The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies

Erik von Elm, MD; Douglas G. Altman, DSc; Matthias Egger, MD; Stuart J. Pocock, PhD; Peter C. Gotzsche, MD; and Jan P. Vandenbroucke, MD, for the STROBE Initiative

Much biomedical research is observational. The reporting of such research is often inadequate, which hampers the assessment of its strengths and weaknesses and of a study’s generalizability. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Initiative developed recommendations on what should be included in an accurate and complete report of an observational study. We defined the scope of the recommendations to cover 3 main study designs: cohort, case–control, and cross-sectional studies. We convened a 2-day workshop in September 2004, with methodologists, researchers, and journal editors, to draft a checklist of items. This list was subsequently revised during several meetings of the coordinating group and in e-mail discussions with the larger group of STROBE contributors, taking into account empirical evidence and methodological considerations. The workshop and the subsequent iterative process of consultation and revision resulted in a checklist of 22 items (the STROBE Statement) that relate to the title, abstract, introduction, methods, results, and discussion sections of articles. Eighteen items are common to all 3 study designs and 4 are specific for cohort, case–control, or cross-sectional studies. A detailed Explanation and Elaboration document is published separately and is freely available at www.annals.org and on the Web sites of PLoS Medicine and Epidemiology. We hope that the STROBE Statement will contribute to improving the quality of reporting of observational studies.

For author affiliation, see end of text.

Many questions in medical research are investigated in observational studies (1). Much of the research into the cause of diseases relies on cohort, case–control, or cross-sectional studies. Observational studies also have a role in research into the benefits and harms of medical interventions (2). Randomized trials cannot answer all important questions about a given intervention. For example, observational studies are more suitable to detect rare or late adverse effects of treatments and are more likely to provide an indication of what is achieved in daily medical practice (3).

Research should be reported transparently so that readers can follow what was planned, what was done, what was found, and what conclusions were drawn. The credibility of research depends on a critical assessment by others of the strengths and weaknesses in study design, conduct, and analysis. Transparent reporting is also needed to judge whether and how results can be included in systematic reviews (4, 5). However, in published observational research, important information is often missing or unclear. An analysis of epidemiologic studies published in general medical and specialist journals found that the rationale behind the choice of potential confounding variables was often not reported (6). Only a few reports of case–control studies in psychiatry explained the methods used to identify cases and controls (7). In a survey of longitudinal studies in stroke research, 17 of 49 articles (35%) did not specify the eligibility criteria (8). Others have argued that without sufficient clarity of reporting, the benefits of research might be achieved more slowly (9), and that there is a need for guidance in reporting observational studies (10, 11).

Recommendations on the reporting of research can improve reporting quality. The Consolidated Standards of Reporting Trials (CONSORT) Statement was developed in 1996 and revised 5 years later (12). Many medical journals supported this initiative (13), which has helped to improve the quality of reports of randomized trials (14, 15). Similar initiatives have followed for other research areas—for example, for the reporting of meta-analyses of randomized trials (16) or diagnostic studies (17). We established a network of methodologists, researchers, and journal editors to develop recommendations for the reporting of observational research: the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement.

Aims and Use of the STROBE Statement

The STROBE Statement is a checklist of items that should be addressed in articles reporting on the 3 main study designs of analytical epidemiology: cohort, case–control, and cross-sectional studies. The intention is solely to provide guidance on how to report observational research well; these recommendations are not prescriptions for designing or conducting studies. Also, while clarity of reporting is a prerequisite to evaluation, the checklist is not an instrument to evaluate the quality of observational research.

See also:

Web-Only
STROBE: Explanation and Elaboration paper by Vandenbroucke and colleagues
Conversion of graphics into slides
Here, we present the STROBE Statement and explain how it was developed. In a detailed companion paper, the Explanation and Elaboration article (18–20), we justify the inclusion of the different checklist items and give methodological background and published examples of what we consider transparent reporting. We strongly recommend using the STROBE checklist in conjunction with the explanatory article, which is available freely at www.annals.org and on the Web sites of PLoS Medicine (www.plosmedicine.org) and Epidemiology (www.epidem.com).

Development of the STROBE Statement

We established the STROBE Initiative in 2004, obtained funding for a workshop, and set up a Web site (www.strobe-statement.org). We searched textbooks, bibliographic databases, reference lists, and personal files for relevant material, including previous recommendations, empirical studies of reporting, and articles describing relevant methodological research. Because observational research makes use of many different study designs, we felt that the scope of STROBE had to be clearly defined early on. We decided to focus on the 3 study designs that are used most widely in analytical observational research: cohort, case-control, and cross-sectional studies.

We organized a 2-day workshop in Bristol, United Kingdom, in September 2004. Twenty-three individuals attended this meeting, including editorial staff from Annals of Internal Medicine, BMJ, Bulletin of the World Health Organization, International Journal of Epidemiology, JAMA, Preventive Medicine, and The Lancet, as well as epidemiologists, methodologists, statisticians, and practitioners from Europe and North America. Written contributions were sought from 10 other individuals who declared an interest in contributing to STROBE but could not attend. Three working groups identified items deemed to be important to include in checklists for each type of study. A provisional list of items prepared in advance (available from our Web site) was used to facilitate discussions. The 3 draft checklists were then discussed by all participants and, where possible, items were revised to make them applicable to all 3 study designs. In a final plenary session, the group decided on the strategy for finalizing and disseminating the STROBE Statement.

After the workshop, we drafted a combined checklist including all 3 designs and made it available on our Web site. We invited participants and additional scientists and editors to comment on this draft checklist. We subsequently published 3 revisions on the Web site and 2 summaries of comments received and changes made. During this process, the coordinating group (i.e., the authors of the present paper) met on 8 occasions for 1 or 2 days and held several telephone conferences to revise the checklist and to prepare the present paper and the Explanation and Elaboration paper (18–20). The coordinating group invited 3 additional co-authors with methodological and editorial expertise to help write the Explanation and Elaboration paper and sought feedback from more than 30 people, who are listed at the end of this paper. We allowed several weeks for comments on subsequent drafts of the paper and reminded collaborators about deadlines by e-mail.

STROBE Components

The STROBE Statement is a checklist of 22 items that we consider essential for good reporting of observational studies (Table). These items relate to the article’s title and abstract (item 1), the introduction (items 2 and 3), methods (items 4–12), results (items 13–17), and discussion sections (items 18–21) and other information (item 22 on funding). Eighteen items are common to all 3 designs, while 4 (items 6, 12, 14, and 15) are design-specific, with different versions for all or part of the item. For some items (indicated by asterisks), information should be given separately for cases and controls in case–control studies, or exposed and unexposed groups in cohort and cross-sectional studies. Although presented here as a single checklist, separate checklists are available for each of the 3 study designs on the STROBE Web site.

Implications and Limitations

The STROBE Statement was developed to assist authors when writing up analytical observational studies, to support editors and reviewers when considering such articles for publication, and to help readers when critically appraising published articles. We developed the checklist through an open process, taking into account the experience gained with previous initiatives, in particular CONSORT. We reviewed the relevant empirical evidence as well as methodological work, and subjected consecutive drafts to an extensive iterative process of consultation. The checklist presented here is thus based on input from a large number of individuals with diverse backgrounds and perspectives. The comprehensive explanatory article (18–20), which is intended for use alongside the checklist, also benefited greatly from this consultation process.

Observational studies serve a wide range of purposes, on a continuum from the discovery of new findings to the confirmation or refutation of previous findings (18–20). Some studies are essentially exploratory and raise interesting hypotheses. Others pursue clearly defined hypotheses in available data. In yet another type of study, the collection of new data is planned carefully on the basis of an existing hypothesis. We believe the present checklist can be useful for all these studies, since the readers always need to know what was planned (and what was not), what was done, what was found, and what the results mean. We acknowledge that STROBE is currently limited to 3 main observational study designs. We would welcome extensions that adapt the checklist to other designs—for example, case-crossover studies or ecological studies—and also to specific topic areas. Four extensions are now available for
Table. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Checklist of Items That Should Be Addressed in Reports of Observational Studies

<table>
<thead>
<tr>
<th>Item</th>
<th>Item Number</th>
<th>Recommendation</th>
</tr>
</thead>
</table>
| **Title and abstract** | 1 | (a) Indicate the study’s design with a commonly used term in the title or the abstract.
(b) Provide in the abstract an informative and balanced summary of what was done and what was found. |
| **Introduction** | | |
| Background/rationale | 2 | Explain the scientific background and rationale for the investigation being reported. |
| **Objectives** | 3 | State specific objectives, including any prespecified hypotheses. |
| **Methods** | | |
| Study design | 4 | Present key elements of study design early in the paper. |
| Setting | 5 | Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection. |
| **Participants** | 6 | (a) Cohort study: Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up.
Case–control study: Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls.
Cross-sectional study: Give the eligibility criteria, and the sources and methods of selection of participants. |
| | | (b) Cohort study: For matched studies, give matching criteria and number of exposed and unexposed.
Case–control study: For matched studies, give matching criteria and the number of controls per case. |
| **Variables** | 7 | Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable. |
| **Data sources/measurement** | 8* | For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group. |
| **Bias** | 9 | Describe any efforts to address potential sources of bias. |
| **Study size** | 10 | Explain how the study size was arrived at. |
| **Quantitative variables** | 11 | Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen, and why. |
| **Statistical methods** | 12 | (a) Describe all statistical methods, including those used to control for confounding.
(b) Describe any methods used to examine subgroups and interactions.
(c) Explain how missing data were addressed.
(d) Cohort study: If applicable, explain how loss to follow-up was addressed.
Case–control study: If applicable, explain how matching of cases and controls was addressed.
Cross-sectional study: If applicable, describe analytical methods taking account of sampling strategy.
(e) Describe any sensitivity analyses. |
| **Results** | | |
| Participants | 13* | (a) Report the numbers of individuals at each stage of the study—e.g., numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analyzed.
(b) Give reasons for nonparticipation at each stage.
(c) Consider use of a flow diagram. |
| Descriptive data | 14* | (a) Give characteristics of study participants (e.g., demographic, clinical, social) and information on exposures and potential confounders.
(b) Indicate the number of participants with missing data for each variable of interest.
(c) Cohort study: Summarize follow-up time—e.g., average and total amount. |
| Outcome data | 15* | Cohort study: Report numbers of outcome events or summary measures over time.
Case–control study: Report numbers in each exposure category or summary measures of exposure.
Cross-sectional study: Report numbers of outcome events or summary measures. |
| Main results | 16 | (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (e.g., 95% confidence intervals). Make clear which confounders were adjusted for and why they were included.
(b) Report category boundaries when continuous variables were categorized.
(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period. |
| Other analyses | 17 | Report other analyses done—e.g., analyses of subgroups and interactions and sensitivity analyses. |
| **Discussion** | | |
| Key results | 18 | Summarize key results with reference to study objectives. |
| Limitations | 19 | Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias. |
| Interpretation | 20 | Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence. |
| Generalizability | 21 | Discuss the generalizability (external validity) of the study results. |
| **Other information** | | |
| Funding | 22 | Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based. |

*Give such information separately for cases and controls in case–control studies, and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

An Explanation and Elaboration article (18–20) discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available at www.annals.org and on the Web sites of PLoS Medicine [www.plosmedicine.org] and Epidemiology [www.epidem.com]). Separate versions of the checklist for cohort, case–control, and cross-sectional studies are available on the STROBE Web site (www.strobe-statement.org).
We welcome suggestions for the further dissemination of STROBE—for example, by re-publication of the present article in specialist journals and in journals published in other languages. Groups or individuals who intend to translate the checklist to other languages should consult the coordinating group beforehand. We will revise the checklist in the future, taking into account comments, criticism, new evidence, and experience from its use. We invite readers to submit their comments via the STROBE Web site (www.strobe-statement.org).

From the Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland; Centre for Statistics in Medicine, University of Oxford, Oxford, United Kingdom; University of Bristol, Bristol, United Kingdom; London School of Hygiene and Tropical Medicine, University of London, London, United Kingdom; Nordic Cochrane Centre, Copenhagen, Denmark; and Leiden University Hospital, Leiden, the Netherlands.

Note: The following individuals have contributed to the content and elaboration of the STROBE Statement: Douglas G. Altman, Maria Blattner, Paolo Buffetta, Hermann Brenner, Geneviève Chène, Cyrus Cooper, George Davey-Smith, Erik von Elm, Matthias Egger, France Gagnon, Peter C. Gotzsche, Philip Greenland, Sander Greenland, Claire Infante-Rivard, John Ioannidis, Astrid James, Giselle Jones, Bruno Ledergerber, Julian Little, Margaret May, David Moher, Hooman Momen, Alfredo Morabia, Hal Morgenstern, Cynthia D. Mulrow, Fred Paccard, Stuart J. Pocock, Charles Poole, Martin Röösl, Dietrich Rothenbacher, Kenneth Rothman, Caroline Sabin, Willi Sauerbrei, Lale Say, James J. Schleselman, Jonathan Sterne, Holly Syddall, Jan P. Vandenbroucke, Ian White, Susan Wieland, Hywel Williams, and Guang Yong Zou.

Acknowledgments: The authors thank Gerd Antes, Kay Dickersin, Shah Ebrahim, and Richard Lilford for supporting the STROBE Initiative. They also thank the following institutions that have hosted working meetings of the coordinating group: Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland; Centre for Statistics in Medicine, University of Oxford, Oxford, United Kingdom; University of Bristol, Bristol, United Kingdom; London School of Hygiene and Tropical Medicine, London, United Kingdom; Nordic Cochrane Centre, Copenhagen, Denmark; and Centre for Statistics in Medicine, University of Oxford, Oxford, United Kingdom. Finally, they thank the 6 reviewers who provided helpful comments on a previous draft of this paper.

Grant Support: The workshop was funded by the European Science Foundation. Additional funding was received from the Medical Research Council Health Services Research Collaboration and the National Health Services Research & Development Methodology Programme.

Potential Financial Conflicts of Interest: None disclosed.

Requests for Single Reprints: Erik von Elm, MD, Institute of Social and Preventive Medicine, University of Bern, Finkenhubelweg 11, CH-3012 Bern, Switzerland; e-mail, strobe@ispm.unibe.ch.

Current author addresses are available at www.annals.org.

References
2. Black N. Why we need observational studies to evaluate the effectiveness of...

Current Author Addresses: Drs. von Elm and Egger: University of Bern, Institute of Social and Preventive Medicine, Finkenhuelweg 11, CH-3012 Bern, Switzerland.
Dr. Altman: Centre for Statistics in Medicine, Wolfson College Annex, Linton Road, Oxford OX2 6UD, United Kingdom.
Dr. Pocock: Medical Statistics Unit, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom.
Dr. Gøtzsche: The Nordic Cochrane Centre, Rigshospitalet, Department 7112, Blegdamsvej 9, DK-2100 Copenhagen Ø, Denmark.
Dr. Vandenbroucke: Department of Clinical Epidemiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands.