = 1 and
then approximated the hinge loss with the generalized logistic loss function [27]
`β(x) = 1

β log(1 + eβx) to form the objective function:

min
P

E(P) =

N ′∑
k=1

`β(yk(D2
P(xik ,xjk)− 1)) (1)

where P is a d′ × d matrix (d′ < d) that is found using a gradient descent-
based method. Additionally, it is possible to use a “kernel trick” to improve
classification when the data is not linearly separable. In this case, a projection
d′×N matrix Q is applied to the feature vectors in the kernel space P = QφT (X)
and the objective function becomes:

E(Q) =

N ′∑
k=1

`β [yk((eik − ejk)TKQTQK(eik − ejk)− 1)] (2)

where K = φ(X)Tφ(X) is the N × N kernel matrix and ei is the ith vector of
the canonical basis in RN – i.e. a unit vector with 1 at position i. Using trace,

E(Q) =

N ′∑
k=1

∑
`βyktrace[QK(eik − ejk)(eik − ejk)TKQT ]− 1 (3)

and the gradient of the new objective function E(Q) is:

∂E

∂Q
= 2Q

N ′∑
k=1

ykσβ(yk(D2
P(xik ,xjk)− 1))KCkK (4)
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where σβ(x) = (1 + e−βx)−1 for β = 1 and Ck = (eik − ejk)(eik − ejk)T .
The matrix K is full rank since φ(X) is D × N and D > d >> N . Then, one
can multiply the gradient with a preconditioner K−1 and iteratively solve the
problem by updating Q using the expression

Qt+1 = Qt(I− 2η
N ′∑
k=1

LtkKCk) (5)

where η is the learning rate and where Ltk denotes the value of ykσβ(yk(D2
P(xik ,xjk)−

1)) at time t. It can be easily shown that the effect of this preconditioning step
is that using changes in direction of Q results in the desired optimal change in
direction of P. Furthermore, it should be noted that updating Q uses K but
does not require to compute its inverse.

PCCA can result in poor classification performance due to large variations
among samples and limited training data. We propose to address this problem
by using the additional degrees of freedom available in the problem to maximize
the inter-class margin. To this effect, motivated by the objective functions used
on SVMs, we propose the regularized PCCA (rPCCA) objective function with a
regularization term penalizing the Frobenius norm of P:

E(P) =

N ′∑
k=1

`β(yk(D2
P(xik ,xjk)− 1)) + λ||P||2F (6)

where λ is the regularization parameter. Briefly, the intuition behind this new
objective function is to treat each of the rows pi of P as the separating hy-
perplane in an SVM and use the fact that the classification margin is precisely
given by (‖pi‖2)−1. Substituting P with QφT (X), the derivative of the regular-
ized objective function with respect to Q becomes:

∂E

∂Q
= 2Q(

N ′∑
k=1

LtkKCk + λI)K (7)

Similarly to PCCA, the global optimum can be achieved by multiplying the
gradient with the preconditioner K−1 and iteratively updating the matrix Q.

3.2 Kernel LFDA (kLDFA)

A drawback of using LFDA is that it requires solving a generalized eigenvalue
problem of very large scatter d × d matrices. For example, in [21] the authors
use feature vectors with d = 22506 features. To circumvent this problem, [21]
proposed to exploit the redundancy among the features by performing a prepro-
cessing step where principal component analysis (PCA) is used to reduce the
dimensionality of the data. However, a potential difficulty here is that this unsu-
pervised dimensionality reduction step, when applied to relatively small datasets,
can result in an undesirable compression of the most discriminative features. To



6 F. Xiong, M. Gou, O.I. Camps, and M. Sznaier

avoid this problem, we propose to use a kernel approach, based on the method
introduced in [22] in the context of supervised dimensionality reduction. The
benefits of this approach are twofold: it avoids performing an eigenvalue decom-
position of the large scatter matrices and it can exploit the flexibility in choosing
the kernel to improve the classification accuracy.

The proposed kernel LDFA (kLDFA) method finds a projection matrix P ∈
Rd′×d to maximize the ‘between-class’ scatter while minimizing the ‘within-class’
scatter for similar samples using the Fisher discriminant objective:

P = max
P

(PSwP)−1PTSbP (8)

where the within and between scatter matrices are Sw = 1
2φ(X)S̃wφ(X)T and

Sb = 1
2φ(X)S̃bφ(X)T where S̃w =

∑N
i,j=1 A

w
i,j(ei − ej)(ei − ej)

T and S̃b =∑N
i,j=1 A

b
i,j(ei − ej)(ei − ej)

T . Then, representing the projection matrix with

the data samples in the kernel space P = QφT (X), the kLFDA problem is
formulated as:

Q = max
Q

(QKS̃wKQ)−1QKS̃bKQ (9)

Since the within class scatter matrix S̃w is usually rank deficient, a regular-
ized Ŝw defined below is used instead:

Ŝw = (1− α)S̃w +
α

N
trace(S̃w)I (10)

3.3 Marginal Fisher Analysis(MFA)

Marginal Fisher Analysis (MFA) was proposed in [26] as yet another graph
embedding dimension reduction method. Similarly to kLDFA and LDFA, it has
a closed form solution given by a general eigenvalue decomposition. However,
in contrast to LDFA, its special discriminant objective allows to maximize the
marginal discriminant even when the assumption of a Gaussian distribution for
each class is not true. Moreover, the results in [26] showed that the learned
discriminant components have larger margin between classes, similar to a SVM.
The scatter matrices for MFA are defined as:

S̃w = (Dw −Ww) and S̃b = (Db −Wb) (11)

where Db
ii =

∑
jW

b
ij , D

w
ii =

∑
jW

w
ij as well as the sparse matrices Ww

and Wb are defined as: Ww
ij = 1 if and only if xi or xj is the kw nearest within

class neighbor of other; and Wb
ij = 1 if and only if xi or xj is the kb nearest

between class neighbor of other.

3.4 Ranking Ensemble Voting

Classification accuracy is affected by the method used to learn the projected
metric, the kernel used and the features used to represent the data. Thus, it
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is possible to design an ensemble of classifiers that use different kernels and
sets of features. Then, given a test image and a gallery of candidate matches,
each of these classifiers will produce, in principle, a different ranking among the
candidates which, in turn, could be combined to produce a single and better
ranking. That is, instead of tuning for the best set of parameters through cross-
validation, one could independently run different ranking classifiers and merge
the results. In this paper, we will consider two alternative ways on how to com-
bine the results from the individual rankings into a ranking ensemble voting
(REV) scheme; “Ensemble 1”: adding the rankings in a simple voting scheme;
or “Ensemble 2”: assuming that the output of a ranking algorithm represents
the probability of the rth closest reference image is the correct match, given the
ranking algorithm Rm, p(r|Rm); m = 1, . . . , Nr, for each of the Nr algorithms.
Then, assuming conditional independence among the different algorithms we
have p(r) =

∏Nr
i=1 p(r|Ri).

4 Experiments

In this section we describe the set of experiments used to evaluate the proposed
methods as well as the choice of features and kernels. In particular, we compared
the performance of rPCCA, kLFDA, MFA and REV, against the current state-
of-art PCCA, LFDA, SVMML and KISSME, using four different sets of features,
three different kernels, and four different datasets, as described below.

(a) VIPeR (b) iLIDS (c) CAVIAR (d) 3DPeS

Fig. 2. Best CMC curves for each method on four datasets.

4.1 Datasets and Experimental Protocol

All the algorithms were evaluated using the four most challenging and commonly
used throughout the literature datasets. The VIPeR dataset [14] is composed of
1264 images of 632 individuals, with 2 images of 128× 48 pixels per individual.
The images are taken from horizontal viewpoints but in widely different direc-
tions. The iLIDS dataset [30] has 476 images of 119 pedestrians. The number
of images for each individual varies from 2 to 8. Since this dataset was collected
at an airport, the images often have severe occlusions caused by people and lug-
gage. The CAVIAR dataset [8] contains 1220 images of 72 individuals from 2
cameras in a shopping mall. Each person has 10 to 20 images. The image sizes
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Table 1. CMC at r = 1, 5, 10, 20 and PUR scores on VIPeR with p = 316 test indi-
viduals (highest scores in red).

VIPeR
PCCA LFDA SVMML KISSME rPCCA kLFDA MFA

r L χ2 Rχ2 w/o w/o w/o L χ2 Rχ2 L χ2 Rχ2 L χ2 Rχ2

6

1 14.3 16.7 19.6 19.7 27.0 23.8 19.1 19.9 22.0 20.6 28.1 32.3 21.1 28.4 32.2
5 40.5 46.0 51.5 46.7 60.9 52.9 48.3 50.6 54.8 46.2 60.0 65.8 48.7 60.1 66.0
10 57.5 62.6 68.2 62.1 75.4 67.1 64.9 67.8 71.0 60.8 75.0 79.7 63.9 74.8 79.7
20 74.7 79.6 82.9 77.0 87.3 80.5 80.9 83.2 85.3 75.9 87.8 90.9 78.9 87.7 90.6

PUR 36.1 39.6 42.9 38.2 47.6 42.1 41.0 42.7 44.8 37.5 48.4 52.5 39.9 48.3 52.4

14

1 15.0 17.0 19.7 20.0 25.3 22.6 19.3 19.7 21.1 21.2 28.9 31.8 20.9 28.7 32.2
5 41.5 46.1 50.7 46.9 58.3 51.0 47.8 49.6 52.9 47.1 60.4 64.8 49.3 59.7 65.5
10 58.2 63.1 67.2 61.9 73.0 65.1 64.5 65.9 69.2 61.3 74.7 79.1 63.9 74.4 79.0
20 75.9 79.2 82.5 76.2 85.1 78.3 80.6 81.5 83.6 76.2 87.1 90.3 78.2 86.6 90.3

PUR 36.8 39.5 42.2 38.0 45.4 40.5 40.7 41.8 43.5 38.0 48.3 51.9 39.8 47.9 52.0

75

1 18.3 18.4 16.4 21.5 30.1 25.2 21.1 20.5 20.5 23.3 30.3 30.9 23.6 29.6 31.1
5 46.9 46.4 45.0 49.6 63.2 54.2 51.1 50.5 51.3 52.8 63.5 64.4 52.1 63.0 65.2
10 63.7 63.4 61.4 64.6 77.4 68.4 67.5 67.4 67.7 68.3 77.9 79.3 67.4 77.3 79.6
20 80.2 79.3 77.0 79.1 88.1 81.6 82.9 82.4 82.3 82.4 89.8 90.6 81.5 88.9 90.6

PUR 40.1 39.9 37.9 40.2 49.4 43.2 42.7 42.5 42.6 43.2 51.0 51.9 42.6 50.3 52.0

341

1 16.2 15.2 11.8 21.4 28.0 25.8 19.2 19.0 16.8 23.6 27.0 24.5 22.7 27.3 24.8
5 43.5 41.5 35.5 49.6 61.5 56.2 49.4 48.4 45.1 54.4 60.1 56.0 53.8 60.2 56.9
10 59.0 57.0 51.1 65.2 76.7 70.1 65.5 64.7 60.9 70.1 75.3 72.1 69.1 75.2 72.3
20 75.6 73.3 68.4 79.5 88.2 82.9 80.8 80.3 77.2 84.0 88.6 86.8 83.3 88.2 86.3

PUR 37.2 35.7 32.0 40.8 48.7 44.4 41.3 40.9 38.6 44.4 48.9 46.7 43.9 48.8 46.7

of this dataset vary significantly (from 141× 72 to 39× 17). Finally, the 3DPeS
dataset [4] includes 1011 images of 192 individuals captured from 8 outdoor
cameras with significantly different viewpoints. In this dataset each person has
2 to 26 images. Except for VIPeR, the size of the images from the other three
datasets is not constant so they were scaled to 128× 48 for our experiments.

In our experiments, we adopted a Single-Shot experiment setting. All the
datasets were randomly divided into two subsets so that the test set contains
p individuals. This partition was repeated 10 times. Under each partition, one
image for each individual in the test set was randomly selected as the reference
image set and the rest of the images were used as query images. This process
was repeated 10 times, as well, and it can be seen as the recall at each rank.
The rank of the correct match was recorded and accumulated to generate the
match characteristic M(r).

For easy comparison with other algorithms, we report the widely used ac-
cumulated M(r), Cumulative Match Characteristic (CMC) performance curves,
averaged across the experiments. In addition, we also report the proportion of
uncertainty removed (PUR) [21] scores:

PUR =
log(N) +

∑N
r=1M(r) log(M(r))

log(N)
(12)

where N is the size of the gallery set. This score compares the uncertainty under
random selection among a gallery of images and the uncertainty after using
a ranking method. Finally, since the first few retrieved images can be quickly
inspected by a human, higher scores at rank r ≥ 1 are preferred.
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Table 2. CMC at r = 1, 5, 10, 20 and PUR scores on iLIDS with p = 60 test individuals
(highest scores shown in red).

iLIDS
PCCA LFDA SVMML KISSME rPCCA kLFDA MFA

r L χ2 Rχ2 w/o w/o w/o L χ2 Rχ2 L χ2 Rχ2 L χ2 Rχ2

6

1 21.7 23.0 24.1 32.2 20.8 28.0 25.5 26.6 28.0 32.3 36.5 36.9 30.5 32.6 32.1
5 49.7 51.1 53.3 56.0 49.1 54.2 53.8 54.3 56.5 57.2 64.1 65.3 53.9 58.5 58.8
10 65.0 67.0 69.2 68.7 65.4 67.9 68.4 69.7 71.8 70.0 76.5 78.3 66.3 71.5 72.2
20 81.4 83.3 84.8 81.6 81.7 81.6 83.0 84.5 85.9 83.9 88.5 89.4 80.4 84.8 85.9

PUR 21.3 22.8 24.4 26.6 20.9 24.7 24.2 25.4 27.0 27.9 33.7 34.9 24.8 28.8 29.1

14

1 23.9 24.5 25.7 32.0 20.3 29.4 27.8 28.0 29.6 33.3 37.8 37.4 30.7 34.2 33.7
5 53.0 53.2 54.0 54.2 48.6 54.9 55.3 56.0 57.3 57.5 64.8 64.8 54.0 58.9 59.5
10 68.3 68.8 69.6 66.4 64.5 68.8 70.2 70.4 71.7 70.1 76.6 77.3 66.2 71.1 72.0
20 83.9 84.9 84.4 80.5 80.9 82.1 84.6 85.3 85.9 83.5 88.6 89.1 80.7 85.3 86.0

PUR 23.9 24.5 25.1 25.7 20.3 25.8 26.1 26.6 27.8 28.3 34.7 34.8 25.1 29.9 30.0

75

1 24.0 23.8 24.0 33.8 22.3 28.5 28.4 28.9 29.2 34.1 38.0 36.2 30.3 33.7 32.1
5 53.6 52.9 51.7 57.4 51.1 55.3 57.0 57.1 57.2 60.4 65.1 63.5 56.2 59.3 57.4
10 69.1 68.6 67.1 69.7 66.7 68.7 71.4 71.4 71.1 73.5 77.4 76.1 68.9 71.7 70.5
20 84.4 84.1 82.8 82.8 83.0 83.4 85.8 85.7 85.4 86.5 89.2 89.2 83.6 86.5 85.9

PUR 24.4 24.2 23.4 28.1 22.4 25.9 27.3 27.6 27.6 30.8 35.4 33.9 26.7 30.3 28.9

341

1 21.4 21.4 20.2 32.7 21.4 28.4 26.0 26.6 25.9 32.2 34.2 30.5 29.2 30.2 26.8
5 49.1 48.5 45.1 56.7 49.6 55.7 53.3 53.4 52.5 59.9 61.5 57.3 55.1 55.3 50.3
10 65.5 64.9 61.1 69.0 65.5 68.9 68.9 68.7 67.7 73.8 74.8 71.8 69.3 69.3 64.8
20 82.1 81.3 78.4 82.3 82.8 83.4 84.5 84.3 83.0 86.5 87.7 85.6 83.8 84.3 82.1

PUR 21.5 21.1 18.7 27.3 21.6 26.1 24.7 25.0 24.1 30.2 31.8 28.4 26.3 27.0 23.4

4.2 Features, Kernels and Implementation Details

In [20], PCCA was applied to feature vectors made of 16-bins histograms from
the RGB, YUV and HSV color channels, as well as texture histograms based on
Local Binary Patterns extracted from 6 non-overlapping horizontal bands2. In
the sequel we will refer to these features as the band features.

On the other hand, the authors in [21] applied LDFA to a set of feature vectors
consisting of 8-bins histograms and 3 moments extracted from 6 color channels
(RGB and HSV) over a set of 341 dense overlapping 8× 8 pixel regions, defined
every 4 pixels in both the horizontal and vertical directions, resulting in 11,253
dimensional vectors. These vectors were then compressed into 100 dimensional
vectors using PCA before applying LDFA. In the sequel, we will refer to these
features as the block features.

Even though the authors of [20] and [21] reported performance analysis using
the same datasets, they used different sets of features to characterize the sample
images. Thus, it is difficult to conclude whether the differences on the reported
performances are due to the classification methods or to the feature selection.
Therefore, in order to fairly evaluate the benefits of each algorithm and the effect
of the choice of features, in our experiments we tested each of the algorithms
using the same set of features. Moreover, while both band and block features
are extracted within rectangular or square regions, their size and location are
very different. Thus, to evaluate how these regions affect the re-identification
accuracy, we run experiments varying their size and position. In addition to the

2 Since the parameters for the LBP histogram and horizontal bands were not given
in [20], we found values that provide even better matching accuracy than in [20].
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Table 3. CMC at r = 1, 5, 10, 20 and PUR scores on CAVIAR with p = 36 test
individuals (highest scores shown in red).

CAVIAR
PCCA LFDA SVMML KISSME rPCCA kLFDA MFA

r L χ2 Rχ2 w/o w/o w/o L χ2 Rχ2 L χ2 Rχ2 L χ2 Rχ2

6

1 25.7 29.1 33.4 31.7 25.8 31.4 28.8 30.4 34.0 31.5 36.2 35.9 33.8 37.7 38.4
5 57.9 62.5 67.2 56.1 61.4 61.9 61.3 63.6 67.5 55.4 64.0 63.6 62.0 67.2 69.0
10 75.8 79.7 83.1 70.4 78.6 77.8 78.0 80.4 83.4 69.5 78.7 77.9 77.2 82.1 83.6
20 92.0 94.2 95.7 86.9 93.6 92.5 93.2 94.5 95.8 86.1 92.2 91.2 92.1 94.6 95.1

PUR 21.5 25.5 29.8 20.7 23.7 24.9 24.3 26.5 30.3 20.2 27.5 26.9 25.6 30.7 32.0

14

1 28.8 30.7 33.9 33.4 26.5 32.9 30.6 31.8 34.6 33.6 38.5 37.9 35.3 39.0 38.9
5 62.3 64.8 67.8 58.8 62.1 64.0 64.0 65.9 68.5 59.1 66.7 67.0 63.8 68.6 69.7
10 79.1 81.4 83.5 73.0 79.5 79.8 80.4 82.1 83.9 73.1 80.7 81.0 78.6 83.0 83.7
20 94.0 94.9 95.6 88.4 94.2 93.4 94.5 95.0 95.8 88.5 93.3 92.7 92.8 94.8 94.9

PUR 25.2 27.5 30.3 22.9 24.6 26.9 26.7 28.4 31.0 23.1 30.1 29.7 27.3 32.0 32.5

75

1 31.9 32.9 33.2 35.2 28.8 34.1 33.0 34.1 35.1 35.7 39.1 39.1 36.6 40.2 39.4
5 65.2 66.3 65.9 59.9 63.1 64.9 66.0 67.1 67.2 62.6 66.8 68.4 65.5 70.2 69.7
10 81.6 82.4 81.9 73.7 79.8 80.1 82.0 82.9 83.1 77.0 80.9 82.4 80.2 83.9 83.7
20 95.3 95.5 95.2 88.8 93.9 93.0 95.4 95.5 95.6 91.4 93.4 94.3 93.3 95.1 95.0

PUR 28.2 29.1 28.8 24.2 25.5 27.5 29.0 29.9 30.4 26.4 30.5 31.6 28.8 33.4 32.7

341

1 30.8 31.3 30.4 35.1 28.9 34.9 32.5 33.0 33.4 34.7 37.7 36.4 34.9 37.8 36.3
5 63.5 64.1 62.2 59.4 62.5 64.7 64.9 65.3 64.4 62.0 65.9 65.6 64.5 67.9 66.4
10 80.2 80.5 79.1 73.1 79.2 79.7 81.2 81.6 80.6 76.6 80.5 80.6 79.7 82.4 81.6
20 94.6 94.7 93.6 88.2 93.3 93.3 94.9 95.0 94.3 91.2 93.6 93.6 93.3 94.6 94.2

PUR 26.7 27.1 25.4 23.8 25.0 27.8 28.0 28.4 27.8 25.7 29.6 29.0 27.7 31.1 29.5

band and block features described above, we used a set of features extracted
from 16× 16 and 32× 32 pixels overlapping square regions, similar to the ones
used in the block features, but defined with a step half of the width/height of the
square regions in both directions. Thus, a total of 75 and 14 regions were selected
in these two feature sets. The feature vectors were made of 16-bins histogram of
8 color channels extracted on these image patches. To represented the texture
patterns, 8-neighbors of radius 1 and 16-neighbors of radius 2 uniform LBP
histograms were also computed for each region. Finally, the histograms were
normalized with the `1 norm in each channel and concatenated to form the
feature for each image.

The projected feature space dimensionality was set to d′ = 40 for the PCCA
algorithm. To be fair, we also used d′ = 40 with rPCCA. The parameter in the
generalized logistic loss function was set to 3 for both PCCA and rPCCA. Since
we could not reproduce the reported results of LFDA using their parameters
setting, we set the projected feature space as 40 and the regularizing weight β as
0.15 for LFDA3. In kLFDA, we used the same d′ and set the regularizing weight
to 0.01. For MFA, we used all positives pairs of each person for the within class
sets and set kb to 12, β = 0.01, and d′ = 30. Since SVMML in [18] used different
features, we also tuned the parameters to achieve results as good as possible. The
two regularized parameters of A and B were set to 10−8 and 10−6, respectively.
Since KISSME is very sensitive to the PCA dimensions, we chose the dimension
for each dataset that gives best PUR and rank 1 CMC score, which are 77, 45,
65 and 70 for VIPeR, iLIDS, CAVIAR and 3DPeS, respectively. In the training

3 It was set as 0.5 in [21]. However, we could not reproduce their reported results with
this parameter.
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Table 4. CMC at r = 1, 5, 10, 20 and PUR scores on 3DPeS with p = 95 test individuals
(highest scores shown in red).

3DPeS
PCCA LFDA SVMML KISSME rPCCA kLFDA MFA

r L χ2 Rχ2 w/o w/o w/o L χ2 Rχ2 L χ2 Rχ2 L χ2 Rχ2

6

1 33.4 36.4 39.7 39.1 27.7 34.2 39.2 40.4 43.5 38.8 48.4 48.7 35.9 42.3 41.8
5 63.5 66.3 68.4 61.7 58.5 58.7 68.3 69.5 71.6 62.0 72.5 73.7 58.5 65.3 65.5
10 75.8 78.1 79.6 71.8 72.1 69.6 79.7 80.5 81.8 72.6 82.1 83.1 69.3 75.2 75.7
20 86.9 88.6 89.5 82.6 84.1 80.2 89.3 90.0 91.0 82.7 89.9 90.7 79.9 84.8 85.2

PUR 37.7 40.4 42.7 36.4 32.9 32.9 42.5 43.6 46.0 36.7 47.6 48.5 33.2 40.0 40.1

14

1 37.3 39.8 42.2 43.2 31.8 39.4 41.9 44.0 46.2 44.1 51.9 52.2 40.0 45.6 45.0
5 67.4 69.6 71.1 65.3 63.0 63.1 71.3 72.6 74.7 66.5 75.1 75.9 62.6 69.0 68.3
10 79.4 80.9 82.1 75.0 75.6 73.1 82.2 82.9 84.2 75.8 83.6 84.6 72.9 78.4 78.1
20 89.3 89.8 90.5 84.3 86.1 82.2 90.6 91.0 91.5 84.7 90.9 91.5 82.9 87.1 86.9

PUR 41.4 43.4 45.1 40.1 36.5 37.0 45.2 46.6 48.7 41.3 50.5 51.3 37.4 43.7 43.2

75

1 40.7 41.6 40.2 45.5 34.7 41.3 46.9 47.3 47.6 47.6 54.0 52.4 42.4 48.4 46.3
5 70.3 70.5 68.4 69.2 66.4 66.2 74.5 75.0 74.6 71.8 77.7 77.1 66.8 72.4 70.5
10 81.5 81.3 79.6 78.0 78.8 76.3 84.4 84.5 84.1 81.1 85.9 85.7 76.5 81.5 80.0
20 90.7 90.4 89.3 86.1 88.5 85.3 91.8 91.9 91.7 88.8 92.4 92.4 86.0 89.8 89.1

PUR 44.5 44.6 42.7 43.2 39.7 40.1 49.1 49.3 49.1 46.4 53.5 52.5 41.2 47.6 45.6

341

1 37.9 38.4 33.8 44.8 34.4 40.5 45.2 45.2 43.8 46.8 51.6 48.2 41.8 46.0 42.0
5 67.2 66.9 61.8 68.6 65.9 66.2 72.8 72.6 70.5 72.5 76.4 73.9 66.6 70.6 66.5
10 79.0 78.5 74.2 77.7 77.8 76.1 82.5 82.4 80.8 81.8 84.9 83.1 76.8 80.1 77.1
20 89.1 88.5 85.4 86.0 87.8 85.7 90.8 90.6 89.5 89.5 92.0 91.0 86.2 89.0 86.3

PUR 41.5 41.1 36.2 42.7 38.9 40.1 47.0 46.9 44.7 46.8 51.7 48.6 41.0 45.6 41.4

process for PCCA, rPCCA and KISSME, the number of negative pairs was set
to 10 times the number of positive pairs. Finally, we tested three kernels with
each algorithm and feature set: a linear, a χ2 and a RBF − χ2 kernel which are
denoted with L, χ2 and Rχ2 , respectively.

4.3 Performance Analysis

For both, the VIPeR and iLIDS datasets, the test sets were randomly selected
using half of the available individuals. Specifically, there are p = 316, p = 60,
p = 36, and p = 95 individuals in each of the test sets for the VIPeR, iLIDS,
CAVIAR, and 3DPeS datasets, respectively. Figure 2 shows the best CMC curves
for each algorithm on the four datasets. The results are also summarized in
Tables 1 to 4, along with the PUR scores for all the experiments. The experiments
show that the VIPeR dataset is more difficult than the iLIDS dataset. This can be
explained by observing that VIPeR has only two images per individual, resulting
in much lower r = 1 CMC scores. On the other hand, the overall PUR score is
higher for the VIPeR set, probably because the iLIDS set has less than half of
the images than VIPeR has.

The highest CMC and PUR scores in every experiment at every ranking
were highlighted in red in the given table. The highest CMC and PUR scores
were achieved using the proposed methods with either a χ2 or a Rχ2 kernel.
The proposed approaches achieve as much as 19.6% at r = 1 and a 10.3% PUR
score improvement on the VIPeR dataset, 14.6% at r = 1 and a 31.2% PUR
score improvement on the iLIDS dataset, 15.0% at r = 1 and a 7.4% PUR score
improvement on the CAVIAR dataset and 22.7% at r = 1 and a 13.6% PUR
score improvement on the 3DPeS dataset, when using band features (6 bands).



12 F. Xiong, M. Gou, O.I. Camps, and M. Sznaier

Table 5. The best reported CMC scores in the existing literature.

VIPeR iLIDS CAVIAR 3DPeS
SVMML [18] kLFDA PRDC [31] kLFDA LFDA [21] MFA LFDA [21] kLFDA

r = 1 30.0 32.3 37.83 38.0 32.0 40.2 33.43 54.0
r = 5 65.0 65.8 63.7 65.1 56.3 70.2 77.7
r = 10 80.0 79.7 75.09 77.4 70.7 83.9 69.98 85.9
r = 20 91.0 90.9 88.35 89.2 87.4 95.1 92.4
PUR 52.5 35.4 21.2 33.4 34.85 53.5

In general, rPCCA performed better than LFDA which, in turn, performed
better than PCCA. The better performance of rPCCA over PCCA and LFDA
shows that the regularizer term ‖P‖F plays a significant role in preventing over-
fitting of noisy data. However, the best performance is achieved by kLFDA
because this approach does a better job at selecting the features by avoiding
the PCA pre-processing step while taking advantage of the locally scaled affinity
matrix.

It should be noted that using 6, 14, 75 and 341 regions results in similar
performance, but using 341 results in slightly lower PUR scores. Moreover, the
RBF-χ2 kernel does not help improving the matching accuracy when the regions
are small. It was observed in our experiments that the χ2 distance of the positive
and negative pairs were distributed within a small range around 1 and that the
kernel mapping of these values were hard to distinguish. A possible explanation
for this effect, is that the histograms are noisier and sparser when the base
regions are small.

For sake of completeness, we also compared the best performance for the
proposed algorithms against the best results as reported in the existing literature
(even though as pointed above, the values reported elsewhere do not use the same
set of features or experimental protocol) [1, 2, 6, 11,16–21,28,29,31] in Table 5.

Our algorithm matches the best reported results for the VIPeR and iLIDS
datasets, even though the reported PRDC [31] ranking was obtained under easier
experiment settings4. Note that both SVMML5 [18] and PRDC require an itera-
tive optimization which is very expensive on both computation and memory. In
comparison, computing the closed-form solution for the proposed kLFDA and
MFA algorithms is much cheaper. When using a 3.8Hz Intel quad-core computer
with 16GB RAM, the average training times for VIPeR, using 6 patches with a
linear kernel are 0.24s, 0.22s and 155.86s for kLFDA, MFA and SVMML, respec-
tively. While average training times for the iLIDS are 0.07s, 0.04s and 155.6s for
kLFDA, MFA and PRDC, respectively. In the experiments on the CAVIAR and
3DPeS datasets, our ranking is more accurate than LFDA algorithm6.

4 Only 50 individuals were selected as test, while our test set is composed of 60 indi-
viduals. Thus, the ranking accuracy is computed in an easier experiment setting.

5 The ranking accuracy was read from the figure.
6 The CAVIAR ranking reported in [21] was obtained by using the mean of the

features from the sample person in the test set as the reference feature. We believe
this is equivalent to knowing the ground truth before ranking. Hence we report the
result in Table 5 via following our protocol but using the same features as in [21].
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Finally, Table 6 shows the results for ranking ensembles voting using differ-
ent learning algorithms, feature sets, kernels, and aggregating methods. Since
the features extracted from 8× 8 pixels regions provided the worst performance
for almost all the algorithms, we do not use this set of features in the ensemble.
Therefore, for each metric learning algorithm, we created an ensemble with 9
ranking algorithms, combining 3 kernels (if applicable) and 3 feature sets, which
were used to vote for a final ranking. The best performances of the individual
ranking case for each of the metric learning methods from Tables 1 to 4 are also
shown (with a gray background) for easy comparison. The experimental results
show that the ensemble methods produced different level of improvements for
each dataset and in general “Ensemble 1” results in larger gains. For single en-
semble metric learning algorithm, the performance of ensemble rPCCA improved
from 1.56% to 7.91% across all four datasets whereas the ensemble kLFDA bene-
fited much less. The performance on iLIDS datasets improved on all experiments
whereas the ones on 3DPeS decreased for ensemble kLFDA and MFA. Since the
images in the iLIDS dataset have severe occlusions, using an ensemble of differ-
ent feature sets is beneficial with this dataset. The highest improvement is all
algorithms ensemble on CAVIAR dataset, the rank1 score increased 4.73% and
the PUR score increased 8.08% These results suggest that combining different
feature grids can improve the performance.

Table 6. CMC scores of ensembles of rPCCA, kLFDA, MFA on all four datasets. The
columns with gray background show the performance of the best ranking algorithm in
this category (highest scores shown in red).

VIPeR iLIDS CAVIAR 3DPeS
r Ensb 1 Ensb 2 Ensb 1 Ensb 2 Ensb 1 Ensb 2 Ensb 1 Ensb 2

rPCCA

1 22.0 23.7 23.9 29.6 32.6 32.7 34.6 37.3 37.4 47.3 49.8 50.0
5 54.8 55.3 55.7 57.3 59.4 59.8 68.5 69.5 70.0 75.0 76.1 76.6
10 71.0 71.7 72.3 71.7 73.3 73.5 83.9 84.6 84.7 84.5 85.4 85.5
20 85.3 85.4 86.0 85.9 86.8 86.9 95.8 96.2 96.3 91.9 92.6 92.4

PUR 44.8 45.5 44.7 27.8 29.9 30.0 31.0 32.7 32.8 49.3 51.1 51.3

kLFDA

1 32.3 32.8 31.8 38.0 40.2 40.3 39.1 39.4 39.1 54.0 53.1 52.6
5 65.8 65.5 64.6 65.1 66.0 66.7 68.4 67.2 66.9 77.7 76.1 76.2
10 79.7 79.1 78.4 77.4 78.1 78.1 82.4 81.5 81.0 85.9 84.7 84.7
20 90.9 90.0 89.3 89.2 89.6 89.6 94.3 93.8 93.6 92.4 91.4 91.5

PUR 52.5 51.9 49.6 35.4 36.7 36.7 31.6 31.0 30.6 53.5 51.8 51.6

MFA

1 32.2 34.1 33.2 33.7 36.8 37.0 40.2 41.5 41.4 48.4 48.2 47.9
5 66.0 66.5 66.1 59.3 61.3 61.7 70.2 70.8 70.7 72.4 71.3 71.2
10 79.7 80.1 79.7 71.7 73.8 73.6 83.9 85.0 84.9 81.5 80.9 80.7
20 90.6 90.3 89.8 86.5 87.3 87.5 95.1 95.4 95.4 89.8 89.0 88.7

PUR 52.4 52.8 50.9 30.3 32.3 32.5 33.4 34.4 34.4 47.6 46.6 46.3

kLFDA
+

rPCCA
+

MFA

1 32.3 33.9 32.7 38.0 39.4 39.0 40.2 41.8 41.5 54.0 54.2 53.2
5 65.8 67.0 66.1 65.1 65.0 65.1 70.2 72.0 71.7 77.7 77.7 77.5
10 79.7 80.5 79.6 77.4 76.9 77.5 83.9 85.8 85.5 85.9 86.1 85.8
20 90.9 90.6 88.4 89.2 89.0 88.7 95.1 96.4 96.2 92.4 92.8 92.3

PUR 52.5 53.1 49.0 35.4 35.6 35.1 33.4 35.7 35.3 53.5 53.8 52.7

All

1 32.3 35.1 36.1 38.0 39.8 39.4 40.2 42.1 41.7 54.0 54.1 53.4
5 65.8 68.2 68.7 65.1 65.3 65.2 70.2 72.2 72.0 77.7 77.7 77.4
10 79.7 81.3 80.1 77.4 77.1 77.4 83.9 86.2 85.9 85.9 86.0 85.9
20 90.9 91.1 85.6 89.2 89.2 88.4 95.1 96.5 96.4 92.4 92.6 92.0

PUR 52.5 53.9 48.8 35.4 35.9 35.1 33.4 36.1 35.6 53.5 53.6 52.6
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Fig. 3. The kLFDA projection weight map
for 3DPeS, CAVIAR, iLIDS and VIPeR.

Fig. 4. View point variation in 3DPeS.

4.4 Dataset Analysis

Figure 3 shows a heat map illustrating the projection weight map for each of
the datasets when using kLDFA with 341 patches and a linear kernel. There,
it is seen that the upper body features are the most discriminant ones in all
four datasets. This is expected since the bounding-boxes of the samples are
reasonably accurate and the torsos are relatively well aligned. On the other
hand, the feature projection weights at the bottom of the sample are different
across the four datasets. This can be explained by the fact that the viewpoint
variations in the 3DPeS dataset are the most severe among all the datasets. As
shown in Figure 4, when looking from a top view the legs for the pedestrians
occupy fewer pixels and their locations change more than when seen from an
horizontal viewpoint as is the case for the VIPeR samples.

Moreover, the projection weights for the VIPeR dataset are larger for patches
in the background than for the other three datasets. This reflects the fact that
the VIPeR samples were taken in three different scenes, walk way through a
garden, play ground and street side way with distinctive backgrounds and that
the two images for each person were always taken in the same scene.

5 Conclusion

We proposed and evaluated the performance of four alternatives for re-ID classifi-
cation: rPCCA, kLFDA, MFA and two ranking ensemble voting (REV) schema,
used in conjunction with sets of histogram-based features and linear, χ2 and
RBF-χ2 kernels. Comparison against four state-of-the-art approaches (PCCA,
LDFA, SVMML and KISSME) showed consistently better performance and up
to a 19.6%, 14.6%, 15.0% and 22.7% accuracy improvements at rank 1 and
10.3%, 31.2%, 7.4% and 13.6% PUR scores improvements, on the VIPeR, iLIDS,
CAVIAR and 3DPeS datasets, respectively, when using 6 bands as support re-
gions for the extracted features and using an RBF-χ2 kernel with the kLFDA
and MFA approaches. With the Ensemble 1 voting schema, we can further in-
crease accuracy by 8.7%, 4.7%, 4.7% at rank 1 and by 2.7%, 1.4%, 8.1% at PUR
on the VIPeR, iLIDS, CAVIAR datasets, respectively.
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