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We introduce flat systems, which are equivalent to linear ones via a specia type of feedback
called endogenous. Their physical properties are subsumed by alinearizing output and they might be
regarded as providing another nonlinear extension of Kalman'scontrollability. Thedistanceto flatness
is measured by a non-negative integer, the defect. We utilize differential algebra which suits well to
the fact that, in accordance with Willems standpoint, flatness and defect are best defined without
distinguishing between input, state, output and other variables. Many realistic classes of examples
are flat. We treat two popular ones. the crane and the car with n trailers, the motion planning of
which isobtained viaelementary properties of planar curves. The three non-flat examples, the simple,
doubleand variablelength pendulums, are borrowed from nonlinear physics. A high frequency control
strategy is proposed such that the averaged systems become flat.
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1 Introduction

We present here five case-studies: the control of a crane, of the simple, double and variable length
pendulums and the motion planning of the car with n-trailers. They areall treated within theframework
of dynamic feedback linearization which, contrary to the static one, has only been investigated by few
authors (Charlet et al. 1989, Charlet et al. 1991, Shadwick 1990). Our point of view will be probably
best explained by the following calculations where all vector fields and functions are real-analytic.
Consider
x = f(x,u) xeR", ueRM), Q)

of . o
where f(0,0) = 0 and rank%(o, 0) = m. The dynamic feedback linearizability of (1) means,
according to (Charlet et al. 1989), the existence of

1. aregular dynamic compensator

z = aX,z,v)
{U = bx,zv) (zeRY, veRM (2

where a(0, 0,0) = 0, b(0,0,0) = 0. The regularity assumption implies the invertibility® of
system (2) with input v and output u.

2. adiffeomorphism
§=CE(X,2 (6 e R™Y) ©)

such that (1) and (2), whose (n + q)-dimensional dynamicsis given by

Xx = fx, bx, zv))
z = a(x,zv),

becomes, according to (3), a constant linear controllable system é = F& + Gu.
Up to a static state feedback and alinear invertible change of coordinates, this linear system may
be written in Brunovsky canonical form (see, e.g., (Kailath 1980)),

(v1)

Y1 = U

r(r:)m) — vm
wherevy, . . ., v, arethecontrollability indicesand (yy, ..., Y™, ..., Ym. ..., y& ) isanother ba-
sisof thevector space spanned by thecomponentsof &. SetY = (yr, ..., Y 7, ..., Y, ..., Yom=D):;

1See (Li and Feng 1987) for a definition of this concept via the structure algorithm. See (Di Benedetto et al. 1989,
Delaleau and Fliess 1992) for a connection with the differential algebraic approach.



thusY = T& where T isaninvertible (n + q) x (n + q) matrix. Otherwise stated, Y = T E(X, 2).
Theinvertibility of E yields

( ’Z‘ ) — 24T ty). (4)
Thus from (2) u = b (24T 1Y), v). From v = y™,i = 1,...,m, u and x can be expressed
as rea-analytic functions of the components of y = (yi, ..., ¥m) and of a finite number of their

derivatives: '
X = AW, Y,...,y9) 5)
u = By,Y,...,y#®).

The dynamic feedback (2) is said to be endogenousif, and only if, the converse holds, i.e,, if, and
only if, any component of y can be expressed as areal-anaytic function of x, u and afinite number of
its derivatives:

y=C(X,u,u,...,u"). (6)

Note that, according to (4), this amounts to expressing z as a function of (x,u, u,...,u®) for
some p. In other words, the dynamic extension does not contain exogenous variables, which are
independent of the original system variables and their derivatives. This justifies the word endoge-
nous. Note that quasi-static feedbacks, introduced in the context of dynamic input-output decou-
pling (Delaeau and Fliess 1992), share the same property.

A dynamics (1) which is linearizable via such an endogenous feedback is said to be (differ-
entially) flat; y, which might be regarded as a fictitious output, is caled a linearizing or flat out-
put. The terminology flat is due to the fact that y plays a somehow analogous role to the flat co-
ordinates in the differential geometric approach to the Frobenius theorem (see, e.g., (Isidori 1989,
Nijmeijer and van der Schaft 1990)). A considerable amount of realistic models are indeed flat. We
treat heretwo case-studies, namely thecrane(D’ Andréa-Novel and Lévine 1990, Marttinen et al. 1990)
and the car with n trailers (Murray and Sastry 1993, Rouchon et al. 1993a). Notice that the use of a
linearizing output was aready known in the context of static state feedback (see (Claude 1986) and
(Isidori 1989, page 156)).

One major property of differential flatnessis that, due to formulas (5) and (6), the state and input
variables can be directly expressed, without integrating any differential equation, in terms of the flat
output and afinite number of itsderivatives. Thisgeneral ideacan betraced back toworksby D. Hilbert
(Hilbert 1912) and E. Cartan (Cartan 1915) on under-determined systems of differential equations,
where the number of equationsis strictly less than the number of unknowns. Let us emphasize on the
fact that this property may be extremely usefull when dealing with trajectories: from y trajectories,
x and u trgjectories are immediately deduced. We shall detail in the sequel various applications of
this property from motion planning to stabilization of reference trajectories. The originality of our
approach partly relies on the fact that the same formalism appliesto study systems around equilibrium
points as well as around arbitrary trgjectories.

As demonstrated by the crane, flatness is best defined by not distinguishing between input, state,
output and other variables. The equations moreover might beimplicit. Thisstandpoint, which matches
well with Willems approach (Willems1991), is here taken into account by utilizing differential



algebrawhich has already helped clarifying several questionsin control theory (see, e.g., (Diop 1991,
Diop 1992, Fliess 1989, Fliess 1990a, Fliess and Glad 1993)).

Flatness might be seen as another nonlinear extension of Kalman's controllability. Such an
assertion is surprising when having in mind the vast literature on this subject (see (Isidori 1989,
Nijmeijer and van der Schaft 1990) and thereferencestherein). Remember, however, Willems' trajec-
tory characterization (Willems 1991) of linear controllability which can be interpreted as the freeness
of the module associated to alinear system (Fliess 1992). A linearizing output now is the nonlinear
analogue of abasis of thisfree module.

We know from (Charlet et al. 1989) that any single-input dynamics which is linearizable by a
dynamic feedback is also linearizable by a static one. This implies the existence of non-flat systems
which verify the strong accessibility property (Sussmann and Jurdjevic 1972). We introduce a non-
negative integer, the defect, which measures the distance from flatness.

These new concepts and mathematical tools are providing the common formalism and the under-
lying structure of five physically motivated case studies. Thefirst two ones, i.e., the control of acrane
and the motion planning of a car with n-trailers, which are quite concrete, resort from flat systems.
The three others, i.e., the simple and double Kapitsa pendulums and the variable-length pendulum
exhibit a non zero defect.

The characterization of the linearizing output in the crane is obvious when utilizing a non-classic
representation, i.e., a mixture of differential and non-differential equations, where there are no dis-
tinction between the system variables. It permits a straightforward tracking of a reference trajectory
viaan open-loop control. We do not only take advantage of the equivalenceto alinear system but also
of the decentralized structure created by assuming that the engines are powerful with respect to the
masses of the trolley and the load.

The motion planning of the car with n-trailer is perhaps the most popul ar example of path planning
of nonholonomic systems(Laumond 1991, Murray and Sastry 1993, Monaco and Normand-Cyrot 1992,
Rouchon et al. 1993a, Tilbury et al. 1993, Martin and Rouchon 1993, Rouchon et al. 1993b). It isa
flat system where the linearizing output isthe middle of the axle of thelast trailer. Oncethelinearizing
output is determined, the path planning problem becomes particularly easy: the reference trgectory
aswell asthe corresponding open-loop control can be expressed in terms of the linearizing output and
afinite number of its derivatives. Let us stress that no differential equations need to be integrated to
obtain the open-loop control. The relative motions of the various components of the system are then
obtained thanksto elementary geometric properties of plane curves. Theresulting calculations, which
are presented in the two-trailer case, are very fast and have been implemented on a standard personal
microcomputer under MATLAB.

The control of the three non-flat systems is based on high frequency control and approxima-
tions by averaged and flat systems (for other approaches, see, e.g., (Baillieul 1993, Bentsman 1987,
Meerkov 1980)). Weexploit hereanideaduetotheRussian physicist Kapitsa(Bogaevski and Povzner 1991,
Landau and Lifshitz 1982) for stabilizing these three systemsin the neighborhood of quitearbitrary po-
sitionsand trgjectories, and in particular positionswhich arenot equilibrium points. Thisideaisclosely
related to a curiosity of classical mechanics that a double inverted pendulum (Stephenson 1908), and
even the N linked pendulums which are inverted and balanced on top of one another (Acheson 1993),



can be stabilized in the same way. Closed-loop stabilization around reference averaged trajecto-
ries becomes straightforward by utilizing the endogenous feedback equivalence to linear controllable
systems.

The paper isorganized asfollows. After somedifferential algebraic preliminaries, we define equiv-
alence by endogenous feedback, flathess and defect. Their implications for uncontrolled dynamics
and linear systems are examined. We discuss the link between flatness and controllability. In order
to verify that some systems are not linearizable by dynamic feedback, we demonstrate a necessary
condition of flatness, which is of geometric nature. The last two sections are devoted respectively to
the flat and non-flat examples.

First draftsof variouspartsof thisarticle havebeenpresentedin (Fliess et al. 1991, Fliess et al. 1992b,
Fliesset al. 1992a, Fliess et al. 1993b, Fliess et al. 1993c).

2 Thealgebraic framework

We consider variables related by algebraic differential equations. This viewpoint, which possess
a nice formalisation via differential algebra, is strongly related to Willems behavioral approach
(Willems 1991), where trajectories play a key role. We start with a brief review of differential fields
(see dso (Fliess1990a, Fliessand Glad 1993)) and we refer to the books of Ritt (Ritt 1950) and
Kolchin (Kolchin 1973) and Seidenberg’'s paper (Seidenberg 1952) for details. Basics on the cus-
tomary (non-differential) field theory may be found in (Fliess 1990a, Fliess and Glad 1993) as well
as in the textbook by Jacobson (Jacobson 1985) and Winter (Winter 1974) (see also (Fliess 1990a,
Fliess and Glad 1993)); they will not be repeated here.

2.1 Bascson differential fields

d
An (ordinary) differential ring R is acommutative ring equipped with asingle derivation — =* such

dt
that da
Vae R, a=—¢eR
dt
Va,be R, —(a+b)y=a+b

a(ab) = ab+ ab.

A constant ¢ € Risan element such that ¢ = 0. A ring of constants only contains constant elements.
An (ordinary) differential field isan (ordinary) differential ring which isafield.

A differential field extension L /K is given by two differential fields, K and L, suchthat K C L
and such that the restriction to K of the derivation of L coincides with the derivation of K.

An element & € L issaid to be differentially K -algebraic if, and only if, it satisfies an algebraic
differential equation over K, i.e,, if thereexistsapolynomia = € K[Xg, X1, ..., X,], ® # 0, such that
w(€, E,...,€") = 0. Theextension L /K is said to be differentially algebraic if, and only if, any
element of L isdifferentially K-algebraic.



Anelement £ € L issaidto bedifferentially K -transcendental if, and only if, it isnot differentially
K-algebraic. Theextension L /K issaid to be differentially transcendental if, and only if, there exists
at least one element of L that isdifferentially K -transcendental.

Aset{§ |1 e |} of elementsin L is said to be differentially K-algebraically independent if,
and only if, the set of derivatives of any order, (" |i e I, v = 0,1,2,...}, is K-algebraically
independent. Such anindependent set whichismaximal withrespect toinclusioniscalled adifferential
transcendence basis of L /K. Two such bases have the same cardindlity, i.e., the same number of
elements, which iscalled the differential transcendence degreeof L /K : itisdenoted by diff tr d°L /K .
Noticethat L /K is differentially algebraic if, and only if, diff trd°L /K = 0.

Theorem 1 For afinitely generated differential extension L /K, the next two propertiesare equivalent:
(i) L/K isdifferentially algebraic;
(ii) the (non-differential) transcendence degree of L /K isfinite, i.e., tr d°L /K < oo.

More details and some examples may be found in (Fliess and Glad 1993).

2.2 Systems?

Let k beagiven differential ground field. A systemisafinitely generated differential extension D/k 3.
Such a definition corresponds to a finite number of quantities which are related by a finite number of
algebraic differential equations over k 4. We do not distinguish in this setting between input, state,
output and other types of variables. This field-theoretic language therefore fits Willems standpoint
(Willems 1991) on systems. Thedifferential order of the system D/ k isthe differential transcendence
degree of the extension D/ k.

Example Set k = R; D/k isthe differentia field generated by the four unknowns X, Xz, X3, X4
related by the two algebraic differential equations:

X1+ X3Xqg =0, X4 (Xg + X3X4)Xq = 0. (7)
Clearly, diff trd®D/k = 2: it isequal to the number of unknowns minus the number of equations.

Denote by k < u > the differentia field generated by k and by afiniteset u = (uy, ..., uy) of
differential k-indeterminates. ug, .. ., u, are differentially k-algebraically independent, i.e.,

2See also (Fliess 1990a, Fliess and Glad 1993).

3Two systems D/ k and D/ k are, of course, identified if, and only if, there exists a differential k-isomorphism between
them (a differential k-isomorphism commutes with d/dt and preserves every element of k).

41t is a standard fact in classic commutative algebra and algebraic geometry (c.f. (Hartshorne 1977)) that one needs
prime idealsfor interpreting “concrete” equationsin the language of field theory. In our differential setting, we of course
need differential prime ideals (see (Kolchin 1973) and also (Fliess and Glad 1993) for an elementary exposition). The
verification of the prime character of the differential ideals corresponding to all our examplesis done in appendix A.



diff trd°k < u > /k = m. A dynamicswith (independent) input u isafinitely generated differentially
algebraic extension D/k < u >. Note that the number m of independent input channels is equal to
the differential order of the corresponding system D/k. Anoutput y = (Y1, ..., Yp) isafinite set of
differential quantitiesin D.

According to theorem 1, there exists afinite transcendence basis X = (Xy, ..., X,) of
D/k < u >. Consequently, any component of X = (X, ..., X,) and of yisk < u >-algebraically
dependent on x, which playsthe role of a (generalized) state. Thisyields:

A1 (X4, x,u, U, ..., u(al)) - 0
An(Xn, X, U, U, .__’u(ﬂln)) -0

| 8
Bu(y, X, U, U, ..., uf) = 0
Bp(yp, X, u,u,..., u(ﬂp)) -0

where the A’s and B;’s are polynomial over k. The integer n is the dimension of the dynamics
D/k < u >. We refer to (Fliessand Hasler 1990, Fliesset al. 1993a) for a discussion of such
generalized state-variable representations (8) and their relevance to practice.

Example (continued) Set u; = x3 and u, = X4. The extension D/R < u > is differentialy
algebraic and yields the representation

Xy = —Uuy
X = —(Xg+ U1Xs)Xa 9)
X4 = Uy

The dimension of the dynamics is 3 and (X3, X2, X4) IS a generalized state. 1t would be 5 if we set
u; = X3 and u, = X4, and the corresponding representation becomes causal in the classical sense.

Remark 1 Take the dynamics D/k < u > and a finitely generated algebraic extension D/D. The
two dynamics D/k < u > and D/k < u >, which are of course equivalent, have the same dimension
and can be given the same state variable representation (11). Inthe sequel, asystemD/k < u > will
be defined up to a finitely generated algebraic extension of D.

2.3 Modulesand linear systems®

Differential fieldsareto general for linear systemswhich are specified by linear differential equations.
They are thus replaced by the following appropriate modul es.

5See also (Fliess 1990b).



Let k be again a given differential ground field. Denote by k [%] the ring of linear differential
operators of the type
dol
Y a— (@, € k).

o dt

finite
This ring is commutative if, and only if, k is a field of constants. Nevertheless, in the general
non-commutative case, k [%] still is a principal ideal ring and the most important properties of |eft
k [%]-modules mimic those of modules over commutative principal idea rings (see (Cohn 1985)).

Let M bealeftk [2]- module. Anelementm € M issaid to betorsion if, and only if, there exists

m e k[&], 7 # 0, suchthat = - m = 0. The set of all torsion elements of M isasubmodule T, which
is called the torsion submodule of M. The module M issaid to betorsionif, and only if, M = T. The
following result can regarded as the linear counterpart of theorem 1.

Proposition 1 For afinitely generated left k [%]-module M, the next two properties are equivalent:
(i) Mistorsion;
(if) thedimension of M as a k-vector spaceisfinite.

A finitely generated module M isfreeif, and only if, itstorsion submodule T istrivia, i.e., T = {0}®.
Any finitely generated module M can bewritten M = T @ ® where T isthe torsion submodule of M
and @ isafree module. Therank of M, denoted by rk M, is the cardinality of any basis of ®. Thus,
M istorsion if, and only if, rk M = 0.

A linear systemis, by definition, afinitely generated left k [ & ]-module A. Wearethusdealing with
a finite number of variables which are related by a finite number of linear homogeneous differential
equations and our setting appears to be strongly related to Willems' approach (Willems 1991). The
differential order of A istherank of A.

A linear dynamics with input u = (uy, ..., Un) is alinear system A which contains u such
that the quotient module A /[u] is torsion, where [u] denotes the Ieft k [ $]-module spanned by the
components of u. The input is assumed to be independent, i.e., the module [u] isfree. Thisimplies
that the differential order of A isequal tom. A classical Kalman state variable representation isalways
possible:

d X1 X1 uj
—_ : = A : B : 10
o | . [+8] (10
Xn Xn um
where
e thedimension n of thestate x = (xy, ..., Xn), Whichis called the dimension of the dynamics, is

equal to the dimension of the torsion module A /[u] as ak-vector space.

Thisis not the usual definition of free modules, but a characterization which holds for finitely generated modules over
principal ideal rings, where any torsion-free module is free (see (Cohn 1985)).



e the matrices A and B, of appropriate sizes, have their entriesin k.

Anoutputy = (Y1, ..., Yp) isaset of elementsin A. It leads to the following output map:

Y1 X1 Uq

dv
=C . v
|t 2 P

Yo Xn finite Umn

The controllability of (10) can be expressed in amodul e-theoretical language which isindependent
of any denomination of variables. Controllability is equivalent to the freeness of the module A. This
just is an algebraic counterpart (Fliess 1992) of Willems' trgjectory characterization (Willems 1991).
When the systemisuncontrollable, thetorsion submodul e correspondsto the Kalman uncontrollability
subspace.

Remark 2 Therelationship withthegeneral differential field setting isobtained by producing a formal
multiplication. The symmetrictensor product (Jacobson 1985) of alinear system A, where A isviewed
as a k-vector space, is an integral differential ring. Its quotient field D, which is a differential field,
corresponds to the nonlinear field theoretic description of linear systems.

2.4 Differentialsand tangent linear systems

Differential calculus, which plays such arole in analysis and in differential geometry, admits a nice
analoguein commutative algebra(Kolchin 1973, Winter 1974), which hasbeen extended to differential
algebra by Johnson (Johnson 1969).

To afinitely generated differential extension L /K, associateamappingd, x : L — €k, called
(Kahler) differential ” and where ©, /« is afinitely generated left L [ &]-module, such that

da d
Yae L dL/K (a) = a (dL/Ka)
Va,be L dL/K(a+b) =dL/Ka+d|_/Kb
dL/K(ab) = de/Ka+ adL/Kb
Vce K dL/KC:O.

Elements of K behave like constants with respect to d ,x. Properties of the extension L /K can be
tranglated into the linear modul e-theoretic framework of € /k:

o Aseté = (&,...,&y) isadifferentia transcendence basis of L /K if, and only if, d, k& =
(di/ké&1, -, dujkém) isamaximal set of L [&]-linearly independent elementsin k. Thus,
diff trdoL/K =rk QL/K-

"Forany a € L, di,«a should beintuitively understood, likein analysis and differential geometry, asa“small” variation
of a.



e Theextension L /K isdifferentially algebraicif, and only if, the module €2, /k istorsion. A set
X = (X, ..., Xp) isatranscendencebasisof L /K if, andonly if, d, jx X = (d/k X1, . .., di/k Xn)
isabasisof Q. ,k as L-vector space.

e Theextension L/K isalgebraicif, and only if, 2 /k istrivial, i.e, @,k = {0}.

The tangent (or variational) linear system associated to the system D/k isthe left D [ ] -module
Qp,k. ToadynamicsD/k < u > isassociated the tangent (or variational) dynamics QD/k with the
tangent (or variational) input d kU = (d kU, ..., d ,kUm). The tangent (or variational) output
associated to y = (y]_, ceey yp) iSdL/Ky = (dL/Kyj_, Ceey dL/Kyp).

3 Equivalence, flatness and defect

3.1 Equivalence of systems and endogenous feedback

Two systems D/k and D/k are said to be equivalent or equivalent by endogenous feedback if, and
only if, any element of D (resp. D) is algebraic over D (resp. D)8. Two dynamics, D/k < u > and
D/k < G >, are said to be equivalent if, and only if, the corresponding systems, D/k and D/k, are
0.

Proposition 2 Two equivalent systems (resp. dynamics) possess the same differential order, i.e., the
same number of independent input channels.

Proof Denote by K the differential field generated by D and D: K /D and K /D are algebraic
extensions. Therefore,

diff tr D/ k = diff tr d°K /k = diff tr ®D/K.

Consider two equivalent dynamics, D/k < u > andD/k < (i >. Letn (resp. fi) bethedimension
of D/k < u > (resp. D/k < U >). Ingeneral, n # A. Write

A, x,u,0,...,u“H) =0, i=1...,n (11)

and _ .
A%, % 0,0,...,09 =0, i=1...,A (12)

the generalized state variable representations of D/k < u > and D/k < 0 >, respectively. The
agebraicity of any element of D (resp. D) over D (resp. D) yields the following relationships

8According to footnote 3, this definition of equivalence can aso be read as follows: two systems D/k and D/k are
equivalent if, and only if, there exist two differential extensions /D and /D which are algebraic (in the usual sense),
and adifferential k-automorphism & between D/ k and D/ k.

10



between (11) and (12):

iU, %, 0,0,...,0%) = 0 i=1....,m
04X, X, 0,0, ..., 00)) = 0 a=1,...,n

(13)
@i (G, x,u,u,...,u™)y = 0 i=1,...,m
G,(Xy, X,u, 0, ...,u)y = 0 o=1,...,0

wherethe ¢;’s, 0,’s, ¢;’sand 6,’s are polynomials over k.

Thetwo dynamic feedbacks corresponding to (13) are called endogenous asthey do not necessitate
the introduction of any variable that is transcendental over D and D (see also (Martin 1992)). If we
know X (resp. x), we can calculate u (resp. G) from G (resp. u) without integrating any differential
eguation. The relationship with general dynamic feedbacksis given in appendix B.

Remark 3 The tangent linear systems (see subsection 2.4) of two equivalent systems are strongly
related and, infact, are” almostidentical” . Taketwo equivalent systemsD; / k and D,/ k and denote by
D thesmallest algebraic extension of D, and D,. Itisstraightforwardto check that thethreeleft D [%]
modules 2p,x, D ®p, p, /x and D @y, 2p, « areisomor phic (see (Hartshorne 1977, Jacobson 1985)).

3.2 Flatness and defect

Like in the non-differential case, adifferential extension L /K is said to be purely differentially tran-
scendental if, and only if, there exists adifferential transcendencebasisé = {& |i € |1} of L/K such
that L = K < & >. A system D/k iscaled purely differentially transcendental if, and only if, the
extension D/k is so.

A system D/k iscalled (differentially) flat if, and only if, it is equivalent to a purely differentially
transcendental system L/k. A differential transcendence basisy = (yi, ..., Ym) Of L/k such that
L =k <y > iscaledalinearizing or flat output of the system D/ k.

Example (continued) Let usprovethat y = (yi, y») with

(X1 + X3X4)?

Y1 =X+ 2X§3)

) 2 = X3.

isalinearizing output for (7). Set o = X, + XsX4. Differentiating y; = X, + 0:2/2y>, we have, using

2 23'/1(3/23))2 . o? - - N (<) )
(7), 0° = ——a Thusx, = y; — —5 isan algebraic function of (y1, Y1, ¥, . ¥
Y2 2y,

). Since

X4 = % ad X1 = 0 — YoXa, X4 and x, are algebraic functions of (ya, Y1, V1. ¥2. Y52, Vo, y52).
o

Remark there exist many other linearizing outputs such as ¥ = (1, %2) = (2y1Y.?, V»), the inverse
transformation being y = (¥1/295>, ¥,).
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Take an arbitrary system D/k of differential order m. Among all the possible choices of sets
Z = (2,...,2zy) of mdifferential k-indeterminates which are algebraic over D, take one such that
trd®D < z> /k < z > isminimum, say §. Thisinteger § iscalled the defect of the system D/k. The
next result is obvious.

Proposition 3 A systemD/k isflat if, and only if, its defect is zero.

Example The defect of the system generated by x; and x, satisfying X; = X1 + (X2)3 isone. Its
genera solution cannot be expressed without the integration of, at |east, one differential equation.

3.3 Basic examples
3.3.1 Uncontrolled dynamical systems

An uncontrolled dynamical system is, in our field-theoretic language (Fliess 1990a), a finitely gen-
erated differentially algebraic extension D/k: diff trd®D/k = 0 implies the non-existence of any
differential k-indeterminate algebraic over D. Thus, the defect of D/k is equal to trd®D/Kk, i.e., to
the dimension of the dynamical system D/ k, which corresponds to the state variable representation
A (%, X) = 0, where X = (Xq, ..., Xp) isatranscendence basis of D/k. Flatness meansthat D/K is
algebraic in the (non-differential) sense: the dynamics D/ k isthen said to betrivial.

3.3.2 Linear systems

The defect of A is, by definition, the defect of its associated differentia field extension D/k (see
remark 2).

Theorem 2 The defect of a linear system is equal to the dimension of its torsion submodule, i.e.,
to the dimension of its Kalman uncontrollable subspace. A linear systemis flat if, and only if, it is
controllable.

Proof Take the decomposition A = T & &, of section 2.3, where T is the torsion submodule and
® afree module. A basisb = (by, ..., by) of ® plays the role of a linearizing output when A is
free: the system thenisflat. When T # {0}, the differential field extension 7 /k generated by T is
differentially algebraic and its (non-differential) transcendence degree is equal to the dimension of T
as k-vector space. The conclusion follows at once. .

Remark 4 The above arguments can be made more concrete by considering a linear dynamics over
R. If it is controllable, we may write it, up to a static feedback, in its Brunovsky canonical form:

y =y, (=1,...,m)
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where the v;’s are the controllability indicesand y = (yi, ..., Ym) isalinearizing output. In the
uncontrollable case, the defect d is the dimension of the uncontrollable subspace:

q 5.1 . 5.1
| | ‘
&d &d

where M isad x d matrix over R.

3.4 A necessary condition for flatness

Consider the system D/k where D = k < w > isgenerated by afiniteset w = (w1, ..., wq). The
w;'sarerelated by afiniteset, E(w, w, ..., w™) = 0, of algebraic differential equations. Define the
algebraic variety Scorrespondingto Z(£°, ..., £") = 0inthe (v + 1)g-dimensional affine space with
coordinates _ _ .

E=(.....&), =01,

Theorem 3 If the system D/ k isflat, the affine algebraic variety S contains at each regular point a
straight line parallel to the £”-axes.

Proof The components of w, w, ..., w®™Y are algebraically dependent on the components of a
linearizing output y = (vs, ..., Ym) and afinite number of their derivatives. Let i bethe highest order
of these derivatives. The components of w depend linearly on the components of y*“+b, which play
the role of independent parameters for the coordinates &7, .. ., &;. .

Theabove conditionisnot sufficient. Consider the system D /R generated by (X1, X2, X3) satisfying
X1 = (X2)? + (X3)3. This system does not satisfy the necessary condition: it is not flat. The same
system D can be defined viathe quantities (X1, Xo, X3, Xs) related by X; = (X4)? + (X3)2 and X, = Xo.
Those new equations now satisfy our necessary criterion.

3.5 Flatnessand controllability

Sussmann and Jurdjevic (Sussmann and Jurdjevic 1972) have introduced in the differential geometric
setting the concept of strong accessibility for dynamicsof theformx = f (x, u). Sontag (Sontag 1988)
showed that strong accessi bility impliesthe existence of controls such that the linearized system around
atrajectory passing through apoint a of the state-spaceiscontrollable. Coron (Coron 1994) and Sontag
(Sontag 1992) demonstrated that, for any a, those controls are generic.

The above considerations with those of section 2.3 and 2.4 lead in our context to the following
definition of controllability, whichisindependent of any distinction between variables: asystem D/k
issaid to becontrollable (or strongly accessible) if, and only if, itstangent linear systemiscontrollable,
i.e., if, and only if, the module Qp,\ is free.

Remark 3 shows that this definition is invariant under our equivalence via endogenous feedback.

Proposition 4 Aflat systemis controllable

13



Proof It sufficesto proveit for apurely differentially transcendental extensionsk < y > /k, where
Y= (Y1, ..., Ym). Themodule -k, whichisspanned by dy_y- /kY1, . . ., Ok<y=/kYm, ISNecessarily
free. .

The converse is false as demonstrated by numerous examples of strongly accessible single-input
dynamics x = f (X, u) which are not linearizable by static feedback and therefore neither by dynamic
ones (Charlet et al. 1989).

Flatness which is equivalent to the possibility of expressing any element of the system as a func-
tion of the linearizing output and a finite number of its derivatives, may be viewed as the nonlinear
extension of linear controllability, if the latter is characterized by free modules. Wheresas the strong
accessibility property only isan “infinitesimal” generalization of linear controllability, flatness should
be viewed as amore “global” and, perhaps, as a more tractable one. Thiswill be enhanced in section
5 where controllable systems of nonzero defect are treated using high-frequency control that enables
to approximate them by flat systems for which the control design is straightforward.

4 Examplesand control of flat systems

The verification of the prime character of the differential ideals corresponding to all our examples
is done in appendix A. This means that the equations defining all our examples can be rigorously
interpreted in the language of differential field theory.

41 The?2-Dcrane

Figure 1. The two dimensional crane.
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Consider the crane displayed on figure 1 which is a classical object of control study (see, eg.,
(D’ Andréa-Novel and Lévine 1990), (Marttinen et al. 1990)). The dynamics can be divided into two
parts. The first part corresponds to the motor drives and industrial controllers for trolley travels and
rolling up and down the rope. The second part is relative to the trolley load, the behavior of whichis
very similar to the pendulum one. We concentrate here on the pendulum dynamics by assuming that

e thetraversing and hoisting are control variables,
e thetrolley load remainsin afixed vertical plane OXZ,
e therope dynamics are negligible.

A dynamic model of the load can be derived by Lagrangian formalism. It can also be obtained,
in a very simple way, by writing down all the differential (Newton law) and algebraic (geometric
constraints) equations describing the pendulum behavior:

mX = —-Tsné

mz = —T cosf + mg

X = Rsné+D (14)
z = Rcoso

where

e (X, 2) (the coordinates of the load m), T (the tension of the rope) and 6 (the angle between the
rope and the vertical axis O Z) are the unknown variables,

e D (thetrolley position) and R (the rope length) are the input variables.

From (14), itisclear that sin9, T, D and R are algebraic functions of (x, z) and their derivatives:

sin@:X_RD, Tzw, Z—g)(X—D) =%z, (X—D)242 =R
that is .,
D — X—"XZ
Z_).?Z 2 (15
R? = zz+<.. )
z—g

Thus, system (14) isflat with (x, z) aslinearizing output.

Remark 5 Assume that the modeling equations (14) are completed with the following traversing and
hoisting dynamics:

J. .
R = c-Er-T1p
p p

MD = F—-AD+Tsing
(16)
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where the new variables F and C are, respectively the external force applied to the trolley and the
hoisting torque. The other quantities (M, J, p, A, ) are constant physical parameters. Then (14,16)
isalso flat with the same linearizing output (X, z). This explains without any additional computation
why the systemconsideredin (D’ Andréa-Novel and Lévine 1990) islinearizablevia dynamic feedback.

L et us now address the following question which is one of the basic control problems for a crane:
how can one carry a load m from the steady-state R = R; > O and D = D; at time t;, to the
steady-state R= R, > 0and D = D, at timet, > t; ?

It is clear that any motion of the load induces oscillations that must be canceled at the end of the
load transport. We propose here avery simple answer to this question when the crane can be described
by (14). Thisanswer just consistsin using (15).

Consider asmooth curve [ty, to] 2 t — (a(t), y(t)) € Rx]0, +oco[ such that

r

.mm=1¢4mm4ﬁm:4DhRxmd%ﬂmymo=ommr=Lza4

o fordlt e[ty tp], y(t) < 0.
Then the solution of (14) starting at time t; from the steady-state D; and R;, and with the control
trajectory defined, for t € [ty, t5], by
a)y®)
a) —9g
Gy )\’
RO = [y2m+ ( )
( \/y (t) 50—

and, fort > t,, by (D(t), R(t)) = (D3, Ry), leads to a load trajectory t — (Xx(t), z(t)) such that
(X(1), z(t)) = (a(t), y(t)) fort € [ty, to] and (x(t), z(t)) = (D,, Ry) fort > t,. Noticethat, sincefor
mR(g — 2)

D) = a(t)—

(17)

alt e[ty to], 2(t) < g,theropetension T =

of the system by (14) remains reasonable.
This results from the following facts. The generalized state variable description of the system is
thefollowing (Fliess et al. 1991, Fliess et al. 1993a):

remains always positive and the description

R6 = —2R6 — D cost — gsiné.

Sincea and y are smooth, D and R are at |least twice continuously differentiable. Thus, the classical
existence and uniquenesstheorem ensuresthat the above ordinary differential equation admitsaunique
smooth solution that is nothing but 6 (t) = arctan(a(t) — D(t))/y (1)).

The approximation of the crane dynamics by (14) implies that the motor drives and industrial low-
level controllers(trolley travelsand rolling up and down the rope) producefast and stabledynamics(see
remark 5). Thus, if these dynamicsare stable and fast enough, classical results of singular perturbation
theory of ordinary differential equation (see, e.g., (Tikhonov et al. 1980)), imply that the control (17)
leads to afinal configuration close to the steady-state defined by D, and R.
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In the simulations displayed here below, we have verified that the addition of reasonable fast and
stable regulator dynamics modifies only dlightly the final position (R, D,). Classical proportional-
integral controller for D and R are added to (14). The typical regulator time constants are equal to

1
one tenth of the period of small oscillations (E 21/ R/g~ 0.39) (see (Fliess et al. 1991)).

5 IOéq ;rgj\ g\c\tory 20 trpllgy positi on
o 1 15) .
_ -TF 1 .
E E 10- .
N _8 L _
-9 i 5r .
-10 | : 0~ ‘ ‘
0 10 20 0 5 10 15
x (m) time ()
0.4 vert/i qal deviati on‘angle 10 | r9pe Iength‘
9 L _
P Y 8 B b
=
p— 7 L B
6 L |
5 | |
0 5 10 15
time () time (s)

Figure 2: Simulation of the control defined by (17) without (solid lines) and with (dot lines) ideal
low-level controllersfor D and R.

For the simulations presented in figure 2, the transport of the load m may be considered as arather
fast one: the horizontal motion of D isof 10 min 3.5 s; the vertical motion of Risupto5min3.5s.
Compared with the low-level regulator time constants (0.1 and 0.3 s), such motions are not negligible.
This explains the transient mismatch between the ideal and non-ideal cases. Nevertheless, the final
control performances are not seriously atered: theresidual oscillations of the load after 7 sadmit less
than 3 cm of horizontal amplitude. Such small residual oscillations can be canceled viaasimple PID
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regulator with the vertical deviation 6 asinput and the set-point of D as output.

The simulations illustrate the importance of the linearizing output (x, z). When the regulations
of Rand D are suitably designed, it is possible to use the control given in (17) for fast transports of
the load m from one point to another. The simplicity and the independence of (17) with respect to the
system parameters (except g) constitute its main practical interests.

Remark 6 Smilar calculations can be performed when a second horizontal direction O X,, orthogo-
nal to OX; = OX, isconsidered. Denoting then by (x;, X,, z) the cartesian coordinates of theload, R
the rope length and (D4, D,) the trolley horizontal position, the systemis described by

Z—-g(x1—D1) = %Xz
(Z—g(x2—D2) = Xz
(X1 — D12+ (x; — Dp)?+ 7 = R-
This systemis clearly flat with the cartesian coordinates of the load, (X3, X2, z), asflat output.

Remark 7 In (D’ Andréa-Novel et al. 1992b), the control of a body of mass m around a rotation
axle A of constant direction is investigated. This system is flat as a consequence of the following
considerations. According to an old result due to Huygens (see, eg. (Whittaker 1937, p. 131-132)),
the equations describing the motion are equivalent to those of a pendulum of the same mass m and of

length| = mid where d # 0 isthe vertical distance between the mass center G and the axle A, J is
theinertial moment around A. Denoting by u and v, respectively, the vertical and horizontal positions
of A, the equations of motion are the following (compare to (15)):
u v—g
U—X v-—2
U—x2+@w—-22%=1?

where (X, z) are the horizontal and vertical coordinates of the Huygens oscillation center. Clearly
(X, 2) isalinearizing output.

Remark 8 The examples corresponding to the crane, Huygens' oscillation center (see remark 7) and
the car with n-trailers here below, illustrate the fact that linearizing outputs admit most often a clear
physical interpretation.

4.2 Thecar with n-trailers
4.2.1 Modeling equations

Steering acar withn trailersisnow the object of activeresearches(Laumond 1991, Murray and Sastry 1993,
Monaco and Normand-Cyrot 1992, Rouchon et al. 1993a, Tilbury et al. 1993). Theflatnessof abasic
model® of this system combined with the use of Frénet formulalead to acomplete and simple solution

9More realistic models where trailer i is not directly hitched to the center of the axle of trailer i — 1 are considered in
(Martin and Rouchon 1993, Rouchon et al. 1993b).
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Figure 3: The kinematic car with n trailers.

of the motion planning problem without obstacles. Notice that most of nonholonomic mobile robots
areflat (D’ Andréa-Novel et al. 1992a, Campion et al. 1992).

Thehitch of trailer i isattached to the center of therear axleof trailer i — 1. Thewheelsare aligned
with the body of the trailer. The two control inputs are the driving velocity (of the rear wheels of the
car) and the steering velocity (of the front wheels of the car). The constraints are based on allowing
the wheels to roll and spin without slipping. For the steering front wheels of the car, the derivation is
simplified by assuming them as a single wheel at the midpoint of the axle. The resulting dynamics
are described by the following equations (the notations are those of (Murray and Sastry 1993) and
summarized on figure 3):

Xo = Uj COSHy
Yo = U sinfy
¢ = U
: Uy (18)
6 = —tang
do
. Us -1 . .
6 = d—i(gcos(ej_l—ej)) sn@_,—6) fori=1,...,n

where (Xo, Yo, @, 6o, - .., 6n) € R?x] — m/2, +m/2[ x(SH™! is the state, (uy, Uy) is the control and
do, dy, . . ., d, are positive parameters (lengths). Asdisplayed on figure 3, wedenote by P, the medium
point of the wheel axle of traileri, fori = 1, ..., n. The medium point of the rear (resp. front) wheel
axle of the car isdenoted by P, (resp. Q).
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4.2.2 Cartesian coordinatesof P, asflat output

Denote by (X, ;) the cartesian coordinatesof P,,i =0,1,...,n:
i
X = Xo— »_dcos,
j=1
i
Vi = yo—ZdjsinGj.
j=1

A direct computation shows that tang;, = % Since, fori =0,...,n—1, X = X1 + di11C0S6, 1
andy, = Vi 1+di19N6; 1, thevariabl%@rl,, Xn-1, Yn-1, On_1, - - -, 01, X0, Yo @nd 6y are functions of x,
and y, and their derivatives up to the order n + 1. But u; = X,/ 0S8, tan¢ = dofp/Uy and u, = ¢.
Thus, the entire state and the control are functions of x, and y, and their derivatives up to order n + 3.

This proves that the car with n trailers described by (18) is a flat system: the linearizing output
corresponds to the cartesian coordinates of the point P,, the medium point of the wheel axle of the
last trailer.

Flatness implies that for generic values of the state, the strong accessibility rank associated to the
control system (18) ismaximum and equal to itsstate-space dimension: the systemisthuscontrollable.

The singularity which might occur when dividing by x; = Ointan6; = vy, /%;, can be avoided by
the following developments.

4.2.3 Motion planing using flatness

In (Rouchon et al. 1993a, Rouchon et al. 1993b), the following result was sketched.

Proposition 5 Consider (18) and two different state-space configurations: p = (%o, Yo. . fo. - - - , 6n)
and p = (YO,VO,_E, 0o, ...,0n). Assume that the angles 6,1 — 6,1 = 1,...,n, ¢, 6i_1 — 6;,
i=1...,n,and¢ belongto] — /2, = /2[. Then, there exists a smooth open-loop control [0, T] >

t — (uy(t), us(t)) steeringthesystemfrompattimeOtopattimeT > O, suchthattheangleso,_;—6,,
i=1...,nand¢ (i =1,...,n)awaysremainin] — n/2, /2] and such that (uy(t), u(t)) =0
fort=0,T.

Theconditions6, 1 —6; €] — /2, 7/2[ (i =1,...,n)and ¢ €] — /2, /2] are meant for avoiding
some undesirable geometric configurations: trailer i should not bein front of traileri — 1.

The detailed proof isgiven in the appendix and relies basically on the fact that the system isflat. It
isconstructive and gives explicitly (uy(t), ux(t)). Theinvolved computations are greatly simplified by
a simple geometric interpretation of the rolling without slipping conditions and the use of the Frénet
formula. Here, we just recall this geometric construction and give the explicit formula for parking a
car with two trailers. The Frénet formula are recalled in the appendix.

Denote by ¢ the curve followed by P,,i = 0,...,n. Asdisplayed on figure 4, the point P,_;
belongs to the tangent to C; at P, and at the fixed distance d; from P;:

Poi=P +dr7
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Figure 4: The geometric interpretation of the rolling without slipping conditions.

with 7; the unitary tangent vector to C;. Differentiating this relation with respect to s, the arc length

of &, leadsto

d
—P_1=1 +dkiv
ds

. . . . d .
where v; isthe unitary vector orthogonal to 7; and «; is the curvature of G;. Since s P._1 givesthe

tangent direction to C; _;, we have
tan(6i_1 — 6;) = diKi .

4.2.4 Parking simulations of the 2-trailer system

We now restrict to the particular case n = 2. We show how the previous analysis can be employed to
solve the parking problem. The simulations of figures 5 and 6 have been written in MATLAB. They
can be obtained upon request from the fourth author via electronic mail (rouchon@cas.ensmp.fr).
The car and its trailers are initially in A with angles6, = 6, = 6y = /6, ¢ = 0. The objective
is to steer the system to C with final angles (65, 61, 69, ) = 0. We consider the two smooth curves
Cag and Ccp of the figure 5, defined by their natural parameterizations [0, L ag] 2 S — Pag(S) and
[0, Lcg] 2 s — Pcg(s), respectively (Pag(0) = A, Pcg(0) = C, L pg isthelengthof Cag and Lcg the
length of Ccg). Their curvatures are denoted by x ag(S) and xcg(S). These curves shall befollowed by
P,. Theinitial and final system configurationin Aand C imposek ag(0) = %KAB(O) = dd—;KAB(O) =0

and kcg(0) = %KCB(O) = (?—;KCB(O) = 0. Weimpose additionally that AB and CB are tangent at B
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Figure 5: parking the car with two trailersfrom Ato B viaC.

and

2 2
kas(Lag) = d—SKAB(LAB) = @KAB(LAB) = kce(Lcp) = d—SKCB(LCB) = @KCB(LCB) =0.
It is straightforward to find curves satisfying such conditions. For the simulation of figure 6, we take
polynomial curves of degree 9.

Proposition 5 impliesthat, if P, followsCag and Ccg asdisplayed on figure 5, then theinitial and
final stateswill beasdesired. Takeasmoothfunction[0, T] 3t — s(t) e [0, L”B] suchthat s(0) = 0,
s(T) = LB and $(0) = $(T) = 0. Thisleads to smooth control trajectories[0, T] 5t — uy(t) > 0
and [0, T] 2 t — uy(t) steering the system from A attimet = Oto B attimet = T. Similarly,
[T,2T] ot — s(t) € [0, L°B] such that s(T) = LB, s(2T) = 0and $(T) = $(2T) = Oleads to
control trgjectories [T, 2T] ot — uy(t) < 0and [T, 2T] > t — u,(t) steering the system from B
to C. This gives the motions displayed on figure 6 with forwards motions from A to B, backwards
motions from B to C and astop in B.

Let us detail the calculation of the control trgjectories for the motion from A to B. Similar
calculations can be done for the motion from B to C. The curve Cag corresponds to the curve ¢ of
figure4 withi = 2. Assumethat Cg is given viathe regular parameterization, y = f (x) ((X, y) are
the cartesian coordinates and f isapolynomial of degree 9). Denote by s the arc length of curve G,
i =0,1,2 Thends, = /1 + (df/dx)?2 dx and the curvature of C, is given by

B d?f /dx?
(14 (df/dx)2)3/2°

K2
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Figure 6: the successive motions of the car with two trailers.

We have
1 ( n d2 ng)
Kil=————o—=\kot+ —>55 —
" ir e T 11 dad ds,

and ds; = /1 + d7«3 ds,. Similarly,

1 ( " d; dK1>
ko= ———= | K1+ —F-= =—
P i+ dae T 1+ ds,
and dsy = /1 + d2? ds;. Thusu; isgiven explicitly by
dso :
i =g’ = V1422 |1+ d2e2 I+ @df/d? k)

where[0, T] > t — Xx(t) isany increasing smoothtimefunction. (x(0), f(x(0))) (resp. (X(T), f(x(T))))
are the coordinates of A (resp. B) and x(0) = x(T) = 0. Sincetan(¢) = dyko, We get

_d¢_ d  dwo
Cdt 14 d3@ dso

Uo 1-

Here, wearenot actually concerned with obstacles. Thefact that theinternal configuration depends
only on the curvature results from the general following property: aplane curveisentirely defined (up
to rotation and trandation) by its curvature. For the n-trailer case, theanglesé, —6,_1, ..., 6, — 6y and
¢ describing the relative configuration of the system are only functions of «, and itsfirst n-derivatives
with respect to s,.
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Consequently, limitations due to obstacles can be expressed up to a transation (defined by P,)

: : . dPy e o .
and arotation (defined by the tangent direction d_s:) viak, and itsfirst n-derivatives with respect to
S,. Such considerations can be of some help in finding a curve avoiding collisions. More details on

obstacle avoidance can be found in (Laumond et al. 1993) where a car without trailer is considered.

The multi-steering trailer systems considered in (Bushnell et al. 1993), (Tilbury et al. 1993),
(Tilbury and Chelouah 1993) are also flat: the flat output is then obtained by adding to the Cartesian
coordinates of the last trailer, the angles of the trailers that are directly steered. This generalization is
quite natural in view of the geometric construction of figure 4.

5 High-frequency control of non-flat systems

We address here a method for controlling non-flat systems via their approximations by averaged
and flat ones. More precisely, we develop on three examples an idea due to the Russian physicist
Kapitsa(Bogaevski and Povzner 1991, Landau and Lifshitz 1982, Sagdeev et al. 1988). Heconsiders
the motion of a particlein ahighly oscillating field and proposes a method for deriving the equations
of the averaged motion and potential. He shows that the inverted position of a single pendulum is
“stabilized” when the suspension point oscillates rapidly. Notice that some related cal culations may
be found in (Baillieul 1993). For the use of high-frequency control in different contexts see also
(Bentsman 1987, Meerkov 1980, Sussmann and Liu 1991).
(Acheson 1993, Stephenson 1908)

5.1 TheKapitsa pendulum

Figure 7: The Kapitsa pendulum: the suspension point oscillates rapidly on a vertical axis.
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The notation are summarized on figure 7. We assume that the vertical velocity z = u of the suspension
point isthe control. The equations of motion are:

. u .
o0 = p—l—l—smoz
u? . u
p = (Ig—l—ZCOSa)Slna—l—pCOSa (19)
Z = U

where p is proportional to the generalized impulsion; g and | are physical constants. This sys-
tem is not flat since it admits only one control variable and is not linearizable via static feedback
(Charlet et al. 1989). However it is strongly accessible.
We state
U = U; + Uy cos(t/e)

where u; and u, are auxiliary control and 0 < ¢ <« /I /g. It isthen natural to consider the following
averaged control system:

- — ul .

a = P+ l—Slna

. u;)? Uy)? . u

P = 9_ Ly cosa—( 2) cos® | Sin@ — — P cosa (20)
_ | |2 212 |

Z = Uj.

It admits two control variables, u; and u,, whereas the original system (19) admits only one, u.
Moreover (20) isflat with («, Z) aslinearizing output.
The endogenous dynamic feedback

é = U
u = §
21
! \/2| @+ 5) 212 1)
= — V) — —————V
2 cosa g ! cos@Sna °
transforms (20) into )
zZ = U1
Set
1 1 1 _
v, = —(—+—>g——(z—zs'°)
T T T
1 2 1t2 (23)
1 1\ /_ & . _ 1 s
v, = —(—+—|(P+=sna)——(@—a®)
1T | 7T

where the parameters r;, o, > Oand o®P €] — /2, w/2[/{0}. Then, the closed-loop averaged system
(20,21,23) admits an hyperbolic equilibrium point characterized by (z°°, «°P) that is asymptotically
stable.
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Consider now (19) and the high-frequency control u = u; + u, sin(t/e) with0 < ¢ « +/I/g and
(ug, Up) givenby (21,23) wherew, pand zarereplaced by «, p and z. Then, the corresponding averaged
systemisnothing but (22) with v, and v, given by (23). Sincethe averaged system admitsahyperbolic
asymptotically stable equilibrium, the perturbed system admits an hyperbolic asymptotically stable
limit cycle around («, p, 2) = («*?, 0, z°P) (Guckenheimer and Holmes 1983, theorem 4.1.1, page
168). such control maintains (z, «) near (z°°, o). Moreover this control method is robust in the
following sense: the existence and the stability of thelimit cycleis not destroyed by small static errors
in the parameters| and g and in the measurements of «, p, z and u.

Asillustrated by the simulations of figure 8, the generalization to trajectory tracking for « and z
is straightforward. These simulations give also a rough estimate of the errors that can be tolerated.
The system parameter valuesarel = 0.10 mand g = 9.81 ms~2. The design control parameters are
e = 0.025/27 sand 7, = 1, = 0.10 s. For the two upper graphics of figure 8, no error isintroduced:
control is computed with| = 0.10 m and g = 9.81 ms2. For the two lower graphics of figure 8,
parameter errors are introduced: control is computed with withl = 0.11 mand g = 9.00 ms™2.
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Figure 8: Robustnesstest of the high-frequency control for the inverted pendulum.
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5.2 Thevariable-length pendulum

Figure 9: pendulumwith variable-length.

Let us consider the variable-length pendulum of (Bressan and Rampazzo 1993). The notations are
summarized on figure 9. We assume as in (Bressan and Rampazzo 1993) that the velocity u = v is
the control. The equations of motion are:

d
p
\

p
— cosu + qu? (24)
v

where mass and gravity are normalized to 1.

This system is not flat since it admits only one control variable and is not linearizable via static
feedback (Charlet et al. 1989). It is, however, strongly accessible.

Asfor the Kapitsa pendulum, we set

v = v1 + vpcos(t/e)

where v; and v, are auxiliary controls, 0 < ¢ <« 1 .We consider the averaged control system:

= p
— cost + q(v1)? + q(v2)?/2 (25)

cl- ol-Qa-
I

= V1.

This system is obvioudly linearizable via static feedback with (Q, U) as linearizing output.
The static feedback

V1T = w1

vy — \/2 (wz +qcosU B (w1)2> (26)
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transforms (25) into

ﬁ = w1
u 27
i (27)
Set _
u—usP
w, = —
T1
11\ 1 _ (8)
w, = —(=+—)P-—@—0q")
71 T2 T1T2

withty, 7o > 0,uP €] — /2, 7/2[, q°® > 0. The closed-loop averaged system (25,26,28) admits an
hyperbolic equilibrium point (us?, g?), which is asymptotically stable.

Similarly to the Kapitsa pendulum, the control law isasfollows: v = vy +v,8iN(t/¢),0 < ¢ K 1;
(v1, v2) isgiven by (26,28) whereq, p and U arereplaced by q, p and u. Thiscontrol strategy leadsto
asmall and attractive limit cycle. Asillustrated by the simulations of figure 10, the size of these limit
cycleisanincreasing function of ¢ and tendsto 0 as ¢ tendsto O*. The design control parameters are
T = 05, To = 0.4.
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Figure 10: high-frequency control for the variable-length pendulum.
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5.3 Theinverted double pendulum

Figure 11: The inverted double pendulum: the horizontal velocity u and vertical velocity v of the
suspension point are the two control variables.

The double inverted pendulum of figure 11 moves in a vertical plane. Assume that u (resp. v) the
horizontal (resp. vertical) velocity of the suspension point (x, z) isacontrol variable. The equations
of motion are (implicit form):

P1 = l1c1 + lap cOS(aq — ap) + NyX COSaq — nlzsinocl
P = lagcos(a; — ap) + lads + NoX COSa, — NrZSIiNas
) F)]_ = nlgS?nO[l — nl(%tl):( S?nO[]_ — n]_O:l]_:Z COSq (29)
P2 = NxgSNay; — NaaXSNay — NaapZ COSaep
X =u
Z = v

where p; and p, are the generalized impulsions associated to the generalized coordinates «;and oy,
respectively. The quantitiesg, I, 14, 15, ny and n, are constant physical parameters.

my

m m m m
h=(F+m) (% =Z 0% 1=k = (5 +m)h n=2

where m; and m, (resp. |1 andl,) are the masses (resp. lengths) of beams 1 and 2 which are assumed
to be homogeneous.

Proposition 6 System (29) with the two control variablesu and v, is not flat.
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Proof The proof isjust an application of the necessary flatness condition of theorem 3. Sinceu = x
and v = z, (29) isflat if, and only if, the reduced system,

P1 = l1c1 + lap cOS(a — ap) + NyX COSaq — nlzsinoel

p. = lay c_os(al —ay) + _Izdg + NyX COSap — NeZ SNy (30)
P1 = MmgSno; — Mo XSNog — N1 ZCOSog

p2 = N2g Sinotz — NoaoX Sinotz — N7 COS

is flat. Denote symbolicaly by F(£, &) = 0 the equations (30) where £ = (a, a2, X, Z, P1, P2).
Consider (£, ¢) suchthat F (£, ¢) = 0. Wearelooking for avector a = (@, 8q,, ax, 8, ay,, a,,) such

2
that, for all A € R, F(&, ¢ + 2a) = 0. The second order conditions, FTE FE, 2+ 2ra) =0, lead
A=0
to

Ay, (8 SNy +a,c08c1) =0,  @,,(8xSiNay + 8,coSaz) =0

) . d
Two first order conditions, —

o FE, ¢+ ra) =0, are

=0
—ay CoSoy + a8, S9Na; = rlTllaal + n'_l CoS(or; — )@y,
—ay Co0Swp + 8, SNy = n'_2 COS(1 — 0128, + :]_zzaaz

Simple computations show that, |f — £ n_ and E nl— (these conditions are always satisfied for

homogeneous identical beams), then (aal, Ay, 8, az) = 0 The two remaining first order conditions
imply that (ay,, a,,) = 0. Thusa = 0 and the inverted double pendulum is not flat. .

The same control method as the one explained in details for the Kapitsa pendulum (19) can be
also used for the double pendulum. The only difference relies on the calculations that are here more
tedious. We just sketch some simulations (Fliess et al. 1993Db).

To approximate the non-flat system (29) by a flat one, we set u = u; + u,cos(t/e) and v =
v1 + vy cos(t/e) where0 < ¢ < min (J% J%) and u4, Uy, v1, v are new control variables. This
leadsto aflat averaged system with (a4, a2, X, ) asthe linearizing output. The endogenous dynamic
feedback that linearized the averaged system provides then (ug, Uy, vy, vo). For the simulations of

figure 12, the angles «; and «, follow approximately prescribed trgjectories whereas, simultaneously,
the suspension point (X, z) is maintained approximately constant.
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Figure 12: Simulation of the inverted double pendulum via high-frequency control.
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6 Conclusion

Our five examples, aswell asother onesin preparation in various domains of engineering, indicate that
flatness and defect ought to be considered as physical and/or geometric properties. Thisexplainswhy
flat systems are so often encountered in spite of the non-genericity of dynamic feedback linearizability
in some customary mathematical topologies (Tchoh 1994, Rouchon 1994).

We hope to have convinced the reader that flatness and defect bring a new theoretical and practical
insight in control. We briefly list some important open problems:

e Ritt’swork (Ritt 1950) showsthat differential algebraprovides powerful agorithmic means (see
(Diop 1991, Diop 1992) for a survey and connections with control). Can flathess and defect be
determined by this kind of procedures?

e great progress have recently been made in nonlinear time-varying feedback stabilization (see,
e.g., (Coron 1992, Coron 1994)). Most of the examples which were considered happen to be
flat (see, e.g., (Coron and D’ Andréa-Novel 1992)). The utilization of this property isrelated to
the understanding of the notion of singularity (see, e.g., (Martin 1993) for afirst step in this
direction and the references therein).

e the two averaged systems associated to high-frequency control are flat. Can this result be
generalized to alarge class of devices?

o differential algebraisnot theonly possiblelanguagefor investigating flatnessand defect. Theex-
tension of thedifferential algebraicformalismto smooth and analyticfunctions(Jakubczyk 1992)
and the differential geometric approach (Martin 1992, Fliess et al. 1993d, Fliess et al. 1993¢,
Pomet 1993) should also be examined in this context.
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A Primedifferential ideals

We know from (Diop 1992, lemma 5.2, page 158) (see adso (Moog et al. 1989)) that, for x =
(X1, ..., X)) (n>0)andu = (uy, ..., uyn) (M=> 0), the differential ideal corresponding to

. oa(x,u,u, ..., u@))

= : , i =1, ...,n,
T bhix,u, 0, ..., ud)

wherethe a’sand b;’sare polynomials over k, isprime. It isthenimmediate that the differential ideal
corresponding to the tutorial example (7) isprime: set X = (X1, X2) and u = (X3, X4). Let usnow list
our five case-studies.
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Kapitsa pendulum (19) Let usreplace a by o = tan(«/2). Then, using

. 1+02 oS 1— 0?2 sn 20
o — , = —F, = 7,
2 ¢ YT 1102 YT 1102

the equations (19) become explicit and rational

. 1+ o2 n 20U
o= 2 \Prrars

‘ b — (g u2(1—02)) 20 B pu(l —o?)
N 1+o02 l(1+ o02)
Z = U

| 12(1402)

Theassociated differential ideal isthusprimeand leadsto afinitely generated differential field extension
over R.

Variable-length pendulum (24) Similar computationswith o = tan(u/2) prove that the associated
differential ideal is prime.

Double pendulum (29) Similar computations with o, = tan(«y/2) and o, = tan(ay/2) prove that
the associated differential ideal is prime.

Car with n-trailers (18) Similar computations with o = tan(¢/2) and o; = tan(6; /2) prove that
the associated differential ideal is prime.

Crane (17) Anaogous calculations on the generalized state variable equation R = —2R6 —
D cosf — gsiné givenin (Fliesset al. 1991, Fliess et al. 1993a) lead to a prime differential ideal.

Another more direct way for obtaining the differential field corresponding to the crane is the
following. Take (17) and consider the differential field R < x, z > generated by the two differential
indeterminates x and z. The variable D belongsto R < x, z > and the variable R belongs to an
obvious algebraic extension D of R < X, z >, which defines the system.

B Dynamic feedbacks ver sus endogenous feedbacks

A dynamic feedback between two systems D/ k and D/k consists in a fi nitely differential extension
¢/ksuchthat D C & and D C &. Assume moreover that the extension &/D is differentially algebraic.
According to theorem 1, the (non-differential) transcendence degree of &/D isfinite, say v. Choose a

transcendence basis z = (z, . .., z,) of &/D. Ityieldslike (8):
Aa(za’z) = O 0(:1,...,1)
B¢.2) = 0
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where & isany element of & and the A,’sand B are polynomials over D.

The above formulas are the counterpart in the field theoretic language of the usual ones for defin-
ing general dynamic feedbacks (see, e.g., (Isidori 1989, Nijmeijer and van der Schaft 1990)). The
dynamic feedback is said to be regular if, and only if, /D and &/D are both differentially algebraic.
The following generalization of proposition 2 isimmediate: the systems D/k and D/ k possess the
same differential order, i.e., the same number of independent input channels.

The situation of endogenous feedbacks is recovered when &/D and &/D are both agebraic, i.e.,
v =0.

C Proof of proposition 5

Figure 13: Frénet frame (z, v) and curvature « of a smooth planar curve.

The Frénet formula Let usrecal some terminology and relations relative to planar smooth curves
that are displayed on figure 13 (see, e.g., (Dubrovin et al. 1984)). A curve parameterizationR > s —

P
P(s) € R?iscalled regular if, and only if, for all s, ds =# 0. A curveiscalled smooth if, and only
if, it admits aregular parameterization. A parameterization is called natural if, and only if, for al s,

dpP o _ s
‘E H = 1 where||.|| denotesthe Euclidian norm. For smooth curves with anatural parameterization

s — P(s), itssigned curvature « isdefined by = Kk v,wheret = d—P isthe unitary tangent vector
and v isthe oriented normal vector ((z, v) isadirect orthonormal frame of the oriented Euclidian plane
R?). Notice that d—; = —k 1. Every smooth curve admits a natural parameterization: every regular
parameterizationt — P(t) leadsto anatural parameterization s — P(s) viathe differential relation

dpP
is=| %o

Lemma Consider a trajectory of (18) such that the curve C, followed by P, is smooth with the
natural parameterization [0, L] 2 S, — Pn(Sh): S, = 0 (resp. s, = L) corresponds to the starting
point (resp. end point); L, isthe length of C,. Assumealsothatfor s, =0,6,_1—6; (i =1,...,n)
and ¢ belongto] — /2, 7/2[. Then,
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(i) forals,e[0,L,],6.1—6 (1=1,...,n)and ¢ belongto] — /2, /2.
(ii) the curvesC; and C followed by P, and Q aresmooth (i =0, 1, ..., n).

(i) tan(6,_1 — 6) = dix; (i = 1,...,n)andtan¢ = dgko, Where k; and «q are the curvatures of ¢
and Cy, respectively;,

(iv) thecurvature k; can be expressed as a smooth function of «,, and of itsfirst n — i derivatives with
respect to s,; moreover the mapping (which isindependent of s,)

Kn
dicn fn
ds, Kn-1
. H .
d”'/cn ,{'0
ds;

isa global diffeomorphismfromR"+ to R,

Proof of thelemma Asdisplayed on figure 4, the point P, _; belongsto thetangentto G at P, and at
the fixed distance d; from P,. By assumption 7, = d:: admitsthe good orientation: P,_; = P, 4+ dy1,
(wedonot have P,_; = P, —dn1,). ThusC,_; isgiven by the parameterization s, — P, + d,t, which

isregular since H 1) — /1 + d2«2. A natural parameterization's,_; — P,_; isgiven by

dsn
ds,_1 = ,/1+ d%?ds,. (3D)

The unitary tangent vector, t,,_1, iS given by

\/ 1+ dr?Kr% Th-1 = Tn + dnKn Vn,

where v, is the oriented normal to C,. The angle 6,,_; — 6, is the angle between 7, and t,_;. Thus
tan(6h_1 — 6n) = dnkn. Since kp, is aways finite and 6,1 — 6, belongs | — /2, 7/2[ for s, = O,
On_1 — 6, cannot escapesfrom] — /2, w/2[ forany s, € [0, L]. Theoriented normal to C,_1, vy_1,

isgiven by
1/ 1+ dr?Kr% anl = _dnKn Tn + Vn,

and the signed curvature «,_, of C,_; is, after some calculations,

1 dn dKn)
= (ke S0 32
T T daee (K” 1+ d2Z ds, (32)

Since6,_; — 6, remainsin] — /2, /2|, the unitary tangent vector t,_, has the good direction,
i.e., Ph_o = P,_1 +d,_1th_1. Theanalysiscan be continued for P,_», ..., Pyand Q. Thisproves (i),
(i) and (iii).
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Assertion (iv) comes from the following formula derived from (32) and (31) (i = 1, ..., n):

1 ( i di dKi ) (33)
Ki—1 = —F————— = | Kj % 5 T
! A 1 + diZKiZ 1 + diZKiZ ds

where s _; isthe natural parameterization of C; _; defined by

ds -1 = V 1 + dizKiz ds . (34)

Consequently, «; isanalgebraicfunction of «, anditsfirstn—i derivativeswithrespect tos,. Moreover,
n—i

Kn . .. .
islinear viathe term

the d d ith tt .
e dependence with respect to dsr

dit1 dito d, d" 'k,
(1402, D¥2 A+ d% k)% 7 L+ dZ)¥> ds)

Themap of assertion (iv) hasatriangular structurewith adiagonal dependencethat islinear and always
invertible: itisaglobal diffeomorphism. .

Proof of proposition 5 Denote by (X, ¥») and (X, ¥,) the cartesian coordinates of P, and P,,,
the initial and final positions of P,. There always exists a smooth planar curve G, with a natural
parameterization s, — P, (s,) satisfying the following constraints:

e P,(0) = P,and P,(L,) = P, forsomeL, > O.
e the direction of tangent at P, (resp. Py) is given by the angle 8, (resp. 6,);
e thefirst n derivatives of the signed curvature «,, at points P, and P, have prescribed values.

According to (iii) and (iv) of the above lemma, the initial and final values of theangles(i = 1, ..., n)
6i_1 — 6; and ¢ define entirely theinitial and final first n derivatives of «,,. It suffices now to choose a
smooth function [0, T] 2t — s,(t) € [0, L] suchthat s,(0) =0, s,(T) = L, and $,(0) = &,(L,) =
0, to obtain the desired control trgjectory viathe relations (the notations are those of the above lemma):

n
S) = Ul = (1_[ 1 + diZKi2> S’]
i=1
u, = lll,/ler22 G Gk
> =\l ) 14 42 dso
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