
Ria R. Ghai¹, Noah D. Simons², Colin A. Chapman³, Patrick A. Omeja⁴, T. Jonathan Davies¹, Nelson Ting²,⁵, Tony L. Goldberg⁴,⁶

¹Department of Biology, McGill University, Montréal, Quebec, Canada, ²Department of Anthropology, University of Oregon, Eugene, Oregon, United States of America, ³Department of Anthropology and McGill School of Environment, Montréal, Quebec, Canada, and Wildlife Conservation Society, Bronx, New York, New York, United States of America, ⁴Makerere University Biological Field Station, Fort Portal, Uganda, ⁵Institute for Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America, ⁶Department of Pathobiological Sciences and Global Health Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America

Abstract

Background: Whipworms (*Trichuris* sp.) are a globally distributed genus of parasitic helminths that infect a diversity of mammalian hosts. Molecular methods have successfully resolved porcine whipworm, *Trichuris suis*, from primate whipworm, *T. trichiura*. However, it remains unclear whether *T. trichiura* is a multi-host parasite capable of infecting a wide taxonomic breadth of primate hosts or a complex of host specific parasites that infect one or two closely related hosts.

Methods and Findings: We examined the phylogenetic structure of whipworms in a multi-species community of non-human primates and humans in Western Uganda, using both traditional microscopy and molecular methods. A newly developed nested polymerase chain reaction (PCR) method applied to non-invasively collected fecal samples detected *Trichuris* with 100% sensitivity and 97% specificity relative to microscopy. Infection rates varied significantly among host species, from 13.3% in chimpanzees (*Pan troglodytes*) to 88.9% in olive baboons (*Papio anubis*). Phylogenetic analyses based on nucleotide sequences of the *Trichuris* internal transcribed spacer regions 1 and 2 of ribosomal DNA revealed three co-circulating *Trichuris* groups. Notably, one group was detected only in humans, while another infected all screened host species, indicating that whipworms from this group are transmitted among wild primates and humans.

Conclusions and Significance: Our results suggest that the host range of *Trichuris* varies by taxonomic group, with some groups showing host specificity, and others showing host generality. In particular, one *Trichuris* taxon should be considered a multi-host pathogen that is capable of infecting wild primates and humans. This challenges past assumptions about the host specificity of this and similar helminth parasites and raises concerns about animal and human health.

Editor: Robin B. Gasser, University of Melbourne, Australia

Received July 22, 2014; Accepted September 9, 2014; Published October 23, 2014

Copyright: © 2014 Ghai et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All sequence files are available from the Genbank database (accession number KJ588071-KJ588167), with supporting information available in the supplementary table.

Funding: This research was funded by the Natural Sciences and Engineering Research Council of Canada Discovery Grant #312106, Canada Research Chair Program Grant # 715843, and National Institutes of Health grant # TW009237 as part of the joint NIH-NSF Ecology of Infectious Disease program and the UK Economic and Social Research Council. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: tgoldberg@vetmed.wisc.edu

Introduction

Parasites that infect multiple host species are of particular concern because they are more likely to emerge than single-host parasites [1–4]. Moreover, multi-host parasites are difficult to control because reservoir hosts may serve as sources of re-infection for other populations in which the parasite has been eliminated [5–7]. A number of ecological and evolutionary factors influence the range of hosts that a parasite can infect (host specificity). Multi-host parasites of non-human primates (hereafter primates) have come under particular scrutiny, because physiological similarity (due to relatedness) between primates and humans increases the potential for zoonotic transmission. Indeed, phylogenetic relatedness between primate hosts is a stronger predictor of parasite sharing than geographic overlap [8]. Despite the probability of parasite sharing between primates and humans, only 20% of primate helminths (parasitic worms) are thought to infect humans [9]. Conversely, half of all primate helminths are thought to be specific to a single host species [9,10]. These observations suggest that, compared to other taxonomic groups of parasites, helminths have a lesser propensity for zoonotic transmission, perhaps because of their physical complexity, indirect life cycles, and long generation times [5,11].

Here we examine the host specificity of the whipworm genus *Trichuris*, a soil-transmitted helminth with a global distribution [12]. *Trichuris trichiura* is estimated to affect approximately 600
Whipworms are a group of gastrointestinal worms that are both common and globally distributed. These parasites are known to stunt development, especially in school-aged children, and therefore hinder economic, social, and intellectual growth. Unfortunately, research on whipworms has lagged behind its effects, at least in part because this parasite infects the world’s poorest populations. Currently, a single species of whipworm is assumed capable of infecting both humans and non-human primates. In this study, we tested this assumption by collecting fecal samples from humans and overlapping non-human primate populations containing monkeys and chimpanzees in Western Uganda. Using molecular analyses, we examined patterns of genetic similarity between human and nonhuman primate whipworms. We identified three genetically distinct groups of whipworms that could not be distinguished by microscopic examination of their eggs. One of these groups was found in all nine species of primates examined, including humans. These findings suggest that some varieties of whipworms are indeed transmissible between humans and non-human primates, which raises concerns for both human health and conservation.

Whipworms in African Primates and Humans

Million people worldwide [13,14], causing physical and mental growth retardation in children [12,15]. Trichuris infection results from ingestion of embryonated eggs shed into food, water, and soil [15]. Following ingestion, first-stage larva (L1s) hatch and move through the gastrointestinal tract where they develop in the cecum, molt into adults, and tunnel into the mucosa of the large intestine. After mating, female whipworms release eggs into feces. Eggs typically become infective after 20 days or more in the environment, where they are tolerant to desiccation and temperature extremes [16–20].

Currently, the Trichuris genus contains more than 20 described species that are generally specific to taxonomic groups of hosts [18]. Traditional parasitological research on the genus has focused on differentiating Trichuris trichiura, found in humans and primates, from Trichuris suis, found in pigs [21–25]. Morphologically, these two species are similar, and previous attempts to distinguish them based on variation in reproductive organ morphology were inconclusive because phenotypic plasticity could not be distinguished from genotypic differences [26]. The unsuitability of morphological characteristics for resolving differences between T. trichiura and T. suis made molecular methods a promising approach. Sequences from the internal transcribed spacer regions 1 and 2 (ribosomal DNA) from primate and porcine hosts suggest that T. trichiura and T. suis are two closely related but separate species [22], a conclusion further supported by subsequent analyses of β tubulin gene sequences [23].

Morphological studies of Trichuris isolated from primates and humans conclude that the species infecting these hosts is the same, despite slight morphological variations that are distinguishable using scanning electron microscopy [21]. These results suggest that both primates and humans are infected with T. trichiura, which is capable of freely switching between primate and human hosts. Perhaps as a result of these findings, DNA sequences isolated from both primate and human hosts have been assumed to be T. trichiura by virtue of the host alone, and without the taxonomic scrutiny required to identify the parasite to species level. An empirical test of the assumption that primate and human Trichuris are identical used molecular methods to sequence DNA from Trichuris adults isolated from chacma baboons (Papio ursinus) and humans. Results revealed two distinct lineages of Trichuris in baboons [27]. The authors concluded that both lineages were transmissible between humans and baboons, and that T. trichiura, while perhaps not a single lineage, is a zoonotic parasite. Transmission between humans and primates is additionally supported by a molecular study of both β tubulin and ITS 2 gene regions isolated from both humans and baboons (Papio ursinus, P. hamadryas), where no genetic differentiation between host species was found [28]. In contrast, work on both ribosomal DNA and complete mitochondrial genome sequences has found evidence of host specificity within the Trichuris trichiura species complex [29]. These results led to the suggestion that Trichuris trichiura is not a single multi-host parasite, but rather a complex of host-specific lineages, each infecting distinct taxonomic groups of primates [29]. This suggestion is supported by molecular data from a small number of studies in non-human primate taxa [23,24,29–32].

In this study, we examine the phylogenetic structure of Trichuris in a host community comprised of wild primates and a nearby human population. Our study is based in and around Kibale National Park, Uganda, where Trichuris is known to infect several species [33–37]. Humans and primates in this region frequently overlap. For example, several species of primates raid crops, and people often enter the park to extract resources such as wood, food, and traditional medicines [38–41]. People and primates are exposed to the same physical environment during such events and can even interact directly [42]. Thus, the Kibale ecosystem is useful for examining the host specificity of parasites in a setting where cross-species transmission, including zoonotic transmission, is ecologically possible. Indeed, previous research in Kibale has demonstrated cryptic genetic lineages and cross-species transmission of another soil-transmitted helminth genus of primates and humans, the nodul worm Oesophagostomum spp. [43]. Our results herein demonstrate that the taxonomy and population structure of Trichuris is more complex than previously appreciated. Specifically, we identify cryptic Trichuris lineages, of which some infect multiple primate host species, including humans.

Methods

Ethics Statement

Prior to data collection, this research protocol was approved by the Uganda National Council for Science and Technology, the Uganda Wildlife Authority, and the Institutional Review Board and Animal Care and Use Committees of McGill University and the University of Wisconsin-Madison. Due to low literacy, a combination of written and oral consent following World Health Organization protocols was obtained from all participants or their parents/guardians. Consent was obtained by trained local field assistants and documented on IRB-approved forms. Samples were collected, processed and shipped according to the guidelines outlined by the Uganda National Council for Science and Technology, the Uganda Wildlife Authority, and the Public Health Agency of Canada.

Study Site and Collection Methods

Kibale National Park (0°13’-0°41’N, 30°19’-30°32’ E) is a 795 km² mid-altitude forest located in Western Uganda. Kibale harbors nine species of diurnal primate that have been the focus of over four decades of research on primate ecology [44–47], and infection, including zooneses [42,48–54]. Kibale is surrounded by a dense human population of up to 600 people/km² [55].

PLOS Neglected Tropical Diseases | www.plosntds.org 2 October 2014 | Volume 8 | Issue 10 | e3256
Sample collection occurred in and around Kanyawara, a North Western segment of the park (see Ghai et al. [43]).

Trichuris and other gastrointestinal helminths pass their eggs in the feces of their host, which offers an opportunity to conduct molecular analysis non-invasively by isolating DNA directly from parasite eggs. We collected primate fecal samples non-invasively from individuals in habituated primate groups. All primate groups were sampled only once to prevent pseudo-replication of individuals. Fecal samples were collected immediately after defecation and placed in sterile tubes. Seven diurnal monkey species were sampled: black-and-white colobus (*Colobus guereza*), blue monkeys (*Cercopithecus mitis*), grey-checked mangabeys (*Lophocebus albigena*), l’hoest monkeys (*Cercopithecus lhoesti*), olive baboons (*Papio anubis*), red colobus (*Procolobus rufomitratus*), and red-tailed guenons (*Cercopithecus ascanius*). Chimpanzees (*Pan troglodytes*) samples were collected from two habituated groups in Kanyanu, a section of Kibale approximately 15 km from Kanyawara. Human samples were collected from individuals between the ages of 2 and 70 residing in one of three villages within 5 km of the park boundary. Following informed consent, participants were provided with collection materials and instructions, and samples were retrieved within one day for processing. All samples underwent a procedure to concentrate nematode eggs while removing particles and debris. A modified ethyl acetate sedimentation method using one gram of feces was chosen due to its suitability for field conditions and its efficacy at recovering helminths eggs [56]. Details are provided elsewhere [43]. Samples were collected between May and August 2011.

Microscopy

We used microscopy to confirm infection status by identifying *Trichuris* eggs. Thin smears of sedimented feces were examined under 10X objective magnification on a Leica DM2500 light microscope. Length, width, color, and contents of eggs were recorded at 40X magnification, and images were captured with an Infinity CMOS digital microscope camera and Infinity Camera v.6.2.0 software (Lumenera Corporation, Ottawa, ON, Canada). Samples were considered positive for *Trichuris* when one or more eggs with the characteristic *Trichuris* “lemon” shape were identified. Samples were considered free of *Trichuris* only after the entire sediment was scanned and no *Trichuris* eggs were seen. All samples were examined by the same observer (RRG) to avoid inter-observer bias.

Molecular Methods

DNA was extracted from 200 μl of sedimented feces preserved in RNAlater nucleotide stabilization solution (Sigma-Aldrich, St. Louis, MO, USA) using a ZR Fecal DNA MiniPrep Kit (Zymo Research Corporation, Irvine, CA, USA), following manufacturer protocols.

The parasite internal transcribed spacer region (ITS) 1 of the ribosomal DNA complex was amplified using polymerase chain reaction (PCR) with newly designed primers that were specific to the genus *Trichuris*. These primers were nested within the 18S (small ribosomal subunit) coding region and the 5.8S non-coding region [57]. Two forward primers (external and internal) were sited within conserved regions of 18S sequences of *T. trichiura* (Genbank accession numbers: AB699091, AB699090, AB699092, GQ352548), *T. suis* (accession no. AY831265), *T. vulpis* (accession no. GQ352538), and *T. mars* (accession no. AF036637). Other enoploan nematodes (*Romanoermis*, accession no. AY146344; *Agamermis*, accession no. DQ629808; *Capilaria*, accession no. EU004822; and *Trichinella*, accession no’s. U60231 and Y487254), as well as representative genera likely to occur in Kibale (*Caenorhabditis*, accession no. JN630668; *Strongyloides*, accession no. MF4229) were included in primer design alignments to ensure primers were specific to *Trichuris*. The two generated primers were: ExternalITS1-1417F (‘‘-AGGGACGAGGACACTTTC-3’’) and InternalITS1-1567F (‘‘-GGTTCTCGTGACTGGGAC-3’’).

Reverse primers that were also specific for the genus *Trichuris* were designed in a similar manner, using aligned 5.8S sequences from *T. trichiura* (accession no’s. GQ901355, GQ301534, KC877992), *T. suis* (accession no’s. JF699051, AM999015), *T. sp* (accession no’s. JF699040-JF699052, HQ844233), *T. ovis* (accession no. JX218218), *T. mars* (accession no. FN543201), *T. arvicolae* (accession no. FR049607), and *T. discolor* (accession no. JX281223). Other enoploan nematodes (*Trichinella*, accession no’s. AF342803, KC006431) and representative genera likely to be found in Kibale (*Oesophagostomum*, accession no’s. AJ619979 and AB201215; *Strongyloides*, accession no. EF635265; *Xiphinema*, accession no. HM590156) were also included. The reverse primers generated amplicons of approximately 1088 bp expected size; internal primers generated amplicons of 895 bp expected size.

The ITS 2 region was amplified using primers nested within the 5.8S non-coding and 28S (large ribosomal subunit) coding regions. The ITS 1 internal reverse primer described above (InternalITS1-2462R) was reversed and used as the forward external primer (ExternalITS2-2462F: ‘‘-GGATCCCCACGTTGCTCGTAG-3’’) The internal primer, *Trichuris* ITS2-2560F (‘‘-CTTCAGGAGGCAATGATCG-3’’) was designed using the aligned 5.8S sequences described above and was also specific to the genus *Trichuris*. A previously published, conserved primer NC2 (‘‘-TTATGTTTCTTTTTTCTCGGC-3’’) was used as the reverse primer in both external and internal reactions [58]. External primers generated amplicons of approximately 584 bp expected size; internal primers generated amplicons of 486 bp expected size.

The efficacy of the protocols designed for amplifying only *Trichuris* ITS 1 and 2 regions was tested using dilutions of a positive control (adult *T. vulpis* isolated by necropsy from an infected canine at Cornell University), and by implementing the protocols on samples known to contain infections with multiple parasite genera. The protocol was found to be 100% accurate at detecting only *Trichuris* even among mixed infections.

ITS 1 external PCR was performed in 25 μL-volumes using the FailSafe System (Epicentre Biotchnologies, Madison, WI, USA). Reactions contained 1X FailSafe PCR PreMix with Buffer C (containing dNTPs and MgCl₂), 1 Unit of FailSafe Enzyme Mix, 2.5 picomoles of each primer (ExternalITS1_Trichuris-1417F and ExternalITS1_Trichuris-2505R), and 1 μL of template (extracted DNA from sedimented feces). Reactions were cycled in a Bio-Rad CFX96 thermocycler (Bio-Rad Laboratories, Hercules, CA, USA) with the following temperature profile: 94°C for 60 sec; 40 cycles of 94°C for 60 sec, 61°C for 30 sec, 72°C for 75 sec; and a final extension at 72°C for 10 min. Internal PCR was performed in 25 μL-volumes using the DyNazyme DNA Polymerase Kit (Thermo Scientific, Asheville, NC, USA) with reactions containing 0.5 Units of DyNazyme I DNA Polymerase, 1X Buffer containing 1.5 mM MgCl₂, 2.5 picomoles of each primer (InternalITS1_Trichuris-1567F and InternalITS1_Trichuris-2462R), 0.5 μL dNTPs, and 1 μL of template (product of the external PCR reaction). Reactions were cycled according to the following temperature profile: 94°C for 60 sec; 35 cycles of 94°C for
30 sec, 55°C for 30 sec, 72°C for 75 sec; and a final extension at
72°C for 10 min.

ITS 2 PCR used the same reagents as the ITS 1 external and
internal reactions described above, with external reactions using
ExternalITS2_\textit{Trichuris}-2462F and NC2 primers, and internal
reactions using InternalITS2_\textit{Trichuris}-2560F and NC2 primers.
Both external and internal reactions were cycled according to the
following temperature profile: 94°C for 60 sec; 35 cycles of 94°C
for 30 sec, 55°C for 30 sec, 72°C for 60 sec; and a final extension
at 72°C for 10 min. PCR products were electrophoresed on 1%
agarose gels stained with ethidium bromide. Amplicons were
excised and purified using the Zymoclean Gel DNA Recovery Kit
(Zymo Research Corporation, Irvine, CA, USA) according to the
manufacturer’s instructions.

ITS 1 and 2 products were Sanger sequenced in both directions
using primers InternalITS1_\textit{Trichuris}-1567F and InternalITS1_\textit{Trichuris}-2462R for ITS 1 and InternalITS2_\textit{Trichuris}-2560F and NC2 for ITS 2. Sequencing was performed on ABI
3730xl DNA Analyzers (Applied Biosystems, Grand Island, NY,
USA) at the University of Wisconsin-Madison Biotechnology
Center DNA Sequencing Facility. Sequences were hand-edited
and assembled using Sequencher v. 4.9 (Gene Codes Corporation,
Ann Arbor, MI, USA) with reference to published sequences.

Generation of unambiguous sequences required repeat PCR and
re-sequencing on three occasions. Newly generated sequences
were deposited in GenBank, under accession numbers KJ588071-
KJ588132 (18S, ITS 1) and KJ588133-KJ588167 (5.8S, ITS 2,
28S); see Supplementary Table S1.

Analyses

The ratio of \textit{Trichuris} egg length to width was calculated and
compared among groups using Kruskal-Wallis tests and Dunn’s
multiple comparison post-tests in Prism6 (GraphPad Software
Inc., La Jolla, CA, USA) to assess shape differences between
different groups of \textit{Trichuris}. To compare the diagnostic
performance of microscopy with newly designed PCR methods,
sensitivity (i.e., the proportion of samples correctly identified as
positive by PCR as compared to microscopy) and specificity (i.e.,
the proportion of samples correctly identified as negative by PCR)
were calculated using MedCalc v. 12.5.0 (MedCalc Software,
Ostend, Belgium). Prevalence of \textit{Trichuris} infection was calculated
as the total number of positive samples divided by the total
number of samples, with 95% confidence intervals calculated
using the modified Wald method [59]. Differences in prevalence
among host species were evaluated using Fisher’s exact tests
implemented in the program Quantitative Parasitology v. 3.0 [60].

Due to the number and varying sizes of indels among DNA
sequences, we aligned sequences using webPRANK, a phylogeny-
aware progressive alignment tool that has been shown to
outperform other methods in indel-rich alignment [61,62].
Aligned sequences were trimmed to consistent length and missing
data were coded as “?” in BioEdit v. 7.2.5 [63]. Samples for which
both ITS 1 and 2 were generated were concatenated in Sequence
Matrix v. 1.7.8 [64]. All sequences were subjected to Ghblocks
treatment to remove regions of ambiguous alignment using the
following parameters: “Maximum number of contiguous non-
conserved positions” = 100, “Minimum length of a block” = 4,
and “Allowed gap positions” = half [65]. Models of sequence
evolution for each gene were selected using the MrModelTest v. 2
executable in PAUP* v. 4 [66,67].

We reconstructed phylogenetic relationships using Bayesian
methods and HKY+I (ITS 1) and HKY (ITS 2) models,
implemented in MrBayes v. 3.2.2 through the CIPRES Science
Gateway [68,69]. Phylogenetic analyses were conducted on

<table>
<thead>
<tr>
<th>Species</th>
<th>Microscopy Positive</th>
<th>ITS1 Positive</th>
<th>ITS2 Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total No. Trichuris Positive</td>
<td>N</td>
<td>Microscopy</td>
<td>PCR</td>
</tr>
<tr>
<td>BM (Blue monkey)</td>
<td>33</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>BW (Black-and-white colobus)</td>
<td>37</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>CH (Chimpanzee)</td>
<td>30</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>GM (Gray-cheeked mangabey)</td>
<td>42</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>HU (Human)</td>
<td>36</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>LM (L’hoest monkey)</td>
<td>36</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>OB (Olive baboon)</td>
<td>36</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>SH (Red-tailed guenon)</td>
<td>41</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Distance</td>
<td>TOTAL 318</td>
<td>108</td>
<td>108</td>
</tr>
</tbody>
</table>
concatenated, Gblocks treated ITS 1 and 2 sequences. Four chains were run for 1×10^7 MCMC generations, sampling every 1000th generation with a diagnostic frequency of every 5000th generation. MCMC runs continued until a standard deviation of split frequency value of 0.01 was reached. Convergence was confirmed when all substitution model parameters reached a potential scale reduction factor value of 1, and was visually assessed using Tracer v. 1.6. The first 10% of runs were discarded as burn-in and Bayesian posterior probabilities were calculated from the remaining trees.

Genetic divergence among *Trichuris* populations was estimated as percent nucleotide-level sequence identity, calculated as the uncorrected pairwise proportion of nucleotides (p-distance) in MEGA v. 5.1 with 1000 bootstrap replicates [70]. Analysis of molecular variance (AMOVA) was used to partition *Trichuris* genetic diversity into within host and between host components [71] in GenAlEx v. 6.5 [72]. Pairwise population differentiation values (PhiPT; an analogue of FST), were also calculated in GenAlEx. To assess the relationship between host phylogeny and parasite phylogeny, mantel tests were used to compare pairwise distance matrices of phylogenetic branch lengths between primate hosts and p-distance among parasite clades (calculated as described above) using the ape package [73] in the statistical programming language R (Development-Team 2008).

Results

We collected 282 samples from primates and 36 samples from humans, for a total of 318 samples. Of these, microscopy classified 104 samples as *Trichuris*-positive, making the community-wide prevalence of infection by microscopy 32.7% (Table 1). Eggs varied considerably in length (50–76 μm), and width (26–30 μm), but length-to-width ratios did not differ significantly among parasite clades (see below) or host species (Kruskall-Wallis tests, $P>0.05$). The cladogram on the top of the figure is a simplified version of the phylogenetic tree shown in Figure 2 and represents the relative relatedness of *Trichuris* clades. Host species abbreviations follow Table 2.

doi:10.1371/journal.pntd.0003256.g001
PCR assay was 100% (95% C.I. 96.5–100.0%) and the specificity was 97.7% (95% C.I. 94.6–99.2%), suggesting that our new PCR assays of ITS 1 and 2 are both highly accurate. Prevalence varied significantly by species, \((\chi^2 = 62.99, \text{df} = 8, P < 0.0001)\), with chimpanzees (13.3%) and grey-checked mangabeys (14.3%) having the lowest prevalence, and olive baboons (88.9%) the highest (Table 1).

Of the 108 positive samples, 74 samples were selected for sequencing to represent the widest possible range of host species and, to the greatest extent possible, to equalize sequencing effort among host species. Because preliminary results indicated that ITS 1 provided greater phylogenetic resolution than ITS 2, 62 sequences for ITS 1 and 35 sequences for ITS 2 were ultimately generated (Supplementary Table S1). In samples where both ITS 1 and ITS 2 sequences were generated, sequences were concatenated and gaps were coded as missing data. The final alignment length of Gblock treated and concatenated ITS 1 and ITS 2 sequences was 1083 characters.

Phylogenetic analysis resolved *Trichuris* into three groups, which, for convenience, we designate Groups 1, 2 and 3 in Figure 2. Group 1 contained two samples from humans that were 98.2% identical to each other and that most closely matched published sequences from Chacma baboons (*Papio hamadryas ursinus*) from South Africa (Genbank accession numbers GQ301551-2 [27]. This clade, along with a sequences from humans in Cameroon (accession number GQ301555), and more distantly with Chacma baboons in South Africa from the same study (accession number GQ301554) [27]. All three sequences representing *T. suis* clustered within the *T. trichiura* species complex, and were most distinct (excluding outgroups) from Group 1 (66.9% nucleotide similarity), and most similar to Group 2 (88.5% nucleotide similarity).

Samples from human hosts identified in this study fell within Groups 1 and 3. Human-derived *Trichuris* sequences were most similar to those from grey-checked mangabeys (95.2% similarity) and chimpanzees (95.1% identity), and most dissimilar to those of black-and-white colobus (91.2% identity; Table 2). When within-group sequence variation was held constant in PhiPT analysis, sequences from black-and-white colobus and olive baboons were significantly different, but sequences from other species pairs were not (Table 2). Mantel tests comparing host phylogeny and parasite p-distances between clades were not significant (Z-statistic = 43.37, \(p = 0.305\)). AMOVA revealed that 98% of *Trichuris* sequence-level variation was contained within host species, with only 2% of sequence-level variation apportioned between host species.

Discussion

We investigated the taxonomy and phylogenetic structure of the whipworm genus *Trichuris* in a wild primate community and a nearby human population in Uganda. The overall prevalence of infection was 34%, but this varied significantly among host species, with the lowest prevalence in chimpanzees (13.3%) and the highest prevalence in olive baboons (88.9%). Research in Gombe National Park, Tanzania, where these two species also overlap, found similar results, with chimpanzees having 5% infection prevalence and baboons 66% [74]. Averaging across sites in Tanzania and Senegal, another study found prevalences of 4.5% and 35% in chimpanzees and baboons, respectively. Interestingly, *Trichuris* is
Table 2. Genetic differences between lineages of Trichuris from different host species.

<table>
<thead>
<tr>
<th></th>
<th>BM</th>
<th>BW</th>
<th>CH</th>
<th>LM</th>
<th>OB</th>
<th>GM</th>
<th>RC</th>
<th>RT</th>
<th>HU</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM</td>
<td>0.000</td>
<td>0.214</td>
<td>0.013</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.025 (0.003)</td>
</tr>
<tr>
<td>BW</td>
<td>0.214</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.030</td>
</tr>
<tr>
<td>CH</td>
<td>0.013</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.002 (0.001)</td>
</tr>
<tr>
<td>LM</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>OB</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>GM</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>RC</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>RT</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>HU</td>
<td>0.025 (0.003)</td>
<td>0.030</td>
<td>0.002 (0.001)</td>
<td>0.001 (0.001)</td>
<td>0.001 (0.002)</td>
<td>0.001 (0.002)</td>
<td>0.001 (0.002)</td>
<td>0.001 (0.002)</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Below diagonal: pairwise nucleotide differences per site averaged across all sequence pairs, with standard errors (calculated from 1000 bootstrap replicates) in parentheses. Above diagonal: Trichuris lineage differentiation between hosts (\(\Phi_{PT}\); an analog of \(F_{ST}\)), with probability values based on 999 permutations. Significant values (\(p < 0.05\)) generated from 999 permutations are indicated with asterisks. Within diagonal: within-group nucleotide substitutions.

Red-tailed guenon, and HU = Human.
that was not derived from colobines (gibbon) was collected from a zoo, and may therefore reflect transmission outside of a natural setting. Additional sampling and sequencing would help clarify the host range of this *Trichuris* taxon.

We note that rDNA occurs in multiple copies, and this study does not attempt to quantify intraspecific variation or mixed lineage infections. Our data therefore reflect a minimum conservative estimate of parasite genetic variation. Similarly, we note that our data could reflect variation among paralogs within and among infections, although we found no direct evidence for this. However, such intra-individual diversity is almost certainly lower than diversity between hosts, such that it is unlikely to have confounded the overall patterns we describe.

In our study area, several primates frequently raid crops, with the most common offenders being baboons, red tailed guenons, and chimpanzees [39,79,80]. Such interactions facilitate the transmission of gastrointestinal bacteria, protozoa and helminths in the Kihale system [43,49,52,53,81,82]. Although these interactions make cross-species transmission ecologically plausible, it remains unclear why one *Trichuris* lineage appears able to cross species boundaries with apparent ease, yet another other clades show host affinity (Group 1).

In conclusion, our phylogenetic analysis suggests that *Trichuris* is not a single species, but a species complex (see also Nissen et al. [23] and Liu et al. [29]) of co-circulating clades that includes *T. suis*. Despite being sympatric, different clades appear to have different host affinity. Group 1 was specific to humans in our study, Group 2 has an intermediate host range, and Group 3 appears capable of infecting all primates sampled, including humans. While our analyses do not indicate whether Group 3 *Trichuris* is transmitted from primates to humans or *vice versa*, they do show that certain lineages within the *Trichuris* taxonomic complex should be considered multi-host pathogens, at least within the order Primates. Our results also demonstrate that *Trichuris* is among the 20% of helminths capable of cross-infecting primates and humans. Taxonomic and epidemiological studies of other soil-transmitted helminths in wild primates, many of which cause “neglected” tropical diseases [33], may reveal yet more helminth taxa to be multi-host pathogens. If so, this would challenge past assumptions about the host specificity of helminth parasites while raising new concerns about global human and animal health.

Supporting Information

Table S1 Sequence dataset. Putative species: all from genus *Trichuris*. Location: KNP = Kibale National Park. DGP = Da Gamma Park. GOB = Groot Olifant Bos, CP = Cape Peninsula. Date: date of sample collection. Acc. No.: Genbank accession number for each respective gene, where bolded accession numbers indicate sequences generated in this study. [P] = partial gene sequence. [C] = complete gene sequence. Putative species marked with “**” indicates sequences which our analysis suggests belong to *Trichuris* species different from those identified in published GenBank entries. Accession numbers, JN181833, JN181845, and JN181860 are listed as *T. trichiura* in GenBank but are identified as T. sp here. Accession numbers GQ091551-3 are listed as T. sp in GenBank, but are identified as *T. trichiura* here. (PDF)

Acknowledgments

The authors gratefully acknowledge the Uganda Wildlife Authority and the Uganda National Council for Science and Technology for permission to conduct this research. We also thank Chesley Walsh, David Mills, Robert Basajja, Peter Tuhairwe, and Richard Kaseregenyi for assistance in the field, Dwight Bowman, Arcelli Lucio-Forster, Jessica Rothman, and Janice Liotta for assistance with parasitological methods, Aleia McCord and Mary Thurbler for laboratory training, and Tammy Elliot for analytical advice.

Author Contributions

Conceived and designed the experiments: RRG CAC TLG. Performed the experiments: RRG TLG. Analyzed the data: RRG NDS TJD TLG. Contributed reagents/materials/analysis tools: CAC TLG. Wrote the paper: RRG NDS TJD TLG. Collected data: RRG CAC PAO.

References

