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Abstract

Programming language-based security provides applitawogrammers with
greater control and flexibility for specifying and enforgisecurity policies. As comput-
ing environments distribute and diversify, and demand@fogram mobility increase, this
power allows programmers to adapt software to developireglsewnhile still protecting
resources. This thesis advocates the use of static typmpldes for expressing and en-
forcing programming language-based security. We devslpe systems for two popular
security models: théccess Contromodel with Stack Inspectionand theObject Con-
finementmodel. Type safety proofs demonstrate that these typeragsteliably enforce
security statically, and imply that certain run-time optiations may be effected for pro-
grams. The declarative nature of our type terms also prgmidgrammers with useful and
understandable descriptions of security properties. ffm&tly develop these type systems,
a transformational approach is used, where source languageembedded in a target lan-
guage, containing sets of atomic elements and associatedtams, which is pre-equipped
with a sound type system. This target language and typemysteeveloped using the type
constraint framework HNIX'). The transformational approach and KN both allow the
re-use of existing theory and implementations, easingfpefiort, inspiring design, and
providing greater confidence in the correctness of results.
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Introduction

This thesis focuses on static, type-based approaches goapnming language-based se-
curity. It is an argument for both programming languageebasecurity, and for the use of types
as static disciplines to enforce security properties irgpgoming languages (PLs). The argument
is made by analysis of two distinct security models—#uoeess controhnd object confinement
models. We develop formal languages that incorporate tmegkels, reflecting features of real im-
plementations, and then develop type systems for the |geguidatstatically enforce security; in
particular, soundness results for the type systems implyrtin-time checks can safely be removed.
In addition to improving efficiency and reliability of impieentations, we show that type systems
also benefit PL-based security systems by serving as raadabtriptions of security policies, mak-
ing these systems easier to use and understand.

An orthogonal aspect of this thesis is thethodologysed to develop our type systems.
The method allows application of existing results and immatations to novel languages and type
systems, a@e-usethat saves significant proof effort. Perhaps even more fiignily, the ability to
study novel type systems by reflecting on other well-studied developed systems provides sig-
nificant insight into the “best” design of the former. We wilbe atransformationalapproach to
type system development, characterized by the semantsgwing translation of a novel source
language into a known target language that comes pre-eggiipfith a sound type system. This
method has been exploited before in other contexts, e.gevelop a type system for record con-
catenation [33], and to provide a static analysis of infdiamaflow [27]. Here we will use it in the
development of type systems for access control and objedinement.

To develop the target language of transformations, we ved the HM X') framework
[23]. HM(X) is intended for a modular definition of languages and typéesys. It is pre-equipped
with a core, stateful functional calculus and constrassédr type system, and can be instantiated
with primitive constants along with a specialized type laage and interpretation to easily develop



specialized languages. Significantly, any instantiatibthe framework automatically obtains both
type safety and inference for the language core, by adherensome basic conditions.

Overall, this thesis provides relevant foundational restdr the development of static
analyses of programming languages with security featuteggloped in a manner that conserves
proof effort and takes advantage of previous work. We inicmleach of the principal threads—
PL-based security, type systems and methodology— indaligland in more depth below, and cite
related work in each case.

Programming Language-Based Security

The term “PL-based security” refers to the incorporationm@chanisms into program-
ming languages, either as primitives or as add-on libragdlewing direct programmer access to
security features of the language implementation. Whiéséhmechanisms exist for a variety of
purposes, the most prevalent, and the one we’ll be conceviibgis to enforce safety of non-local,
potentially hostile code in a local, trusted execution evnent.

PL-based security is distinct from system-level securigchanisms, e.g. SSL, the details
of which are designed to be almost completely transparettiteahpplications level, where access
to these mechanisms is at most a pre-defined API. PL-basadtgeon the other hand, gives the
applications programmer extensive control over secueagtures, to such a degree that sophisticated
policies may be defined and utilized. As argued in [14], PL-based #gcigr useful because it
provides more powerful security abstractions to programsimkeading to more robust code. This
argument is gaining credence over time, as the internet astallencomputing devices contribute
to the popularity of mobile code. In particular, as the dech&or mobile applications increases,
so does the need for application developers to directly esddthe issues that mobility raises—
especially issues of trust.

The specific security issue this thesis is concerned withasacterized as the control and
protection ofresources A requirement of mobile code paradigms is that local systemst provide
computational resources such as file systems, memory, clagks, etc., for non-local program to
consume during execution. Security issue arises becaustooal code cannot always be trusted to
safely consume these resources. Resources may be abusggteraatically crippling degree both
unintentionally, by buggy or poorly designed code, andntitmally, by malicious code. Thus, the
PL-based security we are concerned with is intended to @rateources of the local system against

abuse by non-local code. In particular, we will be concemét the two most popular models for



PL-based resource protection, thecess controhndobject confinemergecurity models.

In the access control model, access to resources is medigtadh access control list
(ACL), which associateprincipals with sets of resourcprivileges Depending on the system, prin-
cipals can be either codmvnersor codeusers Code owners are associated with source programs
statically, usually in an unforgeable manner, and are wstded as the identity of the source, or
producer, of the code. Code users, on the other hand, areapnogonsumers that are assigned
dynamically to programs, e.g. a UNIX user. Here we will ipet principals as code owners,
since this is standard for PL-based security, and sincellith@ifeasible to treat this interpretation
statically, with types.

The most widely used PL-based access control system is tkes@Burity architecture
of Java [10]. Among other applications, the architecturesied to support sandboxing of applets,
which are prevented from accessing any local files and camuoricate vieht t p only with their
sourceur | . However, this is just an application of the general seguriechanism, which allows
definition of more sophisticated security policies than simaple and restrictive one expressed in
sandboxing. We will consider the general JDK1.2 securitydehoincluding thestack inspection
algorithm at the heart of the implementation.

Stack inspection allows for an enforcement of ACL seculhigt jprevents untrusted code
from sneakily interposing itself into trusted operatio@r example, suppogainting is a trusted
resource locally. The local system could provide a functafePrintfor general use, which checks
that the caller is authorized for printing before doing ftcdde owned by a principal unauthorized
for this privilege tries to ussafePrint the check will fail. In fact, stack inspection goes further
by literally examining the call stack frames, which are aated with the identities of the owners
of the associated code, and thus the identities of poss#aeswof the active function evaluation,
the algorithm ensures that no untrusted code gains evemreatd@iccess to the resource, e.g. through
man-in-the-middle attacks.

While stack inspection-style access control is a sound hbdehas been useful in prac-
tice, it has some shortcomings, including its effect ontiome efficiency, and the clarity of security
policies. We will explore ways to increase the efficiencytaick inspection, and define concise and
declarative type terms that improve the clarity of secusipgcifications. In this the current thesis
is similar to and inspired by [45], where a compile-time pag transformation is described for
optimization of stack inspection, and BAN-type logics asedito characterize the system— though
here we advocate static analyses, rather than compilesftnamations and BAN logics.

In the object confinement security model, access to ressisaabtained by gaining pos-
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session of @apabilityto the resource, which is an unforgeable reference to tlwaires along with
possibly other information, e.g. an interface. Enforcetm@security is based on distribution of
these references. For example, Java provides a basic aojefihement scheme: by disallowing
pointer arithmetic and buffer overflow, the language erstinat the only way to gain access to an
object is by being explicitly given a reference. In fact, lre tabove example afafePrint there is
an inherent confinement, in that code in general can obta@fiesaence tasafePrint but not to the
primitive print function that the system must call to do the actual printingtherwise, the entire
system would be circumvented.

A principal appeal of the object confinement model is its diailly; since there are no
ACLs or run-time stack inspections to perform, the systewely efficient. However, object pro-
tection schemes may be more sophisticated, e.g. the Seaiveoik Objects of [42] that use a
distributed capability architecture to implement secueeote object message sends. In this thesis
we will develop an object confinement model that is generalugh to capture a wide variety of
schemes. All object confinement mechanisms owe a great @@attious research in capability-
based operating systems, including [12, 35, 48]. Signifieammk has been done to develop systems-
level security of this sort, including a formal verificatiohsecurity properties in [36] that is akin to
work here, insofar as that presentation provides formalpé@tional results for resource protection.

While there are differences between access control anadtotpafinement, with various
benefits and payoffs, theafePrintexample above suggests that the models can interact. |nafact
large body of recent work in PL-based security [2, 9, 20, 24§ Hemonstrated a need forththe
access control and object confinement models in OO langusamgbsas Java. Significantly, as some
of these presentations point out, confinement securityeslee to prevent ACLs themselves from
leaking and being unsafely manipulated, which would comepfesubvert access control security.
Thus, we do not argue that one of these models is better tleapthier. Rather, we recognize that
both are useful, and show how both may benefit from staticyaral thus demonstrating the general
applicability of types to secure PLs.

Type Systems for PL-Based Security

Type systems offer various benefits that have been demtetirapractice, by the suc-
cess of typed languages such as ML, OCaml and Java. Thesedeamldclarativebenefits, since
types themselves serve as concise, readable specificafioms-time behavior. They also include

safetybenefits, since type systems rule out programs that exhilsife run-time behavior. Recent



work has also demonstrated that types oatimizethe run-time performance of programs, since
compilers can generate better code if more is known abogfrano properties, via types, at compile
time.

In this thesis, we show how these benefits may be applied tariseecnechanisms in
PLs, by the use of types that statically analyze securitgrmétion. In the context of secure pro-
gramming, run-time safety directly translates to systewusty, and so is of particular concern.
Furthermore, security bugs often originate from a misusi@erding of how the security framework
is properly used, not from fundamental flaws in the framewtsddf. Specifications that are difficult
to read are easy to get wrong; thus, the usual declarativefiteof static type frameworks provide
a particular advantage over purely dynamic approachese@mifiorcement of security. Dynamic
security mechanisms can also introduce complications reffidciencies to language implementa-
tions, so any run-time optimizations that can be gainedutfiinostatic analyses are of significant
interest.

Since the application is natural, type systems for PL-baeedrity are currently a popular
research topic. Many different static approaches to Pledagcurity have been proposed, perhaps
not directly applicable to access control or object confieetn These include type systems for
enforcing security in the information flow model, in sequaihanguages [15, 27] as well as process
calculi such as ther-calculus [16, 26]. The proof-carrying-code (PCC) framdw[, 22, 34] is
an extremely powerful and expressive framework for theistatrification of program security
properties, where assertions made about programs in éxkesystems are automatically verified.
The PCC system is actually more general than type systersertiasms may be so complex as
to require human composition. Other novel type systems fosé&curity have been developed,
including static analyses for enforcing safe resource woyion [6], and verifying behavior of
expressive “security automata” [44].

Most directly related to work in this thesis are previougistapproaches to object con-
finement [2, 3]. These treat systems that are very similaiugh less general than the system
treated in Chapter 5; also, our system implements securiéglcs in a distinct manner. The results
in Chapters 1 and 4 are versions of material originally pméese by the current author, among oth-
ers, in [28, 37], which represent the first type systems dgakpressly with stack-inspection-based
access control. However, approaches to this same issuesimecbeen developed by others [21].

The material presented in this thesis is distinguished fpravious work in a number
of ways. There are various technical distinctions that Wwéldiscussed at greater length in later

Chapters. More generally, the principal contributions sisinof expressive, flexible type systems
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that are easily readable, simple, and efficient, with rigsrmathematical foundations. The type
systems for both the access control and object confinemedelmdll be designed to reflect the
nature of the security context. The type analysis for theesecontrol model will specify the
privileges required to perform an action. The type analj@ighe object confinement model will
specify the domains to which an object is confined. Sinceetliygses naturally communicate the
security policies of programs, they serve as a clarificatibthe policies to the programmer. These
type systems, though expressive in distinct ways, will iibased on polymorphrow types [29],
which are concise yet powerful, as well as well-studied dmatacterized. This significantly raises
confidence in the formal rigor of the systems.

Furthermore, these analyses will inderrable that is, type inference will be an available
implementation technique. This is especially importanthwespect to Java, since it means the
analysis could be adopted to the existing Java code bageouvit retrofit of type annotations
as required by type checking. Furthermore, since our aealydll be based on row types, we
will be able to appeal to a large existing codebase for thdampntation of the type systems,
that includes well-developed methods for efficient typeiiahce [24, 31]. This distinguishes our
analysis from e.g. PCC, which is concerned with possiblyerwomplicated properties, and requires
the programmer to annotate programs with assertions maid¢wats static analysis; our approach
ensures that we stay within the bounds of an efficient aratysit imposes no additional overhead
on the programmer.

Our analyses promote efficiency by statically enforcingisgg, allowing dynamic checks
to be removed. By proving type soundness results that tneatime security behavior of programs,
we rigorously establish that well-typed programs are dyically secure, meaning that costly run-
time checks such as stack inspection can be eliminated.ctndar type analysis for object con-
finement is sensitive enough so that virtually no dynamickbare needed. This contributes to the
feasibility of secure PLs for widespread application, bgwemg their efficiency.

In general, this thesis will pay particular attention to eleyping readable type systems,
to the verification of their correctness via rigorous probftype safety properties, and to a con-
sideration of how types can improve program performanceilé\the results are foundational, the
applications are practical, insofar as the usefulnessmdgyhas been demonstrated, and the ideas
presented here can be implemented in an efficient manner.llded to above, this last fact is
ensured by the re-use of well-studied methods that havadjirbeen proven efficient in practice,
which is allowed by our translational methodology, disegsi the next section.



The Translational Approach and HM (X))

Developing type systems for novel, non-trivial languagean involved task. Designing
a concise, readable type language is difficult, as is protliegsystem correct. In this thesis, we
will endow languages with aoperationalsemantics, which usually implies thasabject reduction
result is required to prove type safety. Subject reductsonatoriously tedious to prove; however,
our methodology will allowre-useof an existing subject reduction result, eliminating thestrtome-
consuming hurdle in our syntactic type safety proofs. I ai$o allow re-use of the elegaraw
type system of [29], including inference methods, resulting afes concise, and readable types,
which are pre-equipped with efficient implementations.

One aspect of our methodology is the transformational agmtrdo type system develop-
ment, developed and used previously in [27] and [33]. Thiagch is characterized by a transla-
tion from a novelsourcelanguage, with no static analysis defined, into a previosgigiedtarget
language that comes pre-equipped with a sound type systgwverBying that the source-to-target
translation preserves program semantics, a saunglicect static analysis for the source language is
immediately obtained as a corollary of type soundness irtdhget language. We may also base
adirect type analysis for the source language, which treats sowmeessions directly rather than
via transformation, on the program transformation anddiatgpe system. This approach allows
significant insight into the best form of the source langugge system, and saves considerable
effort in its soundness proof; rather than proving soundadsinitio, a significant task due to the
requirements of subject reduction, only a trivial correspence between the direct and indirect type
system need be demonstrated.

We will use the transformational approach to develop typsesys for both our access
control and object confinement models. In fact, we will becalde the same target language in
each case: itis interesting to note that the same languageecased to capture the behavior of such
distinct security models. Our target language, cafled;, is based on Rémy’s Projective ML [30],
and is similarly endowed with row types [29]; however, it tains significant novelties, including
language features and concise, accurate types for opgsatio sets of atomic elements such as
intersection, union and difference. To define these types,)seconditional constraint§24]. This
language and type system will be developed by instantiatiadiM( X ) framework [23, 40], which
allows re-use of a stateful functional core and type systeaiuding subject reduction and type
soundness results. This approach significantly simplifiesoaf of type safety fopmly, since,

again, it is not necessary to prove subject reductibrnitio.



An ancillary result of this thesis is subject reduction foMKX ), which has not been
previously demonstrated; we prove it here mainly to fill a gathe literature (in fact, a soundness
proof for HM(X') with respect to a denotational semantics exists in [40], arsd-calledsemi-
syntacticresult is proved in [25]; the latter would be sufficient to yesyntactic type soundness for
pmly here). Since the relevant proof requires an entire Chajptisreasy to see the work that is

saved by taking the result as a given.

Structure of the Thesis

The rest of the thesis is structured as follows. The geneeéthad of the thesis is presented
in Chapter 1 by way of example, where we take a first look at guage with stack inspection
security, including operational semantics, type systemwe soundness and optimization results. To
set the stage for our transformational approach, in Chaptee define the HNIX') system and
provide subject reduction and type soundness results.phitig language is then presented as an
instance of HM X ) in Chapter 3. In Chapter 4 we return to stack inspection $gcand develop
a more sophisticated language model and type system thteamggformation intgml;. We turn
our attention to object confinement in Chapter 5, where alagg is defined that incorporates this
sort of security, as well as a type discipline that enforte&gain, type soundness and optimization
results are discussed, and are obtained via transformaiopml ;. In the Conclusion, we close
with some final observations and remarks.



Chapter 1

Types for Access Control: First Look

In this chapter, we examine the stack inspection securitghaigism, casting it into a
simple model that captures the essential security pragsedf the Java JDK1.2 stack inspection
system. The chapter serves three purposes; to familidrezesader with stack-inspection security,
to describe a low-level model that accurately reflects treeidgtion of Java stack-inspection in the
literature [10], and to provide an understandable examptbeostatic approach advocated by this
thesis, via development of a simple monomorphic type systeater, in Chapter 5, we will recast
our language model into a more technically appealing, tag teansparently “JDK1.2-like” form.
By proving that this latter form is capable of simulating tteem presented in this Chapter, we
maintain confidence in the faithfulness to real implemeonat throughout. In Chapter 5 we will
also present a polymorphic type system in full detail, thditssimes the system presented here.

The chapter will proceed as follows. In Sect. 1.1, we brieflgatibe and discuss the stack
inspection model, with observations about its shortcominign Sect. 1.2, we provide a language
formalization of this model. Then, in Sect. 1.3, we define aisttype discipline that resolves

shortcomings associated with the current stack inspeatgiementations.

1.1 Review and critique of Java stack inspection

The stack inspection system described here is a simplifiesioreof that found in Java,
intended to capture only the core mechanisms. The readdidamith the JDK security architec-
ture will note that some of its more complex features, e.@ilpge inheritance and parameterized
privileges, are not captured—but our goal here is a solishdiation for static access control, rather

than a complete model of the JDK security architecture.



In the JDK, access control lists (ACLS) are defined by ownéthelocal system, which
associatecode ownersor principals, with sets ofprivileges The stack inspection mechanism is
a technique for activating and checking privilege activasi. This is fundamentally dynamic
security checking system, in that access restrictions lashacked at run-time, not compile-time.
To use the system, the programmer adds “do privileged” aheéck privilege” commands to the
code. A “do privileged” command takes as parameter a “@i8ld action” object, which must
contain arun method, which takes no parameters, that is a macro for someesee of security-
sensitive actions. This run method is invoked in the body td@privileged” call, and the stack
frame associated with the invocation is annotated with\dlpge flag. When a privilege is checked
via the “check privilege” command, stack frames are seatchest to least recent. If a frame is
encountered with the desired flag, the check succeeds. idwlity, all programs in JDK 1.2 come
with a specified owner, and stack frames are annotated witm#ime of the owner of the code
associated with each frame. If an owner who is unauthoripedhie privilege being checked is
encountered on a stack frame before success of inspedt®rcheck fails. For more Java-specific
detail, see [11, 19] for a concise description of the staslpéttion mechanism in Java, and how
it may be used to enforce security properties. The readafesred to [45] for good examples of
the use and advantages of the JDK 1.2 architecture. Onelaqygpaspect of the system is that any
security policy is highly programmer-specified— the prognaer inserts privilege activations and
checks where they are appropriate. This makes the system malteable than the information-
flow model [7], for example.

The Java security architecture is a solid proposal whicleisdapplied in practice, but it
has significant flaws. There is a performance penalty duestod¢led for run-time stack inspection;
in addition to the presence of run-time security checks, gitan optimizations such as tail-call
elimination and CPS transformation would interfere witle #tack inspection semantics, and are
thus precluded. Our static approach eliminates the needeitain run-time checks, allowing an
interaction of stack inspection security and these compitgimizations. Another solution to this
problem is called security-passing style (SPS) [45], wieldminates the need to literally inspect ev-
ery stack frame. However, even this solution does not addlesnd hocnature of the architecture;
all security properties are enforced by method calls, aljighn-declarative form of specification.
This makes the access control specification very difficuteta—it is all buried in the code and the

implicit control flow structure of that code. The static aysas we explore do address this problem.
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x € ID identifiers
reR,RCR resources
peP, ACP —2R principals & ACL’s
v = C(7, Az.e) values
ex=x|v|Az.f|ee|dopriv,e | checkrthene | -e- | f expressions
fu=pe signed expressions
E:=][|Ee|vE|dopriv,E | -E- evaluation contexts
closedv € V,y € ID =V environments
f ::= off | on(r) activation flags
S == nil | {y,p,f)::S stacks

Figure 1.1: Grammar fokS,,

1.2 The\i..language definition

This section defineas,, a simplified model of the JDK 1.2 security architecture slai
A-calculus equipped with a notion of code ownership, acceasrd lists (ACLS), and constructs
for activating and checking privileges. A “low-level” oaional semantics is defined, comprising a

representation of call stacks with security annotatiortsis Torm clearly reflects actual implemen-

tations.

1.2.1 Syntax

We assume given an arbitrary setof privileges usingr and R to range over privileges
and over sets thereof, respectively. For simplicity we assa fixed ACLA, although the formaliza-
tion is adaptable to any local definition df. Any A is a map from principalg to sets of privileges
R. We distinguish a principatobodyto denote an anonymous principal, witt{nobody = &.

The grammar of\3,.is given in Fig. 1.1. Asigned expressiop.c behaves as the expres-
sion e endowed with the authority of principal. The body of every\-abstraction is required to
be a signed expression — thus, every piece of code must béegdor by some principal; other-
wise, although we includ¢ in the language of expressions for technical convenierme” signed
expressiong.e are disallowed. The construdbpriv, allows a principal to activate the use of a re-
sourcer within the expressiom. The constructheck r then e asserts that the use ofs activated.

11



If r is indeed activated; is evaluated; otherwise, execution fails. We lete denote the function
where_ does not appear free in

Since we will be defining a stack-based semanti€s, also includes a definition aflo-
suresC(y, A\z.¢), which is a function together with a binding environmentor the free variables
in Az.e. Binding environments are partial maps from identifier$o closed valuew, denoted
[v1/21,...,05/2n]. We writey[z/v] to denote the binding environment that is equivalent taut
which mapse to v, and writery; 7' to denote the environment that is equivalent taut which maps
x € dom(v') to v/ (x), while v\z denotes the environment which is undefinedzoand is other-
wise equivalent toy. We define the free variables of an expressiofef\as usual, extending the

definition to closures as t€¢(v, Az.e)) = fv(Az.e) —dom(~y). An application of a binding to an ex-

pression, denoteelv, /x4, . .., v,/z,], results in the substitution ef, ..., v, for free occurrences
of z1,...,x,, respectively, ire. Substitutions are extended to stacks as follows:
env({y1, p1, 1) i (P, Fp) imil) = ypseim

S(e) 2 e(env(S))

For the purposes of our stack-based semantics, we alsdftaamedexpressionse:, de-
noting a region of code associated with a stack frame. Thesessions, and closures as well,
are for the purposes of operational bookkeeping, and welssty tis atop-levelexpression iffe
is closed and contains no subexpressions of the fefnor C(v,¢’). Additionally, we disallow

A-abstractions and closures with framed subexpressions.

1.2.2 The stack inspection algorithm

We now give the definition of stack inspection in our modeljalihis a formalization of
the description in Sect. 1.1.

The \3,.grammar contains a definition of stacksEachs is a stack of framesgy, p, f),
where~y is a binding environmenty is the owner identity associated with the frame, dnd a
privilege activation annotation. Each frame is an actoratiecord associated with a function call,
with + the free-variable bindings for the functigmthe function code owner, arfddenoting whether
the function was executed normally, in which céise off, or as the result of a call tdopriv,, in
which casef = on(r). Theinspect function inspects the stack for an activation of a privilege

12



S,z — S,S(x) (var)

S,Az.e — S,C(env(S), \z.e) (closure

570(77 )\:r.p.e)v - (’Y[U/LCL]L 0H>Z!S,-€' (app)

S, dOpriVTC(")’, A—'p'e) - (77;07 on(r)) 8, -e (dOpriV)
S,checkrthene — S,e if inspect(S,r) =true  (checkpriy
(77p7 f>::Sv'U' — S,’U (pop)
S,Ele] — S, El¢] if S,e —» S’ ¢ (contexy

Figure 1.2: Operational semantics)a,.

the manner employed in Java.

inspect(nil,r) = false

inspect((y,p,on(r))::8,r) = if r ¢ A(p) then falseelse true
!

)
)::8,r)

inspect((y,p,on(r"))::S,r) = if r ¢ A(p) then falseelse inspect(S,r) wherer’ # r
)::S,r) = if r & A(p) then falseelse inspect(S, )

inspect(({~y, p, off):: S, r

This algorithm implements Java stack inspection: givenialege r, the stack is searched frame
by frame from the current frame until the privilege is founthe stack (returtrue), or the owner
of the frame lacks that credential (retuaise), or we ran off the top of the stack (retufalse). The
set of privileges which are enabled on a particular st&cfiven some access credential li$f is
denotedprivs(S); i.e.,

privs(S) = {r | inspect(S,r) = true}

1.2.3 Operational semantics

With the syntax ofAS,. and stack inspection defined, we may now give the operational
semantics, defined in Fig. 1.2, which is a reduction relatioon configurationss, e. We specify
that— be defined only onvell-formedconfigurations, which we elaborate as follows:

Definition 1.1 Theframe depttof an evaluation context is inductively defined as follows: ftame
depth off] is 0, the frame depth ofF- is 1 plus the frame depth df, and the frame depth of any
other context fornt is the frame depth af’s subcontext.

13



Definition 1.2 A configurationd, e, o is well-formed with respect te- iff o(e) is closed, and there
existst and unframed’ such that = E[¢'] and the frame depth df equals the length af, where

thelengthof a stack({~y1,p1,£1) -+ 2 (yn, P, £) s nil) IS n..

Several of these rules implement a semantics whereby Vaddbdings are kept on the
stack and looked up when necessary. This includes the rulifgtions Az.e, which reduce to
closuresc(y, Az.e). Note that in a normal function call, the new stack frame isatated withoff,
whereas ifdopriv, is applied to a function closure, then a new frame associaitdan application
of the closure is annotated withn(r)— note that the closure must contain a function that takes no
parameters, as must the run method of privileged actiorctdbje Java.

We let—* denote the reflexive, transitive closure-ef We say thas, e is stuckif e is not
avalue but there is n®, ¢’ such thas, e — S', ¢’— that s, stuclks, e are semantically meaningless.

If nil,e — 8', ¢’ ands’, € is stuck, then we say thatgoes wrong

1.3 Types forA3..

The previous section specified the language and dynamiwioeltd A3, In this section,
we propose a static analysis f&i,.that allows the declaration and enforcement of securitp@ro
ties of programs. This analysis allows runticteecks to be eliminated during the execution)df,.
programs.

The idea behind this type system, is that privilegedwof a program is represented in its
type, where needs are those privileges thatherked during execution of the program. Functions
f that perform privileged actions will have type — 7/, containing a needs annotation The
type system statically verifies that needs of expressionddvmet bydopriv, s during execution.
These “security typest are actuallyset typestypes which can accurately describe the contents of
sets of urelements. In this case, the urelements are gy@sleThus, if a function has type—s 7/
and requires; andry to be activated for its use, theris the type of the sefr,, . }. However, we
note that these sets d@mplied by the semantics of the language; sets are no way an actgaidga

construct ofAS..

1.3.1 Type language

The language of types includes monomorphic type variables, function types, atd s

types. Set types are composed of elementswherec is either+, denoting that the element is

14



T u= o,f,...|tToT|{r}|@|br,T]|C types

c = 4| - constructors

Figure 1.3: Type and constraint grammar £,

a €V r,7 :Type 7" :Set

I @ Setg c: Con
a:k T 7' Type

7 :Con b¢ B T Selzuin

(br,7') : Setz

Figure 1.4: Type kinding rules foxS,
present in the set, or, denoting that element is absent. For technical reasonsamticbecome
clear throughout this thesis, as well as for coming langweagensions, the flexibility of specifying
the presence or absence of a particular element is essential

Set types also contain constructatsand w, denoting whether all other elements not
explicitly mentioned in the rest of the type are present sealh, respectively. For example, if
a function has type —— 7’ and requires andr, to be activated for its use, thenhas type
{r1+,r2+,2}. Note that this informal description of the construct@sand w implies certain
equational properties of set types, e.g.:

{T]+7T2+7®} = {T]+7T2+,T3_,®} = {T]+,T2+,T3_7T4_,®} -

We delay a formal account of this behavior until Chapter 3.

To ensure that only meaningful types can be built from the tyrammar, we equip types
with kindsin Fig. 1.4; from here on, we assume that any typeédl-kinded in the sense of obey-
ing the kinding rules. Note that these rules ensure thatypeistdo not have repeated elements.
Formally, we letp range over types of kin8et;, and lets range over types of the fordp}.
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1.3.2 Type judgements

Type judgements ing..are of the fornp, ¢, T' - e : 7, wherep represents the code owner,
¢ represents the set of currently active privileges, &nd a type binding environment. We write
(T; x : 7) to denote the environment which bindgo 7, and which otherwise is equivalento

The type judgement rules are then given in Fig. 1.5. The nm&tlrules are those associ-
ated withdopriv,., check, and signed expressions. The ruleS for signed expressionse ensures
that any privileges needed to executare in.A(p)— that is, are authorized t@ The rule GiECK
ensures that a privilege being checked is in the currentliyeset. The rule DPRIV SUCCESS
activates the specified privilegein its precedent; BPRIV FAILURE has no effect, in case the
specifiedr is not authorized to the current principal. In derivations disallow the judgement
p,s, ' =z : 74, In @any consequence ofAR; this statically enforces that any argumentdafpriv
reduces to a closure with a dummy argument. We say a judgeimeatid iff it can be derived
according to these rules, and we saig well-typediff nobody {&}, & F e : 7 is valid, in which

case we writes : 7.

1.3.3 Type safety

One of the main points of this formalization is to provide aridation for rigorously
provingtype safety- that is, for proving that only semantically meaningful esgsions are typable.

In the case of3

seo this implies that onlysecureexpressions are typable, since the semantics ensures

that insecure computations fail. By establishing type tyaige also prove that run-time security
checks can be eliminated, since well-typedness ensuréslitreuch checks will succeed. Type

safety comprises botsoundnesandprogressresults, which we may state here as follows:

Theorem 1.1 Q5. Type Safety) If top-levele is well-typed ther does not go wrong.
Theorem 1.2 (3, Progress) If top-levele is well-typed then eitheril,e —* S, v or e diverges.

One important consequence of these results is that we mayoravally assert that runtime stack

inspection is no longer necessary:

Proposition 1.1 Let ~~ be defined as~, but with calls toinspect eliminated. Supposeis well-

typed; themil, e ~* 8", v iff S,e —* S, v.

At this point it would be traditional to develag initio proofs of the correctness of these

assertions. However, we will instead lay aside these proefsrning to them in Chapter 3 when we
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VAR ABS APP

Nz)=71 * 6o, (Do) fim po,TFeimg =71 p,¢,I'Fey:m
ps,I'Fx:7 posi, XL f 1 -5 1 p,s,'Fejeq: T
DoPRIV FAILURE DOPRIV SUCCESS
p Ao} Theimy, e g Ap)  prtphThein, "8 reAp)
p,{p}, ' - dopriv,e: r p,{ry,p},I' Fdopriv,e: r
CHECK

p,{r+,p}, T I checkrthene: 7

SIGN
pa{rltpla"'arn(pnag}’r|_e:7— A(p):{lrla"'arn}

* Ar1Q1, .., ph, D Epe:T

Figure 1.5: Type judgement rules fag,.

develop a polymorphic type system that subsumes the cuwrentincluding its safety properties. A
central point of this thesis is that proofs of propertieshsas these, which take a great deal of effort
with anab initio approach, can be made much easier via the transformatippebach we will use

to develop the polymorphic type system fi, .

1.4 AS..language and type examples

Here we give some examples that demonstrate the usg gpthe readability of types for
the language, and how types are used to enforce security.

Assume the following definitions:

(1>

ok AL.p.x

check = JA_.p.checkrthen ok

To these expressions we may assign the following types, evhgrrefers to the specified type of
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Tor hereafter:

ok aﬂa
check : 74, *){H_’B} Tok

Note that the security needs dfieck show up explicitly in its type, whereas the typedf reflects
no security requirements. Now, at the top level with no feiyes enabled, the expressidmeck ok
is operationally unsafe, sinagheck requires that- be enabled to be applied. Appropriately, the
expressiorcheck ok is not well-typed, since typing the expression with thesiule requires that
check has no statically determined top-level needs.

Extending our examples, we consider “boilerplate” funcsichat a system might provide
for users to safely perform privileged actions. In partizuh function that enablesfor a privileged

action is defined as follows:
enable £ \f.p.(dopriv, f)
AssumingA such that- € A(p), this function may be given the following type:

enable : (74, {r+.5} Tok) 53

Tok

This type specifies thanable may be applied to a functiofi that performs an action requiring
thatr be enabledr(+), returning the result of this action without the requirernthatr be enabled,
so that:

enablgecheck : 7,

Thus, the security of programs is statically verified.

1.5 Looking forward

In this chapter, we have defined an initial, intuitively aat language model for stack
inspection security, calleds,. We have also developed a simple monomorphic type system for
M., but have postponed proving type safety until a more sadphisd, polymorphic system is
developed. As discussed in the introduction, our developiroéa polymorphic type system for
A3.cis accomplished via transformation into another languégenext two chapters will establish

the preliminary results for this transformation. In Chaptewe will return toA3,, extending and
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recasting the language into a more technically appealirg-fe in particular, explicit stacks will be
eliminated— while demonstrating that the new language \sules the language presented in this
chapter. We will then equip the language with a polymorphjmtsystem that is proven safe in a
manner that is easier than the traditioahlinitio approach; the proofs of Theorem 1.1, Theorem 1.2

and Proposition 1.1 will fall out as corollaries of theseutes
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Chapter 2

Technical Interlude: the System HM( X))

In this Chapter the HNYIX') framework is described, including definitions of the langeia
constraint and type systems. Type inference is also defm&ect. 2.4, including relevant correct-
ness results. An OCaml implementation of type inferenceludged in the appendix, is described
and discussed.

We also present the first purely syntactic type soundnesttsdsr HM(X), in the style
of [47]. A soundness result based on a denotational semsaistipresented in [23], and semi-
syntacticresult, based on an interpretation of KIM) type judgements in an intermediate system,
is presented in [25]. The former result is inadequate in trenethat a syntactic result is desired
for some instance of the framework; the latter is more satisiy in this sense, but lacks subject
reduction. The purely syntactic results presented heofyding subject reduction, thus serve as a
direct verification of HM X') type soundness with respect to its operational semantics.

This presentation of HNIX') extends previous results by treating a version of the core
language that contains state and a primitive recursiveifgnchechanism. The addition of state
increases the expressivity of the programming languageririfive recursive binding mechanism
is a welcome convenience; previously, it was necessarytheretlefine a fixpoint combinator, or
introduce one as a constant, entailing additional proofte&d to obtain type soundness for an
instance of the framework.

Our presentation of HYIX ) is otherwise identical to that of [23, 40]. The main diffecen
is our interpretation of constraints, which is more diresge section 2.1.2. Our proof technigque is
standard, following Wright and Felleisen [47]. The centegults are subject reduction, progress,

and type safety for the HIX') framework, stated and proved in section 2.3.
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r,z € ID identifiers
I € Loc memory locations

c € Const constants

v u= xz|l|fixzdzelref|:=|(=1)|!]|c values

e = v|ee|letz=vine expressions
E == []|Fe|vE evaluation contexts

Figure 2.1: Language grammar for HM)

2.1 Definitions

In this section we present the HM') framework, that is, the programming language and
its type system.

2.1.1 The Language

The core language is a call-by-value functional calculutereded with a recursive bind-
ing mechanism built into function definitions, and mecharsidor state. We postulate countably
infinite sets of identifiers, locations, and constants. Hmglage grammar is defined in figure 2.1.
Note that, following [46], we impose@alue restrictionon let bindings, precluding unsafe interac-
tion between imperative features and polymorphism; foveaience, we define the syntactic sugar
letz = e ines 2 (Az.ez)e in casee; is not a value.

The operational semantics is defined amfigurationse, o, where astoreos is a partial
mapping from locations to values. We writé¢/ — v| to denote the store which maps$o v and
otherwise agrees with. The empty store is denotetd. The one-step reduction rules for HM)
are then defined in figure 2.2. We write* to denote the reflexive, transitive closure-ef The
interpretation of constants is given by a (possibly parfiaction§ which maps a pair of a constant
and a closed value to a closed value.

2.1.2 Constraint Systems

Any instance of the HNIX') framework is parameterized bycanstraint systemr his sys-
tem must at least comprise the following language of typelscamstraints, wher¥® is a countably
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(fixz.  \z.e)v,0 — e[v/z][fixz.Ax.e/z],0 (B)
letx =vine,c — efv/z],0 (let)
refv,c — [ o[l = v] | ¢ dom(o) (ref)
=lv,0 — v,0[l— ] I € dom(o) (assign

N,o0 — o(l),o (deref)

cv,0 — d(c,v),0 ()

Ele],oc — Ele'],o’ wheree, o — ¢',0’ (contexj

Figure 2.2: Operational semantics for HM)

infinite set of type variables:

a, eV type variables
T u= al|lT—=T1|Tref|... types
C = tue|r=7|7<7|CAC|JaC]|... constraints

To interpret constraints, we adopt the model-based apprdeascribed in [25], which is

established via a mapping from types into a universe ofglrtbrdered monotype®.

Definition 2.1 (Model) Let (7', <) be a partially ordered set, wheree T is called amonotype
Let— be a function fron¥" x T"into T', wheret; — to < t| — ¢, impliest| < t; andty < t}. Let
ref be a function froni" to T, such thatt ref < ¢’ refimpliest = ¢'. We requiret, ref < t5 — t3

andty, — t3 < t; refto be false for any;, to,t3 € T.

Definition 2.2 (Interpretation) Anassignmenp is a total mapping frony to T'. Aninterpretation
of a constraint system consists of an extension of assigsnearbitrary types, and aonstraint
satisfaction relationdenotedo - C. The interpretation istandardff the following conditions are

satisfied:
pri = 12) = plr) = p(r2)
p(T ref) = p(7) ref
p - true
pbET =Ty g p(T1) = p(72)
pbEm <7 e p(11) < p(72)
ptCrANCy < (pECi)A(pF Cy)
pt Ja.C & dt.pla—t] - C
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If p = C holds, we say that satisfiesor is asolutionof C'. We writeC' I C" iff every solution of”
is also a solution o€,

We identify constraints modulo logical equivalence, tisainve identifyC and D whenC' I+ D and
D IF C hold. A variablea is deemedreein a constrainC' iff C' # Ja.C. We write fv(C') for the
set of all variables free it

Our presentation differs from that of Oders&yal. [23] by viewing constraints as formu-
lae interpreted i7", rather than as elements of an abstadindric constraint systenOur presenta-
tion is thus perhaps slightly less general, but more conéitm, we abandon Oderslet als notion
of constraints irsolved form Instead, we identify constraints modulo logical equinake which
means that we do not care about their syntactic represemiatie believe that the representation of
constraints is an important issue when designing a conssalver, but is irrelevant when proving

the type system correct.

2.1.3 The Type System

The HM(X) type system is defined as a system of deduction rules, givéigure 2.3,
whose consequents aguedgementof the formC, T F e : o whereC' is a constraint]" is atype

environmentando is atype schemeThese notions are introduced in the following definition:

Definition 2.3 Type schemeare of the forniva[C].7. Abusing notation, we abbreviate|true|.7
as, and abbreviate/a[true].T asVa.r. We identify type schemes modulequivalence.Type

environmentd" are sequences of bindings of the fatrmo and! : 7.

A type schemer is consistentwith respect to a constrairtt if C' guarantees that has
at least one instance. This notion, defined below, appeaseatinical side-condition in ruleAr.
This extra side-condition is our only deviation from theasilgiven in [23, 40]. Its effect is to allow

some theorems to be stated without a “consistency” req@nemnl’.

Definition 2.4 We say that a type schemie= Va[D].7 is consistent with respect to a constradrit
and we writeC IF o, iff C' IF Ja.D. We say that is consistent iffrue I o.

Let A be a fixed total mapping from the constants to closed, camisype schemes\

is looked up in rule ©NSTto associate a type scheme with a constant.

Definition 2.5 A judgementC, T | e : ¢ isvalid (or holdg iff it is derivable according to the rules
of figure 2.3 and” is satisfiable. Thery, is well-typed
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VAR Loc CONSsT
Nz)=0 Clo ri=r Alc) =0
Clkrz:o C,TH1:7ref Clkc:o
ABS ApPP
CTix:miz:7—=71)Fe:t C,TFey:m— T C,TFey:m
C,I'+fixz ze: 17— 7 C,l'kejeg: T
REF ASSIGN DEREF
C,I' Fref:Va.ao — o ref
C.'F:=:Va.aref— a— « C,'H! :Va.aref— «
LET Sus
CThrwov:o C,(Tsz:0)kFe:T CThkre:T Clr<r
C,T'Fletz =vine: 7 CTlre:7
V INTRO V ELIM
CADTFuo:T anfv(C,T') =2 C,I'Fwv:Va[D].T Cl-[7/a]D
CA3a.D,I'Fv:Va[D].T C.,I'Fov:[T/a]r

Figure 2.3: The system H\X)

It is straightforward to check that, @, I" - e : o is derivable, therC I ¢ holds. This

explains why the well-typedness etan be determined by checking whetligalone is satisfiable;

there is no need to inspe¢tin addition.

For the type system to be safe, the semantics of constaw&s) by é, must be correctly

approximated by their types, given Ly.

Definition 2.6 (0-Typability) LetC be satisfiable. We require that, for every consiaand closed
valuev, if C,T'Fc: 17 — mandC,T" F v : 7y hold, thend(c,v) is defined and’, T" - é(c,v) : 7

holds. We also requir€, T I~ ¢ : 7 ref to not hold.

The following definition sums up the requirements that beaarewery instance of the

parameterized type system HN).

Definition 2.7 An instance of HNIX) is defined by
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e an extension of the type and constraint language, togetlitrarstandard interpretation, as
specified in Definitions 2.1 and 2.2;

e a particular choice of the set of constant®nst, together with functiong and A, meeting
the §-typability requirement of Definition 2.6.

As will be proven in section 2.3, any such instance of (#V enjoys syntactic type safety.

2.2 Preliminary results

2.2.1 Type substitutions

Sulzmann [40] gives two equivalent versions of the HW) type rules. In the one shown
here, ruleV ELIM allows the universally quantified type variables to be instded using an arbi-
trary substitution. In the other version, not shown in traper, rulev ELIM requires these variables
to be instantiated with the identity substitution, but a meNe appearsH-INTRO) which allows
arbitrary substitutions to be encoded within a constraiiie two presentations are equivalent, that
is, they give rise to the same valid judgements. As a resugtenough to prove one of them correct.

Here, we adopt the substitution-based version. Accorgivggé must now demonstrate a
series of results related to substitutions.

Definition 2.8 A substitutiony is a finite mapping from type variables to types.rehamingo

is a bijective mapping from a finite set of type variables selit Substitutions and renamings
are extended to total mappings from types to types, fromti@onts to constraints, and from type
schemes to type schemes, in the natural, capture-avoidarmen

Lemma 2.1 If C I+ D theny(C) IF (D). If C IF o, theng(C) I ¢(a).

Lemma 2.2 If ¢, is idempotent andlom(y,) andfv(rng(y;)) U dom(y;) are disjoint theny; o
P2 © Y1 = P10 P2.

Lemma 2.3 (Type Instantiation) If there exists a derivation af,T" - e : o, then there exists a
derivation ofp(C), (') F e : ¢(o) with the same structure.

Proof. By induction on the input derivation. We give only the keyeaand follow the notations
of figure 2.3. Note that the structure of the derivation issprged by construction in the proof.
Cases ¥R, SuB. By induction hypothesis and by Lemma 2.1.
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CaseV INTRO. Without loss of generality, we may requie N fv(rng(¢)) = a N
dom(¢) = @. Indeed, if such were not the case, one could apply the ifmauétypothesis to
the premise and to a renaming which mapt fresh variables and does not affect any other vari-
able free in the premise. Because the variableto not appear free in the conclusion, the latter
would remain unchanged.

Now, let us apply the induction hypothesis to the premise @ndrhis yieldsp(C) A
p(D
fv(p
e : Ya[p(D)].p(r). Again, thanks to the above requirement, thispi® A 3a.D), p(I') F e :
o(Va[D].T).

CaseV ELIM. Every substitution is the composition of an idempotentssitition and a

),@o(l') Fe: o(r). Froma N fv(C,I") = @ and the above requirement, we deduce
(C),p(l')) = @. Thus, we may apply/ INTRO, which yieldsp(C) A Ja.o(D),¢(T) +

renaming. Thus, we consider two sub-cases.

First, let us assume that is idempotent. By the induction hypothesis, we have that
0(C),p(I") F e: p(VYa[D].7) holds. Without loss of generality we may assume it is the taae
anfv(mg(y)) = @ andandom(y) = @. (This follows from the fact that we identify type schemes
modulo a-equivalence.) This yieldg(C), o(I') F e : Valp(D)].¢(7) and (by Lemma 2.2p o
[T/a]op = @o[7T/a]. Now, lemma 2.1 yields(C) IF o([7/a]D), thatis,p(C) IF po[T /a](¢(D)).
Therefore, by¥ ELIM, we obtaing(C), ¢(I') F e : ¢ o [T/a](¢(1)), that is,¢(C), p((I") F e :
o([7/alr).

Second, let us assume thats a renaming. By applying the induction hypothesis to the
premise, we obtainC, oI' - e : o(Val[D].7), which can be writtervC, oI" - e : V(pa)[oD].oT.
Furthermore, Lemma 2.1 yieldg” I o[7/a]D, that is,oC' | [oT /oa]eD. Then,Y ELIM, applied
to the substitutioner /pal, yieldsoC, o' - e : [o7/pa]oT, that is,eC, oI F e : o[7/a]T. O

2.2.2 Normalization

In this section we define a normalized form for KIM) type derivations. This normaliza-

tion provides for a much easier analysis of type derivatiorthe subject reduction proof.
Lemma 2.4 If dom(¢) C a theny(C) IF Ja.C.

Lemma 2.5 Any two consecutive instancesvofNTRO and¥ ELIM may be suppressed.
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Proof. Suppose the following sequence appears in a derivation:

CADTFe:T anfv(C,T) =2

(V INTRO)

CA3Ja.D,T'Fe:Va[D].r CA3Ja.DI-[7/alD

(V ELIM)
CA3a.DT'Fe:[7/a]T

FromC A 3a.D I+ [7/a]D, we may deduc€' A 3a.D I+ C A [7/a]D. However, by Lemma 2.4,
we have[7/a]D Ik 3a.D, soC A 3a.D andC A [7/a]D are equivalent. Furthermore, considering
anfv(C) = o, we haveC A [7/a]D = [7/a](C A D). Similarly, a N fv(I') = @ implies
[7/a]l' =T'. Now, Lemma 2.3, applied to the upper left judgement, yiéids](C A D), [7/a]l

e : [7/a]r, which, according to the above arguments(is\ 3a.D,I" - e : [7/a]7. The derivation

of this judgement has the same structure as that of the upfigudigement, so these instances of

vV INTRO andV ELIM have effectively been suppressed. 0

Lemma 2.6 (Normalization) If C,T" I e : 7 holds, then it must follow bgus from a judgement
J such that

1. ifeisletz = vine' thenJ follows byLET;

2. ifeisfix z.\z.e’ thenJ follows byABS;

3. ifeis ey ey thenJ follows byApp,

4. ifeis! thenJ follows byLoc;

5. ifeisx thenJ follows byVAR andV ELIM;;
6. ifeisc thenJ follows byCoNsTandV ELIM;
7. if eisrefthenJ follows byRerF andV ELIM;
8. ifeis ! thenJ follows byDEREFandV¥ ELIM;

9. ifeis:= thenJ follows byAssiGNandV ELIM.

Proof. The judgemenC,T" F e : 7 must be the consequence of a syntax-directed rule, possibly
followed by a sequence of instances eff5V ELIM andV INTRO.

By construction,V INTRO cannot be followed by itself or by 8. Lemma 2.5 shows
thatV INTRO need never be followed by ELim . Lastly, given the form of the judgement at hand,
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VY INTRO cannot be the last rule in the derivation. It follows tRatNTRO need not appear at all in
the sequence.

By construction,V ELIM cannot follow itself or B, so the sequence must consist of
at most one instance 6fELIM, followed by a number of instances olUS. By reflexivity and
transitivity of entailment, the latter may be expanded dued to a single instance oUS.

To conclude, notice that ELIM cannot follow Loc, LET, ABS or APP. O

2.2.3 \Value Substitution

In this section, we establish a classigbstitutionLemma, which will be at the heart of
the 8- andlet-reduction cases in the subject reduction proof. We begth aiwveakening_.emma,
which shows that a valid judgement remains valid under angipconstraint.

Lemma 2.7 (Weakening) C,T' e : 0 andC’ I C implyC',T' e : 0.

Proof. By induction on the input derivation. We give only the keyeaand follow the notations
of figure 2.3.

Cases ¥R, Sus andV ELim follow by transitivity of entailment.

Casev INTRO. We have a deduction of the form

CADTFe:T anfv(C,T') =2

C A3a.D, T +e:Va[D].T

Without loss of generality, we may assumefv(C’) = &; if this were not the case, we could apply
Lemma 2.3 to the first premise to make it so. Now, cleatiyrn C A D I C A D, so the induction
hypothesis yield&’ A C A D, T + e : 7. Furthermore, we have N fv(C’' A C,T') = o, therefore

V INTROYieldsC' AC AJa.D,T I e: Va[D].r. Lastly, by assumption, we hae¥ |- C A 3a.D,
soC' = C' A C A Ja.D, thereforeC',T' F e : Va[D].7 holds. O

Lemma 2.8 (Substitution) If C,T;z: ' Fe:oandC,T' v : o' thenC.T + efv/z] : 0.

Proof. By induction on the derivation of,I'; z : o' - e : o. We give only the key cases.
CaseV INTRO. In this caser = Va[D].7, C = C' A Ja.D and we have a deduction of

the form:
C'AND,T;z:0'Fe:T anfv(C' Tz :0')=2

C'A3a.D,T;z: 0"+ e:Va[D].T
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By assumption we have tha A3a.D,T' F v : ¢’ holds, and clearly”’ A D I+ C' AJa. D, therefore
by Lemma2.7 we hav€’AD,T' v : ¢'. Then, by the induction hypothesiS;AD, " - e[v/xz] : T
holds. The result follows by INTRO.

Case WR. Suppose that = 2’ # z. Thene[v/z] = e andT'(z') = (I';z : 0')(2'), SO
the Lemma holds by M. Suppose on the other hand that z; thene[v/z] = v, so the lemma
holds by assumption.

Case IET. In this casee = letz’ = v'ine’, 0 = 7 and we have a deduction of the

following form:

! ! n ! ! n /
Cliz:okFv:o Cliz:o;x :0 Fe T

C.,l;x:0' Flety =v'ine’ : 7

By the induction hypothesis we hat&T" - v'[v/z] : ¢”; and supposing that # z’ it is the case
thatl;z : o';2' : 0" =T52" : 0”52 : o', hence we have als0,T"; 2’ : ¢” F ¢'[v/x] : T by the
induction hypothesis, so th&t I" - lets’ = o'[v/x]ine'[v/z] : T by LET, henceC, T F (leta’ =
v'ine')[v/z] : T by definition. On the other hand, if = 2’ thenT;z : ¢';2' : 6" = ;2" : 0",
so thatC,I'; 2’ : o + €' : 7 by assumption, and sineg, " - v'[v/z] : ¢” by the preceding, the
judgementC, T I lets’ = o'[v/z]ine’ : 7 holds by LET, thereforeC, T' F (letz’ = v'ine’)[v/x] :
7 by definition.

Case Ms. In this cases = fixz.\z'.¢/, 0 = 11 — 7 and we have a deduction of the

following form:

Clix:osa imiz:im ke im

C,Tl;x:0' Ffixz x'e i1 — m

Supposing that # z' andz # z it is the case that
F;.’E : O'I;{EI tT132 1T — T2 :F;.’E, TT132 1T —)TQ;ZE : O'I

hence we hav€,T';2' : 7152z : 1 — 172 F €'[v/z] : 7o by the induction hypothesis, 6, T" +-
fixz.Az'.(¢'[v/x]) : m — 72 by ABS, thereforeC, T" - (fix z.Az'.¢')[v/x] : 71 — 79 by definition.
On the other hand, supposing that z' it is the case that

Diz:osa'crpz:m—=n=12"12:11 = 7

and sinceC, (T;z : o';2' : 11;2 : 1 — 72) F € : 7o by assumption therefor€, (T'; 2" : ;2 :
T — 7o) F e 1, S0C, ' Ffixz.Az'.e' : 71 — 19 by ABS, thusC, T F (fix z.\z'.¢')[v/z] : 11 —

79 by definition. The case in which = z follows similarly. 0
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Lemma 2.9 (Substitution for functions) Letl” = (I';z : 752 : 7/ = 7). fC,I" e : 7 and
C,T'Fw: 7' thenC,T' I e[v/z][fix z.A\z.e/z] : T.

Proof. By ABs and two consecutive applications of Lemma 2.8.

2.3 Central Results

In this section we demonstrate the type soundness resutBM@X ), specifically subject

reduction, progress and type safety.

Definition 2.9 In order to properly state subject reduction, type judgetaame extended to config-
urations:

CONFIG
Cllre:r

Vi e domI) C.,TF o(l): ()

ClFeo:T

A configuratione, o is well-typedif there exists a judgement, I - e, o : 7 deducible byCONFIG,
with C' satisfiable; such a judgementualid.

Theorem 2.1 (Subject Reduction)Let C' be satisfiable. fC.T" + e;,07 : 7 is derivable and
e1,01 — e, 09, then, for som&’ which extend§ with bindings for new memory locations, I’ +

eo,09 : T IS derivable.

Proof. By induction on the definition of the reduction relation ($iggire 2.2).

According to Lemma 2.6, the derivation 6f I" - ¢; : 7 ends with an instance ofus,
which we will disregard, without loss of generality. (Indgeve then have”,T" + e; : 7/ and
C I 7' < 7; once we have prove@i,I" - e, : 7/, applying /B again shall yield,T" e, : 7, as
desired.)

For reduction cases which do not affect the store, it is daffido prove thaC,T" ey : 7
is derivable to demonstrate the result.

Case(d). Then,e; iscwv andes is d(c,v). By Lemma 2.6 we have a sub-derivation of the

following form:

Cl'ke:m =71 C'Fv:mn

Cl'kFcov:T
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Then, according to Definition 2.6, T" - é(c, v) : 7 holds.
Case(f). Then,e; is (fixz.Az.e) v andeyq is e[v/z]|[fiXx z.Az.e/z]. By Lemma 2.6 we

have a sub-derivation of the following form:

!/ !/ !/ !/
Cliz: itz —71Fe:T

C,T HfixzAz.e: 7 — 1’ Clhkrl =7 <1 =71

C,D+fixz \ze:m — 7 Cl'tov:m

C,I'F (fixz A z.e)v: T

Now,C IF 7 — 7" <7 — 7impliesC IF 7y < 7{ andC IF 7’ < 7. ThereforeC,T I v : 7]
by assumption and8; and sinceC, (I';z : 75z : 7 — 7') F e : 7' by assumption, therefore
C,T F ev/z][fix z.Az.e/z] : 7" by Lemma 2.9. By 88, C,T" I e[v/z][fix z.\z.e/z] : T follows.

Case(let). Then,e; isletz = vine andey is e[v/z]. By Lemma 2.6 we have a sub-
derivation of the following form:

Cliz:oke:T Clruv:o

C.,TFletzx=vine: r

By Lemma 2.8, we obtait, I" - e[v/z] : 7.
Case(deref). Then,e; is !l ande, is o1 (1). By Lemma 2.6, we have a sub-derivation of

the following form:

C, T H!:7'ref— 7' r{)=r1"
Cl-r'ref =7 <7ref= 7 C,T'F1:7"ref CIF 7" ref < 7 ref
CTH!"7iref > 7 C,T'H1:7ref
C,TH!:7T

By ConFig, C,T"  o(l) : 7" is derivable. and by properties ¢f we haveC I+ 1 < 7 and
C I+ " < 71. Thus, by transitivity o< we haveC' I+ 7" < 7, s0C, T + o(l) : 7 can be derived by
SuB.

Case(ref). The reduction isref, oy — [, 01|l — v], wherel ¢ dom(c). By Lemma 2.6

we have a sub-derivation of the following form:

C,T Fref: 7" — 7'ref ClFr s 7rref<m —>71

ClrFrefirn—r Cl'Fuv:my

C,I'krefv:r
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These implyC I+ 7, < 7/ andC I+ 7'ref < 7. Definel” as(I';l : 7'). By Loc and SUB,
C,T" F 1 : 7 holds. Furthermore, sinc€,I" - v : 7 holds and since is o4(l), SuB yields
C,T' F o9(l) : 7'. Becausd is fresh, this implie<C,I" + oy(l) : 7'. Lastly,!'s freshness and
CoNFiGgyield C,T" F 1,09 : 7.

Case(assign. The reduction is=lv,01 — v,01[l — v], wherel € dom(o;). By

Lemma 2.6, we have a sub-derivation of the following form:

CTrk=:7ref=>7 =7 C.T k1 7"ref
Clkrref w7 =7 <1 =571 =713 Clkr"ref<r
CT k=71 =7 =7y C.ri:m

C.'t:=l:19—> 713

CII-TQ—>T3§T§—>T

CTri=l:my—>r ClTruov:m

Cl'k:=lv:7

From these, we deduc@ I+ 5, < 75 andC I+ 75 < 7’. Furthermore, we find' I 7" ref < 7 <
7' ref, which impliesC I+ 7' < 7”. As aresult, by 88, C.T' - v : 7" holds, i.e.C, T - oy(l) : 7"
in this case is derivable. Furthermore, we fifid- 7’ < 73 andC IF 73 < 7, henceC,I' - v : T is
derivable by &B. The result follows by ©ONFIG.

CaseFEle1]|,01 — Eles], 09, Wheree;, 01 — eq,09. This case follows by the induction
hypothesis and a simple “replacement” Lemma, analogousatoféund in [47], except newly cre-
ated memory locations must be taken into account. 0

To demonstrate progress, rather than defining a clagsultly expressions that approxi-
mates the class of stuck expressions, and proviogi®rm evaluatiorresult as in e.g. [47], we
adopt the more direct method of [25] and demonstrate thewiirtig:

Lemma 2.10 (Progress)If a closed configuratiore, o is well-typed and irreducible, theais a

value.

Proof. Suppose on the contrary thato is well-typed and irreducible, butis not a value. Then
is of the formE/[f], with f also well-typed as a precedent of a valid instance olk€gG, where one

of the following cases holds:

1. fis of the formc v andd(c, v) is undefined. Now, it v is well-typed, then by Lemma 2.6
there exists a judgement that follows by Awith valid precedent&’,T' + ¢ : 7 — = and
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C,T' + v : 7. But then by Definition 2.6 it must be the case th@t, v) is defined, which is a
contradiction.

2. fis of the form/v. By Lemma 2.6 there exists a judgement that follows ®pPAvith valid
precedenC,I" - | : 71 — 19. By Lemma 2.6, this judgement must follow fronokt and

SuB, so we have® I+ 7' ref < 71 — 75, which is a contradiction.

3. f is of the form:=wv or!v wherewv is not a memory location. In either case, by applications
of Lemma 2.6, we hav€',T" - v : 7 ref. According to Definition 2.6y cannot be a constant.
One checks that all other value forms must have functionag,tyhat is, we must hawe I+

71 = 1o < 7ref, again a contradiction.

4. fisof the form:=[v or:=[ andl ¢ dom(o). f is well-typed, sd € dom(T"); then, GONFIG
requireso (1) to be defined, a contradiction. 0

We may now state and prove progress and type safety. In cod#go 50, we make the

usual Definitions:

Definition 2.10 If e, @ —* ¢, o', wheree’, o’ is irreducible bute’ is not a value, themr is said to

go wrong
Theorem 2.2 (Type Safety)If e is closed and well-typed, thendoes not go wrong.

Proof. Suppose that, & reduces t@’, o’ and the latter is irreducible. Sinegs well-typed, there
exists a derivable judgement I" - e, @ : 7 with C satisfiable. Then, by repeated application of
Theorem 2.1, we hav€, I’ I~ ¢/, o' : 7, for somel"”. Then, by Lemma 2.1@/ is a value. O

2.4 Type inference

In this section we define type inference for KIXI). As we will see, type inference for the
framework is defined modulo a constramdrmalizationprocedure, just as HIX ) type judgements
are defined modulo the specification of a constraint systernomstraint normalization procedure
is essentially a constraint solution algorithm that musspecified for each particular instance of
HM(X), and is really the heart of type inference. For exampieification is a normalization
procedure for an equality constraint system. Since thergéhM (X)) type inference algorithm is

proven correct in [39], proving correctness of inferencedn instance of the framework requires
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CONST,
A, (c,) =Va[D].r Bfresh  (C,p) = normalize(C,[B/a])

()0|fv(l_‘)a c.r i Co ! (p(T)

VAR
I'(z) =Val[D].T Bfresh  (C,p) = normalize(C,[B/a])

¢ ), C,T FV g s (1)

ABS
O C' iz osz:8)F  e:r a, B fresh
D=CA(a—T1<p) (C, @) = normalize(D, ¢")

o\{a, B}, C, T FV fixz.Az.e : ()

ApPpP
(pl,Ol,F I—W €1 1T @2,02,1—‘ I—W €9 1 T

0 = @1 Uy D=CiNCyN (11 <19 — ) o fresh (C, @) = normalize(D, ¢')

¢y, C. T FY eres : p(a)

LET
o, C, THFY e: 7 (Co,0) = gen(Cy,p1(T), 1) 02, C3, Tz 0 FV e i 7!

¢ =1 Uy D=CyNC3 (C, ) = normalize(D, ¢')

¢y, C, T FW etz = eine’ : o(7')

Figure 2.4: HM X) type inference

only a proof of correctness of the instance’s normalizafioocedure. This is another benefit of the
HM(X) framework.

Type inference for HMLX) is defined in Fig. 2.4; this definition is based almost entirel
on the algorithm proposed in [23], with straightforward ditehs to handle recursive binding and
state operations. In Fig. 2.4, state operations are trestquimitives for brevity: The symbal,

ranges over constantsn an instance of HNLX ), along with the operators ref= and!. The symbol
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Sus< (V)
Ckr<r7 CADF o< anfv(C,o) =9

CH <7 CA3a.DF o 5 Va[D].1

(V<)
CFH [t/a]r <o Cl-[7/a]D

C +F'ValD].T 5 o

Figure 2.5: HM X) type scheme instance relation

A, denotes the initial binding environment, augmented with the following bindings:

ref : Va.ao — o ref
= : Va.aref=ao—a«a

' @ Va.aref— o

To completely define type inference, we must also define tieeadgrLl, and specify the
behavior of the functiongormalize and gen that occur in the definition, which we accomplish in
the following. Note that these will bgpecificationsnot definitions; if type inference is desired, an
instantiation of HM X') must include definitions of these operations that satiséysipecifications
for the relevant constraint systems.

We begin by defining an ordering on substitutions; as Sulzmann observes in [40], it
follows from results presented in [18] that this orderindures a complete lower semi-lattice where

least upper bounds, if they exist, correspond to unification

Definition 2.11 ¢ < ¢ iff dom(yp1) C dom(ys) and there existe such thaty o p; = po. We
denote the least upper boundwf and g, asy; Ll @,.

Now, we specify the expected behavior of the: function, which must yield a “maxi-

mally generalized” type scheme with respect to a given caimgtand type environment:
Definition 2.12 The functiongen but must satisfy the following equation:

gen(C,T,7) = (D A Ja.C", Va[C'].T)
whereC = C' A D anda = (fv(7) Ufv(C"))\fv(T") anda N fv(D) = .
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To specify thenormalize function, we must first define the meaningmarmal formsand
principal normal formof types and constraints, since that is whatmalize will be expected to

compute:

Definition 2.13 (C1, ¢1) is anormal formof (Cy, ¢s) iff 1 < 9, C1 IF 1 (Cy) andp(C) = C.
(C1, 1) is aprincipal normal formof (Cy, 9) iff for all normal forms(C, ¢) of (Cy, 9) it is the
case thatps < p andC'IF ¢(Ch).

Now we may specify the expected behavior of themalize function, as follows:
Definition 2.14 The functiomormalize satisfies the following equations:

normalize(C1,01) = (Cy,p2) if (Cs,¢2) is a principal normal form ofC1, ¢1)

= fail if no principal normal form of C1, ¢1) exists

Given these definitions, we may now state the (M type inference correctness results
proved in [39], which assume an instantiation of the franmwbat includes definitions ofen
andnormalize that satisfy specifications. While these results cover aioprof the inference al-
gorithm without recursive binding and state operations,bekeve they can be easily extended to
accommodate them. First, we state the soundness resutthwhys that an inferred type is a valid

type:
Theorem 2.3 (Soundness of HNIX) Inference) Givene and T, if o, C,T " e : 7 then the

judgement, o(T") F e : 7 is valid, withe(C) = C andp(1) = 7.

To state the completeness result for inference, we mustialsoe a type scheme instance
relation, since the result states that if an expression listwyged, then a most general type is inferred

for it; this relation is defined in Fig. 2.5. Thus:

Theorem 2.4 (Completeness of HNIX) Inference) If the judgemenC, @ I e : o is valid, then
0, C". @ W e : 7 wheregen(C',@,7) = (C", ') and there existg’ such thatC I ¢'(C") and
CF (o) < 0.

2.4.1 OCamlimplementation

An OCaml implementation of the H\X') inference algorithm is included in the Ap-
pendix, in the moduléink. The functoHmx. Make is parameterized by modul& X andP, where
G: Gound. Signature,X : ConstraintSystem SandP : Prinitives. S;these
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signatures are also included in the appendix. Modules nmegdignaturea ound. Si gnat ur e
implement the HMX ) core type language. Modules matching signa@oast r ai nt System S
implement the constraint system for an instance of (ANl Note that any implementation of
Const rai nt Syst em Smust include a functiomonst r ai n, which conjoins a new constraint
to a pre-existing one, and solves the new constraint; thisesmplementation of thaormalize
function. Modules matching signatuk i mi ti ves. Simplement the initial type bindings for
any additional constants in an instance of H¥), in the type and constraint language specified by
GandX. This module is also expected to implement the bindings tatesoperations, which are
not included in the modulklmx for simplicity; in particular, note that it is the responiéily of P to

implement type schemes, so expectifigk to implement these bindings would be out of order.
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Chapter 3

Technical Interlude: the Languagepmlp

In this chapter we present theml; programming language, which includes primitive
records, sets, and associated operations, and a statidiggpline for the language that provides
accurate specifications of these constructs. The langualjype system is defined as an instantia-
tion of the HM X') framework described in the previous chapter. In the follgwthapters, we will
usepmly as a target language for transformations of our refigureckstaspection language, to
be defined in Chapter 4 and a capability-based security Egmyto be defined in Chapter 5. These
transformations, and thenl; type system, will serve as the foundation for the developrogétype
systems in the source languages.

The pmly language of records includes default values in the styleéhirs Projective
ML [30]. The language of sets includes syntax for defining s#turelements—that is, atomic
elements— as well as operations such as intersection, udifference, etc. Sets are at first ap-
proximation records, where all values are of trivial typei t . However, since sets are simpler
than records, there are set operations which can be efffctivodeled statically that are difficult or
impossible in the case of records, and set types can alsonpéesithan record types. We equip the
language with a type system that accurately specifies thewtsof records, sets, and the results of
associated operations; we also show that this type systepuizd. To define the type system, we
instantiate HM X') with a constraint system containimgw types[32] andconditional constraints
[24]. Row types were originally developed for applicatioreitensible records with default values;
we show here how they can also be used to type sets which eadlemt operations not defined for

record row types.
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z€V,a€ Ly, be Ly, BCL identifiers
v u= fixzAze|s| {v}]|v{a=0v}]|ref|:=](:=])|! values
s u= B|B|V|IA|S|3] % sets, set operations
e == z|v|ee|letz=vine|{e} | e{a=¢€}]ea expressions
E == [|]|Fe|vE|{E}| E{la=¢}|v{a=FE}| E.a evaluation contexts

Figure 3.1: Grammar fopml

3.1 Thepmly language definition

In this section, we formally define thenl; language syntax and operational semantics.
In Sect. 3.3 the semantics will be trivially re-figured asrstance of HMX ), with sets, records and
operations defined as language constants #vitlies conforming to the operational rules presented

here.

3.1.1 Syntax

The grammar fopml is given in Fig. 3.1. The language is based on Rémy’s Progecti
ML [30], containing records with default values, manipeliwith theelevationand modification
record constructorge} ande{a = €'}, and theprojectiondestructore.a.

The language allows definition of finite sefsof urelements € L, where eacth can
be considered an arbitrary identifier. Countably infinitsets 3 may also be defined. This latter
feature presents some practical implementation issuésn bhis presentation we take it at math-
ematical “face value”— that is, we takB to denotel,\ B. Basic set operations are provided,
including 3, A, V ande, which are membership check, intersection, union and reiffee oper-
ations, respectively. For technical reasons, the diffezenperation removes elements in the first
argument from elements in the second argument, which isaperlan inversion of the expected
behavior, but this will be convenient for our presentati@iso provided is a set membership test
operation?,, that allows branching on the presence or absence of a seeelan a given set, as

opposed to failure in the case of absencexlaFor clarity of presentation, we define the following
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(fixz. A \zx.e)v,0 — ev/z][fiXxz.Az.e/z],0 (B)
letx =vine,oc — e[v/x],0 (let)
refv,o — [ o[l — v] | ¢ dom(o) (ref)
l:==v,0 — wv,0[l— 9] [ € dom(o) (assign

H,o — o(l),o (bang

{v}.a,0 — wv,0 (defaul)

vi{a =v9}.a,0 — wv9,0 (acces$
vi{a' =v9}.a,0 — wvia,0 a #a (skip)
B>b,o — B,o ifbe B (memcheck
BiANBy,0c — BiNBy,o (intersecy
BiVBy,o — BiUBs,0o (union)

By © By,0 — Bi\By,0 (difference
%wB,o — Af.)g.f(B),o ifbe B (memtesty

%wB,o — Af\g.g(B),o ifb¢g B (memtesth

Elel,oc — El¢],0’ ife,oc — ¢, 0 (contexy

Figure 3.2: Operational semantics fanl;

syntactic sugar:

(3ve) 2 (e30)
(Aerea) £ (e1 Aeg)
(Verea) = (e1 Veg)
(Geres) = (e20e1)

3.1.2 Operational semantics

The operational semantics finl; is given in Fig. 3.2. As is the case for the core
HM(X) system, it is defined as a relatiem on pairse, o, where storeg and operations on stores
are as defined in Chapter 2. Sineal; will be defined as an instance of HM ), this incorporation
of state into the language is trivial.

The reflexive, transitive closure e# is denoted—*. Stuck expressions and going wrong
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T o= a,f,... |7 |{r}|{7}|l:T; 7|07 | Tref|c types
c == +|—-|T|1L constructors
C == true|CAC|3a.Clt=7|7<7]|ifc<7thent <7 constraints

Figure 3.3: RS grammar

are as defined in Chapter 2. The operational rules\fggare relatively straightforward, with each

operation defined as one might expect.

3.2 The type constraint systenRS

We define the type system fpil; via instantiation of the HNIX') framework discussed
in Chapter 2; in this section we define the constraint systdnthwparameterizes that instantia-
tion, called RS. The system RS comprises row types and donditconstraints. Following the
guidelines specified in Definition 2.7, the definition inaksdhe type and constraint language itself
(Sect. 3.2.1), together with its logical interpretatioraimodel (Sect. 3.2.2 and Sect. 3.2.3).

3.2.1 The type and constraint language

The syntax of types and constraints is defined in Fig. 3.3. shiméax contains language
for expressingecord andsettypes (hence the name RSedrds and &s).

To describe the contents of sets and records, weayse Row types are built up using the
usual constructors, includingr which specifies that all fields not otherwise mentioned invaliave
typer. In Fig. 3.3 and henceforth, we létange over elements df,U L,. The original presentation
of rows [30, 32] includes an equational theory, which in jgatar allow rows to commute. Here
these equations are not axiomatic, but rather they hold asudtrof the interpretation defined in
Sect. 3.2.3.

Record types are built up from row types using the record gguestructor{-}. Set types
are also built up from a particular form of row types, using #et type constructdf- - -}. These
particular row types are built up fropresenceconstructors, which specify whether a given element
may be present in a set-J, may not be present in it«), may or may not appear in itT(), or
whether this information is irrelevant, because the setfiis unavailable () (NB: 1. and T here
arenot the same as the “top” and “bottom” types in non-structurditgping systems!). This form
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a €V T : Type 7,7 : Type 7 : ROWT) o 7 : RowWc¢)»
a:k T ref: Type T — 7' : Type {7} : Type {-7-} : Type
T : Type 7 :Con
— —_— c: Con
01 : ROW(T) 4 ot : Rowc) g
7 :Con b¢ B T Row(c) pugn T:Type a¢& A T’ ROW(T) Aufa)
(b:7; 7') : Row(c)n (@:7; 7"): ROWT) A

Figure 3.4: Type kinding rules for RS types

FCh, Cy FC .7k
F true FCi ACy FJda.C Fr=1
Fr<t!
7 : Con FC 7,7, 7" : Row(c) g
Fif ¢ < 7 thenC Fif ¢ < 7thent’ < 7"

Figure 3.5: Type kinding rules for RS constraints

is enforced by the kinding rules, defined below. We will alefink a succinct, more readable form

of set types in Sect. 3.2.4, which are defined as syntactiardagthe primitive form. A significant

conseguence of this primitive definition of set types, aadpduilt up from a specific kind of rows,

is that set types can be soundly implementedesyseof existing row type implementations.

The constraint language of RS offers standard equality abtyping constraints, as well

as a form of conditional constraints. To ensure that only mmegdul types and constraints can be

built, we equip them wittkinds defined by:

k ::== Con| Row(7)4 | Rowc) s | Type

where A ranges over finite subsets of field labélg and B ranges over finite subsets of set urele-

mentsL,. Row kinds are parameterized byor ¢, specifying whether they describe the contents
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of a record or a set, respectively. For every kindve assume given a distinct, denumerable set of
type variablesV;,. We usex, 3,1, . . . to represent type variables. From here on, we consider only
well-kindedtypes and constraints, as defined in Fig. 3.4 and Fig. 3.5. pungose of these rules

is to guarantee that every constraint has a well-definedprg&tion within our model, defined in
Sect. 3.2.2.

3.2.2 The model

The model for RS is constructed by associating with everg kin mathematical structure
denotedk]. Each of these structures contain elements which can bemafty described aground
types— that is, type variable-free types— of the relevantkiWe denote these elemertsEach
structure[£] is equipped with gartial ordering < of its elements. Accordingly, the ordering on

each[k] is transitive and reflexive, so the following inferences axematic for all7:

~ ~ ~! Al
T<T T <T

>
IN
BN

~ ~1
T<T

The model is explicated for eadk] as follows:

[Con|: The elements ofCon] are contained in the sét-, —, L, T}. As is made clear
by the full definition of our model, continued below, the duaeristics of the orderingt over the
model is determined by the definition gf over[[Con|; if we define< over[Con] as equality, then
< is an equivalence relation over the entire model- that isy each[k]. On the other hand, we
may choose between two subtype orderings ¢@am|, the first omitting the constructors and_L

and axiomatized a$ < —, the second axiomatized as follows:
1<+ 1< - +<T - <T

In other words, these orderings generate the followingclkest
/N
+ —
\L /

The second ordering will allow a sound use of conditionalsti@ints in a typing of,.. It would also

T and
+

allow a sound use of conditional constraints to type a fuperal difference operation, as in [38].

However, there is no necessity for such an operation in tigisis. By choosing these orderings, we
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p(7 ref) = p(7) ref p(r = 1') = p(1) = p(7')
p({}) ={p(1)} p({-7}) = {-p(r)}

p(:7; 7)) = p() pller; 7)) =p(r')(l)  (L#£1)
p(07)(€) = p(T) plc) =c

Figure 3.6: Type-to-kind assignment definition

generate models of structural, atomic subtyping. Note thell although the symbols and T are
used, the reader should not be misled into thinking thatishésnon-structural subtyping system.
[Row(T) 4] and[Rowc)g]: Given a finite set of labelsl C L£,, [Row(7) 4] is the set
of total, almost constant functions frofy,\ A into [Typd]. (A function isalmost constanif it is
constant except on a finite number of inputs.) In shiRdw(7) 4 is the kind of rows which dmot
carry the fields mentioned id; Row(T)4 is the kind of complete rows. SimilarljRow(c) 5] is
the set of total, almost constant functions frdiy\ B into [Con], so thatRow(c) 5 is the kind of set
types which danot carry the fields mentioned i, andRow(¢) is the kind of complete set types.
The ordering< is extended inductively tfRow(c) 5] and coinductively witH Typd to [Row(7) 4],

pointwise and covariantly, as follows:

7,7 € [ROWT) 4] Va € L\A.7(a) < 7 (a)

7,7 € [Row(c) 5] Vb € L)\B.7(b) < 7 (b)

[Typd: The elements of Typd are contained in the free algebra generated by the con-
structors—, with signature[Typg x [Typd — [Typd], and{-}, with signature[Row(7)s] —
[Typd. The ordering< is coinductively extended witfiRow(7) 4] to [Typd by treating the con-
structor — as contravariant in the first argument and covariant in tleersé, and by treating the

constructors -} and{- - -} as covariant; that is:

=
(VAN
>

H<hH o < P<7

71— To < T — T {7} < {#'} {7

>
—
(VAN
-
=
—

This completes the definition of the model.
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pt C pt Cy p=7p"lq] P FC

p - true pHCiNCy pF Ja.C
p(1) = p(1") p(1) < p(7") c<p(r)=pkr <7
pFT=1 pFT <7 pkif ¢ <7thent’ < 7"

7,7, 7" : Row(c)p Vb e Ly\B . (¢ < p(1)(b) = p(7")(b) < p(7")(b))

pkif c < 7thent’ < 7"

Figure 3.7: Interpretation of constraints

3.2.3 Interpretation in the model

We may now give the interpretation of types and constrainthinvthe model. It is pa-
rameterized by amssignmenp, i.e. a function which, for every kind, mapsV, into [k]. The
interpretation of types is obtained by extendimgo as to map every type of kindto an element
of [k], as defined in Fig. 3.6. Fig. 3.7 defines the constraint satisih predicate + -, whose
arguments are an assignmenand a constrain€. (The notationp = p’ [a] means thap andp’
coincide except possibly on.) These rules are not particularly surprising, except ¢hibst in-
volve conditional constraints of the formf < ¢ thent’ < 7", wherer is a set type; we call these
complexconditional constraints. The meaning and utility of compdenditional constraints will
be demonstrated in subsection 3.3.2. Constramtailmentis defined as usualZ I+ C’ (read: C
entailsC") holds iff, for every assignment, p = C impliesp - C'.

We refer to the type and constraint logic, together with niteipretation, as RS. More
precisely, we have defined two logics, whetds interpreted as either equality or as one of two

non-trivial subtype orderings. We will refer to them asRRS<!, and RS2, respectively.

3.2.4 Abbreviated set types

Although the set types defined in previous sections are egwes and the form of their
contents as kinds of row types allows re-use of existing @m@ntations, an abbreviation of their
form is possible— in fact, we may define the readable, suttype form presented in Chapter 1 as

syntactic sugar for primitive set and row types. Each fieldr is shortened tér. We also define
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abbreviated row type constructaesandw, specifying that all elements not otherwise mentioned in
a row are absent or present, respectively. For example ethgs r2} will be one (and the only)
value of type{r,+, ro+, @}. Formally, the grammar for abbreviated types is defined bs/s:

¢ == {¢}|brc|lwl|@|p abbreviated set types

The interpretation of abbreviated typgs) as primitive types is defined as follows:

({}) = {:(<D}
(br,c) = (b:7; (<))
(@) = 0—
(w) = 0+
By = 8

We say that an abbreviated typés well-kinded iff (<)) is, and we writep(s) to denotep((<)). In
the presentation of the type system fanl;, we will use abbreviated set types for a more succinct
and readable presentation; however, we note that theiritiefiras syntactic sugar for primitive
types allows for an implementation that re-uses existingtsgoe implementations.

For brevity, we also define the following shorthand for gartiows; however, we note
that this is a convenience for this presentation, not a gega@ddition to the type machinery per se.
Letting B = {ry,...,m}

(BC) é (7”] G- 7Tnc)
(Be) £ (rici,+yTncn)
(BY) & (rivi, - ,TnYn)

So for example{B+,2} = {ri+,---,r,+,9}. When considering subtyping relations over
variable-free terms, we may also use rows themselves gpanticomplete) to denote their rep-
resentatives in the model, e.g. we may asBert< R— in RS!; see especially Lemma 3.5.

3.3 Types forpmly

To define a type system fgnml,, we instantiate HNIX ) with one of RS, whererel
ranges ovef =, <}, and postulate records, sets, and associated operationg,waith their seman-
tics, as extensions of the core HM) language. We also define initial type bindings for these

46



extensions, which we prove sound. This obtains a sound tygiera forpml;— more than one, in
fact, since our choice afel results in either a unification- or subtyping-based system.

3.3.1 Constants and initial type bindings forpml 5

To begin our conception gfml; as an extension of the core HM) language, we pos-
tulate the constart }, and the families of constants- and-{a = -}. The constants gfml;, along
with their initial type bindings, are then specified in Fig8 3with the exception of,. For this con-
stant, we provide two alternative bindings, defined in Fi§: e first is less accurate, requiring the
branches of the membership test to have an identical types&bond is more expressive, allowing
different types in each branch, but requires the use of ¢iom@il constraints.

Additionally, we must define initial types for records. Th#saccomplished with the
following definition:

Definition 3.1 Letv— range over record-free values. Then the initial type bigdinf records are

inductively defined as follows:
e {v}:{07}, wherev: 7in ST
e vi{a =wv9}:{a:7; Oro}, Wwherev, : {a: 7{; O} andvy : 7y In S©

The initial bindings for records, record operations, sdinilgons and membership check
are easily understood. The bindings for all other set opmraitcontain conditional constraints; their

meaning is more subtle, and is discussed in the following@®c

3.3.2 Bindings with complex conditional constraints

As is evident in Fig. 3.8, we make extensive use of complexditimmal constraints to
provide accurate types for set operations. To demonstiatbeghavior and usefulness of conditional
constraints in application to set operation types, we diegfollowing example. Let the sef$; and
B be defined as follows:

Bl - {blab23b3}
BQ - {blab23b4}

Suppose then that we wish to type the expres$iem B,, using the unification-based constraint
system RS. Given the typing fo\ defined in Fig. 3.8, the variablgs and S, will be unified with

a7



the types of the contents éf;, and B,, respectively:
B = (bit+,ba+,b3+,9)
B2 = (bi+,by+,by+, @)

Additionally, 83 will be unified with a type that is “splittable” into the apgmaate form for the
expansion of the complex conditional constraint in the typea:

Bs = (biy1,b2y2,b3y3, baya, B)

Then, given the rules for complex conditional constrairgfreed in Fig. 3.7, the constraiat in the
type of A can be expanded as follows:
Cc = if — <+then— <~y A if + < +then+ <y
ANif — < +then— <y A if + < 4+ then+ <,
ANif — < +then— <3 A if + < 4+ then— <3
ANf — < —then— <4 A iIf + < —then4+ <y
ANif — < atheng <A If+ < @thena <pj

This expansion will force the following unification:

Bs = (bi+,ba+,b3—.by—, D)

Bs = (bi+,bo+,2)

And this in fact is the type ofby, b2}, and By A B, evaluates td by, by }.

3.3.3 Type soundness fopml

Given the previous development, we may now define the typesyforpmly. In fact,
we may succinctly define four distinct type systemsyfarl;, with varying degrees of expressive-

ness:

Definition 3.2 (pmly type systems)Let A; (resp. Ay) be the initial environment containing alll
bindings specified in Fig. 3.8, and binding (1) (resp. (2)) fpas specified in Fig. 3.9. Then for all
i € {1,2} andrel € {=, <;}, the type syster§i/* is obtained by extendingM(RS™) with A; as
the initial binding environment.
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{-}
fa =

v

=)

Va.ao — {0a}

Vajagfda:ar; B} — ag = {a: az; B}

Vapla:a; f} -«
{B+ 2}
{B—, w}
va.{b+, 8} — {b+,8}
V618283[C]{B1} — {B2} — {Bs}
whereC = if — < 3 theno < 35
A if + < By thenfy < fs
VP1B285[Cl B} — {B2} — {Bs}
whereC = if + < j; thenw < f33
N if — < By thenpy < B3
V618283[C]{B1} — {B2} — {Bs}
whereC = if + < g thena < g5

N if — < By thenBy < B3

Figure 3.8: Constants and initial type bindings fonl 5

soundness fopmly in eachS!:

diverges or reduces to a value.

The advantage of using the HM ) framework for defining theml; type systems is
now made evident by the proof of their soundness. The onleféat necessary is to prove sound-
ness of the initial type bindings in eacky with respect to the operational semantics of phel 5
language constants, the so calletypability property (Definition 2.6). The proof @ttypability is
delayed until the next section, to maintain the flow of this.o@ivend-typability (Lemma 3.5), the
soundness of RS, and results demonstrated in Chapter 2, we now may imméylialain type

Theorem 3.1 pml, Progress) If e is apml, expression which is well-typed &/, thene either

Proof. By Definition 3.2, Lemma 3.5, Definition 2.7 and Lemma 2.10.
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(1) % Vapy{by,B} = ({b+,8t = ) > ({08} 2 a) > a
(2) % o Vapy[Cl{by, B} = ({b+,51} = 1) = ({b—. B2} = a2) = «
whereC = if + <~vtheng < 5 A if — <~vytheng < 5,

A if + <~ thenay < aA if — <~vythenas < a

Figure 3.9: Binding options fot;

Theorem 3.2 pml; Type Safety) If e is a pml, expression which is well-typed iﬁf‘”, thene
does not go wrong.

Proof. Immediate by Theorem 3.1. 0

A consequence of Theorem 3.2 is that certainl; runtime optimizations may be ef-
fected. For example, this result implies that all membershieckss, may be removed at runtime
from a well-typed program. This property is verified by thidaiing result, which follows by type
soundness:

Corollary 3.1 Let~ be defined as~, but with the memcheck rule redefined2s b ~ B; that

is, no runtime membership checks are performed. Suppisseell typed; there ~* v iff e =* v.

3.3.4 /H-typability for pmlg

The statement of-typability (Definition 2.6) requires that each functioma@ahguage con-
stant bej-defined as a function of one argument, so to state thides forv, A ande we posit the
subprimitivesV g, Ap Vi andeg. Thed rules forpmly are then defined in Fig. 3.10, as are the
subprimitive type bindings which we add to eath. Note that this construction is made solely for
our conception opml, as an instance of HIX ); subprimitives are called such because they are
not made visible to the programmer.

We begin by stating some Lemmas that describe unsurprigiogepties ofpmly type

judgements for records and sets.

Lemma 3.1 Letwv be a closechmly value. IfC,T + v : {a; : 71; 7'} holds inS™, thenw is a
record of the form{v,} or v'{a; = v} --{a, = v,} andC, T - vy : 7.
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S({ho) = {o)
d({a="-}v) = Arw{a=ux}
Safo}) = o
d(-.a,v{a=uv2}) = w9
d(-.a,v1{a' =v2}) = 4(-.a,v)
0(V,B) = Vg
§(V.B) = Vg
d(A,B) = Agp
S(N,B) = op
iy(e,B) = op
8(e,B) = Ap
0(Vp,,B2) = Bi1UBy
§(Vg,,B2) = BiUBs
d(AB,,B2) = BiNDBy
d(em,,B2) = By\B
0(%,B) = AfAg.f(B)
0(?%,B) = AfAg.g(B)

beB
b¢ B

Vg

AB
oB

VBy{BY,8} = {B+,5}
VBy{BY, 8} = {By,w}
vBy{B7, 8} = {B7, 2}
Vy64{By,8} = {B-,B}

Figure 3.10:0 rules and subprimitive type bindings fpml;

Lemma 3.2 Letv be a closedmly value. IfC,T' v : 7 holds inS!® and C' IF T < {c} for some

set type;, thenv is a setB andC I {B+,9} < rorvisacosetB andC I+ {B—,w} < 7.

Lemma 3.3 If C,T' + B : {B'+,7} holds inS/* thenB’ C B.

The following Lemma allows us to characterize the resultsedfunions, intersections and

differences, and like the previous Lemmas, will be usefulpimving é-typability.

Lemma 3.4 Let s be either a seB or a cosetB; then if C,T" + s : {B’¢, 7} holds inS!* then so

doesC,T +sUB': {B'+,7r}andC,T'+ sN B’ : {B'¢,z} andC,T + s\B': {B'—, 7}.

Now, we may prove the central result of this section, by casdyais on language con-

stants, including subprimitives.
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Lemma 3.5 pmly is d-typable inS7e.

Proof. SinceA; is similar for each oiS‘Z?“el , We can prove-typability with respect to each system in
a similar manner. Suppo$e ' +c: 3 — »andC,T F v : ;. Then by Lemma 2.6 and definition
of eachA,, for all cases ot except?, in 825 (to be treated separately), we have a subderivation of

the following form in each systeid!®, wherep = [7/al:

Ai(c) =Va.r| — 7

C,I'kc:Va.r — 7

C.TEc:p(r) = p(ry)  Clo(r) = o) <1 —n

Cl'ktec:mm —>mn

To show thati(c, v) is defined and’, T' - §(c, v) : 79, we proceed by case analysis@an

Case-.a;. Inthis casep = [7/«, 7'/p] so thatp(r{) — ¢(7)) = {a1 : 75 7'} = T,
hencer; = {a; : 7"; 7"} such thatC I 7" < 7, and alsaC' I+ 7 < 79, by properties oK. But
sinceC, T - v : 7, by assumption, thereforeis a record of the fordv; } orv'{a, = v1} -+ {a, =
vn} andC,T' vy : 7, by Lemma 3.1. Thu§(-.a,,v) = vy by definition, and sinc€' I+ 7" < 7
by transitivity of <, we haveC,T" - §(-.aq,v) : 79 in this case by 8B.

Cased-} and-{a = -} follow by definition of ¢;.

Case>;. In this casep = [7/f] so thaty(r]) — ¢(15) = {b+,7} — {b+, 7}, hence
Clkn <{b+,7} andC I+ {b+,7} < 75 by properties of<. But then by Lemma 3.2 we have
thatv is a setB, and sinceC.T' - v : {b+, 7} by assumption and &, by Lemma 3.3 we have
that {b} C B, henced(3;,v) = v by definition. ThusC,I" - dé(c,v) : 7 by assumption, and
C I+ 7y < 7y by transitivity of <, henceC.T' I d(c,v) : 79 in this case by 8B.

CaseV . In this casep(7]) is a set type by definition of each;, therefore by properties
of < and Lemma 3.2 we have thais a setB’, so that)(V g, B') = B U B’ by definition. Thus, we
havey = [¢/7,7/8] andg(]) — ¢(m5) = {B¢, 7} — {B+,7}, whereC |+ 71 < {Be, 7} and
C I+ {B+,7} < 1 by assumption and properties ¢f But thenC,T" - B’ : {Be, 7} by SuB, so
C,T'+ B'UB: {B+,7} by Lemma 3.4, s@I' - i(c,v) : 7o in this case by 88.

CaseV ;. In this casep(77) is a set type by definition of each;, therefore by properties
of < and Lemma 3.2 we have thatis a setB’, so thati(V 3, B') = B U B’ by definition. Let
B, = BN B"andBy; = B\B; andB; = B'\By. ThenB,, By and B3 are mutually disjoint and
B = By UByandB’' = By U Bs. Thus, we have thap(r{) — ¢(r) = {B1¢1, Baca, Bscs, 7} —
{Bi¢1, Bycy, Bs+,w} by definition of A;(V ). But sinceC,T' - B’ : 7, by assumption, and
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C I+ 11 < ¢(11) by properties oK, andC I+ {B1+, Bo—, B3+, 2} < 71 by Lemma 3.2, therefore
B+ < Byé andBy— < Byé; by properties oK. Further, since, T' - B : {B1—, By—, B3+, w}
by definition of A;, thereforeC,T' - BU B’ : {B1+, By—, B3+,w} by Lemma 3.4. But then
C,IT'+ BUB': {Bc, Bacy, B3+, w} by the above reasoning andi§, andC I+ o(74) < 75 by
properties of<, thereforeC, I" - §(c, v) : 79 in this case by 8B.

CaseAp. In this casep(71) is a set type by definition of each;, therefore by properties
of < and Lemma 3.2 we have thais a setB’, so thatd(A g, B') = B N B’ by definition. Thus, we
haveyp = [¢/7,7/p] andy(1]) — ¢(15) = {B¢,7} — {Bc, o}, whereC I+ 1 < {Be, 7} and
C I+ {Bé¢,o} < 1, by assumption and properties ¢f But thenC,T' - B’ : {Be, T} by SuB, so
thatC,I' - BN B': {B¢,o} by Lemma 3.4, henc€, T I §(c,v) : 75 in this case by 8B.

Casesg. In this casep(7]) is a set type by definition of eaeh;, therefore by properties
of < and Lemma 3.2 we have thais a setB’, so thati(cg, B') = B'\ B by definition. Thus, we
havep = [¢/7,7/p] andp(1]) — (1)) = {B¢, 7} — {B—, 7}, whereC IF 71 < {B¢, 7} and
C I+ {B—,7} < 15 by assumption and properties ¢f But thenC,I" - B’ : {Be, 7} by SuB, so
C,T'+ B\B:{B—,7} by Lemma 3.4, s@,T' I (c,v) : 75 in this case by 8B.

Casev. In this caser is a set type by definition ai; and properties of ELIM and SUB.
Then by Lemma 3.2 we have thais either a sef3 or a coset3, so the proof proceeds by subcases:

Subcase = B. In this subcase; = {Be, ¢} where B+ < Be¢ (considering subtyping
in the model for brevity) and < ¢ by Lemma 3.2. Alsop(7]) — ¢(75) is of the form{¢;} —
{sa} — {3} by definition ofA;, whereq; = (B¢, ') such thatBe < Be' ands < ¢’ by properties
of <. By definition of A;(V) and interpretation of conditional constraints we have= (B¢a, <))
andss = (Bes, <) such thatB+ < Bez, sinceB+ < Be < B/, andd), < ¢}, sinceg < ¢ < ¢'.
But thente = {Bcéa, 4} — {Bds, s} whereBéy < Beéy andgy < ¢ by properties of<, and
also Bes < Bes andgy < g5, again by properties o£. Now, sincev = B in this subcase,
therefored(Vv, B) = Vg, and byV ELiIMm we haveC,T" + Vg : {Bcs, 4} — {B+,<}. But
by the above reasoning we haye < ¢} < ¢} < ¢, and alsoB+ < B¢z < Bgs, therefore
C,T' + Vg : {Béy, 1} — {Bcs, 5}, i.e. C,T Vg : 75, so this subcase holds. Subcase B
follows in a similar manner.

CaseA. Inthis case is a set type by definition ah; and properties of ELIM and SB.
Then by Lemma 3.2 we have thais either a sef3 or a coset3, so the proof proceeds by subcases:

Subcase = B. In this subcase; = {Bc, <} where B+ < B¢ (considering subtyping
in the model for brevity) an@s < ¢ by Lemma 3.2. Alsoyp(7{) — ¢(74) is of the form{¢;} —
{sa} — {3} by definition ofA;, whereq; = (B¢/,<') such thatBe < Be' ands < ¢’ by properties
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of <. By definition of A;(A) and interpretation of conditional constraints we have- (Béa, )
andss = (Bcs, <) such thatBé; < Bes, sinceB+ < Be < B/, andg < ¢}, sinceg < ¢ < ¢'.
But thenty = {Bcéa, 4} — {Bds, s} whereBéy < Beéy andgy < ¢ by properties of<, and
also B¢z < Bcy and¢y < g5, again by properties o£. Now, sincev = B in this subcase,
therefored(A, B) = Ap, and byY ELIM we haveC.T' + Vg : {Bcs,u} — {Bcs,@}. But
by the above reasoning we haze < ¢} < ¢, and alsoB¢y < Béy < Bésg < Bes, therefore
C,T'F Vg :{Béy, s} — {Bcs,c}, i.e. C,I' - Vg : 75, so this subcase holds. Subcase B
follows in a similar manner.

Caseo. In this caser; is a set type by definition of\; and properties of ELim and
SuB. Then by Lemma 3.2 we have thais either a sef3 or a coset’3, so the proof proceeds by
subcases:

Subcasey = B. In this subcase; = {Be, <} where B+ < Be¢ (considering subtyping
in the model for brevity) and < ¢ by Lemma 3.2. Alsop(7]) — ¢(75) is of the form{¢;} —
{c} — {3} by definition of A;, wheres; = (B¢/,<') such thatBe < B¢’ ands < ¢’ by properties
of <. By definition of A;(&) and interpretation of conditional constraints we have= (B¢a, ¢5)
andss = (Bes, ) such thatB— < Bez, sinceB+ < Be < B/, andd), < ¢}, sinceg < ¢ < ¢'.
But thenty = {Bca,<a} — {Bdcs, s} WhereBey < Beéy andgs < ¢ by properties of<, and
also Bes < Bes andgy < g5, again by properties o£. Now, sincev = B in this subcase,
therefored(o, B) = ©p, and byV ELIM we haveC,T" + ©p : {Bés,u} — {B—,«}. But
by the above reasoning we haye < ¢} < ¢} < ¢, and alsoB— < B¢z < Bgs, therefore
C,T' g : {Bcy, 1} — {Bcs, 5}, i.e. C,T  ©p : 13, so this subcase holds. Subcase B
follows in a similar manner.

Case?;, subcaseS; . In this casep(r]) is a set type by definition af\;, therefore by
Lemma 3.2 we have thatis a setB andC I+ r, = {B+,@},soC,I' - B : {B+, 2} by SuB. Let
B' = B—{r};thenC I+ 79 = ({b+,B'+,6—} —» 7) = ({b—, B'+,0—} — 1) — 7 for somer by
definition of A;. Butthend(c,v) = Af.Ag.f(B) inthis case ib € B, andd(c,v) = Af.\g.g(B)in
this case ifh ¢ B. Suppose on the one hand that B; thenC,T' - Af.\g.f(B) : ({B+,0—} —
7) = ({b—,B'+,0—} — 7) — 7 is derivable by the type oB specified above, two applications
of ABs and an instance of @°, soC, I - §(c,v) : T holds in this case by @&. The result follows

in a similar manner it ¢ B. SubcaseslS follows analogously modulo subtyping coercions.
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Case?;, subcasess. Let:

VaBy[Dl.r = As(h)

¥y = [75/5,751/61,T52/,32,Ta/a’,,Ta]/(l’,l,Ta2/(J(2,(j/’)’]
= {be, 75}
Té = ({b+77ﬂ1} - Tal) — ({b_vTﬂQ} — Taz) — Ta

Then by Lemma 2.6 and definition &; we have the following derivation in this case:

Ay(?p) = Yapy[D].r

C,T'F 7y :VaBy[D].7 C Ik p(D)

C,TE? 1 — 7 Clkr =1 <1 =T

C,F"?})ZT]—>T2

By properties of< we have thaC I 7, < 7, so by Lemma 3.2 we have thatis a setB. and
C I+ {B+,2} < 7. Suppose on the one hand tlhat B; then sinceC I+ {B+,o} < 7] by
transitivity of <, it must be the case thét I + < ¢ by definition ofr]{ and<.

Now, since we've assumdde B, therefored(?,, B) = Af.\g.f(B) by definition. Let
7 = {b+,78} = 74 @and7) = {b—,73,} = 74,. ThensinceC,T' - B : 7; holds by assumption
andC IF 7 < 7| by properties of<, thereforeC,T" - B : 7| by Sus. Hence by Lemma 3.4,
C,T F B: {b+, 7, } is derivable, so the following derivation is valid & :

(T f g :m)(f) =7
C, (s f: T{’;g:Té/) "f:T{I C,I'-B:{b—, 713}

C,(T; f:m59:m) F f(B): 7,
C,(L;f:7m)FXg.f(B): 19 = «

C,TEAfAg.f(B):1 <78 =«

ButC IF 75 < 75, A 7o, < 74 holds sinceC' IF ¢(D) andC' I- + < ¢ by the above, therefore by
properties of< we have thaC' I+ 7/ — 7} — 7, < 7}, and alsoC I+ 7, < 19, SO by transitivity
of < and SuB we haveC,T" F i(c,v) : 7 in this case. Ifb ¢ B the case follows in a similar
manner. |
Although thepml ; subprimitives are not visible to the programmer, it is pbkesto imag-

ine them as syntactic sugar for partial application of theegel set operations, e.g.z £ AB; the
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following result demonstrates that the types remain cogsis This result will be useful in the next
Chapter.

Lemma 3.6 The following types are valid in ang’:

VB : VBy{By,B} = {B+, 8}
AB : Vpy{By,p} —{BY, 2}

Proof. We consider the type of B first. Lety be defined as follows:

v = [(B+,9)/b. (BY,B)/B2. (B+,0)/bs]

Then, givenA;(V) as defined in Fig. 3.8, with constrait
o(C) = if+ < (B+,9)then(B+,9) < (B+,p)
A if — < (B4, 9) then(By, 3) < (B+, )

Now, assuming thaB containsn elements and given the interpretation of constraints deéfine
Fig. 3.7, this constraint is equivalent to the following:

p(C) = (if+<+then+ < +)A--- A (if + < +then+ < +)

A (if + < o thena < )

A (if — < +theny; < +)A--- A (if — < +theny, < +)

A (if + < Btheng < B)

We may then assert thatue I+ ¢(C): clearly, each constrair(if + < + then+ < +) holds for
any assignment, as doé$ + < @ thena < ) vacuously. Furthermore, each constraint of the
form (if — < 4 then~; < +) holds vacuously for any assignment; and, for any assignofehthe
constraintd < S must hold, hence the constraifit + < 5 theng < ) holds for any assignment.
Thustrue I- ¢(C) is valid, so by rules ©NsTandV ELIM we have the following derivation:

true, @ =V : Ai(V) true IF ¢(C)

true,@ Vv : {B+,0} = {By,8} = {B+,5}
Furthermore, by rules @NsTand App, and sincdrue = true A true we have:

true Atrue, @+ Vv : {B+,8} - {B%,8} = {B+,6} true Atrue, @ + B : {B+, o}

true Atrue, @ - VB : {By,8} = {B+, 5}
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Finally, byV INTRO we have:

true Atrue, @ - VB : {By,8} = {B+,} By Nfv(true Atrue, @) = @

true A 3p7.true, o - VB : Vpy[true].{ By, 8} — {B+, 5}

Therefore, sincérue = true A 357.true and:
Vpyltrue) { By, B} = {B+,8} £ VBy.{B7,8} = {B+,5}

the Lemma holds in this case. The Lemma with respegtBcand BS follows in a similar manner.
0

3.3.5 Type inference

Recall from Sect. 2.4 that for any instance of KK, it is sufficient to definggen and
normalize functions that satisfy the specifications laid out in Deifoms 2.12 and 2.14 to ob-
tain type inference. For the systerﬂﬁl, the definition of thegen function is trivial. To define
normalize, it is sufficient to turn to previous work to obtain a satistag procedure.

In [31], a method of row type unification is defined. In [24],ubs/ping constraint solu-
tion algorithm is defined that treats conditional constihus, the HNLX ) inference algorithm
can be instantiated with the method described in [31] toinbtgec type inference irS;-. The al-
gorithm can be instantiated with the method described ihf@ébtain Asec type inference inS‘ZS,
andS; with subtyping interpreted as equality. Since these metiade been proven correct in the
cited texts in a manner that complies with Definition 2.14rrect type inference for the systems
Srel is an immediate consequence— another manifest benefit efseunf HM X).

Using our OCaml implementation of the HM) type inference algorithm in the ap-
pendix, theS; type inference algorithm may be implemented via the module:

Hm = Hx. Make( GroundSi g) (System) (Primitives)

whereGr oundSi g is an implementation of core H\X ) types, andy st emis a unification-based

constraint system with solution algorithami f y, with:
constrain node term= unify node term

The modulePrimi tives is an implementation of the initial type bindings b, defined in
Sect. 3.3.1. The definitions @ oundSi g, SystemandPri m ti ves are not included in
the Appendix, but are available onlinetett p: / / www. c¢s. j hu. edu/ ~ces/ t hesi s/ i npl/

i ndirect.
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Chapter 4

Types for Access Control, Revisited

In this chapter, we return to our consideration of a statipreach to stack inspection-
style security, first discussed in Chapter 1. X language introduced in that chapter is here
extended and recast into a more technically appealing foatted Asec In particular, we do away
with explicit stacks, using appropriately defined evalmattontexts to implicitly represent security
information.

The type system fokgeo including soundness results, is obtained via transfaomanto
thepml; language that preserves the meaning of programs. This agipadlows a proof of sound-
ness for the\sec type system to be derived from type soundnessriti;, conserving significant
proof effort compared to aab initio approach. This approach also allows re-use of the set types

presented in Chapter 3, including existing implementation

4.1 Thel)seclanguage definition

We now formally define théseclanguage. Syntactically, the language is much the same
asiec, but is simplified and extended with some new constructs. SEmeantics is presented in a
significantly different manner, without any explicit stag&finitions; however, we demonstrate that
the language presented in Chapter 1 may be embedded in #feeztlanguage, showing that this

simplified specification accurately reflects the JDK 1.2 ienpéntation, since it subsumag, .

4.1.1 Syntax

The Asec grammar is defined in Fig. 4.1. Stacks and related constriiets function

closures and framed expressions, are unnecessary. Fajjdwaiurnet and Gordon [9], we redefine
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re R, RCR resources

p € P, P C P,whereP = 2% principals
vo=z | fixz e f values
ex=v|ee|letz =eine | enablerine | checkrthene | expressions

testrtheneelsee | f

fu=pe signed expressions

E:=[|Fe|vE|lets =Fine|enablerink | p.E evaluation contexts

Figure 4.1: Grammar fokgec

the set oprincipalsP as the powerset &@— that is, we identify a principal with the set of resources
to which it has access. We us@and P to range over principals and over sets thereof, respegtivel
and writenobodyfor the empty privilege set, that is, for the principal with access rights.

As in the version of HMX) presented in Chapter 2, function definitions now contair a re
cursive binding mechanism, and we wrke. f to denotdix z.Az. f whenz has no free occurrences
in . We also add &t construct to the language, to set the stage for let-polyisnp.

In the Asec definition, we replace thelopriv, constant with expressions of the form
enablerine. Recalling thatopriv, is used in application to functions with a dummy argument,
expressiongnable rin e activater for the evaluation ot, and are thus a simplification dbpriv,
applications. We also define a new construct that allowslegetesting— that is, branching on the
presence or absence of a particular privilege: expressibiige formtest » then e, else e; evaluate
to e if r is active, andk, otherwise. This mechanism allowsecto reflect a common idiom in the
Java JDK1.2 implementation, where an exception resultiow fa failed privilege check is caught
and handled. As we will see in Sect. 4.4, using the typing nm&ch developed in the two previous
chapters allows us to treat this extension in a precise, g&bfe, manner.

Evaluation contexts foksecare also defined, and include ownership and privilege activa
tion information. This addition to evaluation contextoalk a redefinition of stack inspection that

infers stack-based security information from evaluationtexts.
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rep Skr Skr Skt Skt reEp

Spkr Sk Srkr S =t Sphkort

Figure 4.2: Backward stack inspection algorithm

nobody»,S-FR reR g, RNg,S+R p,RU{r}nNp),S+ R
p,R e R
Skr p,R.q.S+R p,R,7.S+ R

Figure 4.3: Forward stack inspection algorithm

4.1.2 Stack inspection

We now give a simplified specification of the stack inspecfoocess, by noticing that
stacks are implicitly contained in evaluation contextspsdngrammar is defined in Fig. 4.1. Indeed,
a context defines a path from the term’s root down to its actdex, along which one finds exactly
the security annotations which the JDK 1.2 would maintaithenstack, that is, code ownerand
enabled resources In Sect. 4.2, we will demonstrate that the explicit stadprction semantics
may be simulated in the implicit semantics.

To formalize this idea, we associate to every evaluatiortexdr¥ a finite string|£| of
principals and resources, callegtack The right-most letters in the string correspond to the most
recent stack frames. We writefor the empty stack and; .S, for the concatenation of the stacks
S, andSs.

Il =e [Ee|=|E|
lvE| = |E] letz = Fine| = |E|
lenablerin E| = r.|E| |p.E| =p.|E|

We can now define a new, “implicit stack” inspection algarith We give two variants of it, a
backward (Fig. 4.2) and a forward one (Fig. 4.3). The fornoans the stack, starting with the most
recent frames, then moving toward their ancestors. TherJaih the other hand, scans the stack in
the order it was built. Furthermore, its formulation is &dte so that it internally computes not only

whether access to a given resourcs legal, but also the set of all resources which may be Iggall
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accessed given the current stack. These algorithms area@fie® adazyandeager respectively, by
Gong [11]. While the former is employed by most current JVMplementations, the latter forms
the basis of the security-passing style [45] translatioictvive will introduce in Sect. 4.3.

The following theorem states that forward and backwardkstagpection are in fact equiv-
alent. Subsequently, we will writ& - r without specifying which of the two algorithms is being
used. We will also write? + r for |E| |- r.

Theorem 4.1 Assume given a stack and a resourcer. Let P stand for the set of all principals

that containr. Then, the following three statements are equivalent:

1. S F r holds according to the rules of Fig. 4.2;
2. S F r holds according to the rules of Fig. 4.3;
3. some suffix of belongs to the regular languageR*r(P | R)*.

Proof. We begin by proving that the first statement is equivalenhéothird one. First, check that
the auxiliary judgemen$ + r* holds if and only if some suffix of belongs toPR*. Then, check
thatS - r holds, according to the rules of Fig. 4.2, if and only if soruéfig of S belongs to the
regular languagé”R*r(P | R)*. Each of these checks is immediate.

We now prove that the second statement is equivalent to theedhe. LetA (resp. B,
resp.C) be the set of stackS such thaBR' 5 r p, R, S F R' for some (or, equivalently, for all)
p, Rsuchthap Zr AR Zr (resp.p >r AR # r,resp.p 3 r AR 3 r). Itis straightforward
to check that, according to the last three rules in Fig. 4,38 andC are the least solutions to the

following recursive equations:

A:=PB|(P\P)A| RA
B:=PB|(P\P)A|r.C|(R\{r}).B
C:u=¢|(P\P)A|(P|R).C

An inductive argument shows that C B C C holds. Then, through a few rewriting steps, one
can bring the equations into a form where it is evident thas exactly(P | R)*PR*r(P | R)*.
We do not give the details. In principle, the check can be rmeided by verifying that the minimal
deterministic finite automaton (over the 4-symbol alphghét R \ {r}, P andP \ P) associated
with this regular expression is exactly the one describethbyabove equations. There remains to
conclude by noticing that, according to the first rule in F@, S - r holds if and only ifS € A.

|
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4.1.3 Operational semantics

We define the operational semantics)@f, using implicit stack inspection, via the fol-
lowing reduction rules:

E[(fixz z.f)v] — E[f[v/z][fixz.Ax.f/Z]]
Elletz =vine] — FEle[v/z]]

E[checkrthene] — FEle] if £+
Eftestrthene; elsees] —  Eleq] if £E+r
Eftestrthene; elsees] —  Eles] if ~(EFr)

Elenablerinv] — E[v]
E[pwv] — Ev]

An evaluation context is a component of every rule, which allows inspection of iewmeeding

to perform security checks. Note that itnst the case that — ¢’ implies E[e] — E[¢/]. Indeed,
enclosinge within a new evaluation contexf may cause more or fewer privileges to be enabled,
changing the outcome of stack inspection.

The first two rules are standard. The next rule all@eck r then e to reduce inta only
if stack inspection succeeds (as expressed by the sidetioondi - r); otherwise, execution is
blocked. The following two rules use stack inspection inmilsir way to determine how to reduce
testrthene; else e5; however, they never cause execution to fail. The last tWesrgtate that
security annotations become unnecessary once the exprahgy enclose has been reduced to a
value. In the explicit stack inspection semantics of Chapiehese rules are implemented simply
by popping stack frames (and the security annotations thetamn) after executing a method.

This operational semantics constitutes a concise, forestription of Java stack inspec-
tion in a higher-order setting. It is easy to check that ewdosed term either is a value, or is
reducible, or is of the forn¥[check r thene] where—(E + r). Terms of the third category are
stuck they represent access control violations. An expressinsaid togo wrongif and only if
e —* ¢/, wheree' is a stuck expression, holds.

4.2 Simulating A\3..in Asec

In this section we demonstrate the,. can be simulated insee This result provides
confidence in the faithfulness af..to real implementations, sinc€,.was defined as a low-level

model of the JDK1.2 implementation.
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We begin by defining transformations froit,. expressions and evaluation contexts to
Asec€xpressions and contexts. The transformation is fairlyiaks; the principal novelty being the
treatment ofdopriv expressions, which ensures that the evaluatiofepin the transformation of

dopriv,.e is not accorded excessive privileges.

Definition 4.1 Letok = Az.nobodyz; then we define thas, -to-Asec€Xpression transformation as

follows:
[#2] = =
[pe]l = plel
Dz.e] = Az.]e]
[CCv, Aze)] = [(Az.e)]
[eres] = [ex][ez]
[dopriv,e] = letfiun = [e]inenablerin fun(ok)
[checkrthene] = checkrthen [e]

Definition 4.2 We define the3,to-\sec cONtext transformation as follows:

[(8,7.[D] = I
[(8,v,Ee)] = [(8,7,E)ller]
[(8,7,0E)] = [v]I(s, 7, E)]
[(S,v,dopriv,E)] = letfrun = [(S,7, E)]inenablerin fiu,(ok)
[((.p,off)::8.7,-E)] = p.[(S, (), B)]
[((+',p,on(r))::8,7,-E)] = enablerinp.[(s,(v;7), E)]

In the context transformation, stacks are analyzed from*tliside-in”. Since stacks
are LIFO data structures, this means that the “oldest” gidindings will be at the bottom of
the stack. Thus, while the context transformation decanirstacks in the usual manner, we will
apply the transformation to reversed stacks; see e.g. Defir.3. For this purpose, we define the

functionrev, where:

I"(-‘:V((’}/l,pl,fl)::- R ('Ynapnafn)::nil) = (<7napnafn>::' T <71ap1af1>::"”:l)

Now, we define ssimulationrelation <1, based on the transformations defined above. It
will be our task to demonstrate that this relation is presdrigetween an arbitrary computation in
)\S

secand its simulacrum ifksee
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Definition 4.3 The relation(s, e) < ¢’ holds iffs, e is well-formed, and there exists; ande; such
thate = F[ei] and[(rev(S), @, Eq)][[S(e1)]] = €.

Note that this definition allows, to a degree, an arbitrargich of £, ande;. This raises
the question, can &, configurations be simulated by more than org.expression? The answer
is no, the relationq is in fact a mapping from\3,.configurations to\secexpressions. However, we

must prove this fact; we begin by proving some useful progeitf the context transformation.

Lemma 4.1 The following properties hold:
1. If [E]e]] is defined, the frame depth Bfis 0
2. If[S(E[e])] is defined, thefiS(E[e])] = [(nil,env(S), E)][[S(e)]]

3. If E = Ey[Es] where the frame depth df; equals the length o, and [(rev(S),v, E)] is
defined, therf(rev(s), v, B)] = [(rev(s), v, E1)][[(nil, (; env(S)), £2)]]

Proof. Each assertion is treated individually:

1. Immediate by definition dfE[e]], since the transformation is defined only on unframed
expressions.

2. By structural induction or#. In the basis® = [], and sincg](nil,env(S),[])] = [],
therefore[E[e]] = [(nil,env(S), E)][[e]] = [e] in this case. The proof then proceeds by case
analysis on composit®, which excludes contexts of the for’- by assertion 1.

CaseF = E'¢’. In this cas€](nil,env(S), E)] = [(nil,env(8), E')][€¢'(env(S))], and
sinceEle] = (E'[e])e’ we also havdS(E[e])] = [S(E'[e])][S(e’)]. But by the induction hypoth-
esis it is the case thd8(E'[¢])] = [(nil,env(S), E")][[S(e)]], and[(nil,env(S), E)][[S(e)]] =
[(nil,env(S), E")][[S(e)]][e'(env(S))], and since:’(env(S)) = S(e’) ande(env(S)) = S(e) by
definition, this case holds.

The other cases follow in a similar, straightforward manmeihe induction hypothesis,
due to the tight correspondence of the term and contextftranations.

3. By structural induction ot; . In the basis we have thal = [], SOE;[Es] = Fy = E,
andsS = nil since the frame depth df; equals the length & by assumption, senv(S) = @ and
v;env(S) = ~. Butthen[(rev(S),~, E)]] = [(nil,~, )], and sincd(rev(S),~,[])] = [] therefore
[(rev(S),~, E1)][[(nil, (v;env(S)), E2)]] = [(nil,~, E2)], so this case hold. The induction step

proceeds by case analysis on composiie
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CaseF; = -Ej-, subcaseev(S) = (v, p,off) :: §'. In this case we hav®& = -E'[E,]-

and:

[((+',p,off) =8, v, E1)] = p.[(5,(v;7'), E1)]

[((,p,off):8" v, E)] = p.[(S', (v;7'), E1[E2))]

by definition and assumption. L&t = rev(8’); now, since the frame depth @f; is equal to the
length of S by assumption, therefore the frame depthHifis equal to the length d’, so by the
induction hypothesis we have that:

[, (v;7"), BV (nil, (v;+'s env(8")), B2)]] = [(S', (v; 7). Er[E2])]

But sinces” = rev(S’), andrev(S) = (¥, p, off) :: &', therefore(y; v'; env(8")) = 7;env(S), so
we have:
[, (v;7"): EDII(nél, (v; env(8)), E2)]] = [(S", (v;7'), B [E])]

which gives us:

p[(8", (vi"), EDI(nal, (v; env(8)), E2)]] = p.[(S", (vi '), E1[E2])]

therefore this case holds. The other cases follow in a simiknner by the induction hypothesis.
|
Now, we may prove the desired result, that the relatiois indeed a mapping; this will
have the advantage of allowing usdonstructsimulations, and be certain that this construction is

exhaustive.

Lemma 4.2 The relation< is a mapping from\$..configurations to\sgc€xpressions; i.e., {fs, €) <

¢ and(s,e) < €’ thene’ = €.

Proof. Let Ey, Ef, e; ande) be such tha# [e;] = E![e}] = e, and[(rev(8), @, E1)][[S(e1)]] =

e’ and[(rev(S),a, E})][[S(e})]] = €”. Assume w.l.o.g. that; = E[e}] for someFE, so that
E} = Ei[E]. Since[S(e1)] is defined, therefore the frame depth Bfis 0 by Lemma 4.1, so
also by Lemma 4.1 we have thi(e1)] = [(nil,env(S), E)][[S(¢})]]. Further, sinces, e is well-
formed by definition ofx and[S(e;)] is defined and thus, is unframed, therefore the frame depth
of E; equals the length of, so that[(rev(S), @, E})] = [(rev(S), D, E1)][[(nil,env(S), E)]] by
Lemma 4.1. Thug(xev(s), , E})][[S(e})]] = [(rev(s), @, B1)][[(nil, env(s), E)]I[[S(e})]] =
[(rev(S), o, E1)][[S(e1)]], soe’ = ¢€". O
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Next, we want to demonstrate that the transformation pvesesecurity information with
respect to stack inspection g, and A\sec This is accomplished with the following Lemmas,

followed by other miscellaneous results.

Lemma 4.3 Let|s| be defined as follows:

|nil] = €
(v, p,off):S| = [S|.p
[(y,p,on(r))=S| = [S|.p.r

Then it is the case thatspect(S, r) = true iff [S| - r.

Proof. Straightforward by definition afaspect, the backward stack inspection algorithm presented
in this Chapter, and induction on the length of the stack. 0

Lemma 4.4 If [(rev(S),v, E)] = E’, then|S| = |E'|.
Proof. Straightforward by definition of the translation and indanton . O
Lemma 4.5 If [(rev(S),y, E1)] = E5 theninspect(S,r) = true iff Ey - r.

Proof. Immediate by Lemma 4.3 and Lemma 4.4. 0

Lemma 4.6 [e]|[[v]/z] = [e[v/x]]

Proof. By structural induction ore. In the basis = z'; since[z'] = #/, if 2’ # z then we
have[e][[v]/z] = [e[v/z]] = «', otherwise[e][[v]/z] = [e[v/x]] = [v]. The other cases follow
trivially by the induction hypothesis. 0

Lemma 4.7 The following assertions hold:
1. If [(rev(8), 7, £1)] = E> then[(rev({y', p, off) ::S), v, Ex[[]])] = Ex[p.[]].
2. If [(rev(8),, E1)] = E2 then[(rev({(v',p,on(r))::S),v, E1[-[]-])] = E=2[enablerinp.[]].

Proof. Both assertions follow by a straightforward structuraluntion onk; . 0

Now, we may demonstrate a simulation result with regard ®siap of reduction ins,,

stated and proved as follows:
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Lemma 4.8 If (S,e.) < e; andS,e. — S, e, thene; —* ¢} such that(s’, e,,) < e.

7

Proof. By definition, any reductiors, e, — S’, e, can be taken as an instancecohtext where
e. = E1ler] andel, = Ey[e}] andS,e; — S, €] by a reduction rule other than context. The proof
then proceeds by case analysis on these rules:

Casevar. In this case we have, = z, €] = S(z) andS = S'. Letey, = [S(z)] and
E, = [(rev(S), @, E1)], so that(S, e.) < Ey[eq] by definition. But since rn@nv(S)) is a set of
closed values by definition, therefoeg = [S(S(z))], hence(s,el) <1 E3les] by definition, and
Esles] —* Esles] by reflexivity of —*.

Caseclosure In this case we have, = Az.e, | = C(env(S), Az.e) andS’ = S. Let
Ey = [(rev(8), @, E1)] andey = [(Az.e)(env(S))], so that(S, e.) <1 Fs[es] by definition. Further,
by definition of the transformation we have:

[C(env(S), Az.e)] = [(Az.e)(env(S))]

therefore(S, e,) < Fsles], andEsfes] —* Eqles] by reflexivity of —*, so this case holds.
Caseapp. In this case we hawg = C(v, A\z.p.e)v, ¢ = -e- ands’ = (y[v/z], p, off):: S.
Let By = [[(rev(S),a, E1)] andes = [C(y, Az.p.e)v] so that(s, e.) <1 Es[es] by definition. Then

by definition of the transformation we have:

[C(y, Az.p.e)v] = (Az.p.[e(v\z)])[v]

and by definition of\secreduction we have:

Ea[(Aa.p[e(\2) o] = Elp-[e(v\2)][[v]/=]]

But by Lemma 4.6 we havée(y\z)][[v]/x] = [e(y\z)[v/z]], and clearly[e(y\z)[v/z]] =
[e(y[v/x])]; further, sinceC(v, Az.p.e) is closed by well-formedness of configurations, therefore
e(vy[v/z]) = S'(e), so that[e(y[v/z])] = [S'(e)], hence:

Balp-e(y\2)[[[v]/x]] = Ealp.[[8'(e)]]]

and since by Lemma 4.7 we have tljatev(S'), &, E1[-[]]])] = E2[p.[]], therefore it is the case
that(s', el) < Ex[p.[[S'(e)]]], so this case holds.

Casedopriv. In this case:; = dopriv,C(y, A_.p.e), ¢| = -e- andS’ = (v, p,on(r))::S.
Let B = [(rev(S), @, E1)] andes = [dopriv,C(vy, A_.p.e)], so that(s, e.) < Esez2] by definition.
Then by definition of the transformation we have:

[dopriv,C(7y, A_.p.e)] = (let frun = A_.p.[ey] inenablerin fyu,(0k))
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and by definition of\secreduction we have:

Eslet frun = A_p.[ey] inenable rin fu,,(ok)]
N
Es[enablerin ((A_.p.[ev])ok)]
—

Eslenablerin (p.[ev])]

But by Lemma 4.7 we havf(rev(S’), @, E1[-[]-])] = E:[enablerinp.[]], so this case holds by
definition of <.

Casecheckpriv In this case we have; = checkrthene, ¢; = ¢ ands’ = 8, with
inspect(S,r) = true. Let By = [(rev(S),d, FE1)] andey; = [checkrthene], so that(s, e.) <

Es[es] by definition. Then by definition of the transformation we éav
[check rthene] = checkrthen [e]

and sincenspect(S,r) = true, thereforeF, + r by Lemma 4.5, so by definition ofsecreduction
we have:
Es[checkrthen [e]] — Es|[e]]

so this case holds by definition ef.

Casepop. In this case we have, = -v-, €} = v ands = (v,p,f)::8". Letey = [v], and
let By = [(rev(8'), @, E1)], so that(e;, 8') < Es[es] by definition. The proof then proceeds via the
following subcases:

Subcase = off. In this subcasé(rev(S),a, E1[-[]-])] = E2[p.[]] by Lemma 4.7, so
that(s, e.) < Ez[p.[v]] by definition, and by definition oksecreduction we have:

Es[p.[o]] — Ea[[]]

so this case holds.
Subcasd = on(r). In this subcaség(rev(S), @, Ei[-[]])] = E-[enablerinp.[]] by
Lemma 4.7, so thats, e.) < Ex[enable r in p.[v]] by definition, and by definition ofsecreduction
we have:
Eylenablerinp.[u]] =* Es|[v]]

so this case holds. O
We then extend the previous Lemma to arbitrary computaiions,.in Lemma 4.9. We

also demonstrate that the simulation preserves dynampepies of expressions in Lemma 4.10.
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Lemma 4.9 If (S, e.) < e; andS, e, —* §', e, thene; —* ¢, such that(s', el,) < e).

e’ 7

Proof. By Lemma 4.8 and induction on the length of the reductioe, —* ', el.. 0

Lemma 4.10 If (S, e.) < e; ande, is a value, then so ig;, if e, is not a value nor of the formz.e

thene; is not a value, and ifS, e..) is stuck then so is;.

Proof. If e, is a value then it is a closure, 8p = [e.] by definition of <, and the transformation
of a closure is a function, which is of course a value.

If e, is not a value nor of the formz.e thene; is not a value by definition of, since
only closures and expressiois.e are translated to values.

If (S,e.) is stuck there, = E[checkrthene| andinspect(S,r) = false Let E' =
[(rev(S), @, E)] ande’ = [checkrthene] = checkrthen [e], so that(s, e.) < E'[¢]. Then by

Lemma 4.5E' I/ r, SOE'[¢'] is also stuck. O

It is now possible to demonstrate the principal result of tséction, thatS,. may be

simulated in\geo iN a straightforward manner.

Theorem 4.2 (Simulation of AS..in Xsed If e evaluates ta then[e] evaluates tdv]. If e goes

wrong then[e] goes wrong. It diverges therfe] diverges.

Proof. Supposenil,e —* nil, v. We have thatnil, e) < [e] and(nil,v) < [v] by definition of<.
But [e] —* [v] by Lemma 4.9, anflv] is a value by Lemma 4.10.

Supposenil, e diverges. We have thatil, e) < [e]; suppose on the contrary that there
existsv such thatfe] —* v. But by Lemma 4.9 there must existsuch thatnil,e —* S, ¢’ and
(8,¢') v, and by Lemma 4.10 we have thatis either a closure or an expressidm.e”, which is
a contradiction, either outright or because \z.¢") evaluates.

Supposenil,e —* S, ¢’ ands, ¢ is stuck. We have thdtil, ¢) < [e] by definition. Let
(8,¢') < €”; thene] —* ¢" by Lemma 4.9, and” is stuck by Lemma 4.10. 0

4.3 Thelgesto-pmly transformation

Now, we move on to the translation afecinto pmly, defined in Fig. 4.4. The distin-
guished identifierss and _ are assumed not to appear in source expressions. Notice thay
appear free in translated expressions. Translating angiued) expression requires specifying the

current principalp.
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[z], = =
[fixz A x.fl, = fixz. Az As.[f]
[erea], = [eilplealps
lletz =ejines], = letz = [ei],in[e2],
[enablerine], = lets= ({r}nNp)Vsinfe],
[checkrthene], = let_=s>rin[e],
[testrthene; elsees], = 7,7 (As.[Jer]p) (As.[e2]p)
/I, = 171
[pe] = lets=pAsinfe],

Figure 4.4:\sect0-pml 5 transformation

One will often wish to translate an expression under minihgdotheses, i.e. under the
principal nobodyand a void security context. To do so, we defirg) = [e[lnoboay@/s]. Notice
thats does not appear free {re)). If ¢ is closed, then so ige ).

The idea behind the translation is simple: the variahilebound at all times to the set of
currently enabled resources. Every function acceptsan extra parameter, because it must execute
within its caller's security context. As a result, every &tion call hass as its second parameter.
The constructgnable r in e andp.e causes to be locally bound to a new value, reflecting the new
security context; more specifically, the former enablewhile the latter disables all privileges not
available top. The constructgheck r then e andtest r then e else e; are implemented simply by
looking up the current value &f In the latter,s is re-bound, within each branch, to tiemevalue.
This may appear superfluous at first sight, but has an imgartgract on typing, because it allows
s to be given a different (more precise) type within each binanc

This translation can be viewed as a generalization of Walasecurity-passing style
transformation [45] to a higher-order setting. Whereasl&¢hl advocated this idea as an imple-
mentation technique, with efficiency in mind, we use it ordyaavehicle in the proof of our type
systems. Here, efficiency is not at stake: it is sufficient tha translation scheme be correct. The

next section is devoted to proving this fact.
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4.3.1 Properties

A basic property of the translation is thahever appears free in the translation of a value.
Furthermore, the translation of a value does not depend ®muhrent principal, so we writgv]]
instead offv],,.

Since Asec has no state, we are concerned only with the state-free sobgenl; in
this Chapter, and so define the syntactic sugas ¢ £ ¢,@ — €', @ for pmly reductions, for
brevity. For the purposes of our proofs, we need to isolatartiqular sub-class of target language
reductions, which we wish to view as “administrative” (inense to be explained later). Let.

be the subset of>* defined by:

a = R|RVa|RAa
lets =aine —. e[R/s] ifa >* R
Ele] —. E[€] ife—>. ¢

Our first lemma expresses the fact that the translatigplementghe forward stack in-
spection algorithm of Fig. 4.3. It states thapifR, £ - R', then evaluating E[e]], in a context
wheres is bound toR leads to evaluatinge],/, for somep’, in a context where is bound toR'.
Furthermore, this is a purely administrative reductionusse. That is, it only affects the security
context, and does not reflect any computational steps appar¢he original program. The proof
of the lemma presents no difficulty, because of the closelaiityi between the definitions of the
translation function and of the stack inspection algorithm

Lemma 4.11 Assumey, R, S + R’ and S = |E|. Then, there exist a (target) evaluation cont&kt

and a principalp’ such that, for every source expressign
[Ele]lp[R/s] =% E'llely[R'/s]

Proof. By induction over the structure df. Let# andé’ stand for the substitution?/s] and
[R'/s], respectively.

CaseE = [. Then,S = e andR = R'. Thus, pickingE’ = [] andp’ = p trivially
satisfies our requirement.

Casel = Fje;. Then,

[E(e]],0 = [E1[e]],6 [ed],0 R

Furthermore, the induction hypothesis, appliedftg yields £} andp’ such thaf £ [e]],0 —%
E![[e]»0"]. So, pickingE’ = Ej [e1],0 R fits the bill.
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Casel’ = v F4. This case is similar to the previous one. Apply the inductypothesis
to obtain£] andp’. Then, pickE’ = [v] E} R. (E' is indeed an evaluation context, becafiseis
avalue.)

Casel = letx = E;iney. This case is also similar. Apply the induction hypothesis t
obtain £} andp’. Then, pickE’ = letz = E} in[ei],0.

CaseE = enablerin E;. Then,S = r.S1, whereS; = |E;|. Thus, fromp, R, S + R/,
we may deduce, R, S; - R’, whereR; stands forR U ({r} N p). Definet, = [R;/s]. Then,

[Ele]]l,0 = lets=({r}np)V Rin[Ee]],
—~  [Eile]lpbh

Applying the induction hypothesis t&, yields £}, p' such thafE, [e]],01 =% E}[[e],¢']. So,
picking £’ = E' meets our goal.

CaseE = p;.E;. Then,S = p,.S1, whereS; = |E;|. Thus, fromp, R, S + R’, we may
deducep;, Ry, S1 F R', whereR; stands fop; N R. Definef; = [R;/s]. Then,

[Ele]],0 = lets=pi ARIN[E[e]]p,
=~ [Erle]lp 04
Applying the induction hypothesis tB, yields E1, p' such thaflE: [e]],, 61 =~ Ei[[e],0']. So,
picking £’ = E' meets our goal. 0

We now come to our central lemma, stating that, if a sourceesgone leads, in one
computation step, to a source expressigrthen the translation afreduces, modulo administrative

reductions, to the translation ef.

Lemma4.12 ¢ — ¢’ implies(e) —* - 2+ (€').

~

Proof. Because: — ¢, e ande’ must be of the formE[eg] and E[ej], respectively. LetS = |E]|.
There exists a uniquR such thahobody @, S + R. Clearly, for any resource, E - r is equivalent
tor € R. Definef = [R/s]. According to Lemma 4.11, there exist an evaluation conf#xnd a

principal p such that, for any source expressign

(Ele]) =% E'[[e],f)]
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Assume, for the time being, th§d,],60 —* [e;],¢ holds. Then, we have

(e) = (Eleo]) —% E'l[eo]n0]
—=* E'[[ep]pf]
e (Eleg]) = (€')

which is the desired result. Hence, there only remains togfey[,0 —* [e;],6, which we will
now do, by cases on the form af ande,.
Casecy = (fixz.Az.f) v, ¢ = flv/z][fixz.Az.f/z]. Then,
leol,@ = [(fixz.Az.f)v],0
= ([fixz.Az.f] [v] s)0
(fixz. Az As.[f]) [v] R because cannot appear free in values

=% [flv]/=][fix 2. Az f]/2]0
= [flv/z][fixz.Az.f/z]]0 by a straightforward auxiliary lemma

= [eoln?

The auxiliary lemma mentioned above takes advantage oftiétfat the translation of a valije],

does not depend upon the parameteWe omit its proof.
Caseey = letz = viney, ej = e1[v/z]. Then,

leolp@ = [letz =vine],0

letz = [v]ine;],0 because is not free infv]
= [e]pfl[v] /2]
= [elp([v]/=]6

= [ei[v/z]],0 by the same auxiliary lemma
[et 1,0

Caseey = enablerinv, ey = v. Then,

leo],@ = [enablerinv],0 = lets=({r}Np)V Rin[v]
= vl =[]t
Again, we take advantage of the fact thatoes not occur free ifw].

Caseey = checkrtheney, e, = e;. We must havel + r, hencer € R. Then,

[eo]p0 = [checkrthene ], = let_=R > rinfe],0

=2 [ei],0 because € R
= [eo]pt
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Casee = testrthene; elsees. Then,e equalse;, wherei = 1 if E - r (or, equiva-
lently, if € R), and: = 2 otherwise. Thus, we have

[eo],0 = [testrthene; elseex], = 7?rr(As.Jei]p) (As.[e2]p)
=3 (As.[eilp) R
= [eilp0 = [eolnt

Casecy = p1.v, ¢ = v. Then,

leolpt = [p1-v],0 = lets=pi ARin[v]
2 o] = [ebl,0

Again, we take advantage of the fact thatloes not occur free ifiw],, and of the fact that this
expression does not dependmn 0

This result is easily generalized to reduction sequenceshitirary length:

Lemma4.13 ¢ —* ¢ implies(e]) —* - %+ (€').

~

Proof. By induction on the length of the reduction sequences* ¢’. In the base case, we have
e = €', and the result is immediate. In the inductive case, we have ¢; —* ¢'. By applying
Lemma 4.12, on the one hand, and the induction hypothesitheoother hand, we obtain

* *x %

(e) =* -+ (e1) = -+ ()

Because the operational semantics of the target languatgtaaministic, one of the two reduction
sequences starting @t ) above must be a sub-sequence of the other. In either casdiatiram
collapses down to

hence the result. 0
As a corollary, we obtain a soundness theorem for the traosldt essentially states that
security-passing style is a valid implementation of theaJstack inspection discipline.

Theorem 4.3 Qsecto-pml g transformation correctness) If e —* v, then(e)) —* (v). If e goes

wrong, then(e) goes wrong. It diverges, therfe) diverges.

Proof. First, assume reduces to a value. Then, Lemma 4.13 yieldge) —* - * « (v ). Because
(v) is a value, this diagram collapses down(td) —* (v ).
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Second, assumegoes wrong. Therg —* ¢/, wheree' is stuck, holds. We prove that
(e) goes wrong by induction on the length of this reduction seqae

In the base case, we hawve= ¢, i.e. e is stuck. Therefore, we have thaimust be of
the form E[check r thene,], where—(E F r). LetS = |E|. There exists a uniqu&’ such that
nobody @, S + R'. Necessarilyr ¢ R'. According to Lemma 4.11}e) may be reduced to a term
of the form E'[[check r thene; ],/ 6], wheref’ = [R'/s]. Itis easy to check that such a term is
stuck. Hence{e|) goes wrong.

In the inductive case, we have— e¢; —* ¢’. Our induction hypothesis shows that; |
goes wrong. Furthermore, Lemma 4.12 shows fhét reduces to some reduct (¢, ). Because
reduction is deterministid}e ) must go wrong as well. The result follows.

Third, assume: admits an infinite reduction sequence. This sequence mua/éan
infinite number ofS-reduction steps, because the semanticasef deprived of thes-reduction
rule, is terminating. Now, a slight generalization of Lem#a3 states that if a reduction froerto
¢’ involvesk (-reduction steps, thefe ) reduces td e’ ) (modulo administrative reductions) in at
leastk S-reduction steps. (The proof, which we omit, hinges on tlee tfaat 5-reduction is not an

administrative reduction.) This implies thit ) admits an infinite reduction sequence as welld

4.4 Types forAgec

In this section we introduce a let-polymorphic type anaysr A\seo In fact, using the type
machinery in place fopml; and Theorem 4.3, we are able to define more than one type sjmtem
the language. We have argued that the transformationabagiprallows us to easily develop a type
system fordseg We will demonstrate this in Sect. 4.4.1 by immediately obtay anindirect type
analysis forhsee via composition of the\sesto-pmly transformation angmly type judgements.
But as even more significant evidence of the benefits of thesfmamational approach, it is made
apparent in Sect. 4.4.2 that proof of correctness foirect Asectype analysis is significantly easier
using this approach.

4.4.1 Indirect types

The type systemé‘{e' for pml; were specified in Definition 3.2. Sect. 4.3 defined a
translation of\secinto pml;. Composing the two automatically gives rise to a type sySte#mMgeg
also caIIedS‘{e' for simplicity, whose safety is a direct consequence of Taées 4.3 and 3.2.
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Definition 4.4 Lete be a closed\sec eXpression. By definitior/,I" F e : ¢ holds if and only if
C,T'F (e) : o holds.

Theorem 4.4 1f C,T I e : o holds, there does not go wrong.

Turning type safety into a trivial corollary was the prinaipmotivation for basing our
approach on a transformation. Indeed, because Theorenodcgims untyped terms, its proof is
straightforward, and constitutes the principal proof gffor this Asec SOUndness result. It was nec-
essary to prové-typability for pml; in Lemma 3.5, which did involve types, but this is a subjeztiv
requirement of the target language. And, as we will show iagiér 4, thepml, language, along
with its type soundness, can be re-used as the target laaguagher applications of the transfor-

mational approach.

4.4.2 Directtypes

Definition 4.4, although simple, is notdirect definition of typing for A\see— Where by
direct we mean a type analysis @fcexpressions themselves, rather than their transformedema
There are several reasons why a direct analysis is desii@dbif among them that theesto-pmly
transformation might be inefficient for an implementatioh)@e, and also type error reporting
would be problematic. We thus will give rules which allow iy Asec €Xpressions without explic-
itly translating them intgml;. These direct rules can laerivedin a rather systematic way from
the definition ofS{e' and the definition of the translation. This method will allow to prove type
safety for the direchgectype analysis by a proof of correspondence between thetdiretindirect
analyses. The proof is straightforward, far simpler thariraad proof of type soundness fokec
would be.

For the direct system we re-use the type and constraint &gegaf RS defined in Fig. 3.3,
and the abbreviated set types of Sect. 3.2.4. For claritiyd@rstibsequent presentation, we constrain
T to range over types of kinglype ¢ to range over types of kinGap, andp to range over abbreviated
row types of kindRow(¢),; thex symbol indicates an arbitrary principal. Further, we comists to
range over abbreviated set types of the fdp}; in the direct type systemg, is used to represent
some security context, i.e. a set of available resourcesedaver the more intuitive and readable
notation proposed in Sect. 1.3, we define the magre> m 2 71 — ¢ — 75, as an artifact of the
Asecto-pmly translation, where all functions are given an additionabpeeter, and the fact that we

derive direct types from the indirect, all function typedle direct system are of this form.
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VAR ABS

I(z) =0 x 6, (Tiz:m S mx:m) b fim
ps,Fr:0o p.c, D HfiXxz Az f 1 — 7
APP LET
po,TFe:mg =71 p,¢,I'Fey:m p,¢,I'Fe:o p,<, (Tix:o)Feg:T
ps,['Ferey: T p,s,[Fletx =ejiney: 7
VY INTRO V ELIM ENABLE FAILURE
p,s,Tke:r anfv(s,I) =0 p,¢,I'Fe:Va.r p,{p},TFe:T rép
p,¢,I'Fe:Var p,s, I'Fe:7[T/a] p,{p}, T Fenablerine: r
ENABLE SUCCESS CHECK
pAr+,p},L'ke:r  rep pAr+.phThe:r
p,{re,p}, T Fenablerine: r p,{r+,p}, ' checkrthene:
TEST

pa{r+ap}aFl_el:T p’{riap}a]-_"_EQZT

p,{re,p}, T Ftestrthene; elseey : 7

SIGN
pa{rl(pla"'arn(pnag}’r|_e:7— p:{Tla"'aTn}

* {riot, ... ,rnpn,p}, T Epe:r

Figure 4.5: Typing rules foksec derived fromS,
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VAR SuB

I(z) =0 Clo p,s,C.,'Fe:T Clkr <7
p,s,C.l'Fz:0o p.¢,C.,TFe:7
ABS APP
*,60,C,(Tsx i) F fimy p,s,C.TFey:mg—>¢—T p,¢,C.,T'Fey:m
p,s, C T FAx.f i1 — ¢ — 1 p,s,C.I'Fejex: T
LET

p,c,C.,TFey:o 0,6, C,(Tyx:0)Feg: T

p,¢,C,I'Fletr =ejiney : 7

V INTRO V ELIM
p,, CAND,TFe:T anfv(c,C,T) =g p,s,C,I'Fe:Va[D].7
p,s,C AJa.D,T'Fe:Va[D].7 p., CAND I'Fe:T

JINTRO ENABLE FAILURE

p,c,C.TkFe:o anfv(¢,I'o) =2 p,{p},C,TFe:T rép
p,¢,da.C,Tre:o p,{p},C,T' Fenablerine:

ENABLE SUCCESS CHECK

p,{T—i—,p},C,F"e:T rep p,{T+,p},C,F|—€:T

p,{re,p},C,T" -enablerine : 7 p,{r+,p},C,I' - checkrthene: 7

TEST

pAr+,m}L,C et pir—p},C ke Clhif + <gpthenp < p
CIFHif — < pthenp < pg ClHif+ <ypthenm <7 ClHif — <ypthenry <7

p,{re,p},C,T' I-testrthene; elsees : 7

SIGN
pa{ﬁ‘Pla---Wn‘Pm@}aCaF|_e57 p:{lrla"'arn}

*, {Tl‘Pla---aranap}aCaF Epe:T

Figure 4.6: Typing rules foksecderived from82§
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Figure 4.6 gives rules for the system derived frd@, the most complex element in our
array of type systems. Judgements have the forenC, ' F e : 0.

Fig. 4.5 gives derived rules fd~, the simplest of our type systems. There, all constraints
are equations. As a result, all type information can be sapred in term form, rather than in
constraint form [41]. We exploit this fact to give a simpleepentation of the derived rules. Type
schemes have the fori@. 7, and judgements have the foprs. ' F e : o.

4.4.3 Direct type safety and optimizations

We will prove progress and type safety fSf in this section, Theorems 4.6 and 4.7.
The proofs are quite straightforward, requiring only tha prove a correspondence between the
direct and indirect systems, Theorem 4.5, rather than pmowetrivial subject reduction result from
scratch. We observe that the same result followsS$rin a similar manner. Again, the ease of
these results demonstrates the effectiveness of the dramational approach. We also discuss some
run-time optimizations that can be performed as a consegueiithese results.

First, we may prove the correspondence result in one dimechly showing that if a type
judgement is derivable in the direct type system, then theesype judgement is derivable in the
indirect one.

Lemma4.14 If p,¢,T' - e : o is derivable then so isue, (I';s : ) F [e], : 0.

Proof. LetI” = (T';s : <); then the proof proceeds by induction on the height of thévdgon of
p,s, ' F e : 7 and case analysis on the final step of the judgement:

Case MR. In this case: is a variabler andI'(z) = o by VAR, sol(z) = o sincex # s
by definition by definition of the translation. Therefore themma holds in this case by the HM)
VAR rule, since]z], = z.

Case Ms. Inthis case = fix z.Az.f, 0 = 7 <—/> 9 and:

* ¢, (Tiz:m g—’> To;x:T) b f i
is derivable. But since:
(T52:m < mxTsis)=(2:m < T T T80 6)
therefore by the induction hypothesis the judgement:

true, (I'; 2z : 7y < Tz T;38:6 ) F[f]p: T2
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is derivable, thusrue, I'" - fix z.Az. As.[ f], : 1 — ¢' — 7 is derivable by two applications of the
HM(X) ABsrule, so the Lemma holds by definition [f],, in this case.

Case AP Inthis case: = ejes, 0 = Tandp, ¢, F ey : 79 — randp,s,['F ey : 7o
are derivable. But then by the induction hypothesis it isdhge thatrue, I - [e1], : 70 = ¢ = 7
andtrue, I I [es], : 7 are derivable, so thatue, I - [ei],[e2], : ¢ — 72 is derivable by the
HM(X) Apprule. Buttrue, I I s : ¢ by the HM(X') VAR rule, hencdrue,I" F [e;],[ea]lp s :
by the HM(X) ApPrule, so the Lemma holds by definition Bf],, in this case.

Case LeT. In this case: = letz = e iney, andp, ¢, ' ey : o' andp, ¢, (I';z : o') B
ey : o are derivable. But thetrue,I" I [ei], : o' andtrue, (I''; z : ¢') F [e2], : o are derivable
by the induction hypothesis, so the Lemma holds by thef HMLET rule and the definition ofe],
in this case.

CaseV INTRO. In this caser = Vaftrue].r wherea Nfv(s,I') = @ andp,¢,I' Fe: 7
is derivable. But them N fv(true,I'") = @. Now, by the induction hypothesigue, I + [e], : 7
is derivable, so alstrue A true, I F [e], : 7 sincetrue A true is equivalent tdrue. Thus by the
HM(X) V INTRO rule it is the case thdatue A Ja.true, I’ + [e], : o is derivable, so the Lemma
holds in this case sindeue A da.true is equivalent tdrue.

CaseY ELIM. In this caser = [7/a|r andp,s,I' F e : Va[true].T is derivable. But then
true,I'" - [e], : Vatrue].7 is derivable by the induction hypothesis, ange I [7/a]true since
[T/altrue = true, so this case holds by the HM') ¥V ELIM rule.

Case RABLE FAILURE. In this case = enablerine’ wherer ¢ p sothatpn{r} = &,
o = 7 andp,¢,I' = ¢ : 7 is derivable. Now, by Lemma 3.6 and ELIM it is the case that
true, IV - V& : ¢ — ¢ is derivable, andrue, I’ - s : ¢ is derivable by the HNIX') VAR rule,
thereforetrue, I - @ V s : ¢ by the HM(X) Apprule. Buttrue,I" + [¢'], : 7 is derivable by
the induction hypothesis, so alsme, (I'; s : ¢) F [e'], : o sincel” = (I";s : ), therefore the
Lemma holds by the H¥X') LET rule and the definition ofe], in this case.

Case BIABLE SUCCESS In this case: = enablerine’ wherer € p so thatp N {r} =
{r}, s = {rp,p}, o0 = 7andp, {r+,p},[ ¢ : 7 is derivable. Now, by Lemma 3.6 antELIM
it is the case thatrue,I" + v {r} : {rp,p} — {r+,p} is derivable, andrue,I" F s : ¢ is
derivable by the HMIX') VAR rule, thereforetrue, IV + {r} vV s : {r+,p} by the HMX) AprpP
rule. Buttrue, (I';s : {r+,p}) + [€'], : 7 is derivable by the induction hypothesis, so also
true, (I'";s : {r+,p}) F [e'], : o since(T';s : {r+,p}) = (I";s : {r+, p}), therefore the Lemma
holds by the HMX) LET rule and the definition ofe]), in this case.

Case GiecK. In this case = enablerine’ ando = 7,¢ = {r+,p} andp,¢,T' F €' : 7
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is derivable. But by the induction hypothesis it is the cdstrue, I I [¢'], : 7 is derivable, so
alsotrue, (I'';_: o') k- [¢'], : 7 foranyo’, since_ does not appear itl, therefore the Lemma holds
by the HM(X) LET rule and the definition ofe],, in this case.

Case EST. In this casee = testrthene;elsee; ando = 7, ¢ = {rp,p} and
p,{r+,p},I'F e : 7andp, {r—, p},T' F ey : 7 are derivable. Lef” = (T"); then by the induction
hypothesis it is the case thate, (I';s : {r+,p}) - [e1], : 7 andtrue, (I'";s : {r—,p}) F
le2l, : 7, so alsotrue, (I';s : {r+,p}) F [ei], : 7 andtrue, (I";s : {r—,p}) F [e2llp : 7,
since (I'";s : {ry,p}) = (I'';s : {rp,p}). Thus by the HMX) ABS rule it is the case that
true,I" = As.[ei], : {r+,p} — 7 andtrue,I" + Xs.[es], : {r—, p} — 7 are derivable. Now,
by the definition ofA;, and @NsST andV ELIM it is the case thatrue, I + 7, : {rp,p} —
({r+,p} = 7) = ({r—,p} = 7) — 7is derivable, andrue,I" F s : {ry, p} is derivable by the
HM(X) VAR rule, therefore the Lemma holds by three applications oftMy X) Apprule and
the definition offe],, in this case.

Case $N. In this casep = %, ¢ = p'.e’, ¢ = {rio1,...,rneon,p}, o = 7 and
P Arier, . raen, @5 T F e oo, wherep' = {rq,...,m,}. Letd = {rip1,....mhpn, 9};
then by the induction hypothesis it is the case thae, (I'; s : ¢') - [¢'],» : 7 is derivable, so also
true, (I'";s : <) F [e'], : 7, since(I';s : ¢') = (I";s : ¢'). Now by Lemma 3.6 antf ELIM
it is the case thatrue,I" = Ap' : ¢ — ¢’ is derivable, andrue, I’ + s : ¢ is derivable by ¥R,
sotrue, I + p’ A s : ¢’ is derivable by the HNIX') ApPprule, therefore the Lemma holds by the
HM(X) LET rule and the definition ofe], in this case. 0

Now, we prove the other direction, that if a type judgemendeasivable in the indirect
Asectype system, then it is derivable in the direct system, Lemtt8. First, a couple more utility
Lemmas are stated:

Lemma 4.15 A type scheméa[D].7 isdeadiff e Nfv(D,7) = @. If C,(T';z : Va[D].7) Fe: o

is derivable and’a[D].7 is dead, therC, (I'; z : 7) - e : o is also derivable in the same height.

Lemma4.16 If C, (I';z : o) - e : o' is derivable andr does not occur free in, thenC,T' + ¢ : ¢
is also derivable in the same height.

Lemma 4.17 If C, (T') - [fix z.Az. f], : 7 is derivable, therr is of the formr; — ¢ — 7.
Proof. This property holds by virtue of the transformation, sirfceust be of the form’.e, hence:
[fix z.Az. f], = fix z.Az. As.lets = p' A sin[e],
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This form ensures that all function types reflect the two argnts of transformed terms, with the
type of the second argumenbeing a set type, sinces is always the argument of a set intersection
in the transformation. 0
Thus, we may prove the correspondence in the other direasdollows. In this Lemma,
we abbreviate type schemeggaftrue|.r asVa.7 and judgementsrue,I' - e : o asI' F e : o,

omitting the trivial requirementrue I+ true from instances o ELIM and \AR:

Lemma 4.18 If (I';s : <) - [e], : 7 is derivable in HMRS™), thenp, ¢, - e : 7 is derivable in
St

Proof. By Lemma 2.6 and definition of RS it is the case thatl; s : <) - [e], : 7 follows by
a syntax-directed rule and at most one instanc® Bf.IMm. LetT” = (T';s : ¢); the proof then
proceeds by induction on the height of the derivatiofiof [e], : 7 and case analysis de],,:

Casefe], = z. In this case: = = # s andz € dom(I") by definition of the translation.
By Lemma 2.6 we have a derivation of the following form, where: [7/a]7':

I'(z) = Va.r'
Mtz Var
'tz [7/a)r

But then by definition ofS;” we have the following derivation:

['(z) =Va.r'

p, ¢, Fz:Var

p,s, D x:[7/a]r

Therefore, this case holds.
Casefe], = fixz.Az.As.[f],. In this casee = fix z.Az.f, and by Lemma 2.6 we have

the following subderivations, whereis of the formr; — ¢’ — 7 by Lemma 4.17:

F';z:ﬁ—)g'—)TQ;rI::Tl;s:g'i—[[f]]p:TQ

Iz —=>d sz inbEXsfly: ¢ =7

' Hfixz Az s [fl,:m =< = m
But since:
Mhz:im—=¢ —smzm;s:d)=0z:m1—=¢ = mx:7m;8:¢)

82



therefore by the induction hypothesis we have fhat, (I';z : 71 = ¢ = iz 1) b f 1S
derivable, so thap, ¢, I" + fix z.\z.f : 71 — ¢’ — 7 is derivable by ABs.
Case€]e], = [eillp[e2]ps- Inthis case: = e;ez, and by Lemma 2.6 we have a subderiva-

tion of the following form:

I'Elep:m —=c—7 ' Ffeay: 7' IM(s)=¢

Nl leilplea]p : ¢ — 7 I"Fs:¢

'+ [e]plea]ps = 7

But then by the induction hypothesis we have that I' - e; : 7/ — ¢ — 7 andp,¢,I' - ey : 7
are derivable irS;", hencep, ¢,I' - ejes : 7 is derivable inS;~ by APP.
Casele], = letx = [e;],in[ez],. In this casee = letx = e;iney, and we have a

subderivation of the following form:

'+ [e1].o0 (Tss:¢;x:0)F [eo].m

I"Fletz = [er]pinfea], : 7

But sincex # swe have(T';s : ¢;z : 0) = (I';z : 0375 : ¢), therefore by the induction hypothesis
we have that both,¢,T" - e; : 0 andp, ¢, (I';z : o) I ey : 7 are derivable, so this case follows by
LETIn ST .

Case€fe], = lets = ({r} Np) Vsin[e'],. In this case: = enablerine’, and by Lemma
2.6 and Lemma 3.6 andELIM we have subderivations of the following form, wheke=p N {r},
¢ ={Ryp,p} ands’ = {R+, p}:

I'(s) = {Rp.p}
I'FVR:{Rp,p} — < 'k s:{Rp,p}

I"RVs:¢

I"RVs:¢ anfv(l’)=o

I'RVs:Vag I s:Va.g + [[6']];) 1T

I"tlets=RVsin[e],: T

However, since occurs unbound i’ so that any variables inare free inl”’, andaNfv(I') = &
by the above, thereforéa.¢’ is dead and thus’; s : ¢’ - [¢'], : 7 is derivable by Lemma 4.15.
Therefore, sincél”; s : ¢') = (T'; s : ¢), we have thap,¢’,T' F ¢’ : 7 is derivable by the induction
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hypothesis, so that,¢,I" - enablerine’ : 7 is derivable by RABLE FAILURE if » ¢ p, or
ENABLE SUCCESSIf r € p.
Casefe], = let_ = s 3 rin[e'],. In this casez = checkrthene’, and by Lemma 2.6

and definition ofA; we have a subderivation of the following form, where- {r+, p}:

IM(s) =¢

I'F3,:¢—=¢ I"'Fs:¢

MEsar:g anfv(l')=o

' s>r:Vacg s _:Vask[e],: 7

I"Flet_=s>rinfe],:

But since_ does not occur ir’, therefore by Lemma 4.16 we have tiét- [¢'], : 7 is derivable
such thap, c,T" - €’ : 7 is derivable by the induction hypothesis. Thus;, I' - checkrthene’ : 7
is derivable by GECK.

Casefe], = 757 (As.Jer]p) (As.[e2]p). In this casee = testrthene; elsee; and by

Lemma 2.6 and definition ak; we have subderivations of the following form, where- {r¢, p}:

M2 dre.pt = ({r+,0 = 717) = {r—pt > 71) > 1 Mt s:{rp,p}

ME2r:{r+,pt=17) > {r—pt—>71)—>71

s {r+,ptF [ellp: 7 s {r—pttlelp: 7
I'EXs el : {r+,p} = 7 ' Xs el : {r—,p} = 7

U'E2%r:({r+,p = 7) = {r—p} = 7)—>7 ' Xsfeip: {r+.p} =7

I'E2sr (Asfeilp) : r—p = 71) =7

I'E2gr(Asfei]y) : {r—pt = 1) =7 ' Xs.fea]p: {r—,p} = 7

' 2r (s Jer]p) (As.[ea]p) : 7

But since(I";s : {r—,p}) = (I';s : {r—,p}), therefore by the induction hypothesis and the
above we have thas, {r+,p},I' - e; : 7 andp,{r—,p},T' F ey : 7 are both derivable, so
p,{re,p}, T - testrthene; elsee, : 7 is derivable by EST.

Casele], = lets = p' Asin[e'],. Inthis case = p'.€/, and by Lemma 2.6, Lemma 3.6
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andV ELIM we have subderivations of the following form, where- {p', p} and<’ = {p'p, @}:
I(s) = {p'®, p}
ME=np e, p) — < IMtEs:{p'e,p}
I'Ep' As:¢

M"Ep' As:¢ anfv(l')=o

I'"p' As:Vag IMys:Vad Fe]y: 1

I"Elets=p Asine']y : 7

However, since occurs unbound i so that any variables i@ are free inl’, anda Nfv(I') = &
by the above, thereforéa.¢’ is dead and thus’; s : ¢’ - [¢'], : 7 is derivable by Lemma 4.15.
Therefore, sincél”;s : ¢') = (I'; s : '), we have thap',¢',T" - ¢’ : 7 is derivable by the induction

hypothesis, so that ¢.I" + p'.¢’ : 7 is derivable by 8N. 0

Two more utility Lemmas to handle the details of the top-levgto-pml; transforma-

tion (e, and then the desired correspondence result:

Lemma4.191f C,T;z : o' Fe: 0 andC,T + v : o' are derivable then so i€, T - e[v/z] : o.
Lemma4.20If C,T' - e[R/z] : o andC,I' F R : < is derivable, then so i€, (I'; z : ¢) F e : 0.

Theorem 4.5 The judgment nobodya} ,I" - e : 7 is derivable inSy iff true, (I';s : {@})
(e) : 7 is derivable in HMRS™).

Proof. Suppose on the one hand tmtbody {@} ,I" F e : 7 is derivable. By Lemma 4.14 we
have thattrue, (I'; s : {@}) F [e]nobody : 7 is derivable, so that by Lemma 4.19 we have that
true, (I') = (e) : 7 is derivable, sincge) = [e]nonoay@/s] andtrue, (I') - @ : {@} is derivable
by definition of A; and CONST.

Suppose on the other hand thate, (I') = (e) : 7 is derivable. Therefore, since
(e) = [e]nobocyi@/s] andtrue, (I') = @ : {@} by definition of A; and GONST, we have that
true, (I'; s : {@}) F [e]nobody: 7 is derivable by Lemma 4.20. But then by Lemma 4.18 we have
thatnobody {@},I" - e : 7 is derivable. O

Given this correspondence and Theorem 4.3, progress ardsgfpty results foRgecin
the directS~ system are immediate:
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Theorem 4.6 Qgec Progress) If e is well-typed then either —* v or e diverges.
Theorem 4.7 Qsec Type Safety) If e is well-typed ther does not go wrong.

Furthermore, we note that by these results and Theorem Betyréms 1.2 and 1.1 follow,
since the language and type system presented in this Clsafiiume those presented in Chapter 1.

Another important consequence of these results is thatlasiynto Proposition 1.1, we
may now formally assert that runtime stack inspection farilgge checks is no longer necessary,
which follows immediately by Theorem 4.7:

Corollary 4.1 (Asec Optimization) Let~- be defined as+, but with the rule:

E[checkrthene] — FEle] ifEFTr

replaced with:
E[checkrthene] ~» FEle]

and suppose is well-typed; there ~~* v iff e —5* v.

This result states that runtime stack inspection in progrdmat contain only privilege
checks may be eliminated entirely. Note, however, that this tesays nothing about runtime
checks performed in the case of privilegsts. In fact, recalling the initial bindings in Fig. 3.9, the
systemsST® do not have precise enough types for eliminating run-tiraeksinspection for privilege
tests. The systems! do, but the mechanism for doing so would be more complicated|ving
the trimming of branches which are statically known, by tyyget conditions, to be unfollowed. It
is not clear what balance of type precision and run-timestestuld be most effective in practice,

remaining an interesting topic for future work.

4.4.4 Type inference

Type inference for\sec Can be obtained in the same manner as the logical type systems
Indirect type inference may be defined as the composition ofthheto-pml; transformation with
any of thepml 5 type inference methods discussed in Sect. 3Bifect type inference fohgecmay
be derived from indirect inference in the same manner thractdjudgements are derived from the
indirect.

In the Appendix, a direct type inference algorithm fogcin Si~ is defined in the mod-

ule Typi ng, specifically in the functoSyst em This functor is parameterized by a modude
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Cont ext , which specifies a local access control list and initial gipal; an example of such a
module is given iLocal Cont ext . This type inference algorithm uses exactly the same cainstr
system and normalization procedurai f y employed forpml; S type inference. Proving this
direct inference algorithm correct would then be a strdmgiatard manner of showing a correspon-
dence between the syntax-directed inference rules in reeéiintix andTypi ng. The OCaml im-
plementation of the\seccoOnstraint system anahi f y procedure are not included in the Appendix,

but are available online &it t p: / / www. ¢s. j hu. edu/ ~ces/thesi s/inpl/direct.

4.5 Examples and discussion

In this section, we give examples which illustrate the egpiraty (and limitations) of our
type system. These examples allow discussing the diffesehetween the variants of the system,

yielding insights into the possible trade-offs betweerc@en and cost.

4.5.1 Security wrappers

A library writer often needs to surround numerous internaidtions with “boilerplate”
security code before making them accessible. To avoid dmhoy, it seems desirable to allow
the definition of generisecurity wrappers When applied to a function, a wrapper returns a new
function which has the same computational meaning butrdiffesecurity requirements. Assume

given a principab = {r, s}; here are two security wrappers likely to be useful to progreers:

enable £ \f.p.\z.p.enablerin f z

require, = \f.p.\z.p.checkrthen f z

In systemS;", these wrappers receive the following (most general) types

{r+,5m,2} {B1} (o {ry2,sm,B2} )

enable : V... .(m

O[Q)

1 {T+’5717®} (l’) {ﬂl} ( ’ {T+7571,ﬂ2} (12)

require, : V... .(« 9) —— (g

These types are very similar; they may be read as followsh Boappers expect a functighwhich
allows thatr be enabledr(+), i.e. one whichkeitherrequiresr to be enabledor doesn’t care about
its status. (Indeed, as in ML, the type of the actual argumet be more general than that of the
formal.) They return a new function with identical domairdatodomain ¢, as), which works

regardless of’s status €nable yields ry2) or requiresr to be enabledréquire, yieldsr+). The
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new function retaing’s expectations about (sv;). f must not require any further privileges),
because it is invoked by, which enjoys privilegeg ands only.

These polymorphic types are very expressive. Our main canicethat, even though
the privileges is not mentioned in theodeof these wrappers, it does appear in thgpe More
generally, every privilege available tomay show up in the type of a function written on behalf of
principal p, which may lead to very verbose types. An appropriate tygerealiation mechanism

may be able to address this problem; this is left as a subpedtture work.

4.5.2 Use and types of securitjests

This example displays two typical programming idioms imiog) test. One (arguably the
most common) is very simple, and may be typedin. The other is more complex and requires
at leastS;. We take this opportunity to discuss various problems eeldb the interpretation of
conditional constraints.

Imagine an operating system with two kinds of processed, pmmresses and user pro-
cesses. Killing a user process is always allowed, whilénkjlh root process requires the privilege
killing. At least one distinguished principadot has this privilege. The system functions which
perform the killing are implemented byot as follows, assuming the trivial addition of a unit value
and type to\geg

kill = \(p : proces$.root.checkkilling then ... () —kill the process

killlfUser = \(p : proces$.root.... () —kill the process if it is user-level

In systemS7, these functions receive the following (most general) $ype

kill Vﬁ.processw unit

killlfUser : Vﬁ.processﬂ unit

The first function can be called only if it can be staticallpyen that the privileg&illing is enabled.
The second one, on the other hand, can be called at any tih&ilbmever kill a root process.
To complement these functions, it may be desirable to defifumetion which provides a “best
attempt” given the current (dynamic) security context. sTimay be done by dynamically checking
whether the privilege is enabled, then calling the appatprfunction:

tryKill = \(p : process.root.

testkilling thenkill (p) else killlfUser (p)
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This function is well-typed in systeid;”. Indeed, within the first branch of tliest construct, it is
statically known that the privilegkilling must be enabled; this is why the sub-expressidip) is

well-typed. The inferred type shows thagKill does not have any security requirements:

tryKill : Vﬁ.processﬂ unit

In the functiontryKill , the sensitive actiokill is performed within the lexical scope of the
test construct, which is why it is easily seen to be safe. Howeweae, can also move it outside of

the scope, as follows:

tryKill £ X(p : proces$.root.

let action = test killing then kill else killlfUser in actionp

Here, the dynamic security check yields a closure, whosawehdepends on the check’s outcome.
It can be passed on and used in further computations. Suchgaapnming idiom is useful in
practice, because it allows hoisting a security check ow lolop. For instance, if we were to Kill
a set of processes, instead of a single one, we would ampign successively to each element of
the set. Thus, only one security check would have to be peddr regardless of the number of
processes in the set.

Is tryKill' also well-typed? This is more subtle. In thoSE' wherei = 1, the two
branches of @est construct must receive the same type. Because the fundtlorquires a non-
trivial security context, it is conservatively assumedt thetion may do so as well. As a result, in
e.g.S7, tryKill' has the following (most general) type:

tryKill’ Vﬁ.processw unit

which is the same asdll’s type. Thus, it is well-typed, but its type is more resfrietthan expected.
To solve this problem, we need to keep track of the fact thatbshavior (i.e. the type)
of actiondepends on the outcome of the check, i.e. on whether theéggekill is enabled. This is
precisely the reason for moving to the columg: 2 in our array of type systems. In this column,
the result of atest construct is described by conditional constraints, whioboele the desired

dependency. Indeed, &Y, tryKill' has the following (most general) type:

tryKill’ - Vﬂ[C}.processM «
whereC = if + < ythenunit< «

A if — <~y thenunit < a
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This type no longer requires the privileg@l to be enabled: our analysis was smart enough to prove
that this code is safe.

The reader may wonder why we haven't unifieavith unit, since bothy = + andy = —
imply unit = «. This is because there remain other cases (namely | andy = T) wherea is
unconstrained; as a result, these conditional constrdmtsot logically implyunit = «. To fix this
apparent problem, it would be possible to remdvend T from the model. In that case, imposing
unit = « would be a valid simplification. However, this would make tanstraint satisfaction
problem much more complex — we conjecture, exponential. éewghy, notice that the system
would then be powerful enough to express disjunctive tygedeed, the type; vV = would be

expressible as a type variahleaccompanied with the constraints

if + < pBthenr <«
if — <pthenn <«

(wherea andg are fresh). The fact that must be equal to either or — (because there are no other
elements in the model) means thamust be equal ta;, or 5. Implementing a constraint solver
which does not naively try both cases separately seemsepnatticc.

Another interesting possibility consists in giving a difat interpretation to conditional
constraints. Notice that we really wish to use conditiormaistraints in application to privilegests
in only a very limited way. We want to allow the branches dkat construct to receive different
types— but we do not wish for these types to differamhitrary ways; we only wish to allow their
security annotationso differ. Doing so turns out to be very easy, at least from @elyuheoretical
point of view. Definex as the binary relation which is uniformly true §Row(¢) ], and extend it
as a straightforward equivalence[tc] for every kindk. Then, re-define the interpretation of simple

conditional constraints as follows:

p(r)mp(r")  c<p(r)=pb7r <7"

pFifc<Ttthent’ < 7"
This interpretation requires the types which appear in theclusion of a conditional constraint
(here,7’ and7") to be equal modulo security annotations. This allowsdtnacture of types to
be determined using rigid rules (which is desirable, beeamany programming errors are then
detected earlier), while keeping the flexibility of condital reasoning on security annotations.
Under such an interpretation, tisg type oftryKill' specified above is logically equivalent to the
following, as desired:

tryKill' : Vﬁ.processﬂ unit
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4.5.3 Subtyping

All of the examples given so far can be given useful types;infor somei € {1,2}. In
other words, these examples do not require subtyping. Keless, there are a few cases where the
extra precision afforded by subtyping becomes necessary.

Imagining the straightforward addition of a conditionahstruct to the language, suppose
that we write a slightly modified version of the wrapparable presented in Sect. 4.5.1 as follows,

whereP is some condition:
maybeEnable = \f.p.\z.p.if Pthen fzelseenablerin fx

This wrapper may or may not enable the privilegeefore callingf. In §;~, its (most general) type

is as follows:

{r+7571’@} {61} (0/1 {T+’571762} 02)

maybeEnable: V... .(a;

(12)

But this is exactly the same as the typaexjuire, specified in Sect. 4.5.1— in other words, the type
system thinks application ehaybeEnableyields a function that requires the privilegeHow was
such an overly conservative conclusion drawn?

The cause of this imprecision is unification together with tbstrictions inherent in let-
polymorphism. Becausg is A-bound (notlet-bound), all of its uses must receive the same type,
sayaq —3 . In the second branch of thestatementy is called withr enabled; thus; must be
of the form{r+, ...} within that branch. In the first branch of tliestatementf is called within
an unmodified security context. The type system then coesltigat the wrapped function has the
same security requiremefit+, ...} in both branches, as a result of our use of equality conssrain
and unification— becausg maybe called withr enabled, this leads us to beliefanustbe called
with r enabled.

One standard solution is to move to a system where equaligplaced with subtyping,
e.g.SIS. There, we may obtain the following type foraybeEnable

maybeEnable: V... [C].(x {rrsm @) ) {81} (ay {72,572} )

whereC = + <y A~y <7

This type is much more permissive, becaugse< v > + does not allow concludings, < +
(as is the case wheq is interpreted by equality). Indeed, it may be thatassumes the type,
i.e. application ofmaybeEnableyields a function that requires to be disabled. The constraint
+ <~y A vy <+vythenrequires < 1, i.e. f must be able to accept either state of the privilege
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Our experience seems to indicate that subtyping is usefiylwhen polymorphism is
inhibited, i.e. when using higher-order functions. Java ha such construct. Java does have
first-class objects, which contain methods, but it seensoregble to require that methods be given
explicit polymorphic types by the user as part of class datilens. Considering that subtyping has
substantial cost in terms of readability and efficiency, &nthen be interestingot to use it in a

real-world system. However, more work is needed to confirisi¢bnjecture.
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Chapter 5

Types for Object Confinement

In this Chapter we switch gears a bit, turning our attentma different language-based
security model— object confinement, aka capability-bassmhisty for OO languages. However,
while the security model is different, we will use the samamsformationaltechnique to develop a
static analysis for the language. Somewhat surprisingiwll in fact be able to use the same target
language for the transformation studied here— the langpagle; defined in Chapter 2— as that
used for the\gec transformation in Chapter 4. The benefits of this transfdional approach will
again be a significantly reduced proof effort for demonsitatype safety, while the benefits of a
static analysis will again include the possibility of rumé optimizations, and a clearer declaration
of security policies.

The confinement of object references is a significant sgcaohcern in languages such
as Java. Aliasing and other features of OO languages can thizka difficult task; recent work
[43, 5] has focused on the development of type systems farenf) various containment policies
in the presence of these features. In this chapter, we thesarnew language and type system for
the implementation of object confinement mechanisms thabi® general than previous systems,
and which is based on a different notion of security enforesin

Object confinement is closely relateddapability-based security, utilized in several op-
erating systems such as EROS [36], and also in programmimggiéage (PL) architectures such as
J-Kernel [13], E [8], and Secure Network Objects [42]. A daipy can be defined as a reference
to a data segment, along with a set of access rights to theesgdty]. An important property of
capabilities is that they anenforgeable it cannot be faked or reconstructed from partial informa-
tion. In Java, object references are likewise unforgeablgroperty enforced by the type system;
thus, Java can also be considered a statically enforceditigpaystem.
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So-calledpure capability systems rely on their high level design for safetithout any
additional system-level mechanisms for enforcing segu@ther systembardenthe pure model by
layering other mechanisms over pure capabilities, to pl@gtronger system-level enforcement of
security; thepr i vat e andpr ot ect ed modifiers in Java are an example of this. Types improve
the hardening mechanisms of capability systems, by pnogidi declarative statement of security
policies, as well as improving run-time efficiency throudétie, rather than dynamic, enforcement
of security. Our language model and static type analysisiges on capability hardening, with
enough generality to be applicable to a variety of systemd,sgrves as a foundation for studying
object protection in OO languages.

5.1 Overview of thepop system

In this section, we informally describe some of the ideas f@adures of our language,
called pop, and show how they improve upon previous systems. As will esahstrated in
Sect. 5.5,pop is sufficient to implement various OO language features, elgsses with meth-

ods and instance variables, but with stricter and moreligliaecurity.

Use vs. communication-based security

Our approach to object confinement is related to previoukwaor containment mech-
anisms [2, 43, 5], but has a different basis. Specificallgs¢hcontainment mechanisms rely on
a communicatiorbased approach to security; some form of barriers betwé@rcts, or domain
boundaries, are specified, and security is concerned witihmaanication of objects (or object ref-
erences) across those boundaries. Inum&based approach, we also specify domain boundaries,
but security is concerned with how objects asedwithin these boundaries. Practically speaking,
this means that security checks on an object are performeahiths used (selected), rather than
communicated.

The main advantage of the use-based approach is that gespeitifications may be more
fine-grained; in a communication based approach we araatestito a whole-object “what-goes-
where” security model, while with a use-based approach welreanore precise in specifying what
methods of an object may be used within various domains. iSharticularly relevant to access
control. Use-based security also more closely corresptmdsditional capability-based security
models in practice, where capabilities are not just refegenbut are references plus an interface
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specifying access rights.

In addition, our use-based security model allows “tunrgliof objects: a capability may
pass through a domain where its use is disallowed, providedriot used in that domain. This
supports the multitude of protocols which rely on an intedragy that is not fully trusted. In
a communication-based model capabilities are preventad frassing through unauthorized do-

mains, so tunneling is impossible.

Static protection domains

Thepop language is an object-based calculus, where object me#nedefined by lists of
method definitions in the usual manner. For example, sulistf the notation .. for the syntactic

details, the definition of a file object with read and write hwoets would appear as follows:
read) = ...,write(z) = ...] -

Additionally, every object definition statically assertembership in a specifiprotection domain

d, so that expanding on the above we could have:
[read) = ...,write(z) =...] - d- ...

While the system requires that all objects are annotatduavitormain, theneaningof these domains

is flexible, and open to interpretation. Our system, considién a pure form, is a core analysis that
may be specialized for particular applications. For exangbmains may be as interpreted code
owners, or they may be interpreted as denoting regions ¢t seope—e.g. package or object
scope.

Along with domain labels, the language provides a methodpecifying a security pol-

icy, dictating how domains may interact, wiaer interfacedefinitionsy. Each object is annotated
with a user interface, so that lettingbe an appropriately defined user interface and again expgndi

on the above, we could have:
read) = ..., write(z) =...]-d- ¢

We describe user interfaces more precisely below, andrifitesand discuss relevant examples in
Sect. 5.5. For now, we note that the flexibility in the intetation of domains implies a flexibility

in the style of policies that may be enforced: e.g. if domairesinterpreted as code-owner labels,
then the policy is access control, while if domains are jieted as static scope, then the policy is

a use-based access modifier mechanism.
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Object interfaces

Other secure capability-based language systems have kgeloped [13, 42, 8] which
include a notion of an access-rights interface, in the fofrolgect types. Our system provides a
more fine-grained mechanism: for any given object, its irgerface definitionp may be defined
so that different domains are given more or less restrictiesvs of the same object, and these
views are statically enforced. Note that the use-baselderdihan communication-based approach
to security is an advantage here, since the latter allows mte precisely modulateowan object
may be used by different domains, via object method integac

For example, we can imagine that any object in domais a “friend” and should be
given free reign over other objects iy whereas objects in domaiff are somewhat trusted but
potentially hostile, so that we might wish such objects &drdata ind but not be able to alter it.
Thus, returning to our previous example, an appropriatendigin of  in the file object definition,

given these security preconceptions, would be as follows:
read) = ..., write(z) = ...] - d- {d — {read write} ,d’ — {read}}

User interfaces may additionally contain mappings fdeéaultuserd, which allows the program-
mer to specify interfaces for domains which may not be knotwroanpile time. Thus, the system
allows for a degree of “open-endedness” in its design. Retgrto the previous example, if our
policy was to allonanydomain read access to files in domdijmwe could define files and associated
interfaces in that domain as follows:

read) = ...,write(z) = ...] - d - {d — {read write} ,0 — {read }

The notationd matches any domain. As is the case for normal interface fpegtgons, the access
rights associated with default interfaces are staticaifpeeed.

The user interface is a mapping from domains to access +igiat is, to sets of methods
in the associated object that each domain is authorizedeto s looks something like an ACL-
based security model; however, ACLs are defined to m@pcipals to privileges. Domains, on
the other hand, are fixed boundaries in the code which may hathéng to do with principals.
The practical usefulness of a mechanism with this sort ofilflity has been described in [4],
in application to mobile programs. Other applications armtardetailed examples are discussed
in Sect. 5.5, including an encoding pf i vat e andpr ot ect ed method and instance variable
modifiers.
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Weak capabilities

The EROS weak capabilities mechanism, described in [3&jywalan enforcement of
“transitive read-only” properties via a sort of deep-cagtmechanism. We model weak capabilities
in the system presented here, and statically enforce weakgmoperties via types. In fact, we
provide a generalization of the EROS conception of weaklmépes.

In EROS, capabilities are low-level entities which may @gsssa fixed number of primi-
tive access rights such as read and write. A weakened cépabitead only, and any capabilities
read from a weakened capability are automatically weakelmedur higher-level system, capabili-
ties are objects, with access rights corresponding to teedefined methods in these objects; our
weakening mechanism is similarly generalized to apply torapthod access rights. This general-
ization of the EROS weakening mechanism is particularlyulse the realm of recursively defined
object structures. For example, it can be used to enforagsiwe read-only properties in a filesys-
tem where files may contain other filehandles, or recursidédgible delete permissions throughout
a directory tree. We now elaborate on this latter example.

If o is a directory object and delete is a directory object mettiad allows deletion of

entities in a directory, then the expression

weak geleta (0)

denotes a weakening ofsuch that deletion within that directory is disallowed, dnthermore,

if m # delete is an accessible methodcofvhich returns another directory object theno’ will
be similarly weakened to disallow deletion. The type sysstatically enforces this mechanism
in a flexible manner. A concrete example of weakened reatbwall definitions, along with type

system enforcement of these properties, is given in Sext. 5.

Casting

We also provide aastingmechanism, that allows removal of access rights from paetic
views of an object, allowing a greater attenuation of sé¢gwhen necessary. Again, this casting
discipline is statically enforced. For example, lettinige thepop object defined immediately above,
if some circumstance suggests that we should no longer aljects in domainl’ read access to
files ind, then we may make the following cast:

oi(d', )
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This removes all ofl’ access privileges on, by setting the set of’’s accessible methods t@.
Significantly, we allow only “upcasts”, so that privilegesnche removed, but never added.

Type systems already have a built-in notion of interface afhgkstriction of interfaces,
via subtyping and subsumption. Our system is inspired bysiisdon a foundation of subtyping,
but is significantly more general. Most importantly, prages can be restricted by subtyping in
standard systems, but this is only with respect to two initpfiemains: the local one and everything
else. With our explicit domains and fine-grained user iateefdefinitions, casting restrictions may
be significantly more fine-grained, as seen in the previoasngie.

Rights amplification

Capability-based security systems support several fofmigjlats amplification the tem-
porary and disciplined amplification of rights in certairmgram contexts. One form of rights ampli-
fication is by indirection. obtained, it For example, legtinbe the file object as defined immediately
above, and recalling that was the only domain allowed write accessotfove may allow another
object in domaind to function as a write-access “proxy” tg as in the following definition:

[proxywrite(z) = o.write(z)] - d - {0 — {proxywrite}}

Any object in any domain may use this object to gain writeegsd, thoughdirectwrite-access to
oisrestricted. This example is extreme and not a recommemaegamming style, but a limited use
“by proxy” of capabilities not directly held is a common idioin capability-based programming.
This must also must be kept in mind when a capability is doletd—he doler must be aware
of both direct and indirect actions allowed by it. In contrahe stack-inspection security model
discussed in previous chapters allows restrictions to aeqal on what an invoker can induce in an
invoked object—if the original invoker had no access rigttiss is recorded on the stack and access
can be prevented. This is one of the most significant difiezerbetween the stack-inspection and
capability-based security models.

5.2 Thepop language definition

We now formally define the syntax and operational semantigsop, an object-based
language with state and capability-based security fegtutescribed informally in the previous
sections.
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m,z,s,setget € ID, . C ID identifiers
l € Loc locations
de D, DCD domains
0 €D — 2P interfaces
o = my(z) =¢ "5 method lists
s = [g] self objects
co == [o]-d |l core objects
o u= co-p\, |s objects
v = x|o values
e == wvlem(e)]|ei(d)]|weak,(e) |letez =vine | refe | -e- expressions
E == []|Em(e) |v.m(E)| Ei(d,.)|ref,E | weak,(F) | -E- evaluation contexts

Figure 5.1: Grammar fopop

5.2.1 Syntax

The grammar fopop is defined in Fig. 5.1. It includes a countably infinite setdsn-
tifiers D which we refer to aprotection domains The definition also includes the the following

notation for method listg:

(mi(z) = e; "S=") & (ma(2) = e1,...,my(2) = en)

Henceforth we will use a similar vector abbreviation natatfor all language forms, with obvious
meaning. We writgm(z) = e) € piff p is of the form(...,m(z) = e,...). Read-write cells
are defined as primitives, with a cell constructortethat generates a read-write cell containing
v, with user interfacep. The object weakening mechanisseak, (o), described in the previous
section, is also provided.

Objects definitions are of the forp| - d - ¢\,, where. carries any methods removed
by weakening. For convenience, and to retrieve the notatiesented in the previous section, we
define the syntactic sugéto - p) = (co - ¢\ ). Self objectgp] are run-time entities, the dynamic
implementation of self, and are disallowed in top-levelgreons.

User interfacesy aretotal mappings from domain identifiers to sets of method names.

Since they are user-defined in programs, the following s}itaugar is provided, allowing a finite
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d:o,([o]-d-¢\)mv),c — d:d:d - (weak,(e[[o]/s]|[v/x])), 0 (send
if (m(z) =e) € pandm € (p(d,d)\t)

Sldm@)e < seldfslofee K@) =ceo (el

5. (co- NI, )o o 6o (old > D\)o S Cp(d.0)  (cast

o, weak,(co-o\v),0 = d,co-p\qur),0 (weaken

srefov,0 = 6,1 p\g,0ll — ] I ¢ dom(c) (newcel)

d:6,(l-¢\,).selv),c — d: i weak,(v), o[l = v] (set
[ € dom(o) and sete (p(d,d)\¢)

d:o,(l-¢\,).0el),0 — d: i, weak,(o(l)),o gete (p(d,0)\v) (get)

dletx =vine,o — §,efv/z],0 (let)

d:d,v,0 — dvo (pop)

§, Ele]l,c — &' E[€],0 if ,e,0 = d',¢e',0’ (contexj

Figure 5.2: Operational semantics fasp

specification of interfaces by implicitly mapping unspeaifidomains t@:
{di e 0<i§n} 4 {dz — L 0<i§n,di+1 7N }

We require that for any andd, the method nameg(d) are a subset of the method names in the
associated object. Note that object method definitions noawyain the distinguished identifier
which denoteself and which is bound by the scope of the object; objects alMaaye full access
to themselves via the identifiet We require that self never appear “bare’—that is, the deia

s must always appear in the context of a method seledtior(e). This restriction ensures that
s cannot escape its own scope, unintentionally providing acKedoor” to the object. Self, and

associated semantics, is discussed more thoroughly below.

5.2.2 Operational semantics

The small-step operational semantics fp is defined in figure 5.2 as the relatien

on configurationsd, e, o, wherestoreso are partial mapping from locatioriso valuesv, andé is
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a non-emptydomain stackthe top element of which is called tleirrent domain Notation and
language relevant to domain stacks is defined follows:

Definition 5.1 Domain stacks are inductively defined as:

d n= nil|d:=d domain stacks
Thelengthof a domain stackd, :: - -- :: d,, :: nil) isn. The domain stack reversal functioev is
defined as:
rev(dy =2 -+ dy i nil) 2 (dy -+ dy 2 nil)

The notationf [z — v] denotes the function which mapdo v and otherwise is equivalent
to f. If z ¢ dom(f), flz — v] denotes the function which extengsmappingz to v. We define
o(d,d") £ ¢(d) U p(d"). Substitution is defined as one may expect, with the follgwiaveat:

Definition 5.2 The identifiers is bound by the scope of objects, so in particudlp|/s] = o;

otherwise, substitution is defined as usual.

We defineframe depthandunframedexpressions in the same manner as Chapter 1, and
similarly disallow framed subexpressions in objects of aogt. We then define well-formedness of

configurations as follows:

Definition 5.3 A configurationd :: §, ¢, o is well-formediff ¢ is closed and there exists and
unframede’ such thate = E[e’] and the frame depth df equals the length of.

Corollary 5.1 If d :: 4, e, o is well-formed and: = E[¢'] with ¢’ unframed, then the frame depth of

E equals the length af.

Hereafter we consider only well-formed configurations.sleasy to see that these well-
formedness requirements are sensible and not overlyatigtrivia the following lemma, the proof
of which follows by a straightforward (and tedious) caselgsia, which is left as an exercise for

the masochistic reader:

Lemma 5.1 If a well-formed configurationl :: 4, e, o is stuck, there = El[e’] wheree' is of the

following form:

1. (co-¢\,).m(v) wherem € . or m & ¢(d, 0)
2. [o].m(v) and(m(z) =€) € 0
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3. (I-¢\,).m(v) andm ¢ {set get}
4. (co-o\,)i1(d',) wheret  ¢(d', 0)
5. (I-¢\,).get() wherel ¢ dom(o)

6. (I-¢\,).sefv) wherel ¢ dom(o)

The reflexive, transitive closure e$ is denoted—*. Other language relevant to properties

of evaluation is defined as follows:

Definition 5.4 The domaind; is thetop-level domain An expressior is top-levelif it contains
no subexpressions of the fora- or [p].m(e') or I - ¢\,. If dy :: nil,e, @ —* dy :: nil,v,o for
top-levele, we say that evaluates ta. If there does not exist such thate evaluates ta) thene

diverges and ifd, :: nil,e, @ —* d; :: nil,e',o andd, :: nil, €', o is stuck, ther goes wrong

An important feature of the semantics is that it require$ évary domain haat leastthe
default access rights to an object. In gendrule, we always require a test to ensure that the active
protection domain is authorized for the specified use of thjeab: this detail is the essence of our
usebased security model, as opposedtonmunicatiorbased, in the sense that authorization for
object access is checked when the object is used, not whenoatnmunicated via message send or
assignment. Thereak mechanism semantics ensures that any return value from sageesend to
a weakened object is similarly weakened, and that the messayl itself is allowable with respect
to the weakening. Theastrule requires that any casgstrictsaccess rights to a capability, so that
increasing rights beyond the initial policy specificatiendisallowed. we will see in Sect. 5.4, the
pop type system statically enforces all of these checks, satlieaduthorization checks associated
with casting, weakening, and message sends, may be saiebyee from the runtime system.

The self variable and self objects

In order for objects to always have complete access to tHeassehe semantics specifies
a rule for the use of self objects which imposes no run-tinte@nization checks; indeed, self objects
have no interface or weakenings. The restriction that thiabte s cannot appear unselected—that
is, if s occurs in a program it must always be in an expression of tha fom (e)—ensures that
s cannot escape its own scope. This implies that givrféull strength” is safe, since it cannot

provide a “back-door” to the object by being communicatetbiole. Rights amplification via self,
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discussed in Sect. 5.1, is still possible, but thisfisaureof capability-based security, not a flaw of

the model.

5.3 Thepop-to-pmly transformation

In this section we define theop-to-pml; transformation. We begin by defining a trans-

formation ofpop user interfaces intpml; records with default values, denotgdas follows:
(di =01, dy s 0, @} = {BHO = Hdi =) {dn = tn}

In words, interface definitions are encoded as rows with dighdlexed by domain names, includ-
ing the default domain. Also, for brevity in the transforimat definition we define the following

syntactic sugar:

{mi=e1,....mp=¢en} 2 {@Hmi=e1} - {m,=¢e,}
fixs.\_.e = fixs.\z.e 2 not free ine
eries = letz =ejiney z not free ineq
eDir £ e3my;...;edmy v={my,...,my}

The pop-to-pml; transformation is then defined in Fig. 5.3. The translat®effected by trans-
forming pop objects into rows with obj fields containing method transfations, ifc fields con-
taining interface transformations, and strong fields doirig sets denoting methods on which the
object isnot weak.

Of technical interest is the use pinl; lambda abstractions with recursive binding to
encode the self variable in the transformation. Also of technical note is the manmewhich
weakenings are encoded. Ipap weakened objeaveak, (0), the set denotes the methods which
are inaccessible via weakening. In the encoding these ietsraed “inside out”, so that the strong
field in objects denotes the fields whialne accessible; in an unweakened object definition, this
field contains@. Accordingly, in the translation of message sends, anylttagucomposition of
weakenings is encoded as imersectionof the composed strong fields, rather than a union. We
define the translation in this manner to allow a simple dedinibf set subtyping, as well as typings
of set operations in theml ; type system, which translate into a simpler direct typeesysiorpop.
See Sect. 5.4 for details.

As for the Asecto-pml 5 transformation defined in Chapter 4, we will prove correstef
the pop-to-pml ; transformation, in the sense that the transformation preseprogram semantics.
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[]a
[s.m(e)]q

[[mi(z) = e; "<'<"]-d' - o\,]a

[er-m(e2)]aq

[er(d'; 1)]a

[weak,(e)]q

[ref,e]q

[letz =vine]y

T

(s{}.m)[ela

{obj = fixs.\_.{m; = Az.[e;]a """},
ifc = ¢,
strong= i}

letos = {01 = [e1]q, 02 = [e2]a} N

leti = os.0;1.ifcin

letw = 0s.01.Strongin

leto = (0s.01.0bj){}in

((i.d Vi.0) Nw) > m;

letos = 0.m(0s.09)in

oz{strong= (w A osz.strong }

leto; = [e]qin

(01.ifc.d' V 01.ifc.0) D ;

or{ifc = ((o1.ifc){d =})}

leto; = [e]qin

or1{strong= (¢ A o;.strong }

letz = ref [e]lqin

leto = A_.{get= \y.lz,set= Ay.z := y}in

{obj = o, ifc = ¢, strong= &}

letz = [v]gin[e]a

Figure 5.3: Theop-to-pml term transformation
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It is a simulation result which, aside from providing confide in the faithfulness of the transfor-
mation, will allow us to immediately obtain an indirect typeundness result fgsop based on
soundness of theml; type system, and will make direct type soundnes$ftgr easier to prove as

well. The desired property is stated as follows, and proweitié next section:

Theorem 5.1 pop-to-pml transformation correctness) If e evaluates ta then[e],, evaluates
to [v]4, . If e diverges then so dods], . If e goes wrong thefje]l;, goes wrong.

5.3.1 Properties

Our proof of Theorem 5.1 will be based on an induction on esbjtcomputations ipop.
However, to state the induction properly, it is necessamxtend thepop-to-pml; transformation

to run-time entities, as follows:

Definition 5.5 To treatpop run-time entities, we extend the transformation via thiofahg defi-

nitions:
L. [fmi(z) = e "<'<"m(e)]g = ((ixs A fm; = Az.[eia "<<"}){}.m)[e]a
2. [l-¢\Ju = {obj=A_{get= Ay.ll,set= \y.l := y},ifc = ¢, strong= 7}
B Hh—=ov,....ly = o] = {li = [oi]a,-- -, ln = [vn]a}

Note that in the above definition, the transformation of ealin stores may be parameter-
ized by arbitrary domain label$ the following Lemma demonstrates that this is reasonaiiee

the transformation of valuefg ], does not depend afi
Lemma 5.2 For all d andd/, if [[v], is defined therfjv]q = [v] .

Proof. Immediate by definition of the transformation, since for @age ofv the identifierd does
not appear in the RHS of the definition [pf] . 0

Next, we define twsubstitutionLemmas relevant to the transformation:
Lemma 5.3 If [¢] 4 is defined thedie] 4[[v]a /2] = [elv/z]]4.

Proof. By structural induction or. In the basis we have = 2/, where by definitior[z],; = =’
If ' # x then[e]q[[v]a /2] = [e[v/z]]a = «'. Otherwise we hav@z],[[v]a/z] = [v]a; but
[v]e = [v]q by Lemma 5.2, andz[v/z]]4 = [v]4, SO this case holds. The other cases follow in a
straightforward manner by the induction hypothesis. 0
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Lemma5.4 Lets = [m;(z) = ¢; "<"="] and letv = fixs.\_.{m; = \z.[e;]4 *~"="}. Thenif]e],
is definede]4[v/s] = [e[s/s]]a-

Proof. By structural induction ore. In the basis we have = z such thatz # s, since[s], is
undefined, so that[s/s] = = and[z]; = = by definition, thereforde][v/s] = [els/s]llq = =.
The induction step proceeds by case analysig.oin caseec = s.m(e’), we have that[s/s| =

[m;i(z) = e; "<"<".m(¢'[s/s]) by definition of self substitution, and:
[[mi(z) = e; *<"=".m(e")]q = ((fixsA_{m; = Az.[ei]a """V {}.m)[€'[s/s]]a

by definition of the transformation. Biis.m(¢')]4 = (s{}.m)[¢']q4, So that:

(s{}m)['la)lv/s] = ((fixsA{mi = Aa-[eila *<"=" ) {}.m)([¢'[alv/s])

and[e'[s/s]]q4 = [e']alv/s] by the induction hypothesis, so this case holds. The otresciollow
in a straightforward manner by the induction hypothesis. 0

We may now prove the core of our simulation result, by showiireg one-step reductions
— may be simulated via the transformation.

Lemma 5.5 The following assertions hold:
1. Ifd::d,e1,0 — d ::d::d,-ex-,0 by send, thefei] 4, [o] = [e2]a [o]-
2. Ifd ::d::6,-v-,0 — d:: 0,v,0 by pop, theduv] 4, [o] =* [v]a,[c]-
3. Ifd :: d,e1,01 — d = 0,e9,09 by some rule besides send or pop, tHen]y, [c1] —*

le2]a, [o2].

Proof. Each assertion is treated individually:

1. In this case by definition afendwe have:

er = ([o]-d"-p\,).m(v) wherep = (m;(z) = e; "<'<")

ez = weak,(e[[e]/s][v/z])

and(m(z) =e) € o

andm € (¢(d,0)\¢), thereforem ¢ . andm € ¢(d, 9). But by definition of the transformation we
have:
llo] - d' - ¢\,Ja = {obj=fixs.A\.{m; = Az.[e;]a "<},
ifc = ¢,
strong= ¢}
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therefore, letting’ = fixs.\_.{m; = Az.[e;] s *<'="

l[lo] - d - \.Jadifc,[o] — @, [o]
[lg] - d' - o\ Ja-strong[o] — 7, [o]
(ITe] - d' - ¢\ Ja-00){}, [o] —* {mi = Az.Jedalv'/s] *<"="}, [0]

Further, sincem ¢ « andm € ¢(d,0), it is the case thain € (¢.d U ¢.0) andm € i, i.e.

} we have:

m € ((¢.d U @.0) Nt). Therefore we have thdt],, [o] —* €”, [o] in this case, where:

"

e’ = letog = [e]a[v'/s][[v]a/x] N (o3{Strong= (v A o3.Strong })

by definition of the transformation ananl ; reduction. But by Lemma 5.4 and Lemma 5.3 we have

that([e« [v'/s][v]a/1) = [ellel/slfv/w]l, S0

"

e’ = letos = [e[[o]/s][v/z]]a In (03{strong= (¢ A o3.Strong })

ande” is equivalent tdweak, (e[[o]/s][v/z])]« , that is, to]es] &, SO the assertion holds.
2. This assertion holds immediately by Lemma 5.2 and refiigxof —.
3. This assertion follows by case analysis on the remairedgation rules.

U<i§n) and

Caseself. In this caser; = o9, 1 = [g].m(v), wherep = (m;(z) =e;
(m(z) = €) € o, andey = e[[o]/s]|[v/z]. Letv' = fixsA_{m; = Az.[e]q °~""}; then by

definition of the transformation we have:

[er]la = (v'{}-m)[v]a
therefore:
[erla; [o1] =* [e]alv'/s][[v]a/=], [o2]
But by Lemma 5.3 and Lemma 5.4 we have thdt,[v'/s|[[v]4/z] = [e][o]/s][v/z]]q4 = [e2]a, SO
this case holds.
Casecast Inthis caser; = oy ande; = (co-p\,) 1(d', /') andey = (co- (o[d — ])\.),
with v/ C ¢(d', 9). Lete = (co - \,); then there exists' such that:

[e]la = {obj=¢,ifc = ¢,strong= 1}
[ea]la = {obj= ¢, ifc = @[ﬁu], strong= ¢}

by definition of the transformation. Further:

[[ell]d = leto; = [[e]]din

(01.ifc.d’ V oy.ifc.0) D //;

or{ifc = ((o1.ifc){d' = '})}
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Leto; = [e]q. Sinced C ¢(d', ), thereforer C (oy.ifc.d’ U o0y.ifc.0), and since, .ifc, [oo] —*

@, [o2] we have:

——

(or.ifc){d ="}, [oo] =* (pld' — '), [o2]

etc., thereforde, |4, [o1] —* [e2]a, [o2] in this case by definition of>*.

Caseweaken In this caser; = 03, e1 = weak,(co - ¢\,) andez = co - p\(,u,). Let

e = co - ¢\; then by definition of the transformation there existsuch that:

[el« = {obj= ¢ ifc = ¢,strong= 1}

e2]la = {obj= ¢ ifc = §,strong= 1/ Nt}

and:

[er]a = letor = [e]qin o1 {strong= (' A oy.strong}

so clearly[e1] 4, [o1] — [e2]q, [o2] in this case.
Casenewcell In this casee; = refyv, ea = 1 - ¢\, andoy =

| ¢ dom(oy). By definition of the transformation we have:

[erla = letz =ref[v]ygin
leto = A_.{get= Ay.lz,set= Ay.x := y}in
{obj = o, ifc = ¢, strong= &}

o1[l — v] where

[eala = {obj= A_.{get= Ay.ll,set= Ay.l := y},ifc = ¢, strong= &}

Now, sincel ¢ dom(o), therefore ¢ dom([o]), so by definition ofhml,; —*:

[erla, [o1] =7 [eala; [on ][ = [v]d]

But[o1][l — [v]4] = [o1[l — v]] by definition and Lemma 5.2, so this case holds.

Caseset In this casee; = (I - ¢\,).sefv) wherel € dom(c) and sete (p(d,d)\¢),

es = weak, (v) andoy = o1l — v|. Then by definition of the transformation we have:

[l-o\.Ja = {obj=A_{get= \y.ll,set= \y.l := y},ifc = ¢, strong= 1}

so by definition of—* we have:

[l e\ Jaifc,[o] — ¢, ]o]
[[l ’ (p\L]]d.Stl’Oﬂg [[U]] - b [[0]]

(1 o\ Ja-0bj){}, [o] —* {get= Ay.ll;set= Ay.l := y}, [o]
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Further, since set (¢(d,0)\¢) therefore setZ . and sete ¢(d,d), so it is the case that set
(p.d U @.0) and sete ¢, i.e. sete ((¢.d U ¢.0) Nt). Therefore we have that:

[erla, [o1] —=* €, [ ][l = [v]d]

in this case, where:

"

e’ = letog = [v]4in (o3{strong= (¢ A o3.strong })

by definition of the transformation andnl; reduction. But” is equivalent tde;] 4, and[o+ ][l —
[v]a] = [o1]l — v]]q by definition, so this case holds.

Caseget In this casee; = (I - ¢\,).get() where gete (¢(d,0d)\t), o1 = o2 and
es = weak, (09(l)). Then by definition of the transformation we have:

[l-o\.Ja = {obj=A_{get= \y.ll,set= \y.l := y},ifc = ¢, strong= ¢}
so by definition of—* we have:

[l e\ Jaifc,[o] — ¢, ]o]
[1- ¢\ Ja-strong[o] — ¢ [o]
(It - ¢\ Ja-0b)){}.[0] —* {get= Ayl set=Ay.l := y}, [o]
Further, since get (¢(d, d)\t) therefore getZ . and gete ¢(d, d), so it is the case that get

(¢p.dU@.0) and gete 7, i.e. gete ((¢.dU@.0)Nt). Therefore we have thde, |4, [o1] —* €, [o2]

in this case, where:

"

e’ = letog = [o2] (1) in (os{strong= (¢ A 03.strong })

by definition of the transformation aneinl, reduction. Letv = oy(1); then[os](l) = [v]q by
definition and Lemma 5.2, sd is equivalent tde,], by definition, therefore this case holds.

Casdet follows trivially by Lemma 5.3. 0

Before turning to arbitrary-length computations, we stat@ther result relevant to the

expression transformation:

Lemma 5.6 For all v, if v is a closed value anfu],; is defined, thefjv], is a value.

109



[ls = 1]
[[mi(z) = €; """ \m(E)]as = ((fixsA_{m; = Iz.[ei]d """V {}.m)[E] g

[E.m(e)]a.s = letos={o1 = [E]a.5,02 = [€]a}in

leti = o0s.0;1.1fC In

letw = 0s.01.Strongin

leto = (0s.01.0bj){}in

((i.d Vi.0) Nw) > m;

letos = 0.m(0s.02)in

oz{strong= (w A oz.strong }
[v.m(E)]g.s = letos= {01 = [v]4,02 = [E]as}in

let: = os.0;1.ifcin

letw = 0s.01.Strongin

leto = (0s.01.0bj){}in

((i.d Vi.0) Nw) > m;

letos = 0.m(0s.09)in

os{strong= (w A os.strong }

[ei(d,t)]s = leto; =[E]sin
(01.ifc.d V 01.ifc.0) D ;

o1{ifc = ((o1.ifc){d = 1})}

[weak,(E)]s = leto; =[E]sin
or1{strong= (z A o;.strong }
[ref,E]s = letz =ref[E]sin

leto = A_.{get= \y.lz,set= Ay.z :=y}in
{obj = o, ifc = ¢, strong= &}
[E]as = [E]s

Figure 5.4: Theop-to-pml; evaluation context transformation
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Proof. Immediate by definition of the transformation; the only edsvalue form for whichw
is undefined iy = [p]; but since unselected self is disallowed in programs, thia reasonable
situation. 0
Now, we consider arbitrary-length computations with retpge —*. To perform the
necessary analysis, we extend tha-to-pml 5 transformation to evaluation contexts in a straight-
forward manner. The context transformation is defined in Big. Similar to the the\3 sto-Asec
simulation in Chapter 4, we will apply transformations tontexts along with theeverseof do-
main stacks in a configuration, since the oldest stack framkkapply to the outermost variables
in contexts. We note that the current transformation is aéuda transformation from contexts to

contexts:
Lemma 5.7 For all closedE, any defined £]; is a well-formed evaluation context.

Proof. Immediate by definition of the context transformation; timbyamildly interesting case is
E = v.m(E), butin this casg E]; is well-formed by Lemma 5.6. g

Then, we prove some relevant properties of the transfoomati
Lemma 5.8 The following properties hold:
1. If [E]e]]q is defined, then the frame depthiofs 0
2. If [Ele]]q is defined, thefiEle][lq = [E]a::nil[€e]a]
3. If E = Ep[F,] where the frame depth éf; equals the length o, and[[E] .. 4..s) is defined,
then[E] ev(d::0) = [E1]rev(dzo) [[E2] d:enil]

Proof. Each assertion is treated individually:

1. Immediate by definition of E[e][4, since the transformation is defined only on un-
framed expressions.

2. By structural induction or. In the basisE = [], and sincg][]]4..niz = [], there-
fore [Ele]lla = [Ela:nalle]a] = [e]a in this case. The proof then proceeds by case analysis on
compositeF, which excludes contexts of the forr’- by assertion 1.

CaseF = [m;(z) = ¢; "<'="].m(E"). In this casd E] 4., is equivalent to:

((fixs. A {m; = Az.[e;]q """ {Y.m) [E] g:onit

therefore[ E] 4...a[[e] 4] IS equivalent to:
((fixsA{m; = Az.Jeia *"="H{}-m)[E'Tanaclle]a]
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0<i§n]

and sincel[e] = [m;(z) = ¢; .m(E'[e]) in this case[F|e]] 4 is equivalent to:

((fixsd_{m; = Mz.Jes]q " =" {}.m)[E'[e]]q

But by the induction hypothesis we have thi&t'],...i([e]s] = [F'[e]]4, SO the assertion holds in
this case. The other cases follow in a similar, straightfodvmanner by the induction hypothesis,
due to the tight correspondence of the term and contextftranations.

3. By structural induction or¥;. In the basis we have thdl; = [], sod = nil.
Butrev(d :: nil) = (d = nil), so that[E] cy(a:6) = [F2lazni, @nd[[]]cev(aniay = [, SO that
[E1]vev(d::0) [[E2]d:nit]l = [E2]a:na, therefore the basis holds. The induction step proceedas®y c
analysis on compositg; .

CaseF, = -E'-. Since the frame depth @f, equals the length af by assumption, there-
fore the length of is at least 1 in this case, henge= (d; :: --- :: d,, :: nil) forn > 1. Also,
we have thaf £ ey (d:dy oz ity = [E Trev(dzdysocedn g imity VAL [ Eo]lrey (decdy coovedyimit) =
[E [Ea]lrev(dicdy :---i:d,,:mity DY definition. But since the frame depth 6f equals the length of
d, therefore the frame depth d#’ equals the length of; :: ---:: d,, 1 :: nil, so by the induc-
tion hypothesis we have th@t) ] ey (a::d; ::-:dy ity [[B2lla:nit] = 1B [FBollvev(didy siosidyy simit)
therefore this case holds.

The other cases follow in a similar manner by the inductiopdtiesis. 0

Next, we define a simulation relation betwgesp andpml, in terms of the expression
and context transformations:

Definition 5.6 For all d :: §, pop expressiong andpml; expressiong’, the relation(d :: 4, e) < ¢’
holds iff there existd”; ande; such thate = F[e], the frame depth of’; equals the length of,

ande’ = [E1]vey(q:0)[le1llal-
We then prove that this relation is a mapping:
Lemma 5.9 If (4,e) e’ and (4, e) < €’ thene' = ¢€".

Proof. Letd = (d :: ¢'), and letE;, E), e; ande| be such thatF[e;] = E'[e]] = e,
with the frame depths of/; and E equal to the length of’ and [E1]ey(4::6)[[e1]a] = €' and
[E1Tvev(a::5n[le]a] = €. Assume w.l.o.g. that; = Ele] for someFE, so thatE] = E;[E].
Since[e;], is defined, therefore the frame depthgfis 0 by Lemma 5.8, so also by Lemma 5.8

we have thafe:]s = [Fla.nal[€)]4]- Further, since the frame depth Bf equals the length af,
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therefore[ 1 [rev(azoy = [E1lrev(azo) [E]a::na] By Lemma 5.8. But thefiF: [ ev(a.o [[e1]d] =
[ Dvev(a::0n) (TET anirl[e1]al] = [E1 ] vev(azory[ler]lal, thereforee” = €. O

The following result shows that the simulation relation nbaypreserved through one step

of pop reduction:

Lemma5.10 If §1,e1,01 — 0d2,e9,09 and (d1,e1) < €} thene), Jo1] —* €}, [o2] such that

((52, 62) < 6”2.

Proof. By contextwe have that; = E[e] ande; = E[e] with §1,e,01 < d9,€’,09. The proof
then proceeds by cases corresponding to those treated asskdions enumerated in Lemma 5.5:

Case 1. Inthiscas® = (d :: d), 0o = (d' == d :: §), oy = oy ande’ is of the form
- with [ela, [1] —* ["]a [o2]. Lete] = [Elueyleldl andely = B[ res(on) [T
The frame depth of¢ equals the length of by Corollary 5.1, so also the frame depth Bf-[]-]
equals the length af :: §, therefore we have thdb;, e;) < €| and(dq, e2) < €, by definition. But
clearly [E[-[[]]rev(sy) = [Elrev(sy)» SO€t, [o1] —* €b, [o2] in this case by multiple applications
of context

Case 2. Inthiscas = (d :: d :: §), 6 = (d : §), oy = 09, ande is of the
form -v- ande’ = v. Lete] = [E[[]]]iev(on)[[v]a] andey = [Elievs,)[[v]a]- The frame depth
of E[-[]-] equals the length of, by well-formedness of configurations, so also the frame tdept
of E equals the length of, therefore we have thgb,e;) < ¢}, and(ds, e2) < €, by definition.
But clearly [E[-[]lrev(s1) = [Elrev(ss), and[v]e = [v]4 by Lemma 5.2, hence| = €}, so
e\, [o1] —=* €, [[o2] in this case by reflexivity of>*.

Case 3. Inthis cas& = 0y = d :: 4§, with [e]q, [o1] —=* [€']a, [o2]. Lete, =
[EDev(sllela] @andel, = [Elcev(s,)[[e'a]- By definition of— bothe ande’ are unframed, so the
frame depth ofF in this case is equal to the length &by Corollary 5.1, hencéd, e;) < €}, and
(62, e2) < €, by definition. Furthermore, sincg& = d, we have thaf £l ev(s,) = [Elrev(s,) SO

ey, [o1] —=* €5, [o2] in this case by multiple applications obntext a

The previous result then generalizes easily to arbitrargmatations, since the simulation
relation is a mapping:

Lemma 5.11 If §1, e1, 01 —=* 2, €2, 092 and (1, e1) <€) thene), [o1] =* €}, [o2] where(ds, e2) <

el

Proof. Straightforward by Lemma 5.10 and induction on the lengtthefreductiory, e;, o7 —*

(52362302- O
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One final step before proving the main result is the obsematiat relevant dynamic
properties of configurations are preserved in transforomati

Lemma5.12 If 4, e, 0 is stuck andd, e) < €', thené', [o] goes wrong. If(d,v) < €' thene' is a

value. If(d,e) < ¢ andé’ is not a value nor of the formv-, thene' is not a value.

Proof. Suppose, e, o is stuck; there = E[e'] wheree' is one of the forms specified in Lemma 5.1.
For each form, it is easy to see that the transformafidfy, [o] will go wrong, and here we only
sketch the relevant case analysise ifs stuck because is a method select om which is unau-
thorized to the active domain, or which has been disallowedéakening, then the transformation
implements a check which will also fail. #fis stuck because€ is a method select om which does
not exist in the object, then an field will not exist in[e'],, so a projection of that field will fail. If

e is stuck becausé is a set or a get on a cell object with locatibsuch that ¢ o, thenl ¢ [o], so
the transformation of these actions will also fail, as tlesformation preserves store locations.

Suppose tha), v) < €’; thene’ = [v], whered = d :: ¢ by definition of<, and[v], is a
value by Lemma 5.6.

Finally, suppose is not a value nor of the formy-. Letd = d :: §; since(d, e) < ¢, there
existsEZ ande” such thate = Efe"] ande’ = [ET,¢v(5)[€"]4 by definition. Suppose thdt = [];
thene” is not a value, and clearlfe”],; is not a value by definition of the transformation. Suppose
E is composite; then clearjE .. (s [¢"]4 is not a value by definition of the transformation, since
E is not of the form[]- by assumption, and for any’, [ E](5)[¢"'] is not a value in this case.O

We may now restate and prove the principal result of thisisecthat is, the correctness
of the pop-to-pml 5 transformation, as follows:
Theorem 5.1 pop-to-pmly transformation correctness) If e evaluates ta then[e],, evaluates

to [v] 4. If e diverges then so dogs],, . If e goes wrong theifie] 5, goes wrong.

Proof. Suppose for top-level we haved; :: nil, e, & —* dy :: nil,v,o. Then(d; :: nil, e) < [e] 4,
and(d, :: nil,v) < [v]q, by definition, ande]q,, @ —* [v]4,, [c] by Lemma5.11 and Lemma 5.9,
and[v]4, is a value by Lemma 5.12.

Suppose for top-levet we have thatl; :: nil, e, @ does not terminate, and suppose on
the contrary that there existsandv such thatfe]4,, @ —* v,0. Since(d; :: nil,e) < [e]q, by
definition, by Lemma 5.11 there must exidt o' and § such that(d,e’) < v ando = [[¢'] and
dy :: nil,e, @ —* 0,¢',0', wheree’ is not a value nor of the fornmw’- by assumption, since in the

latter case), ¢/, ' would evaluate t@’ by definition of —+* and well-formedness of configurations.
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But thenv is not a value by Lemma 5.12, which is a contradiction.
Finally, suppose for top-level we haved, :: nil,e,@ —* d,¢',0 andd, e, o is stuck.
Since(d; :: nil,e) < [e]q, by definition, thereforde],, , @ —* €”, [o] such that(d,e’) < €’ by

Lemma5.11, and”, [o] goes wrong by Lemma 5.12. 0

5.4 Types forpop

In this section we introduce a let-polymorphic type anaysr pop, which we develop
using the same transformational method described in Chaptghere type systems forgec Were
defined. In particular, we easily obtain amirect type analysis fopop via composition of the
pop-to-pml 5 transformation anghml ; type judgements, which is sound by Theorem 5.1 and The-
orem 3.2. Furthermore, the development of, and soundness far, adirect pmly; type analysis
is made significantly easier using this approach. This destnates the usefulness of thenl; lan-
guage, insofar as it may be used as a transformational tamgeto distinct source languagessec

andpml.

5.4.1 Indirect types

The type system§{e' for pml, were specified in Definition 3.2. Sect. 5.3 defined a
translation ofpop into pmlz. Composing the two automatically gives rise to a type systemop,
whose safety is a direct consequence of Theorems 5.1 and 3.2.

Definition 5.7 Lete be a closedhop expression. By definitior;,I" - e : ¢ holds if and only if
C,T'F [e]q, : o holds.

Theorem 5.2 (Indirect pop type soundness)If e is a closedpop expression and',I" - [e]4, : o

is valid, thene does not go wrong.

As in the case of\s¢, turning type safety into a trivial corollary was the pripal motiva-
tion for basing our approach on a transformation. Indeedabse Theorem 5.1 concerns untyped
terms, its proof is straightforward, and constitutes thagypal proof effort for thispop soundness

result.
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Figure 5.5: Direcpop type grammar

a €V m ¢ M T Sehyufm)
e : Methy,, Sety, Ifc,
a:k m, T : Sety,
T1:Type 1o :Type mgM 7 : Methyugm) 7 : Methy
m:1 — To; T : Methy, [T] : Type
71 : Set d¢ D T IfCDu{d} 71 : Methy Ty ¢ Ifcy 73 : Sel
d:{n}; m:lfc, [ﬁ]gﬁ : Type

Figure 5.6: Direcpop type kinding rules

5.4.2 Directtypes

While this indirect type system is a sound static analysipto, it is desirable to define
a direct static analysis fgsop, for the same reasons that this was desirable in the casg.of
That is, the term transformation required for the indireptlgsis is an unwanted complication
for compilation, the indirect type system is not a clear deation of program properties for the
programmer, and type error reporting would be extremelylitesome. Thus, we define a direct
type system fompop, the development of which significantly benefits from thensfarmational
approach. In particular, type soundness for the directesysnay be demonstrated by a simple
appeal to soundness in the indirect system, ratherabanitio.

While direct type system fopop is based on theml type system, we also develop a
specialized type language for the sake of readability, ana intuitive correspondence witlop
expressions. The direct type languagegop is defined in Fig. 5.5. The most novel feature of the
pop type language is the form for objeqﬁ}:ﬁ, wherers; is the type of any weakening set imposed
on the object, and; is the type of its interface. Types of sets are essentiallystits themselves,
modulo polymorphic features; we abbreviate a type of thenfere or 7,e as7. As always, we

immediately restricpop types to meaningful forms by requiring them to be well-kiddeith the
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() = {o{e}} - {(7D}
([m){2) = {obj: ([n]); ifc: {(2)}; strong: {(rs) }; o{a}}
(m:m =7 7) = m:(n)—>(n); (1)
(d:{n}; ) = d:{(n)+}; (m2)
le) = ofo}

qﬂ[)vdﬁ[)#»uqﬂl)f = B

dmvTD+ - m+7dTD+
(e)+ = @
qmaTD* = mfaqTD*

Figure 5.7: Thepop-to-pml; type transformation

relevant rules defined in Fig. 5.6.

The directpop type language has a straightforward interpretation inpthe; type lan-
guage, defined in Fig. 5.7; since we will base the direct tyséesn onS:, the model for the direct
pop type language is thus the RSmodel defined in Sect. 3.2.2. The interpretation is exterided
constraints and typing environments in the obvious maringhis interpretation, we turn weaken-
ing sets “inside-out”; this is to allow the types of weakegsgno correspond to disallowed method
names, in keeping with the operational meaning of weakanimgop. Turning these types inside-
out in the type transformation also corresponds to the mainnehich weakening sets are turned
inside-out in thepop—to—-pml; language term transformation. One of the benefits of thiscamh
is with regard to subtyping; weakening sets can be safeingthened, and user interfaces safely
weakened, in a uniform manner via subtyping coercions.

The direct type judgement system fesp, the rules for which areerivedfrom S]S type
judgements for transformegdop expressions, is defined in Fig. 5.8. For simplicity, we do not
include constraints in type judgements, but rely only omratosubtyping. The following definition

describes new relations appearing in th type judgement rules:

Definition 5.8 The relationt < 7' holds ifftrue I- (7) < (7') holds iInRS<!. The relation
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Figure 5.8: Direct type judgements fpop
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m & 7, holds ifftrue I 35.(( 7w )4+ < (m,B)+) holds inRSS!, whereg ¢ fv(C, 7,,).

5.4.3 Direct type safety and optimizations

The easily proven, tight correlation between the indired directpop type systems is
clearly demonstrated with the following lemma, which feltoin the same manner as Theorem 4.5;
the proof is straightforward, since the direct type judgataecan be viewed simply as syntactic

sugar forS]S judgements:
Lemma5.13d,T + e : 7 is valid ifftrue, (T') - [e]4: (7) isin Sy

Then, along with Theorem 5.1, this correlation is sufficimmimmediately establish direct type
soundness fopop:

Theorem 5.3 (Direct type soundness)f e is a closedpop expression and, I’ F e : 7 is valid,

thene does not go wrong.

This result again demonstrates the advantages of the aramstional method, which has
allowed us to define a direct, expressive static analysigdprwith a minimum of proof effort.

The next lemma provides further confidence in our difegh type system, by ensuring
that the derived system is complete, in the sense that ifrsfseEmedpop expression hasny
type in thepmly S]S system (not necessarily a type which is the image op@ap-topmly type
transformation), then it will be typable in the derived gyat

Lemma 5.14 If true,T" - [e], : 7 is valid in 815, then there exist§’, 7' such thattrue, (I") +

lela: (') is valid.

The proof follows in a straightforward manner by rule indanton the judgement, I" +- [e]4 : 7
and definition of theyop-to-pml; transformation.

Another benefit of our static analysis fpop, as forpml; andse is that security checks
in well-typed programs may be eliminated at run-time, siwed-typed programs are guaranteed to
be safe. The optimizations that may be effectechigs are particularly substantial; in fact, the only
reason for user interfaces to have any run-time presendemigell-typed programs is for the sake
of separate compilation. The optimized semanticptgs is defined in Fig. 5.9. The safety of these
semantics is verified with the following result, which falle by definition of—* and Theorem 5.3:

Corollary 5.2 Lete be a closedop expression; thed, e, @ ~* d',v,c iff d,e, & =* d',v, 0.
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d::6, (o & p\)m(v),0 ~ d:d: 6 -(weak,(e[[ol/s]v/])- 0 (seng
it (m(z) = ¢) € 0
. llm(v), 0~ belldl/slv/a), 0 it m(z)=e)co  (self
5,(co-o\) (d. 1o ~ 8 (co- (gld > /D\)o (casy
d,weak,(co-@\y),0 ~ b,co- o\, 0 (weaken
o,refov,0 ~ 0,1 \g, o[l = ] I ¢ dom(c) (newcel)
d:6,(l-¢\,).se(v),c ~ d:dweak,(v),o[l — v] I € dom(o) (set
d:=6,(l-¢\,).0e),0c ~ d:dweak,(o(l)),0 (get)
dletz =vine,o ~ defv/z],o (let)
d:d,v,0 ~ G0 (pop)
), Ele]l,oc ~ ¢ E[€], 0 if ,e,0 ~ d',¢',0’  (contex}

Figure 5.9: Optimized operational semanticspop

Conceivably, the semantics can be optimized even furtliecesall access control with
respect to weakening and interfaces is enforced statjidbiyno longer necessary to propagate this
information through run-time. However, we maintain theommhation in the optimized semantics
for the purposes of modularity.

5.5 Examples and discussion

In this section we provide several examples that demomestiat usage and flexibility of
the pop system, including a scheme for embedding the ownershipstgp¢5] in pop in a type-
safe manner, as well as a scheme for encoding class defmiith publ i c, pri vat e and

pr ot ect ed instance modifiers.

5.5.1 Basic typing examples

Here is a brief example illustrating the featuregop and the expressiveness of its direct
type system. We may create a cellvhich is read-write in domaim but read-only elsewhere,
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containing a value, as follows:

c= ref{dw{gegset},aw{get}}(U)
Then supposing : 7, the cellc has the following type:

¢ : [get:unit — 7,set: 7 — T]?}i:{gegset},az{get}}

Note how the interface is expressed in the type, and how nkemiregs show up in the type.

However, if we read-weaket this information is expressed in the type:

weak{set}(c) . [get: unit — 7,set: 7 — T]}g:ei}get,set},a:{get}}

Given the requirements of theeSD rule, attempting to use the set method of this weakened ca-
pability will not be well typed in any context, nor will an athpted set ob returned by reading
the weakened capability. This is true even assuming«thata cell, since weakening information
is propagated ta by the type system, just as weakening is propagated by the operational
semantics:

(weak ey ()).Sele) not well-typed

letc’ = (weakseq (c)).gel() in¢'.sefe) not well-typed

5.5.2 Ownership types embedding

Alanguage model for alias analysis, together wittbamershipype analysis, is proposed
in [5]. Here we show that their system can be realizeghdp (albeit with a use-based security
model, rather than the communication-based model of [5]chyosing an appropriate naming
scheme. Assume the following object definition in the lamgguaf [5], with the containment relation
p1 =:pg <:p3:

[m(x) = e}
a similar specification can be defined and statically enfbiae>op with the following object defi-
nition:

[m(z) = e]-p1-{p1— {m},p2 = {m},ps = {m}}

In general, given any set of contextspartial ordering(C, <:) and objecb},, we can transform the
object into the formv - ¢ - ¢, where donfiy) = {p' | p’ <: p} and for allp € dom(y), ¢(p) is all of
0’s methods, and carry the transformation recursively tgtoany objects defined inis methods.
Additionally, our type analysis is polymorphic, unlike oanship types, and is thus more flexible.
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5.5.3 Classegri vat eandprot ect ed
By choosing different naming schemes, a variety of secpidiadigms can be effectively

and reliably expressed isop. One such scheme enforces a strengthened meaning of theat e
andpr ot ect ed modifiers in class definitions, a focus of other communicatiased capability

type analyses [5, 43]. As demonstrated in [43hra vat e field can leak by being returned by
reference from gubl i ¢ method. Here we show how this problem can be addressed in-a use
based model. Assume the following Java-like pseudocodkagag, containing class definitions

c1, co, and possibly others, whetg specifies a methodh that leaks gr i vat e instance variable:

packagep begin
classe, { classcy {
pul:lic- public:
o) = @ m(x) =0b
a = newc
private: ) ]
(2) private:
glx) =1z
b = newc
protected: !
h(x) protected:
W\Wr) ==
¢ = Newc;
}

}

end
We can implement this definition as follows. Interpretingrdons as class names jip, let p

denote the set of all class nameés. .., ¢, in packagep, and letp — + be syntactic sugar for
.,¢n — Ly. Then, the appropriate interface for objects in the enapdinclassc; is as

Cl = L],..
follows:
= {p—{f,h},0~{f}}

Y1 =
(Recall that all objects automatically have full accesshtamiselves, so full access for need not

be explicitly stated). The clags can then be encoded as an objectory, an object with only one

publicly available method that returns new objects in tlasg] and some arbitrary lakél
= .’I,'] . Cl . 801

/(@) = 2, g(x) = o, h(z)
[new(z) = 01] -d - {0 — {new}}

Y

01
fetrye,
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To encodecy, we again begin with the obvious interface definition foremlt$ in the encoding of
classcy:

p2 £ {p>r{m,a.c},d— {m,a}}

However, we must now encodlestance variablesin addition to methods. In general, this is accom-
plished by encoding instance variablegontaining objects as method$) that return references
to objects. Then, any selection ofis encoded a&().get(), and any update with is encoded
a().se{v). By properly constraining the interfaces on these refegsna “Java-level” of modi-
fier enforcement can be achieved; but casting the interfatetred objectextendsthe security,
by making objectsinusableoutside the intended domain. Let ({d;,...,d,},t) be sugar for

ei(dy,e)1---1(dy,e). Usingfetry.,, we may create aubl i c version of an object equivalent to
01, without any additional constraints on its confinement,cgws:

0, £ fetry, .new()

Lettingp’ = p — {¢2}, we may create a version of an object equivaleni that ispr i vat e with
respect to the encoding of clags using casts as follows:

op = (fetry, new())1(9,2) (v, )

We may create a version of an object equivaleni tioat ispr ot ect ed with respect to the encod-
ing of packagep, as follows:

0. 2 (fetry,, .new()) (9, @)
Let oy be defined as follows:

02 = letr, = ref{aH{Setget}}Oa in

letr, = ref{cﬁ{setget}}ob in

letr. = refy., ., (setget ps {setget } Oc IN

Thenfctry., is encoded, similarly tdéctry,, , as:
fctry., 2 [new(z) = 0o] - d - {0 + {new}}
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Given this encoding, if an object storeddns leaked by a non-local use of, it is unusable. This
is the case because, even though a non-local usewafl return b, in the encoding this return value
explicitly states it cannot be used outside the confines joas a result of the definition @f, and

casting, the avatay, of b in the encoding has an interface equivalent to:
{eo = {f,h} .0 — 2,0 o}

While the communication-based approach accomplishesi@ssirengthening of mod-
ifier security, the benefits of greater flexibility may be emgd via the use-based approach. For
example, gr ot ect ed reference can be safely passed outside of a package andableinbas
long as a use of it is not attempted outside the package. Atsexample are the fine-grained inter-
face specifications allowed by this approach, enablingtgreaodifier expressivity— e.g. publicly

read-only but privately read/write instance variables.
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Conclusion

This thesis has focused on the development of type systemmsdgramming language-
based security. We have shown that static type systems alizadpe to two distinct security
models— the access control model with stack inspection,tlaabject confinement model. For
a consideration of the former, the€,.language was defined, which reflects the low-level behavior
of the Java JDK 1.2 implementatioh,. uses explicit call-stacks with security annotations, amd a
explicit stack inspection algorithm for run-time securityecks. A monomorphic type system was
defined for static enforcement of security g, which includes succinct, readable type terms. A
type safety theorem implies that run-time stack inspectian be eliminated, but the proof of the
theorem was delayed pending development ofihglanguage.

The \seclanguage was a re-figuration &f,, with a simpler, more abstract definition of
expressions, and a notion of implicit stacks contained alu&tion contexts. This conception of
the language is more appealing mathematically, espedailyigorous proof of type safety. By
proving that\3,. can be simulated inse, confidence was gained in the language’s faithfulness to
real implementations. A family of polymorphic type systemesre developed fokse, Which was
proven safe.

For a consideration of object confinement security, ph@ language was defined, an
object-based calculus with features for specifying anamiiig object confinement security poli-
cies. Thepop language is a low-level, flexible system for implementingaaiety of higher-level
systems. Several examples were discussed, including stlidsed languages with strengthened
pri vat e andpr ot ect ed modifiers, which prevent leaking of references themselraghger than
merely affecting visibility of instance variable names. #@t& type discipline forpop was then
developed and proven correct; as in the casg;gf this type system provides readable declarations
of security properties, and type safety implies that rumetsecurity checks can be eliminated.

The type systems foxsecandpop were both developed using the same methodology; the
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languages were transformed into the same target langualdgdd gml;, which is pre-equipped with
a sound type system. By proving that these transformaticmsa@rect, in that program semantics
are preserved, sound indirect type systems were immegliate#hined as the composition of the
transformations angml ; type judgements. Direct type systems were also developeidhwexploit
the transformation and the foundations of thel ; type system for easy development of soundness
proofs, as well as for the design of direct type terms andg¢unugnts.

Thepmly; language and type system were developed and proven coyr@ustantiating
the HM(X) type and constraint framework with a term language commugisécords, sets of atomic
elements, and associated operations, and a polymorphéclayyguage comprising row types and
conditional constraints. Since the.candpop direct type languages are based on thatiof;, they
reflect the expressivity and notational convenience of ggyes. Also, since sound implementations
of row types and conditional constraints exist, thg. and pop type systems benefit from type
inference methods. Type safety foml; relies on type safety in HYX ); while type safety results
do exist for the latter, the first purely syntactic type safesult for HM(X') was provided to ensure
a rigorous formal basis for the development of all type aysteind associated results, including
subject reduction in all cases.

Given these results, th&sec and pop languages and type systems provide a versatile
theoretical foundation for the development of static tyjmeiglines, specifically designed for the

specification and enforcement of programming language¢bascurity.
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Appendix A

Type System Implementations

(**************************************************************)

(* *)
(* nodul e Seclang: inplenments \lanbda_{sec} | anguage of *)
(* expressions *)
(* *)

(**************************************************************)

(* Witten by Christian Skal ka, Johns Hopkins University 2001 *)

(**************************************************************)

type principal
string

type privilege
string

type variable =
string

type expression =

| Unit

| Var of variable

| Fix of variable * variable * expression

| App of expression * expression

| Let of variable * expression * expression

| Enabl epriv of privilege * expression

| Checkpriv of privilege * expression
| Testpriv of privilege * expression * expression
| Omn of principal * expression
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type phrase =
| PhraseExpr of expression
| PhraselLet of variable * expression

(**************************************************************)

(* *)
(* nodul e | ocal Context: inplements a sanple | ocal context for *)
(* \lanbda_{sec} prograns *)
(* *)

(**************************************************************)

(* Witten by Christian Skal ka, Johns Hopkins University 2001 *)

(**************************************************************)

(* The initial principal *)
let initp =" _initp"

(* Afixed access credentials mapping. *)

let credentials = function
| Ilrootll _>
[ "disk"; "power"; "nmenory"; "file"; "thread"; "socket" ]
| IIJoeII _>
[ Ildiskll ]
| IISueII _>
[ Ilpo\/\erll ]
| _ ->
[]
(**************************************************************)
(* *)
(* nmodul e Typing: inplenents \lanbda_{sec} Sl= type inference *)
(* *)

(**************************************************************)

(* Witten by Christian Skal ka, Johns Hopkins University 2001 *)

(**************************************************************)

nmodul e System = Her brand. Make
modul e type Context = sig

(* the initial principal in this context *)
val initp : Seclang. princi pal

(* context access control list *)
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val credentials : Seclang.principal -> Seclang.privilege |ist
end
nodul e Make (C : Context) = struct

open System

open GroundSig

open Secl ang

type schene = System schene

type phrase = Secl ang. vari abl e * Secl ang. expr essi on
type environnent = (Seclang.variable * System node) i st

(*
own_rows : privilege |list -> node * node
own_rows [rl,...,rn] returns a pair of rows
({r1: "al; ...; rn : ’"an; Abs},
{r1: "al; ...; rn: "an; rho}
where 'al,..., an and rho are fresh

")

et own_rows rs =
let rec fr rs =
match rs with
| [1 ->
(row uniform(lo TAbsent), fresh())
| r::rs’ ->
let (sl1, s2) =fr rs’ in
let phi = fresh() in
(row _component r phi sl1, row conmponent r phi s2)
in
let (s1, s2) =fr rs in
(lo (TSet sl1), lo (TSet s2))

(*
make row : privilege -> variable -> variable -> node
make rowr vl v2 returns a row {r : v1; v2}

*)
l et make_ rowr vl v2 = 1lo (TSet(row conmponent r vl v2))
(* Type inference. *)

let rec infer p s env = function
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Unit -> |o TUnit
Var x ->

(* Find the named entry in the current typing
envi ronment. *)

| et scheme = try
Li st.assoc x env
with Not found ->
failwth ("Unbound programvariable: " ~ x) in
(* Instantiate the type schene. This returns the body of the
type schene’s instance, and inplicitly affects the gl oba
constraint set. *)
i nstanti ate schene

Fix (z, x, Om (p, €)) ->

| et domain = fresh() in

let fixt fresh() in

l et env’ (z, inject fixt) :: (x, inject domain) :: env in
l et (s_abs, s rho) = own_rows (C.credentials p) in

| et codomain = infer p s_abs env’ e in

unify fixt (lo (arrow domain (lo (arrow s_rho codomain))));
fixt
Fi x ->

failwith "The body of a function nust be signed."
Own ->

failwith "Si gned expressions disallowed in this context"

App (e11 e2) ->

let t1 infer p s env el in

let t2 =infer p s env e2in

| et alpha = fresh() in

unify t1 (lo (arrowt2 (lo (arrow s alpha))));
al pha
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| Let (x, el, e2) ->

(* Infer a type for [el] and generalize it. Infer a type for
[e2] within an augnented type environment. *)

l et signa = infer_and _generalize p s env el in
infer ps ((x, sigm) :: env) e2

| Testpriv (r, el, e2) ->

let rho = fresh() in
unify (make_rowr (fresh()) rho) s;

let t1 = infer p (nmake_rowr (lo TPresent) rho) env el in
let t2 = infer p (nake_rowr (lo TAbsent) rho) env e2 in
unify t1 t2;

tl

| Enablepriv (r, €) ->

if List.memr (C.credentials p)
t hen
let rho = fresh() in
unify (make_rowr (fresh()) rho) s;
infer p (make_rowr (lo TPresent) rho) env e
el se
failwith ("User " ~ p N~ " unauthorized for enable " ~ r)

| Checkpriv (r, €) ->

try
unify (make_rowr (lo TPresent) (fresh())) s;
infer p s env e

wi th I nconsistency ->
failwith ("Resource [" ~ r ™~ "] is unauthorized")

and infer_and_generalize p s env e =
(* Infer a type for [e], making sure that all variables
freshly created in this sub-derivation are nmarked as
such, i.e. would be quantified by a $(\exists Intro)$

rule. Ceneralize the type thus obtained. *)

scope (fun () ->
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generalize (infer p s env e)

)

(* External interface. *)

et run env (x, e) =
let rec initrowrs =
match rs with
| [1 ->
row_uni form(l o TAbsent)
| r::rs’ ->
row_conponent r (lo TPresent) (initrowrs’)
in
let s = (lo (TSet(initrow (C.credentials C.initp)))) in
X, infer_and_generalize C.initp s env e

end

(***********************************************************)

(* *)
(* nodul e H: inplements HM X) type inference *)
(* *)
(***********************************************************)
(* Witten by Francois Pottier *)
(* projet Cristal, INRI A Rocquencourt *)
(* *)
(* Copyright 2002 Institut National de Recherche en *)
(* I nformati que et Automati que. *)

(***********************************************************)

nmodul e type S = sig
(* Names of primtive operations. *)
type primtive
(* Type variables. *)
type vari abl e
(* Type schenes. *)

type schene
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(* Type environnents. *)

type environnment =
(string * schene) Iist

(* Programterns. A phrase is a single
toplevel \texttt{let} definition. *)

type expression =

| Primof primtive

| Var of string

| Fix of string * string * expression

| App of expression * expression

| Let of string * expression * expression
type phrase =

string * expression

(* Type inference. This function accepts an environnment and
a phrase. It infers a type, generalizes it, and returns

it, together with the nanme of the variable being defined.

val run: environnent -> phrase -> string * schene

end
nodul e Make
(G : Gound. Signhature)
(X : ConstraintSystemS with type "a preterm="a Gterm
(P: Primtives.Swth type schene = X. schene)
Swith type primtive = P.nane
and type variable = X variable
and type schene = X. schene
nodul e Make
(G : Gound. Signhature)
(X : ConstraintSystemS with type "a preterm="a Gterm
(P: Primtives.Swith type schene = X. scheng)
= struct

(* Nanmes of primtive operations. *)

type primtive = P.nane
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(* Type variables. *)

type variable = X variable
(* Type schenes. *)

type schene = X schene

(* Type environnents. *)

type environnment =
(string * schene) list

(* Programterns. A phrase is a single topleve
| et definition. *)

type expression =
| Primof primtive
| Var of string
| Fix of string * string * expression
| App of expression * expression
| Let of string * expression * expression

type phrase =
string * expression

(* Type inference. *)

let rec infer env = function
| Primnane ->

(* Look up the naned primtive, and instantiate its type
schene. *)

X.instantiate (P. map nane)
| var x ->

(* Find the nanmed entry in the current typing
envi ronment. *)

| et scheme = try

Li st.assoc X env
with Not found ->
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failwith ("Unbound programvariable: " ~ x) in

(* Instantiate the type schene. This returns the body of the
type schene’s instance, and inplicitly affects the gl oba
constraint set. *)

X.instanti ate schene
| Fix (z, x, e) ->

l et domain = X.fresh() in
let fixt = X fresh()
| et codomain =
infer ((z, X inject fixt)
(x, X.inject domain) :: env) e
in
X.constrain fixt (G arrow domai n codonai n);
lo (G arrow donmi n codonai n);

| App (el, e2) ->

l et alpha = X.fresh() in
X.constrain (infer env el) (Garrow (infer env e2) al pha);
al pha

| Let (x, el, e2) ->

(* Infer a type for [el] and generalize it. Infer a type
for [e2] within an augnented type environment. *)

infer ((x, infer_and generalize env el) :: env) e2
and infer_and _generalize env e =
(* Infer a type for [e], making sure that all variables
freshly created in this sub-derivation are nmarked as
such, i.e. would be quantified by a ($\exists$ Intro)

rule. Ceneralize the type thus obtained. *)

X.scope (fun () ->
X.generalize (infer env e)

)

(* External interface. *)
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et run env (x, e) =
X, infer_and generalize env e
end

(***********************************************************)

(* *)
(* signature ConstraintSystem describes the expected *)
(* formof an instance of HM X) *)
(* ‘)
(***********************************************************)
(* Witten by Francois Pottier *)
(* projet Cristal, INRI A Rocquencourt *)
(* *)
(* Copyright 2002 Institut National de Recherche en *)
(* I nformati que et Automati que. *)

(***********************************************************)

modul e type S = sig
type vari abl e
type 'a preterm

type term=
variabl e preterm

type schene

(* [fresh()] returns a fresh variable. *)

val fresh: unit -> variable

(* [lotern] returns a fresh variable. It inplicitly

makes [tern] its |l ower bound in the gl obal constraint
set. [hi terml returns a fresh variable. It inplicitly

makes [tern] its upper bound in the gl obal constraint set.

val lo: term-> variable
val hi: term-> variable

(* [row _conponent | vl v2] returns a fresh vari abl e,

inmplicitly equated with the row (I: v_1; v_2).
[row uniformv] returns a fresh variable, inplicitly
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equated with the row \delta(v). *)

val row conponent: string -> variable -> variable -> variable
val row uniform variable -> variable

(* [constrain v tern] adds a subtyping constraint
between [v] and [term to the gl obal constraint set.
The exception [Inconsistency] is raised if the constraint
set becones inconsistent as a result of this addition. *)
exception I nconsistency
val constrain: variable -> term-> unit
(* [scope action] executes the specified [action], with the

side effect that all variables freshly created during its
scope are marked as such. *)

val scope: (unit ->’'a) ->"a

(* [generalize v] creates a type schene out of the constraints
created during the current invocation of [exists], whose
entry point is assuned to be [v]. *)

val generalize: variable -> schene

(* [instantiate schene] creates a fresh instance of the type
schene [schene]. It returns its entry point, and inplicitly
affects the global constraint set. *)

val instantiate: schenme -> vari abl e

(* [inject v] turns a type variable into a (trivial) type
schene. *)

val inject: variable -> schene
(* Printing terms. *)
nodul e Print : sig

(* [reset] resets the nmechani smwhi ch assi gns new nanes to
type vari ables. *)
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val reset: unit -> unit

(* [variable v] prints a type variable, together with
the constraints bearing on it. [schene] prints a type
schene. *)

val variable: variable -> string
val schene: schene -> string

end
end

(***********************************************************)

(* *)
(* signature Primtives: describes the expected form of *)
(* type schene and primitive constant binding *)
(* inplenentations for instances of HM X) *)
(* ‘)
(***********************************************************)
(* Witten by Francois Pottier *)
(* projet Cristal, INRI A Rocquencourt *)
(* *)
(* Copyright 2002 Institut National de Recherche en *)
(* I nformati que et Automati que. *)

(***********************************************************)

nodul e type S = sig
(* Narmes of primtive operations. *)
type nane
(* Type schemes. *)
type schene
(* A mappi ng between the two. *)
val nmap: nane -> schene

end
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(***********************************************************)

(* *)
(* signature Ground: describes the operations which *)
(* abstractly represent a free termal gebra *)
(* ‘)
(***********************************************************)
(* Witten by Francois Pottier *)
(* projet Cristal, I NRI A Rocquencourt *)
(* *)
(* Copyright 2002 Institut National de Recherche en *)
(* I nformati que et Aut omati que. *)

(***********************************************************)

nodul e type Signature = sig
(* The type of terns. *)
type "a term
(* Abstract operations on terns. *)
exception Iter2
val arity: 'a term-> int
val map: ("a ->"'b) ->"aterm->"b term
val fork: ("a->"b * 'c) ->"aterm->"bterm* 'c term
val iter: ("a ->unit) ->"a term-> unit
val fold: ("a->"b->"b) ->"aterm->"'b ->"b
val iter2: ("a->"b ->unit) ->"aterm->"b term-> unit
(* The type of synbols, i.e. head constructors of ternms. *)

type synbol

val matches: synbol ->'"a term-> boo
val sprint: synbol -> string

(* The type of |abels, used to nanme every argunment of every
type constructor. *)

type | abel

(* [print term returns a list of |abeled sub-terms and
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val
val
val

(*

val

end

tokens. [parenthesize | abel subterm tells whether the
gi ven [subtern] must be parenthesized, if found at the
given [label] within a larger term [safe label] tells
whet her a | abel occurs between two tokens, i.e. subterns
at this | abel \enph{never} need to be parenthesized. *)

print: "aterm-> (label * "a) Tree.elenent |ist
parent hesi ze: label -> "a term-> boo
safe: | abel -> boo

Injections into terns. These are provided for use by the
typechecker -- constraint generation would be inpossible
if terms were entirely abstract! *)

arrow. 'a ->'a ->"aterm
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