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Abstract

Programming language-based security provides applications programmers with

greater control and flexibility for specifying and enforcing security policies. As comput-

ing environments distribute and diversify, and demands forprogram mobility increase, this

power allows programmers to adapt software to developing needs, while still protecting

resources. This thesis advocates the use of static type disciplines for expressing and en-

forcing programming language-based security. We develop type systems for two popular

security models: theAccess Controlmodel with Stack Inspection, and theObject Con-

finementmodel. Type safety proofs demonstrate that these type systems reliably enforce

security statically, and imply that certain run-time optimizations may be effected for pro-

grams. The declarative nature of our type terms also provideprogrammers with useful and

understandable descriptions of security properties. To formally develop these type systems,

a transformational approach is used, where source languages are embedded in a target lan-

guage, containing sets of atomic elements and associated operations, which is pre-equipped

with a sound type system. This target language and type system is developed using the type

constraint framework HM(X). The transformational approach and HM(X) both allow the

re-use of existing theory and implementations, easing proof effort, inspiring design, and

providing greater confidence in the correctness of results.
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Introduction

This thesis focuses on static, type-based approaches to programming language-based se-

curity. It is an argument for both programming language-based security, and for the use of types

as static disciplines to enforce security properties in programming languages (PLs). The argument

is made by analysis of two distinct security models—theaccess controland object confinement

models. We develop formal languages that incorporate thesemodels, reflecting features of real im-

plementations, and then develop type systems for the languages thatstatically enforce security; in

particular, soundness results for the type systems imply that run-time checks can safely be removed.

In addition to improving efficiency and reliability of implementations, we show that type systems

also benefit PL-based security systems by serving as readable descriptions of security policies, mak-

ing these systems easier to use and understand.

An orthogonal aspect of this thesis is themethodologyused to develop our type systems.

The method allows application of existing results and implementations to novel languages and type

systems, are-usethat saves significant proof effort. Perhaps even more significantly, the ability to

study novel type systems by reflecting on other well-studiedand developed systems provides sig-

nificant insight into the “best” design of the former. We willuse atransformationalapproach to

type system development, characterized by the semantics-preserving translation of a novel source

language into a known target language that comes pre-equipped with a sound type system. This

method has been exploited before in other contexts, e.g. to develop a type system for record con-

catenation [33], and to provide a static analysis of information flow [27]. Here we will use it in the

development of type systems for access control and object confinement.

To develop the target language of transformations, we will use the HM(X) framework

[23]. HM(X) is intended for a modular definition of languages and type systems. It is pre-equipped

with a core, stateful functional calculus and constraint-based type system, and can be instantiated

with primitive constants along with a specialized type language and interpretation to easily develop
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specialized languages. Significantly, any instantiation of the framework automatically obtains both

type safety and inference for the language core, by adherence to some basic conditions.

Overall, this thesis provides relevant foundational results for the development of static

analyses of programming languages with security features,developed in a manner that conserves

proof effort and takes advantage of previous work. We introduce each of the principal threads—

PL-based security, type systems and methodology— individually and in more depth below, and cite

related work in each case.

Programming Language-Based Security

The term “PL-based security” refers to the incorporation ofmechanisms into program-

ming languages, either as primitives or as add-on libraries, allowing direct programmer access to

security features of the language implementation. While these mechanisms exist for a variety of

purposes, the most prevalent, and the one we’ll be concernedwith, is to enforce safety of non-local,

potentially hostile code in a local, trusted execution environment.

PL-based security is distinct from system-level security mechanisms, e.g. SSL, the details

of which are designed to be almost completely transparent atthe applications level, where access

to these mechanisms is at most a pre-defined API. PL-based security, on the other hand, gives the

applications programmer extensive control over security features, to such a degree that sophisticated

policies may be defined and utilized. As argued in [14], PL-based security is useful because it

provides more powerful security abstractions to programmers, leading to more robust code. This

argument is gaining credence over time, as the internet and mobile computing devices contribute

to the popularity of mobile code. In particular, as the demand for mobile applications increases,

so does the need for application developers to directly address the issues that mobility raises—

especially issues of trust.

The specific security issue this thesis is concerned with is characterized as the control and

protection ofresources. A requirement of mobile code paradigms is that local systems must provide

computational resources such as file systems, memory, clockcycles, etc., for non-local program to

consume during execution. Security issue arises because non-local code cannot always be trusted to

safely consume these resources. Resources may be abused to asystematically crippling degree both

unintentionally, by buggy or poorly designed code, and intentionally, by malicious code. Thus, the

PL-based security we are concerned with is intended to protect resources of the local system against

abuse by non-local code. In particular, we will be concernedwith the two most popular models for
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PL-based resource protection, theaccess controlandobject confinementsecurity models.

In the access control model, access to resources is mediatedby an access control list

(ACL), which associatesprincipalswith sets of resourceprivileges. Depending on the system, prin-

cipals can be either codeownersor codeusers. Code owners are associated with source programs

statically, usually in an unforgeable manner, and are understood as the identity of the source, or

producer, of the code. Code users, on the other hand, are program consumers that are assigned

dynamically to programs, e.g. a UNIX user. Here we will interpret principals as code owners,

since this is standard for PL-based security, and since it will be feasible to treat this interpretation

statically, with types.

The most widely used PL-based access control system is the JDK security architecture

of Java [10]. Among other applications, the architecture isused to support sandboxing of applets,

which are prevented from accessing any local files and can communicate viahttp only with their

sourceurl. However, this is just an application of the general security mechanism, which allows

definition of more sophisticated security policies than thesimple and restrictive one expressed in

sandboxing. We will consider the general JDK1.2 security model, including thestack inspection

algorithm at the heart of the implementation.

Stack inspection allows for an enforcement of ACL security that prevents untrusted code

from sneakily interposing itself into trusted operations.For example, supposeprinting is a trusted

resource locally. The local system could provide a functionsafePrintfor general use, which checks

that the caller is authorized for printing before doing it. If code owned by a principal unauthorized

for this privilege tries to usesafePrint, the check will fail. In fact, stack inspection goes further;

by literally examining the call stack frames, which are annotated with the identities of the owners

of the associated code, and thus the identities of possible users of the active function evaluation,

the algorithm ensures that no untrusted code gains even indirect access to the resource, e.g. through

man-in-the-middle attacks.

While stack inspection-style access control is a sound model that has been useful in prac-

tice, it has some shortcomings, including its effect on run-time efficiency, and the clarity of security

policies. We will explore ways to increase the efficiency of stack inspection, and define concise and

declarative type terms that improve the clarity of securityspecifications. In this the current thesis

is similar to and inspired by [45], where a compile-time program transformation is described for

optimization of stack inspection, and BAN-type logics are used to characterize the system— though

here we advocate static analyses, rather than compiler transformations and BAN logics.

In the object confinement security model, access to resources is obtained by gaining pos-
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session of acapability to the resource, which is an unforgeable reference to the resource along with

possibly other information, e.g. an interface. Enforcement of security is based on distribution of

these references. For example, Java provides a basic objectconfinement scheme: by disallowing

pointer arithmetic and buffer overflow, the language ensures that the only way to gain access to an

object is by being explicitly given a reference. In fact, in the above example ofsafePrint, there is

an inherent confinement, in that code in general can obtain a reference tosafePrint, but not to the

primitive print function that the system must call to do the actual printing—otherwise, the entire

system would be circumvented.

A principal appeal of the object confinement model is its simplicity; since there are no

ACLs or run-time stack inspections to perform, the system isvery efficient. However, object pro-

tection schemes may be more sophisticated, e.g. the Secure Network Objects of [42] that use a

distributed capability architecture to implement secure,remote object message sends. In this thesis

we will develop an object confinement model that is general enough to capture a wide variety of

schemes. All object confinement mechanisms owe a great deal to previous research in capability-

based operating systems, including [12, 35, 48]. Significant work has been done to develop systems-

level security of this sort, including a formal verificationof security properties in [36] that is akin to

work here, insofar as that presentation provides formal, foundational results for resource protection.

While there are differences between access control and object confinement, with various

benefits and payoffs, thesafePrintexample above suggests that the models can interact. In fact, a

large body of recent work in PL-based security [2, 9, 20, 21] has demonstrated a need forboth the

access control and object confinement models in OO languagessuch as Java. Significantly, as some

of these presentations point out, confinement security is needed to prevent ACLs themselves from

leaking and being unsafely manipulated, which would completely subvert access control security.

Thus, we do not argue that one of these models is better than the other. Rather, we recognize that

both are useful, and show how both may benefit from static analyses, thus demonstrating the general

applicability of types to secure PLs.

Type Systems for PL-Based Security

Type systems offer various benefits that have been demonstrated in practice, by the suc-

cess of typed languages such as ML, OCaml and Java. These includedeclarativebenefits, since

types themselves serve as concise, readable specificationsof run-time behavior. They also include

safetybenefits, since type systems rule out programs that exhibit unsafe run-time behavior. Recent
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work has also demonstrated that types canoptimizethe run-time performance of programs, since

compilers can generate better code if more is known about program properties, via types, at compile

time.

In this thesis, we show how these benefits may be applied to security mechanisms in

PLs, by the use of types that statically analyze security information. In the context of secure pro-

gramming, run-time safety directly translates to system security, and so is of particular concern.

Furthermore, security bugs often originate from a misunderstanding of how the security framework

is properly used, not from fundamental flaws in the frameworkitself. Specifications that are difficult

to read are easy to get wrong; thus, the usual declarative benefits of static type frameworks provide

a particular advantage over purely dynamic approaches to the enforcement of security. Dynamic

security mechanisms can also introduce complications and inefficiencies to language implementa-

tions, so any run-time optimizations that can be gained through static analyses are of significant

interest.

Since the application is natural, type systems for PL-basedsecurity are currently a popular

research topic. Many different static approaches to PL-based security have been proposed, perhaps

not directly applicable to access control or object confinement. These include type systems for

enforcing security in the information flow model, in sequential languages [15, 27] as well as process

calculi such as the�-calculus [16, 26]. The proof-carrying-code (PCC) framework [1, 22, 34] is

an extremely powerful and expressive framework for the static verification of program security

properties, where assertions made about programs in extensible systems are automatically verified.

The PCC system is actually more general than type systems; assertions may be so complex as

to require human composition. Other novel type systems for PL security have been developed,

including static analyses for enforcing safe resource consumption [6], and verifying behavior of

expressive “security automata” [44].

Most directly related to work in this thesis are previous static approaches to object con-

finement [2, 3]. These treat systems that are very similar, though less general than the system

treated in Chapter 5; also, our system implements security checks in a distinct manner. The results

in Chapters 1 and 4 are versions of material originally presented by the current author, among oth-

ers, in [28, 37], which represent the first type systems dealing expressly with stack-inspection-based

access control. However, approaches to this same issue havesince been developed by others [21].

The material presented in this thesis is distinguished fromprevious work in a number

of ways. There are various technical distinctions that willbe discussed at greater length in later

Chapters. More generally, the principal contributions consist of expressive, flexible type systems
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that are easily readable, simple, and efficient, with rigorous mathematical foundations. The type

systems for both the access control and object confinement model will be designed to reflect the

nature of the security context. The type analysis for the access control model will specify the

privileges required to perform an action. The type analysisfor the object confinement model will

specify the domains to which an object is confined. Since these types naturally communicate the

security policies of programs, they serve as a clarificationof the policies to the programmer. These

type systems, though expressive in distinct ways, will bothbe based on polymorphicrow types [29],

which are concise yet powerful, as well as well-studied and characterized. This significantly raises

confidence in the formal rigor of the systems.

Furthermore, these analyses will beinferrable; that is, type inference will be an available

implementation technique. This is especially important with respect to Java, since it means the

analysis could be adopted to the existing Java code base, without a retrofit of type annotations

as required by type checking. Furthermore, since our analyses will be based on row types, we

will be able to appeal to a large existing codebase for the implementation of the type systems,

that includes well-developed methods for efficient type inference [24, 31]. This distinguishes our

analysis from e.g. PCC, which is concerned with possibly more complicated properties, and requires

the programmer to annotate programs with assertions relevant to its static analysis; our approach

ensures that we stay within the bounds of an efficient analysis that imposes no additional overhead

on the programmer.

Our analyses promote efficiency by statically enforcing security, allowing dynamic checks

to be removed. By proving type soundness results that treat run-time security behavior of programs,

we rigorously establish that well-typed programs are dynamically secure, meaning that costly run-

time checks such as stack inspection can be eliminated. In fact, our type analysis for object con-

finement is sensitive enough so that virtually no dynamic checks are needed. This contributes to the

feasibility of secure PLs for widespread application, by ensuring their efficiency.

In general, this thesis will pay particular attention to developing readable type systems,

to the verification of their correctness via rigorous proof of type safety properties, and to a con-

sideration of how types can improve program performance. While the results are foundational, the

applications are practical, insofar as the usefulness of types has been demonstrated, and the ideas

presented here can be implemented in an efficient manner. As alluded to above, this last fact is

ensured by the re-use of well-studied methods that have already been proven efficient in practice,

which is allowed by our translational methodology, discussed in the next section.
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The Translational Approach and HM(X)
Developing type systems for novel, non-trivial languages is an involved task. Designing

a concise, readable type language is difficult, as is provingthe system correct. In this thesis, we

will endow languages with anoperationalsemantics, which usually implies that asubject reduction

result is required to prove type safety. Subject reduction is notoriously tedious to prove; however,

our methodology will allowre-useof an existing subject reduction result, eliminating the most time-

consuming hurdle in our syntactic type safety proofs. It will also allow re-use of the elegantrow

type system of [29], including inference methods, resulting in safe, concise, and readable types,

which are pre-equipped with efficient implementations.

One aspect of our methodology is the transformational approach to type system develop-

ment, developed and used previously in [27] and [33]. This approach is characterized by a transla-

tion from a novelsourcelanguage, with no static analysis defined, into a previouslystudiedtarget

language that comes pre-equipped with a sound type system. By verifying that the source-to-target

translation preserves program semantics, a soundindirect static analysis for the source language is

immediately obtained as a corollary of type soundness in thetarget language. We may also base

a direct type analysis for the source language, which treats source expressions directly rather than

via transformation, on the program transformation and target type system. This approach allows

significant insight into the best form of the source languagetype system, and saves considerable

effort in its soundness proof; rather than proving soundness ab initio, a significant task due to the

requirements of subject reduction, only a trivial correspondence between the direct and indirect type

system need be demonstrated.

We will use the transformational approach to develop type systems for both our access

control and object confinement models. In fact, we will be able use the same target language in

each case: it is interesting to note that the same language can be used to capture the behavior of such

distinct security models. Our target language, calledpmlB , is based on Rémy’s Projective ML [30],

and is similarly endowed with row types [29]; however, it contains significant novelties, including

language features and concise, accurate types for operations on sets of atomic elements such as

intersection, union and difference. To define these types, we useconditional constraints[24]. This

language and type system will be developed by instantiatingthe HM(X) framework [23, 40], which

allows re-use of a stateful functional core and type system,including subject reduction and type

soundness results. This approach significantly simplifies aproof of type safety forpmlB, since,

again, it is not necessary to prove subject reductionab initio.
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An ancillary result of this thesis is subject reduction for HM(X), which has not been

previously demonstrated; we prove it here mainly to fill a gapin the literature (in fact, a soundness

proof for HM(X) with respect to a denotational semantics exists in [40], anda so-calledsemi-

syntacticresult is proved in [25]; the latter would be sufficient to prove syntactic type soundness forpmlB here). Since the relevant proof requires an entire Chapter,it is easy to see the work that is

saved by taking the result as a given.

Structure of the Thesis

The rest of the thesis is structured as follows. The general method of the thesis is presented

in Chapter 1 by way of example, where we take a first look at a language with stack inspection

security, including operational semantics, type system, type soundness and optimization results. To

set the stage for our transformational approach, in Chapter2 we define the HM(X) system and

provide subject reduction and type soundness results. ThepmlB language is then presented as an

instance of HM(X) in Chapter 3. In Chapter 4 we return to stack inspection security, and develop

a more sophisticated language model and type system throughtransformation intopmlB . We turn

our attention to object confinement in Chapter 5, where a language is defined that incorporates this

sort of security, as well as a type discipline that enforces it. Again, type soundness and optimization

results are discussed, and are obtained via transformationinto pmlB. In the Conclusion, we close

with some final observations and remarks.
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Chapter 1

Types for Access Control: First Look

In this chapter, we examine the stack inspection security mechanism, casting it into a

simple model that captures the essential security properties of the Java JDK1.2 stack inspection

system. The chapter serves three purposes; to familiarize the reader with stack-inspection security,

to describe a low-level model that accurately reflects the description of Java stack-inspection in the

literature [10], and to provide an understandable example of the static approach advocated by this

thesis, via development of a simple monomorphic type system. Later, in Chapter 5, we will recast

our language model into a more technically appealing, but less transparently “JDK1.2-like” form.

By proving that this latter form is capable of simulating theform presented in this Chapter, we

maintain confidence in the faithfulness to real implementations throughout. In Chapter 5 we will

also present a polymorphic type system in full detail, that subsumes the system presented here.

The chapter will proceed as follows. In Sect. 1.1, we briefly describe and discuss the stack

inspection model, with observations about its shortcomings. In Sect. 1.2, we provide a language

formalization of this model. Then, in Sect. 1.3, we define a static type discipline that resolves

shortcomings associated with the current stack inspectionimplementations.

1.1 Review and critique of Java stack inspection

The stack inspection system described here is a simplified version of that found in Java,

intended to capture only the core mechanisms. The reader familiar with the JDK security architec-

ture will note that some of its more complex features, e.g. privilege inheritance and parameterized

privileges, are not captured—but our goal here is a solid foundation for static access control, rather

than a complete model of the JDK security architecture.
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In the JDK, access control lists (ACLs) are defined by owners of the local system, which

associatecode owners, or principals, with sets ofprivileges. The stack inspection mechanism is

a technique for activating and checking privilege activations. This is fundamentally adynamic

security checking system, in that access restrictions are all checked at run-time, not compile-time.

To use the system, the programmer adds “do privileged” and “check privilege” commands to the

code. A “do privileged” command takes as parameter a “privileged action” object, which must

contain arun method, which takes no parameters, that is a macro for some sequence of security-

sensitive actions. This run method is invoked in the body of a“do privileged” call, and the stack

frame associated with the invocation is annotated with a privilege flag. When a privilege is checked

via the “check privilege” command, stack frames are searched most to least recent. If a frame is

encountered with the desired flag, the check succeeds. Additionally, all programs in JDK 1.2 come

with a specified owner, and stack frames are annotated with the name of the owner of the code

associated with each frame. If an owner who is unauthorized for the privilege being checked is

encountered on a stack frame before success of inspection, the check fails. For more Java-specific

detail, see [11, 19] for a concise description of the stack inspection mechanism in Java, and how

it may be used to enforce security properties. The reader is referred to [45] for good examples of

the use and advantages of the JDK 1.2 architecture. One appealing aspect of the system is that any

security policy is highly programmer-specified– the programmer inserts privilege activations and

checks where they are appropriate. This makes the system more malleable than the information-

flow model [7], for example.

The Java security architecture is a solid proposal which is being applied in practice, but it

has significant flaws. There is a performance penalty due to the need for run-time stack inspection;

in addition to the presence of run-time security checks, compiler optimizations such as tail-call

elimination and CPS transformation would interfere with the stack inspection semantics, and are

thus precluded. Our static approach eliminates the need forcertain run-time checks, allowing an

interaction of stack inspection security and these compiler optimizations. Another solution to this

problem is called security-passing style (SPS) [45], whicheliminates the need to literally inspect ev-

ery stack frame. However, even this solution does not address thead hocnature of the architecture;

all security properties are enforced by method calls, a highly non-declarative form of specification.

This makes the access control specification very difficult toread—it is all buried in the code and the

implicit control flow structure of that code. The static analyses we explore do address this problem.
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x 2 ID identifiersr 2 R; R � R resourcesp 2 P;A � P ! 2R principals & ACL’sv ::= C(; �x:e) valuese ::= x j v j �x:f j e e j doprivre j check r then e j �e� j f expressionsf ::= p:e signed expressionsE ::= [℄ j E e j v E j doprivrE j �E� evaluation contexts

closedv 2 V;  2 ID * V environmentsf ::= o� j on(r) activation flagsS ::= nil j h; p; fi ::S stacks

Figure 1.1: Grammar for�Ssec

1.2 The�Ssec language definition

This section defines�Ssec, a simplified model of the JDK 1.2 security architecture. It is a�-calculus equipped with a notion of code ownership, access control lists (ACLs), and constructs

for activating and checking privileges. A “low-level” operational semantics is defined, comprising a

representation of call stacks with security annotations. This form clearly reflects actual implemen-

tations.

1.2.1 Syntax

We assume given an arbitrary setR of privileges, usingr andR to range over privileges

and over sets thereof, respectively. For simplicity we assume a fixed ACLA, although the formaliza-

tion is adaptable to any local definition ofA. AnyA is a map from principalsp to sets of privilegesR. We distinguish a principalnobodyto denote an anonymous principal, withA(nobody) = ?.

The grammar of�Ssec is given in Fig. 1.1. Asigned expressionp:e behaves as the expres-

sion e endowed with the authority of principalp. The body of every�-abstraction is required to

be a signed expression – thus, every piece of code must be vouched for by some principal; other-

wise, although we includef in the language of expressions for technical convenience, “bare” signed

expressionsp:e are disallowed. The constructdoprivr allows a principal to activate the use of a re-

sourcer within the expressione. The constructcheck r then e asserts that the use ofr is activated.
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If r is indeed activated,e is evaluated; otherwise, execution fails. We let� :e denote the function

where does not appear free ine.
Since we will be defining a stack-based semantics,�Ssec also includes a definition ofclo-

suresC(; �x:e), which is a function together with a binding environment for the free variables

in �x:e. Binding environments are partial maps from identifiersx to closed valuesv, denoted[v1=x1; : : : ; vn=xn℄. We write[x=v℄ to denote the binding environment that is equivalent to but

which mapsx to v, and write; 0 to denote the environment that is equivalent to but which mapsx 2 dom(0) to 0(x), while nx denotes the environment which is undefined onx and is other-

wise equivalent to. We define the free variables of an expression fv(e) as usual, extending the

definition to closures as fv(C(; �x:e)) = fv(�x:e)�dom(). An application of a binding to an ex-

pression, denotede[v1=x1; : : : ; vn=xn℄, results in the substitution ofv1; : : : ; vn for free occurrences

of x1; : : : ; xn, respectively, ine. Substitutions are extended to stacks as follows:env(h1; p1; f1i :: � � � :: hn; pn; fni ::nil) , n; � � � ; 1S(e) , e(env(S))
For the purposes of our stack-based semantics, we also haveframedexpressions�e�, de-

noting a region of code associated with a stack frame. These expressions, and closures as well,

are for the purposes of operational bookkeeping, and we say that e is a top-levelexpression iffe
is closed and contains no subexpressions of the form�e0� or C(; e0). Additionally, we disallow�-abstractions and closures with framed subexpressions.

1.2.2 The stack inspection algorithm

We now give the definition of stack inspection in our model, which is a formalization of

the description in Sect. 1.1.

The�Ssec grammar contains a definition of stacksS. EachS is a stack of framesh; p; fi,
where is a binding environment,p is the owner identity associated with the frame, andf is a

privilege activation annotation. Each frame is an activation record associated with a function call,

with  the free-variable bindings for the function,p the function code owner, andf denoting whether

the function was executed normally, in which casef = o� , or as the result of a call todoprivr, in

which casef = on(r). Theinspet function inspects the stack for an activation of a privileger, in
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S; x ! S; S(x) (var)S; �x:e ! S; C(env(S); �x:e) (closure)S; C(; �x:p:e)v ! h[v=x℄; p;o� i ::S; �e� (app)S;doprivrC(; � :p:e) ! h; p;on(r)i ::S; �e� (dopriv)S; check r then e ! S; e if inspet(S; r) = true (checkpriv)h; p; fi ::S; �v� ! S; v (pop)S; E[e℄ ! S0; E[e0℄ if S; e! S0; e0 (context)
Figure 1.2: Operational semantics of�Ssec

the manner employed in Java.inspet(nil ; r) = falseinspet(h; p;on(r)i ::S; r) = if r 62 A(p) then falseelse trueinspet(h; p;on(r0)i ::S; r) = if r 62 A(p) then falseelse inspet(S; r) wherer0 6= rinspet(h; p;o� i ::S; r) = if r 62 A(p) then falseelse inspet(S; r)
This algorithm implements Java stack inspection: given a privilege r, the stack is searched frame

by frame from the current frame until the privilege is found on the stack (returntrue), or the owner

of the frame lacks that credential (returnfalse), or we ran off the top of the stack (returnfalse). The

set of privileges which are enabled on a particular stackS, given some access credential listA, is

denotedprivs(S); i.e., privs(S) = fr j inspet(S; r) = trueg
1.2.3 Operational semantics

With the syntax of�Ssec and stack inspection defined, we may now give the operational

semantics, defined in Fig. 1.2, which is a reduction relation! on configurationsS; e. We specify

that! be defined only onwell-formedconfigurations, which we elaborate as follows:

Definition 1.1 Theframe depthof an evaluation context is inductively defined as follows: the frame

depth of[ ℄ is 0, the frame depth of�E� is 1 plus the frame depth ofE, and the frame depth of any

other context formE is the frame depth ofE’s subcontext.
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Definition 1.2 A configurationÆ; e; � is well-formed with respect to! iff �(e) is closed, and there

existsE and unframede0 such thate = E[e0℄ and the frame depth ofE equals the length ofÆ, where

the lengthof a stack(h1; p1; f1i :: � � � :: hn; pn; fni ::nil) is n..

Several of these rules implement a semantics whereby variable bindings are kept on the

stack and looked up when necessary. This includes the rule for functions�x:e, which reduce to

closuresC(; �x:e). Note that in a normal function call, the new stack frame is annotated witho� ,

whereas ifdoprivr is applied to a function closure, then a new frame associatedwith an application

of the closure is annotated withon(r)– note that the closure must contain a function that takes no

parameters, as must the run method of privileged action objects in Java.

We let!? denote the reflexive, transitive closure of!. We say thatS; e is stuckif e is not

a value but there is noS0; e0 such thatS; e! S0; e0— that is, stuckS; e are semantically meaningless.

If nil ; e! S0; e0 andS0; e0 is stuck, then we say thate goes wrong.

1.3 Types for�Ssec

The previous section specified the language and dynamic behavior of �Ssec. In this section,

we propose a static analysis for�Ssec that allows the declaration and enforcement of security proper-

ties of programs. This analysis allows runtimechecks to be eliminated during the execution of�Ssec

programs.

The idea behind this type system, is that privilegeneedsof a program is represented in its

type, where needs are those privileges that arechecked during execution of the program. Functionsf that perform privileged actions will have type� &�! � 0, containing a needs annotation&. The

type system statically verifies that needs of expressions would met bydoprivrs during execution.

These “security types”& are actuallyset types, types which can accurately describe the contents of

sets of urelements. In this case, the urelements are privileges. Thus, if a function has type� &�! � 0
and requiresr1 andr2 to be activated for its use, then& is the type of the setfr1; r2g. However, we

note that these sets areimpliedby the semantics of the language; sets are no way an actual language

construct of�Ssec.

1.3.1 Type language

The language of types� includes monomorphic type variables, function types, and set

types. Set types are composed of elementsr, where is either+, denoting that the element is
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� ::= �; �; : : : j � ! � j f�g j ? j b�; � j  types ::= + j � constructors

Figure 1.3: Type and constraint grammar for�Ssec� 2 Vk� : k �; � 0 : Type � 00 : Set?� f� 00g�! � 0 : Type
? : SetB  : Con� : Con b 62 B � 0 : SetB[fbg(b�; � 0) : SetB

Figure 1.4: Type kinding rules for�Ssec

present in the set, or�, denoting that element is absent. For technical reasons that will become

clear throughout this thesis, as well as for coming languageextensions, the flexibility of specifying

the presence or absence of a particular element is essential.

Set types also contain constructors? and!, denoting whether all other elements not

explicitly mentioned in the rest of the type are present or absent, respectively. For example, if

a function has type� &�! � 0 and requiresr1 and r2 to be activated for its use, then& has typefr1+; r2+;?g. Note that this informal description of the constructors? and! implies certain

equational properties of set types, e.g.:fr1+; r2+;?g = fr1+; r2+; r3�;?g = fr1+; r2+; r3�; r4�;?g = : : :
We delay a formal account of this behavior until Chapter 3.

To ensure that only meaningful types can be built from the type grammar, we equip types

with kinds in Fig. 1.4; from here on, we assume that any type iswell-kinded, in the sense of obey-

ing the kinding rules. Note that these rules ensure that set types do not have repeated elements.

Formally, we let� range over types of kindSet?, and let& range over types of the formf�g.
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1.3.2 Type judgements

Type judgements in�Ssecare of the formp; &;� ` e : � , wherep represents the code owner,& represents the set of currently active privileges, and� is a type binding environment. We write(�;x : �) to denote the environment which bindsx to � , and which otherwise is equivalent to�.

The type judgement rules are then given in Fig. 1.5. The most novel rules are those associ-

ated withdoprivr, check, and signed expressions. The rule SIGN for signed expressionsp:e ensures

that any privileges needed to executee are inA(p)— that is, are authorized top. The rule CHECK

ensures that a privilege being checked is in the currently active set. The rule DOPRIV SUCCESS

activates the specified privileger in its precedent; DOPRIV FAILURE has no effect, in case the

specifiedr is not authorized to the current principal. In derivations we disallow the judgementp; &;� ` x : �dp in any consequence of VAR; this statically enforces that any argument ofdopriv

reduces to a closure with a dummy argument. We say a judgementis valid iff it can be derived

according to these rules, and we saye is well-typediff nobody; f?g;? ` e : � is valid, in which

case we writee : � .

1.3.3 Type safety

One of the main points of this formalization is to provide a foundation for rigorously

provingtype safety— that is, for proving that only semantically meaningful expressions are typable.

In the case of�Ssec, this implies that onlysecureexpressions are typable, since the semantics ensures

that insecure computations fail. By establishing type safety, we also prove that run-time security

checks can be eliminated, since well-typedness ensures that all such checks will succeed. Type

safety comprises bothsoundnessandprogressresults, which we may state here as follows:

Theorem 1.1 (�SsecType Safety) If top-levele is well-typed thene does not go wrong.

Theorem 1.2 (�SsecProgress) If top-levele is well-typed then eithernil ; e!? S; v or e diverges.

One important consequence of these results is that we may nowformally assert that runtime stack

inspection is no longer necessary:

Proposition 1.1 Let be defined as!, but with calls toinspet eliminated. Supposee is well-

typed; thennil ; e ? S0; v iff S; e!? S; v.

At this point it would be traditional to developab initio proofs of the correctness of these

assertions. However, we will instead lay aside these proofs, returning to them in Chapter 3 when we
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VAR�(x) = �p; &;� ` x : � ABS?; &2; (�;x : �1) ` f : �2p; &1;� ` �x:f : �1 &2�! �2 APPp; &;� ` e1 : �2 &�! � p; &;� ` e2 : �2p; &;� ` e1 e2 : �
DOPRIV FAILUREp; f�g;� ` e : �dp f�g�! � r 62 A(p)p; f�g;� ` doprivre : � DOPRIV SUCCESSp; fr+; �g;� ` e : �dp fr+;�g�! � r 2 A(p)p; fr'; �g;� ` doprivre : �

CHECKp; fr+; �g;� ` e : �p; fr+; �g;� ` check r then e : �
SIGNp; fr1'1; : : : ; rn'n;?g;� ` e : � A(p) = fr1; : : : ; rng?; fr1'1; : : : ; rn'n; �g;� ` p:e : �

Figure 1.5: Type judgement rules for�Ssec

develop a polymorphic type system that subsumes the currentone, including its safety properties. A

central point of this thesis is that proofs of properties such as these, which take a great deal of effort

with anab initio approach, can be made much easier via the transformational approach we will use

to develop the polymorphic type system for�Ssec.

1.4 �Ssec language and type examples

Here we give some examples that demonstrate the use of�Ssec, the readability of types for

the language, and how types are used to enforce security.

Assume the following definitions:ok , �x:p:x
checkr , � :p:check r then ok

To these expressions we may assign the following types, where �ok refers to the specified type of
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�ok hereafter: ok : � f�g�! �
checkr : �dp fr+;�g����! �ok

Note that the security needs ofcheckr show up explicitly in its type, whereas the type ofok reflects

no security requirements. Now, at the top level with no privileges enabled, the expressioncheckrok
is operationally unsafe, sincecheckr requires thatr be enabled to be applied. Appropriately, the

expressioncheckrok is not well-typed, since typing the expression with the ABS rule requires that

checkr has no statically determined top-level needs.

Extending our examples, we consider “boilerplate” functions that a system might provide

for users to safely perform privileged actions. In particular, a function that enablesr for a privileged

action is defined as follows:

enabler , �f:p:(doprivrf)
AssumingA such thatr 2 A(p), this function may be given the following type:

enabler : (�dp fr+;�g����! �ok ) f�0g��! �ok
This type specifies thatenabler may be applied to a functionf that performs an action requiring

thatr be enabled (r+), returning the result of this action without the requirement thatr be enabled,

so that:

enablercheckr : �ok
Thus, the security of programs is statically verified.

1.5 Looking forward

In this chapter, we have defined an initial, intuitively correct language model for stack

inspection security, called�Ssec. We have also developed a simple monomorphic type system for�Ssec, but have postponed proving type safety until a more sophisticated, polymorphic system is

developed. As discussed in the introduction, our development of a polymorphic type system for�Ssec is accomplished via transformation into another language;the next two chapters will establish

the preliminary results for this transformation. In Chapter 4, we will return to�Ssec, extending and
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recasting the language into a more technically appealing form— in particular, explicit stacks will be

eliminated— while demonstrating that the new language subsumes the language presented in this

chapter. We will then equip the language with a polymorphic type system that is proven safe in a

manner that is easier than the traditionalab initio approach; the proofs of Theorem 1.1, Theorem 1.2

and Proposition 1.1 will fall out as corollaries of these results.
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Chapter 2

Technical Interlude: the System HM(X)
In this Chapter the HM(X) framework is described, including definitions of the language,

constraint and type systems. Type inference is also defined in Sect. 2.4, including relevant correct-

ness results. An OCaml implementation of type inference, included in the appendix, is described

and discussed.

We also present the first purely syntactic type soundness results for HM(X), in the style

of [47]. A soundness result based on a denotational semantics is presented in [23], and asemi-

syntacticresult, based on an interpretation of HM(X) type judgements in an intermediate system,

is presented in [25]. The former result is inadequate in the event that a syntactic result is desired

for some instance of the framework; the latter is more satisfactory in this sense, but lacks subject

reduction. The purely syntactic results presented here, including subject reduction, thus serve as a

direct verification of HM(X) type soundness with respect to its operational semantics.

This presentation of HM(X) extends previous results by treating a version of the core

language that contains state and a primitive recursive binding mechanism. The addition of state

increases the expressivity of the programming language. A primitive recursive binding mechanism

is a welcome convenience; previously, it was necessary to either define a fixpoint combinator, or

introduce one as a constant, entailing additional proof overhead to obtain type soundness for an

instance of the framework.

Our presentation of HM(X) is otherwise identical to that of [23, 40]. The main difference

is our interpretation of constraints, which is more direct;see section 2.1.2. Our proof technique is

standard, following Wright and Felleisen [47]. The centralresults are subject reduction, progress,

and type safety for the HM(X) framework, stated and proved in section 2.3.
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x; z 2 ID identifiersl 2 Lo memory locations 2 Const constantsv ::= x j l j fix z:�x:e j ref j := j (:= l) j ! j  valuese ::= v j e e j letx = v in e expressionsE ::= [ ℄ j E e j v E evaluation contexts

Figure 2.1: Language grammar for HM(X)
2.1 Definitions

In this section we present the HM(X) framework, that is, the programming language and

its type system.

2.1.1 The Language

The core language is a call-by-value functional calculus, extended with a recursive bind-

ing mechanism built into function definitions, and mechanisms for state. We postulate countably

infinite sets of identifiers, locations, and constants. The language grammar is defined in figure 2.1.

Note that, following [46], we impose avalue restrictionon let bindings, precluding unsafe interac-

tion between imperative features and polymorphism; for convenience, we define the syntactic sugar

letx = e1 in e2 , (�x:e2)e1 in casee1 is not a value.

The operational semantics is defined onconfigurationse; �, where astore� is a partial

mapping from locations to values. We write�[l 7! v℄ to denote the store which mapsl to v and

otherwise agrees with�. The empty store is denoted?. The one-step reduction rules for HM(X)
are then defined in figure 2.2. We write!? to denote the reflexive, transitive closure of!. The

interpretation of constants is given by a (possibly partial) functionÆ which maps a pair of a constant

and a closed value to a closed value.

2.1.2 Constraint Systems

Any instance of the HM(X) framework is parameterized by aconstraint system. This sys-

tem must at least comprise the following language of types and constraints, whereV is a countably
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(fix z:�x:e)v; � ! e[v=x℄[fix z:�x:e=z℄; � (�)
letx = v in e; � ! e[v=x℄; � (let)

refv; � ! l; �[l 7! v℄ l 62 dom(�) (ref):= l v; � ! v; �[l 7! v℄ l 2 dom(�) (assign)!l; � ! �(l); � (deref) v; � ! Æ(; v); � (Æ)E[e℄; � ! E[e0℄; �0 wheree; � ! e0; �0 (context)
Figure 2.2: Operational semantics for HM(X)

infinite set of type variables:�; � 2 V type variables� ::= � j � ! � j � ref j : : : typesC ::= true j � = � j � � � j C ^ C j 9�:C j : : : constraints

To interpret constraints, we adopt the model-based approach described in [25], which is

established via a mapping from types into a universe of partially ordered monotypesT .

Definition 2.1 (Model) Let (T;�) be a partially ordered set, wheret 2 T is called amonotype.

Let! be a function fromT � T into T , wheret1 ! t2 � t01 ! t02 impliest01 � t1 andt2 � t02. Let

ref be a function fromT to T , such thatt ref � t0 ref impliest = t0. We requiret1 ref � t2 ! t3
andt2 ! t3 � t1 ref to be false for anyt1; t2; t3 2 T .

Definition 2.2 (Interpretation) Anassignment� is a total mapping fromV to T . An interpretation

of a constraint system consists of an extension of assignments to arbitrary types, and aconstraint

satisfaction relation, denoted� ` C. The interpretation isstandardiff the following conditions are

satisfied: �(�1 ! �2) = �(�1)! �(�2)�(� ref) = �(�) ref� ` true� ` �1 = �2 , �(�1) = �(�2)� ` �1 � �2 , �(�1) � �(�2)� ` C1 ^ C2 , (� ` C1) ^ (� ` C2)� ` 9�:C , 9t:�[� 7! t℄ ` C
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If � ` C holds, we say that� satisfiesor is asolutionofC. We writeC  C 0 iff every solution ofC
is also a solution ofC 0.
We identify constraints modulo logical equivalence, that is, we identifyC andD whenC  D andD  C hold. A variable� is deemedfree in a constraintC iff C 6= 9�:C. We write fv(C) for the

set of all variables free inC.

Our presentation differs from that of Oderskyet al. [23] by viewing constraints as formu-

lae interpreted inT , rather than as elements of an abstractcylindric constraint system. Our presenta-

tion is thus perhaps slightly less general, but more concise. Also, we abandon Oderskyet al.́s notion

of constraints insolved form. Instead, we identify constraints modulo logical equivalence, which

means that we do not care about their syntactic representation. We believe that the representation of

constraints is an important issue when designing a constraint solver, but is irrelevant when proving

the type system correct.

2.1.3 The Type System

The HM(X) type system is defined as a system of deduction rules, given infigure 2.3,

whose consequents arejudgementsof the formC;� ` e : � whereC is a constraint,� is a type

environment, and� is a type scheme. These notions are introduced in the following definition:

Definition 2.3 Type schemesare of the form8��[C℄:� . Abusing notation, we abbreviate8?[true℄:�
as � , and abbreviate8��[true℄:� as8��:� . We identify type schemes modulo�-equivalence.Type

environments� are sequences of bindings of the formx : � and l : � .

A type scheme� is consistentwith respect to a constraintC if C guarantees that� has

at least one instance. This notion, defined below, appears asa technical side-condition in rule VAR.

This extra side-condition is our only deviation from the rules given in [23, 40]. Its effect is to allow

some theorems to be stated without a “consistency” requirement on�.

Definition 2.4 We say that a type scheme� = 8��[D℄:� is consistent with respect to a constraintC,

and we writeC  �, iff C  9��:D. We say that� is consistent ifftrue  �.

Let � be a fixed total mapping from the constants to closed, consistent type schemes.�
is looked up in rule CONST to associate a type scheme with a constant.

Definition 2.5 A judgementC;� ` e : � is valid (or holds) iff it is derivable according to the rules

of figure 2.3 andC is satisfiable. Then,e is well-typed.
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VAR�(x) = � C  �C;� ` x : � LOC�(l) = �C;� ` l : � ref

CONST�() = �C;� `  : �
ABSC; (�;x : � ; z : � ! � 0) ` e : � 0C;� ` fix z:�x:e : � ! � 0 APPC;� ` e1 : �2 ! � C;� ` e2 : �2C;� ` e1 e2 : �

REFC;� ` ref : 8�:�! � ref
ASSIGNC;� ` := : 8�:� ref! �! � DEREFC;� ` ! : 8�:� ref! �

LETC;� ` v : � C; (�;x : �) ` e : �C;� ` letx = v in e : � SUBC;� ` e : � C  � � � 0C;� ` e : � 08 INTROC ^D;� ` v : � �� \ fv(C;�) = ?C ^ 9��:D;� ` v : 8��[D℄:� 8 ELIMC;� ` v : 8��[D℄:� C  [��=��℄DC;� ` v : [��=��℄�
Figure 2.3: The system HM(X)

It is straightforward to check that, ifC;� ` e : � is derivable, thenC  � holds. This

explains why the well-typedness ofe can be determined by checking whetherC alone is satisfiable;

there is no need to inspect� in addition.

For the type system to be safe, the semantics of constants, given byÆ, must be correctly

approximated by their types, given by�.

Definition 2.6 (Æ-Typability) LetC be satisfiable. We require that, for every constant and closed

valuev, if C;� `  : �1 ! �2 andC;� ` v : �1 hold, thenÆ(; v) is defined andC;� ` Æ(; v) : �2
holds. We also requireC;� `  : � ref to not hold.

The following definition sums up the requirements that bear on every instance of the

parameterized type system HM(X).
Definition 2.7 An instance of HM(X) is defined by
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� an extension of the type and constraint language, together with a standard interpretation, as

specified in Definitions 2.1 and 2.2;� a particular choice of the set of constantsConst , together with functionsÆ and�, meeting

theÆ-typability requirement of Definition 2.6.

As will be proven in section 2.3, any such instance of HM(X) enjoys syntactic type safety.

2.2 Preliminary results

2.2.1 Type substitutions

Sulzmann [40] gives two equivalent versions of the HM(X) type rules. In the one shown

here, rule8 ELIM allows the universally quantified type variables to be instantiated using an arbi-

trary substitution. In the other version, not shown in this paper, rule8 ELIM requires these variables

to be instantiated with the identity substitution, but a newrule appears (9-INTRO) which allows

arbitrary substitutions to be encoded within a constraint.The two presentations are equivalent, that

is, they give rise to the same valid judgements. As a result, it is enough to prove one of them correct.

Here, we adopt the substitution-based version. Accordingly, we must now demonstrate a

series of results related to substitutions.

Definition 2.8 A substitution' is a finite mapping from type variables to types. Arenaming%
is a bijective mapping from a finite set of type variables to itself. Substitutions and renamings

are extended to total mappings from types to types, from constraints to constraints, and from type

schemes to type schemes, in the natural, capture-avoiding manner.

Lemma 2.1 If C  D then'(C)  '(D). If C  �, then'(C)  '(�).
Lemma 2.2 If '1 is idempotent anddom('2) and fv(rng('1)) [ dom('1) are disjoint then'1 Æ'2 Æ '1 = '1 Æ '2.
Lemma 2.3 (Type Instantiation) If there exists a derivation ofC;� ` e : �, then there exists a

derivation of'(C); '(�) ` e : '(�) with the same structure.

Proof. By induction on the input derivation. We give only the key cases and follow the notations

of figure 2.3. Note that the structure of the derivation is preserved by construction in the proof.

Cases VAR, SUB. By induction hypothesis and by Lemma 2.1.
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Case8 INTRO. Without loss of generality, we may require�� \ fv(rng(')) = �� \
dom(') = ?. Indeed, if such were not the case, one could apply the induction hypothesis to

the premise and to a renaming which maps�� to fresh variables and does not affect any other vari-

able free in the premise. Because the variables�� do not appear free in the conclusion, the latter

would remain unchanged.

Now, let us apply the induction hypothesis to the premise and'. This yields'(C) ^'(D); '(�) ` e : '(�). From �� \ fv(C;�) = ? and the above requirement, we deduce�� \
fv('(C); '(�)) = ?. Thus, we may apply8 INTRO, which yields'(C) ^ 9��:'(D); '(�) `e : 8��['(D)℄:'(�). Again, thanks to the above requirement, this is'(C ^ 9��:D); '(�) ` e :'(8��[D℄:�).

Case8 ELIM . Every substitution is the composition of an idempotent substitution and a

renaming. Thus, we consider two sub-cases.

First, let us assume that' is idempotent. By the induction hypothesis, we have that'(C); '(�) ` e : '(8��[D℄:�) holds. Without loss of generality we may assume it is the casethat��\fv(rng(')) = ? and��\dom(') = ?. (This follows from the fact that we identify type schemes

modulo�-equivalence.) This yields'(C); '(�) ` e : 8��['(D)℄:'(�) and (by Lemma 2.2)' Æ[��=��℄Æ' = 'Æ[��=��℄. Now, lemma 2.1 yields'(C)  '([��=��℄D), that is,'(C)  'Æ[��=��℄('(D)).
Therefore, by8 ELIM , we obtain'(C); '(�) ` e : ' Æ [��=��℄('(�)), that is,'(C); '(�) ` e :'([��=��℄�).

Second, let us assume that' is a renaming%. By applying the induction hypothesis to the

premise, we obtain%C; %� ` e : %(8��[D℄:�), which can be written%C; %� ` e : 8(%��)[%D℄:%� .

Furthermore, Lemma 2.1 yields%C  %[��=��℄D, that is,%C  [%��=%��℄%D. Then,8 ELIM , applied

to the substitution[%��=%��℄, yields%C; %� ` e : [%��=%��℄%� , that is,%C; %� ` e : %[��=��℄� . ut
2.2.2 Normalization

In this section we define a normalized form for HM(X) type derivations. This normaliza-

tion provides for a much easier analysis of type derivationsin the subject reduction proof.

Lemma 2.4 If dom(') � �� then'(C)  9��:C.

Lemma 2.5 Any two consecutive instances of8 INTRO and8 ELIM may be suppressed.
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Proof. Suppose the following sequence appears in a derivation:C ^D;� ` e : � �� \ fv(C;�) = ?C ^ 9��:D;� ` e : 8��[D℄:� (8 INTRO) C ^ 9��:D  [��=��℄DC ^ 9��:D;� ` e : [��=��℄� (8 ELIM )

FromC ^ 9��:D  [��=��℄D, we may deduceC ^ 9��:D  C ^ [��=��℄D. However, by Lemma 2.4,

we have[��=��℄D  9��:D, soC ^ 9��:D andC ^ [��=��℄D are equivalent. Furthermore, considering�� \ fv(C) = ?, we haveC ^ [��=��℄D = [��=��℄(C ^ D). Similarly, �� \ fv(�) = ? implies[��=��℄� = �. Now, Lemma 2.3, applied to the upper left judgement, yields[��=��℄(C ^D); [��=��℄� `e : [��=��℄� , which, according to the above arguments, isC ^ 9��:D;� ` e : [��=��℄� . The derivation

of this judgement has the same structure as that of the upper left judgement, so these instances of8 INTRO and8 ELIM have effectively been suppressed. ut
Lemma 2.6 (Normalization) If C;� ` e : � holds, then it must follow bySUB from a judgementJ such that

1. if e is letx = v in e0 thenJ follows byLET;

2. if e is fix z:�x:e0 thenJ follows byABS;

3. if e is e1 e2 thenJ follows byAPP;

4. if e is l thenJ follows byLOC;

5. if e is x thenJ follows byVAR and8 ELIM ;

6. if e is  thenJ follows byCONST and8 ELIM ;

7. if e is ref thenJ follows byREF and8 ELIM ;

8. if e is ! thenJ follows byDEREFand8 ELIM ;

9. if e is := thenJ follows byASSIGN and8 ELIM .

Proof. The judgementC;� ` e : � must be the consequence of a syntax-directed rule, possibly

followed by a sequence of instances of SUB, 8 ELIM and8 INTRO.

By construction,8 INTRO cannot be followed by itself or by SUB. Lemma 2.5 shows

that8 INTRO need never be followed by8 ELIM . Lastly, given the form of the judgement at hand,
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8 INTRO cannot be the last rule in the derivation. It follows that8 INTRO need not appear at all in

the sequence.

By construction,8 ELIM cannot follow itself or SUB, so the sequence must consist of

at most one instance of8 ELIM , followed by a number of instances of SUB. By reflexivity and

transitivity of entailment, the latter may be expanded or reduced to a single instance of SUB.

To conclude, notice that8 ELIM cannot follow LOC, LET, ABS or APP. ut
2.2.3 Value Substitution

In this section, we establish a classicsubstitutionLemma, which will be at the heart of

the�- and let-reduction cases in the subject reduction proof. We begin with aweakeningLemma,

which shows that a valid judgement remains valid under a stronger constraint.

Lemma 2.7 (Weakening)C;� ` e : � andC 0  C implyC 0;� ` e : �.

Proof. By induction on the input derivation. We give only the key cases and follow the notations

of figure 2.3.

Cases VAR, SUB and8 ELIM follow by transitivity of entailment.

Case8 INTRO. We have a deduction of the formC ^D;� ` e : � �� \ fv(C;�) = ?C ^ 9��:D;� ` e : 8��[D℄:�
Without loss of generality, we may assume��\fv(C 0) = ?; if this were not the case, we could apply

Lemma 2.3 to the first premise to make it so. Now, clearlyC 0 ^ C ^D  C ^D, so the induction

hypothesis yieldsC 0 ^ C ^D;� ` e : � . Furthermore, we have�� \ fv(C 0 ^ C;�) = ?, therefore8 INTRO yieldsC 0 ^C ^9��:D;� ` e : 8��[D℄:� . Lastly, by assumption, we haveC 0  C ^9��:D,

soC 0 = C 0 ^ C ^ 9��:D, thereforeC 0;� ` e : 8��[D℄:� holds. ut
Lemma 2.8 (Substitution) If C;�;x : �0 ` e : � andC;� ` v : �0 thenC;� ` e[v=x℄ : �.

Proof. By induction on the derivation ofC;�;x : �0 ` e : �. We give only the key cases.

Case8 INTRO. In this case� = 8��[D℄:� , C = C 0 ^ 9��:D and we have a deduction of

the form: C 0 ^D;�;x : �0 ` e : � �� \ fv(C 0;�;x : �0) = ?C 0 ^ 9��:D;�;x : �0 ` e : 8��[D℄:�
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By assumption we have thatC 0^9��:D;� ` v : �0 holds, and clearlyC 0^D  C 0^9��:D, therefore

by Lemma 2.7 we haveC 0^D;� ` v : �0. Then, by the induction hypothesis,C 0^D;� ` e[v=x℄ : �
holds. The result follows by8 INTRO.

Case VAR. Suppose thate = x0 6= x. Thene[v=x℄ = e and�(x0) = (�;x : �0)(x0), so

the Lemma holds by VAR. Suppose on the other hand thate = x; thene[v=x℄ = v, so the lemma

holds by assumption.

Case LET. In this casee = letx0 = v0 in e0, � = � and we have a deduction of the

following form: C;�;x : �0 ` v0 : �00 C;�;x : �0;x0 : �00 ` e0 : �C;�;x : �0 ` letx0 = v0 in e0 : �
By the induction hypothesis we haveC;� ` v0[v=x℄ : �00; and supposing thatx 6= x0 it is the case

that�;x : �0;x0 : �00 = �;x0 : �00;x : �0, hence we have alsoC;�;x0 : �00 ` e0[v=x℄ : � by the

induction hypothesis, so thatC;� ` letx0 = v0[v=x℄ in e0[v=x℄ : � by LET, henceC;� ` (let x0 =v0 in e0)[v=x℄ : � by definition. On the other hand, ifx = x0 then�;x : �0;x0 : �00 = �;x0 : �00,
so thatC;�;x0 : �00 ` e0 : � by assumption, and sinceC;� ` v0[v=x℄ : �00 by the preceding, the

judgementC;� ` letx0 = v0[v=x℄ in e0 : � holds by LET, thereforeC;� ` (let x0 = v0 in e0)[v=x℄ :� by definition.

Case ABS. In this casee = fix z:�x0:e0, � = �1 ! �2 and we have a deduction of the

following form: C;�;x : �0;x0 : �1; z : �1 ! �2 ` e0 : �2C;�;x : �0 ` fix z:�x0:e0 : �1 ! �2
Supposing thatx 6= x0 andx 6= z it is the case that�;x : �0;x0 : �1; z : �1 ! �2 = �;x0 : �1; z : �1 ! �2;x : �0
hence we haveC;�;x0 : �1; z : �1 ! �2 ` e0[v=x℄ : �2 by the induction hypothesis, soC;� `
fix z:�x0:(e0[v=x℄) : �1 ! �2 by ABS, thereforeC;� ` (fix z:�x0:e0)[v=x℄ : �1 ! �2 by definition.

On the other hand, supposing thatx = x0 it is the case that�;x : �0;x0 : �1; z : �1 ! �2 = �;x0 : �1; z : �1 ! �2
and sinceC; (�;x : �0;x0 : �1; z : �1 ! �2) ` e0 : �2 by assumption thereforeC; (�;x0 : �1; z :�1 ! �2) ` e0 : �2, soC;� ` fix z:�x0:e0 : �1 ! �2 by ABS, thusC;� ` (fix z:�x0:e0)[v=x℄ : �1 !�2 by definition. The case in whichx = z follows similarly. ut
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Lemma 2.9 (Substitution for functions) Let �0 = (�;x : � 0; z : � 0 ! �). If C;�0 ` e : � andC;� ` v : � 0, thenC;� ` e[v=x℄[fix z:�x:e=z℄ : � .

Proof. By ABS and two consecutive applications of Lemma 2.8.

2.3 Central Results

In this section we demonstrate the type soundness results for HM(X), specifically subject

reduction, progress and type safety.

Definition 2.9 In order to properly state subject reduction, type judgements are extended to config-

urations:

CONFIG C;� ` e : �8l 2 dom(�) C;� ` �(l) : �(l)C;� ` e; � : �
A configuratione; � is well-typed if there exists a judgementC;� ` e; � : � deducible byCONFIG,

withC satisfiable; such a judgement isvalid.

Theorem 2.1 (Subject Reduction)Let C be satisfiable. IfC;� ` e1; �1 : � is derivable ande1; �1 ! e2; �2, then, for some�0 which extends� with bindings for new memory locations,C;�0 `e2; �2 : � is derivable.

Proof. By induction on the definition of the reduction relation (seefigure 2.2).

According to Lemma 2.6, the derivation ofC;� ` e1 : � ends with an instance of SUB,

which we will disregard, without loss of generality. (Indeed, we then haveC;� ` e1 : � 0 andC  � 0 � � ; once we have provenC;� ` e2 : � 0, applying SUB again shall yieldC;� ` e2 : � , as

desired.)

For reduction cases which do not affect the store, it is sufficient to prove thatC;� ` e2 : �
is derivable to demonstrate the result.

Case(Æ). Then,e1 is  v ande2 is Æ(; v). By Lemma 2.6 we have a sub-derivation of the

following form: C;� `  : �1 ! � C;� ` v : �1C;� `  v : �
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Then, according to Definition 2.6,C;� ` Æ(; v) : � holds.

Case(�). Then,e1 is (fix z:�x:e) v ande2 is e[v=x℄[fix z:�x:e=z℄. By Lemma 2.6 we

have a sub-derivation of the following form:C;�;x : � 01; z : � 01 ! � 0 ` e : � 0C;� ` fix z:�x:e : � 01 ! � 0 C  � 01 ! � 0 � �1 ! �C;� ` fix z:�x:e : �1 ! � C;� ` v : �1C;� ` (fix z:�x:e) v : �
Now, C  � 01 ! � 0 � �1 ! � impliesC  �1 � � 01 andC  � 0 � � . ThereforeC;� ` v : � 01
by assumption and SUB; and sinceC; (�;x : � 01; z : � 01 ! � 0) ` e : � 0 by assumption, thereforeC;� ` e[v=x℄[fix z:�x:e=z℄ : � 0 by Lemma 2.9. By SUB, C;� ` e[v=x℄[fix z:�x:e=z℄ : � follows.

Case(let). Then,e1 is letx = v in e ande2 is e[v=x℄. By Lemma 2.6 we have a sub-

derivation of the following form:C;�;x : � ` e : � C;� ` v : �C;� ` let x = v in e : �
By Lemma 2.8, we obtainC;� ` e[v=x℄ : � .

Case(deref). Then,e1 is ! l ande2 is �1(l). By Lemma 2.6, we have a sub-derivation of

the following form:C;� ` ! : � 0 ref! � 0C  � 0 ref! � 0 � �1 ref! �C;� ` ! : �1 ref! � �(l) = � 00C;� ` l : � 00 ref C  � 00 ref � �1 refC;� ` l : �1 refC;� ` ! l : �
By CONFIG, C;� ` �(l) : � 00 is derivable. and by properties of� we haveC  �1 � � andC  � 00 � �1. Thus, by transitivity of� we haveC  � 00 � � , soC;� ` �(l) : � can be derived by

SUB.

Case(ref). The reduction is refv; �1 ! l; �1[l 7! v℄, wherel 62 dom(�1). By Lemma 2.6

we have a sub-derivation of the following form:C;� ` ref : � 0 ! � 0 ref C  � 0 ! � 0 ref � �2 ! �C;� ` ref : �2 ! � C;� ` v : �2C;� ` refv : �
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These implyC  �2 � � 0 andC  � 0 ref � � . Define�0 as (�; l : � 0). By LOC and SUB,C;�0 ` l : � holds. Furthermore, sinceC;� ` v : �2 holds and sincev is �2(l), SUB yieldsC;� ` �2(l) : � 0. Becausel is fresh, this impliesC;�0 ` �2(l) : � 0. Lastly, l’s freshness and

CONFIG yield C;�0 ` l; �2 : � .

Case(assign). The reduction is:= l v; �1 ! v; �1[l 7! v℄, wherel 2 dom(�1). By

Lemma 2.6, we have a sub-derivation of the following form:C;� ` := : � 0 ref! � 0 ! � 0C  � 0 ref! � 0 ! � 0 � �1 ! �2 ! �3C;� ` := : �1 ! �2 ! �3
�(l) = � 00C;� ` l : � 00 refC  � 00 ref � �1C;� ` l : �1C;� ` := l : �2 ! �3C  �2 ! �3 � � 02 ! �C;� ` := l : � 02 ! � C;� ` v : � 02C;� ` := l v : �

From these, we deduceC  � 02 � �2 andC  �2 � � 0. Furthermore, we findC  � 00 ref � �1 �� 0 ref, which impliesC  � 0 � � 00. As a result, by SUB, C;� ` v : � 00 holds, i.e.C;� ` �2(l) : � 00
in this case is derivable. Furthermore, we findC  � 0 � �3 andC  �3 � � , henceC;� ` v : � is

derivable by SUB. The result follows by CONFIG.

CaseE[e1℄; �1 ! E[e2℄; �2, wheree1; �1 ! e2; �2. This case follows by the induction

hypothesis and a simple “replacement” Lemma, analogous to that found in [47], except newly cre-

ated memory locations must be taken into account. ut
To demonstrate progress, rather than defining a class offaulty expressions that approxi-

mates the class of stuck expressions, and proving auniform evaluationresult as in e.g. [47], we

adopt the more direct method of [25] and demonstrate the following:

Lemma 2.10 (Progress)If a closed configuratione; � is well-typed and irreducible, thene is a

value.

Proof. Suppose on the contrary thate; � is well-typed and irreducible, bute is not a value. Thene
is of the formE[f ℄, with f also well-typed as a precedent of a valid instance of CONFIG, where one

of the following cases holds:

1. f is of the form v andÆ(; v) is undefined. Now, if v is well-typed, then by Lemma 2.6

there exists a judgement that follows by APP with valid precedentsC;� `  : �1 ! �2 and
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C;� ` v : �1. But then by Definition 2.6 it must be the case thatÆ(; v) is defined, which is a

contradiction.

2. f is of the forml v. By Lemma 2.6 there exists a judgement that follows by APP with valid

precedentC;� ` l : �1 ! �2. By Lemma 2.6, this judgement must follow from LOC and

SUB, so we haveC  � 0 ref � �1 ! �2, which is a contradiction.

3. f is of the form:= v or ! v wherev is not a memory location. In either case, by applications

of Lemma 2.6, we haveC;� ` v : � ref. According to Definition 2.6,v cannot be a constant.

One checks that all other value forms must have functional type, that is, we must haveC �1 ! �2 � � ref, again a contradiction.

4. f is of the form:= l v or := l andl 62 dom(�). f is well-typed, sol 2 dom(�); then, CONFIG

requires�(l) to be defined, a contradiction. ut
We may now state and prove progress and type safety. In order to do so, we make the

usual Definitions:

Definition 2.10 If e;? !? e0; �0, wheree0; �0 is irreducible bute0 is not a value, thene is said to

go wrong.

Theorem 2.2 (Type Safety)If e is closed and well-typed, thene does not go wrong.

Proof. Suppose thate;? reduces toe0; �0 and the latter is irreducible. Sincee is well-typed, there

exists a derivable judgementC;� ` e;? : � with C satisfiable. Then, by repeated application of

Theorem 2.1, we haveC;�0 ` e0; �0 : � , for some�0. Then, by Lemma 2.10,e0 is a value. ut
2.4 Type inference

In this section we define type inference for HM(X). As we will see, type inference for the

framework is defined modulo a constraintnormalizationprocedure, just as HM(X) type judgements

are defined modulo the specification of a constraint system. Aconstraint normalization procedure

is essentially a constraint solution algorithm that must bespecified for each particular instance of

HM(X), and is really the heart of type inference. For example,unification is a normalization

procedure for an equality constraint system. Since the general HM(X) type inference algorithm is

proven correct in [39], proving correctness of inference for an instance of the framework requires
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CONST���(�) = 8��[D℄:� �� fresh (C;') = normalize(C; [ ��=��℄)' jfv(�); C;� `W � : '(�)
VAR�(x) = 8��[D℄:� �� fresh (C;') = normalize(C; [ ��=��℄)' jfv(�); C;� `W x : '(�)

ABS '0; C 0; (�;x : �; z : �) `W e : � �; � freshD = C 0 ^ (�! � � �) (C;') = normalize(D;'0)'nf�; �g; C;� `W fix z:�x:e : '(�)
APP '1; C1;� `W e1 : �1 '2; C2;� `W e2 : �2'0 = '1 t '2 D = C1 ^ C2 ^ (�1 � �2 ! �) � fresh (C;') = normalize(D;'0)' jfv(�); C;� `W e1e2 : '(�)

LET'1; C1;� `W e : � (C2; �) = gen(C1; '1(�); �) '2; C3;�;x : � `W e0 : � 0'0 = '1 t '2 D = C2 ^ C3 (C;') = normalize(D;'0)' jfv(�); C;� `W letx = e in e0 : '(� 0)
Figure 2.4: HM(X) type inference

only a proof of correctness of the instance’s normalizationprocedure. This is another benefit of the

HM(X) framework.

Type inference for HM(X) is defined in Fig. 2.4; this definition is based almost entirely

on the algorithm proposed in [23], with straightforward additions to handle recursive binding and

state operations. In Fig. 2.4, state operations are treatedas primitives for brevity: The symbol�
ranges over constants in an instance of HM(X), along with the operators ref,:= and!. The symbol
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SUB4C  � � � 0C `i � 4 � 0 (48)C ^D `i � 4 � �� \ fv(C; �) = ?C ^ 9�:D `i � 4 8��[D℄:�(84)C `i [��=��℄� 4 �0 C  [��=��℄DC `i 8��[D℄:� 4 �0
Figure 2.5: HM(X) type scheme instance relation�� denotes the initial binding environment�, augmented with the following bindings:

ref : 8�:�! � ref:= : 8�:� ref! �! �! : 8�:� ref! �
To completely define type inference, we must also define the operatort, and specify the

behavior of the functionsnormalize andgen that occur in the definition, which we accomplish in

the following. Note that these will bespecifications, not definitions; if type inference is desired, an

instantiation of HM(X) must include definitions of these operations that satisfy the specifications

for the relevant constraint systems.

We begin by defining an ordering� on substitutions; as Sulzmann observes in [40], it

follows from results presented in [18] that this ordering induces a complete lower semi-lattice where

least upper bounds, if they exist, correspond to unification.

Definition 2.11 '1 � '2 iff dom('1) � dom('2) and there exists' such that' Æ '1 = '2. We

denote the least upper bound of'1 and'2 as'1 t '2.
Now, we specify the expected behavior of thegen function, which must yield a “maxi-

mally generalized” type scheme with respect to a given constraint and type environment:

Definition 2.12 The functiongen but must satisfy the following equation:gen(C;�; �) = (D ^ 9��:C 0;8��[C 0℄:�)
whereC = C 0 ^D and �� = (fv(�) [ fv(C 0))nfv(�) and �� \ fv(D) = ?.
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To specify thenormalize function, we must first define the meaning ofnormal formsand

principal normal formof types and constraints, since that is whatnormalize will be expected to

compute:

Definition 2.13 (C1; '1) is a normal formof (C2; '2) iff '1 � '2, C1  '1(C2) and'(C) = C.(C1; '1) is a principal normal formof (C2; '2) iff for all normal forms(C;') of (C2; '2) it is the

case that'2 � ' andC  '(C1).
Now we may specify the expected behavior of thenormalize function, as follows:

Definition 2.14 The functionnormalize satisfies the following equations:normalize(C1; '1) = (C2; '2) if (C2; '2) is a principal normal form of(C1; '1)= fail if no principal normal form of(C1; '1) exists

Given these definitions, we may now state the HM(X) type inference correctness results

proved in [39], which assume an instantiation of the framework that includes definitions ofgen
andnormalize that satisfy specifications. While these results cover a version of the inference al-

gorithm without recursive binding and state operations, webelieve they can be easily extended to

accommodate them. First, we state the soundness result, which says that an inferred type is a valid

type:

Theorem 2.3 (Soundness of HM(X) Inference) Given e and �, if ';C;� `W e : � then the

judgementC;'(�) ` e : � is valid, with'(C) = C and'(�) = � .

To state the completeness result for inference, we must alsodefine a type scheme instance

relation, since the result states that if an expression is well-typed, then a most general type is inferred

for it; this relation is defined in Fig. 2.5. Thus:

Theorem 2.4 (Completeness of HM(X) Inference) If the judgementC;? ` e : � is valid, then';C 0;? `W e : � wheregen(C 0;?; �) = (C 00; �0) and there exists'0 such thatC  '0(C 00) andC `i '0(�0) 4 �.

2.4.1 OCaml implementation

An OCaml implementation of the HM(X) inference algorithm is included in the Ap-

pendix, in the moduleHmx. The functorHmx.Make is parameterized by modulesG,X andP, where

G : Ground.Signature,X : ConstraintSystem.SandP : Primitives.S; these
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signatures are also included in the appendix. Modules matching signatureGround.Signature

implement the HM(X) core type language. Modules matching signatureConstraintSystem.S

implement the constraint system for an instance of HM(X). Note that any implementation of

ConstraintSystem.Smust include a functionconstrain, which conjoins a new constraint

to a pre-existing one, and solves the new constraint; this isthe implementation of thenormalize
function. Modules matching signaturePrimitives.S implement the initial type bindings for

any additional constants in an instance of HM(X), in the type and constraint language specified by

G andX. This module is also expected to implement the bindings for state operations, which are

not included in the moduleHmx for simplicity; in particular, note that it is the responsibility of P to

implement type schemes, so expectingHmx to implement these bindings would be out of order.
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Chapter 3

Technical Interlude: the LanguagepmlB
In this chapter we present thepmlB programming language, which includes primitive

records, sets, and associated operations, and a static typediscipline for the language that provides

accurate specifications of these constructs. The language and type system is defined as an instantia-

tion of the HM(X) framework described in the previous chapter. In the following chapters, we will

usepmlB as a target language for transformations of our refigured stack inspection language, to

be defined in Chapter 4 and a capability-based security language to be defined in Chapter 5. These

transformations, and thepmlB type system, will serve as the foundation for the development of type

systems in the source languages.

ThepmlB language of records includes default values in the style of Rémy’s Projective

ML [30]. The language of sets includes syntax for defining sets of urelements—that is, atomic

elements— as well as operations such as intersection, union, difference, etc. Sets are at first ap-

proximation records, where all values are of trivial typeunit. However, since sets are simpler

than records, there are set operations which can be effectively modeled statically that are difficult or

impossible in the case of records, and set types can also be simpler than record types. We equip the

language with a type system that accurately specifies the contents of records, sets, and the results of

associated operations; we also show that this type system issound. To define the type system, we

instantiate HM(X) with a constraint system containingrow types[32] andconditional constraints

[24]. Row types were originally developed for application to extensible records with default values;

we show here how they can also be used to type sets which include new operations not defined for

record row types.
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x 2 V; a 2 La; b 2 Lb; B � Lb identifiersv ::= fix z:�x:e j s j fvg j vfa = vg j ref j := j (:= l) j ! valuess ::= B j �B j _ j ^ j 	 j3b j ?b sets, set operationse ::= x j v j e e j let x = v in e j feg j efa = eg j e:a expressionsE ::= [ ℄ j E e j v E j fEg j Efa = eg j vfa = Eg j E:a evaluation contexts

Figure 3.1: Grammar forpmlB
3.1 ThepmlB language definition

In this section, we formally define thepmlB language syntax and operational semantics.

In Sect. 3.3 the semantics will be trivially re-figured as an instance of HM(X), with sets, records and

operations defined as language constants withÆ-rules conforming to the operational rules presented

here.

3.1.1 Syntax

The grammar forpmlB is given in Fig. 3.1. The language is based on Rémy’s Projective

ML [30], containing records with default values, manipulated with theelevationandmodification

record constructorsfeg andefa = e0g, and theprojectiondestructore:a.

The language allows definition of finite setsB of urelementsb 2 Lb where eachb can

be considered an arbitrary identifier. Countably infinite cosets �B may also be defined. This latter

feature presents some practical implementation issues, but in this presentation we take it at math-

ematical “face value”— that is, we take�B to denoteLbnB. Basic set operations are provided,

including3b, ^, _ and	, which are membership check, intersection, union and difference oper-

ations, respectively. For technical reasons, the difference operation removes elements in the first

argument from elements in the second argument, which is perhaps an inversion of the expected

behavior, but this will be convenient for our presentation.Also provided is a set membership test

operation?b, that allows branching on the presence or absence of a set element in a given set, as

opposed to failure in the case of absence à la3b . For clarity of presentation, we define the following
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(fix z:�x:e)v; � ! e[v=x℄[fix z:�x:e=z℄; � (�)
letx = v in e; � ! e[v=x℄; � (let)

ref v; � ! l; �[l 7! v℄ l 62 dom(�) (ref)l := v; � ! v; �[l 7! v℄ l 2 dom(�) (assign)!l; � ! �(l); � (bang)fvg:a; � ! v; � (default)v1fa = v2g:a; � ! v2; � (access)v1fa0 = v2g:a; � ! v1:a; � a0 6= a (skip)B 3 b; � ! B; � if b 2 B (memcheck)B1 ^B2; � ! B1 \B2; � (intersect)B1 _B2; � ! B1 [B2; � (union)B1 	B2; � ! B1nB2; � (difference)?bB; � ! �f:�g:f(B); � if b 2 B (memtesty)?bB; � ! �f:�g:g(B); � if b 62 B (memtestn)E[e℄; � ! E[e0℄; �0 if e; � ! e0; �0 (context)
Figure 3.2: Operational semantics forpmlB

syntactic sugar: (3b e) , (e 3 b)(^e1e2) , (e1 ^ e2)(_e1e2) , (e1 _ e2)(	e1e2) , (e2 	 e1)
3.1.2 Operational semantics

The operational semantics forpmlB is given in Fig. 3.2. As is the case for the core

HM(X) system, it is defined as a relation! on pairse; �, where stores� and operations on stores

are as defined in Chapter 2. SincepmlB will be defined as an instance of HM(X), this incorporation

of state into the language is trivial.

The reflexive, transitive closure of! is denoted!?. Stuck expressions and going wrong
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� ::= �; �; : : : j � ! � j f�g j f�� �g j ` : � ; � j �� j � ref j  types ::= + j � j > j ? constructorsC ::= true j C ^C j 9�:C j � = � j � � � j if  � � then� � � constraints

Figure 3.3: RS grammar

are as defined in Chapter 2. The operational rules for�sec are relatively straightforward, with each

operation defined as one might expect.

3.2 The type constraint systemRS

We define the type system forpmlB via instantiation of the HM(X) framework discussed

in Chapter 2; in this section we define the constraint system which parameterizes that instantia-

tion, called RS. The system RS comprises row types and conditional constraints. Following the

guidelines specified in Definition 2.7, the definition includes the type and constraint language itself

(Sect. 3.2.1), together with its logical interpretation ina model (Sect. 3.2.2 and Sect. 3.2.3).

3.2.1 The type and constraint language

The syntax of types and constraints is defined in Fig. 3.3. Thesyntax contains language

for expressingrecordandsettypes (hence the name RS: Records and Sets).

To describe the contents of sets and records, we userows. Row types are built up using the

usual constructors, including�� which specifies that all fields not otherwise mentioned in a row have

type� . In Fig. 3.3 and henceforth, we let` range over elements ofLb[La. The original presentation

of rows [30, 32] includes an equational theory, which in particular allow rows to commute. Here

these equations are not axiomatic, but rather they hold as a result of the interpretation defined in

Sect. 3.2.3.

Record types are built up from row types using the record typeconstructorf�g. Set types

are also built up from a particular form of row types, using the set type constructorf� � �g. These

particular row types are built up frompresenceconstructors, which specify whether a given element

may be present in a set (+), may not be present in it (�), may or may not appear in it (>), or

whether this information is irrelevant, because the set itself is unavailable (?) (NB: ? and> here

arenot the same as the “top” and “bottom” types in non-structural subtyping systems!). This form
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� 2 Vk� : k � : Type� ref : Type

�; � 0 : Type� ! � 0 : Type

� : Row(�)?f�g : Type

� : Row()?f�� �g : Type� : Type�� : Row(�)A � : Con�� : Row()B  : Con� : Con b 62 B � 0 : Row()B[fbg(b : � ; � 0) : Row()B � : Type a 62 A � 0 : Row(�)A[fag(a : � ; � 0) : Row(�)A
Figure 3.4: Type kinding rules for RS types

` true

` C1; C2` C1 ^ C2 ` C` 9�:C �; � 0 : k` � = � 0` � � � 0� : Con ` C` if  � � thenC �; � 0; � 00 : Row()B` if  � � then� 0 � � 00
Figure 3.5: Type kinding rules for RS constraints

is enforced by the kinding rules, defined below. We will also define a succinct, more readable form

of set types in Sect. 3.2.4, which are defined as syntactic sugar for the primitive form. A significant

consequence of this primitive definition of set types, as being built up from a specific kind of rows,

is that set types can be soundly implemented byre-useof existing row type implementations.

The constraint language of RS offers standard equality and subtyping constraints, as well

as a form of conditional constraints. To ensure that only meaningful types and constraints can be

built, we equip them withkinds, defined by:k ::= Con j Row(�)A j Row()B j Type

whereA ranges over finite subsets of field labelsLa andB ranges over finite subsets of set urele-

mentsLb. Row kinds are parameterized by� or , specifying whether they describe the contents
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of a record or a set, respectively. For every kindk, we assume given a distinct, denumerable set of

type variablesVk. We use�; �; ; : : : to represent type variables. From here on, we consider only

well-kindedtypes and constraints, as defined in Fig. 3.4 and Fig. 3.5. Thepurpose of these rules

is to guarantee that every constraint has a well-defined interpretation within our model, defined in

Sect. 3.2.2.

3.2.2 The model

The model for RS is constructed by associating with every kind k a mathematical structure

denotedJkK. Each of these structures contain elements which can be informally described asground

types— that is, type variable-free types— of the relevant kind. We denote these elements�̂ . Each

structureJkK is equipped with apartial ordering� of its elements. Accordingly, the ordering on

eachJkK is transitive and reflexive, so the following inferences areaxiomatic for all�̂ :�̂ � �̂ �̂ � �̂ 0 �̂ 0 � �̂ 00�̂ � �̂ 00
The model is explicated for eachJkK as follows:JConK: The elements ofJConK are contained in the setf+;�;?;>g. As is made clear

by the full definition of our model, continued below, the characteristics of the ordering� over the

model is determined by the definition of� overJConK; if we define� overJConK as equality, then� is an equivalence relation over the entire model– that is, over eachJkK. On the other hand, we

may choose between two subtype orderings overJConK, the first omitting the constructors> and?
and axiomatized as+ � �, the second axiomatized as follows:? � + ? � � + � > � � >
In other words, these orderings generate the following lattices:6+� and �����I ��I���>+ �?
The second ordering will allow a sound use of conditional constraints in a typing of?r. It would also

allow a sound use of conditional constraints to type a fully general difference operation, as in [38].

However, there is no necessity for such an operation in this thesis. By choosing these orderings, we
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�(� ref) = �(�) ref �(� ! � 0) = �(�)! �(� 0)�(f�g) = f�(�)g �(f�� �g) = f��(�)�g�(` : � ; � 0)(`) = �(�) �(` : � ; � 0)(`0) = �(� 0)(`0) (` 6= `0)�(��)(`) = �(�) �() = 
Figure 3.6: Type-to-kind assignment definition

generate models of structural, atomic subtyping. Note wellthat although the symbols? and> are

used, the reader should not be misled into thinking that thisis a non-structural subtyping system.JRow(�)AK andJRow()BK: Given a finite set of labelsA � La, JRow(�)AK is the set

of total, almost constant functions fromLanA into JTypeK. (A function isalmost constantif it is

constant except on a finite number of inputs.) In short,Row(�)A is the kind of rows which donot

carry the fields mentioned inA; Row(�)? is the kind of complete rows. Similarly,JRow()BK is

the set of total, almost constant functions fromLbnB into JConK, so thatRow()B is the kind of set

types which donot carry the fields mentioned inB, andRow()? is the kind of complete set types.

The ordering� is extended inductively toJRow()BK and coinductively withJTypeK to JRow(�)AK,
pointwise and covariantly, as follows:�̂ ; �̂ 0 2 JRow(�)AK 8a 2 LanA : �̂ (a) � �̂ 0(a)�̂ � �̂ 0�̂ ; �̂ 0 2 JRow()BK 8b 2 LbnB : �̂(b) � �̂ 0(b)�̂ � �̂ 0JTypeK: The elements ofJTypeK are contained in the free algebra generated by the con-

structors!, with signatureJTypeK � JTypeK ! JTypeK, andf�g, with signatureJRow(�)?K !JTypeK. The ordering� is coinductively extended withJRow(�)AK to JTypeK by treating the con-

structor! as contravariant in the first argument and covariant in the second, and by treating the

constructorsf�g andf� � �g as covariant; that is:�̂ 01 � �̂1 �̂2 � �̂ 02�̂1 ! �̂2 � �̂ 01 ! �̂ 02 �̂ � �̂ 0f�̂g � f�̂ 0g �̂ � �̂ 0f��̂ �g � f��̂ 0�g
This completes the definition of the model.
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� ` true

� ` C1 � ` C2� ` C1 ^ C2 � = �0 [�℄ �0 ` C� ` 9�:C�(�) = �(� 0)� ` � = � 0 �(�) � �(� 0)� ` � � � 0  � �(�)) � ` � 0 � � 00� ` if  � � then� 0 � � 00�; � 0; � 00 : Row()B 8b 2 LbnB : ( � �(�)(b)) �(� 0)(b) � �(� 00)(b))� ` if  � � then� 0 � � 00
Figure 3.7: Interpretation of constraints

3.2.3 Interpretation in the model

We may now give the interpretation of types and constraints within the model. It is pa-

rameterized by anassignment�, i.e. a function which, for every kindk, mapsVk into JkK. The

interpretation of types is obtained by extending� so as to map every type of kindk to an element

of JkK, as defined in Fig. 3.6. Fig. 3.7 defines the constraint satisfaction predicate� ` �, whose

arguments are an assignment� and a constraintC. (The notation� = �0 [�℄ means that� and�0
coincide except possibly on�.) These rules are not particularly surprising, except those that in-

volve conditional constraints of the form if� �  then� 0 � � 00, where� is a set type; we call these

complexconditional constraints. The meaning and utility of complex conditional constraints will

be demonstrated in subsection 3.3.2. Constraintentailmentis defined as usual:C  C 0 (read:C
entailsC 0) holds iff, for every assignment�, � ` C implies� ` C 0.

We refer to the type and constraint logic, together with its interpretation, as RS. More

precisely, we have defined two logics, where� is interpreted as either equality or as one of two

non-trivial subtype orderings. We will refer to them as RS=, RS�1 , and RS�2 , respectively.

3.2.4 Abbreviated set types

Although the set types defined in previous sections are expressive, and the form of their

contents as kinds of row types allows re-use of existing implementations, an abbreviation of their

form is possible— in fact, we may define the readable, succinct type form presented in Chapter 1 as

syntactic sugar for primitive set and row types. Each fieldb : � is shortened tob� . We also define
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abbreviated row type constructors? and!, specifying that all elements not otherwise mentioned in

a row are absent or present, respectively. For example, the set fr1; r2g will be one (and the only)

value of typefr1+; r2+;?g. Formally, the grammar for abbreviated types is defined as follows:& ::= f&g j b�; & j ! j ? j � abbreviated set types

The interpretation of abbreviated typesL & M as primitive types is defined as follows:L f&g M = f�L & M�gL b�; & M = (b : � ; L & M)L? M = ��L! M = �+L� M = �
We say that an abbreviated type& is well-kinded iff L & M is, and we write�(&) to denote�(L & M). In

the presentation of the type system forpmlB, we will use abbreviated set types for a more succinct

and readable presentation; however, we note that their definition as syntactic sugar for primitive

types allows for an implementation that re-uses existing row type implementations.

For brevity, we also define the following shorthand for partial rows; however, we note

that this is a convenience for this presentation, not a proposed addition to the type machinery per se.

LettingB = fr1; : : : ; rng (B) , (r1; � � � ; rn)(B�) , (r11; � � � ; rnn)(B�) , (r11; � � � ; rnn)
So for example,fB+;?g = fr1+; � � � ; rn+;?g. When considering subtyping relations over

variable-free terms, we may also use rows themselves (partial or complete) to denote their rep-

resentatives in the model, e.g. we may assertR+ � R� in RS�1 ; see especially Lemma 3.5.

3.3 Types forpmlB
To define a type system forpmlB , we instantiate HM(X) with one of RSrel , whererel

ranges overf=;�g, and postulate records, sets, and associated operations, along with their seman-

tics, as extensions of the core HM(X) language. We also define initial type bindings for these
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extensions, which we prove sound. This obtains a sound type system forpmlB— more than one, in

fact, since our choice ofrel results in either a unification- or subtyping-based system.

3.3.1 Constants and initial type bindings forpmlB
To begin our conception ofpmlB as an extension of the core HM(X) language, we pos-

tulate the constantf�g, and the families of constantsa:� and�fa = �g. The constants ofpmlB , along

with their initial type bindings, are then specified in Fig. 3.8, with the exception of?b. For this con-

stant, we provide two alternative bindings, defined in Fig. 3.9: the first is less accurate, requiring the

branches of the membership test to have an identical type. The second is more expressive, allowing

different types in each branch, but requires the use of conditional constraints.

Additionally, we must define initial types for records. Thisis accomplished with the

following definition:

Definition 3.1 Let v� range over record-free values. Then the initial type bindings of records are

inductively defined as follows:� fvg : f��g, wherev : � in S=1� v1fa = v2g : fa : �1 ; ��2g, wherev1 : fa : � 01 ; ��2g andv2 : �1 in S=1
The initial bindings for records, record operations, set definitions and membership check

are easily understood. The bindings for all other set operations contain conditional constraints; their

meaning is more subtle, and is discussed in the following section.

3.3.2 Bindings with complex conditional constraints

As is evident in Fig. 3.8, we make extensive use of complex conditional constraints to

provide accurate types for set operations. To demonstrate the behavior and usefulness of conditional

constraints in application to set operation types, we give the following example. Let the setsB1 andB2 be defined as follows: B1 = fb1; b2; b3gB2 = fb1; b2; b4g
Suppose then that we wish to type the expressionB1 ^ B2, using the unification-based constraint

system RS=. Given the typing for̂ defined in Fig. 3.8, the variables�1 and�2 will be unified with
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the types of the contents ofB1 andB2, respectively:�1 = (b1+; b2+; b3+;?)�2 = (b1+; b2+; b4+;?)
Additionally, �3 will be unified with a type that is “splittable” into the appropriate form for the

expansion of the complex conditional constraint in the typeof ^:�3 = (b11; b22; b33; b44; �)
Then, given the rules for complex conditional constraints defined in Fig. 3.7, the constraintC in the

type of^ can be expanded as follows:C = if � � + then� � 1 ^ if + � + then+ � 1^ if � � + then� � 2 ^ if + � + then+ � 2^ if � � + then� � 3 ^ if + � + then� � 3^ if � � � then� � 4 ^ if + � � then+ � 4^ if � � ? then? � � ^ if + � ? then? � �
This expansion will force the following unification:�3 = (b1+; b2+; b3�; b4�;?)

or�3 = (b1+; b2+;?)
And this in fact is the type offb1; b2g, andB1 ^B2 evaluates tofb1; b2g.
3.3.3 Type soundness forpmlB

Given the previous development, we may now define the type system forpmlB. In fact,

we may succinctly define four distinct type systems forpmlB , with varying degrees of expressive-

ness:

Definition 3.2 (pmlB type systems)Let �1 (resp. �2) be the initial environment containing all

bindings specified in Fig. 3.8, and binding (1) (resp. (2)) for ?b as specified in Fig. 3.9. Then for alli 2 f1; 2g andrel 2 f=;�ig, the type systemSreli is obtained by extendingHM(RSrel ) with �i as

the initial binding environment.
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f�g : 8�:�! f��g�fa = �g : 8�1�2�:fa : �1 ; �g ! �2 ! fa : �2 ; �g�:a : 8��:fa : � ; �g ! �B : fB+;?g�B : fB�; !g3b : 8�:fb+; �g ! fb+; �g^ : 8�1�2�3[C℄:f�1g ! f�2g ! f�3g
whereC = if � � �1 then? � �3^ if + � �1 then�2 � �3_ : 8�1�2�3[C℄:f�1g ! f�2g ! f�3g
whereC = if + � �1 then! � �3^ if � � �1 then�2 � �3	 : 8�1�2�3[C℄:f�1g ! f�2g ! f�3g
whereC = if + � �1 then? � �3^ if � � �1 then�2 � �3

Figure 3.8: Constants and initial type bindings forpmlB
The advantage of using the HM(X) framework for defining thepmlB type systems is

now made evident by the proof of their soundness. The only real effort necessary is to prove sound-

ness of the initial type bindings in each�i with respect to the operational semantics of thepmlB
language constants, the so calledÆ-typability property (Definition 2.6). The proof ofÆ-typability is

delayed until the next section, to maintain the flow of this one. GivenÆ-typability (Lemma 3.5), the

soundness of RSrel , and results demonstrated in Chapter 2, we now may immediately obtain type

soundness forpmlB in eachSreli :

Theorem 3.1 (pmlB Progress) If e is apmlB expression which is well-typed inSreli , thene either

diverges or reduces to a value.

Proof. By Definition 3.2, Lemma 3.5, Definition 2.7 and Lemma 2.10. ut
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(1) ?b : 8��:fb; �g ! (fb+; �g ! �)! (fb�; �g ! �)! �(2) ?b : 8����[C℄:fb; �g ! (fb+; �1g ! �1)! (fb�; �2g ! �2)! �
whereC = if + �  then� � �1 ^ if � �  then� � �2^ if + �  then�1 � � ^ if � �  then�2 � �

Figure 3.9: Binding options for?b
Theorem 3.2 (pmlB Type Safety) If e is a pmlB expression which is well-typed inSreli , thene
does not go wrong.

Proof. Immediate by Theorem 3.1. ut
A consequence of Theorem 3.2 is that certainpmlB runtime optimizations may be ef-

fected. For example, this result implies that all membership checks3b may be removed at runtime

from a well-typed program. This property is verified by the following result, which follows by type

soundness:

Corollary 3.1 Let be defined as!, but with the memcheck rule redefined asB 3 b  B; that

is, no runtime membership checks are performed. Supposee is well typed; thene ? v iff e!? v.

3.3.4 Æ-typability for pmlB
The statement ofÆ-typability (Definition 2.6) requires that each functionallanguage con-

stant beÆ-defined as a function of one argument, so to state theÆ rules for_, ^ and	 we posit the

subprimitives_B , ^B _ �B and	B . TheÆ rules forpmlB are then defined in Fig. 3.10, as are the

subprimitive type bindings which we add to each�i. Note that this construction is made solely for

our conception ofpmlB as an instance of HM(X); subprimitives are called such because they are

not made visible to the programmer.

We begin by stating some Lemmas that describe unsurprising properties ofpmlB type

judgements for records and sets.

Lemma 3.1 Let v be a closedpmlB value. IfC;� ` v : fa1 : �1 ; � 0g holds inSreli , thenv is a

record of the formfv1g or v0fa1 = v1g � � � fan = vng andC;� ` v1 : �1.
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Æ(f�g; v) = fvgÆ(�fa = �g; v) = �x:vfa = xgÆ(�:a; fvg) = vÆ(�:a; v1fa = v2g) = v2Æ(�:a; v1fa0 = v2g) = Æ(�:a; v) a 6= a0Æ(_; B) = _BÆ(_; �B) = _ �BÆ(^; B) = ^BÆ(^; �B) = 	BÆ(	; B) = 	BÆ(	; �B) = ^BÆ(_B1 ; B2) = B1 [B2Æ(_ �B1 ; B2) = �B1 [B2Æ(^B1 ; B2) = B1 \B2Æ(	B1 ; B2) = B2nB1Æ(?b; B) = �f:�g:f(B) b 2 BÆ(?b; B) = �f:�g:g(B) b 62 B

_B : 8��:fB�; �g ! fB+; �g_ �B : 8��:fB�; �g ! fB�; !g^B : 8��:fB�; �g ! fB�;?g	B : 8��:fB�; �g ! fB�; �g

Figure 3.10:Æ rules and subprimitive type bindings forpmlB
Lemma 3.2 Letv be a closedpmlB value. IfC;� ` v : � holds inSreli andC  � � f&g for some

set type&, thenv is a setB andC  fB+;?g � � or v is a coset�B andC  fB�; !g � � .

Lemma 3.3 If C;� ` B : fB0+; �g holds inSreli thenB0 � B.

The following Lemma allows us to characterize the results ofset unions, intersections and

differences, and like the previous Lemmas, will be useful for proving Æ-typability.

Lemma 3.4 Let s be either a setB or a coset�B; then ifC;� ` s : fB0�; �g holds inSreli then so

doesC;� ` s [B0 : fB0+; �g andC;� ` s \B0 : fB0�;?g andC;� ` snB0 : fB0�; �g.
Now, we may prove the central result of this section, by case analysis on language con-

stants, including subprimitives.
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Lemma 3.5 pmlB is Æ-typable inSreli .

Proof. Since�i is similar for each ofSreli , we can proveÆ-typability with respect to each system in

a similar manner. SupposeC;� `  : �1 ! �2 andC;� ` v : �1. Then by Lemma 2.6 and definition

of each�i, for all cases of except?b in S�2 (to be treated separately), we have a subderivation of

the following form in each systemSreli , where' = [��=��℄:�i() = 8��:� 01 ! � 02C;� `  : 8��:� 01 ! � 02C;� `  : '(� 01)! '(� 02) C  '(� 01)! '(� 02) � �1 ! �2C;� `  : �1 ! �2
To show thatÆ(; v) is defined andC;� ` Æ(; v) : �2, we proceed by case analysis on:

Case�:a1. In this case' = [�=�; � 0=�℄ so that'(� 01) ! '(� 02) = fa1 : � ; � 0g ! � ,

hence�1 = fa1 : � 00 ; � 000g such thatC  � 00 � � , and alsoC  � � �2, by properties of�. But

sinceC;� ` v : �1 by assumption, thereforev is a record of the formfv1g or v0fa1 = v1g � � � fan =vng andC;� ` v1 : � 00, by Lemma 3.1. ThusÆ(�:a1; v) = v1 by definition, and sinceC  � 00 � �2
by transitivity of�, we haveC;� ` Æ(�:a1; v) : �2 in this case by SUB.

Casesf�g and�fa = �g follow by definition ofÆi.
Case3b. In this case' = [�=�℄ so that'(� 01) ! '(� 02) = fb+; �g ! fb+; �g, henceC  �1 � fb+; �g andC  fb+; �g � �2 by properties of�. But then by Lemma 3.2 we have

that v is a setB, and sinceC;� ` v : fb+; �g by assumption and SUB, by Lemma 3.3 we have

that fbg � B, henceÆ(3b; v) = v by definition. ThusC;� ` Æ(; v) : �1 by assumption, andC  �1 � �2 by transitivity of�, henceC;� ` Æ(; v) : �2 in this case by SUB.

Case_B. In this case'(� 01) is a set type by definition of each�i, therefore by properties

of � and Lemma 3.2 we have thatv is a setB0, so thatÆ(_B ; B0) = B[B0 by definition. Thus, we

have' = [�=�; �=�℄ and'(� 01) ! '(� 02) = fB�; �g ! fB+; �g, whereC  �1 � fB�; �g andC  fB+; �g � �2 by assumption and properties of�. But thenC;� ` B0 : fB�; �g by SUB, soC;� ` B0 [B : fB+; �g by Lemma 3.4, soC;� ` Æ(; v) : �2 in this case by SUB.

Case_ �B. In this case'(� 01) is a set type by definition of each�i, therefore by properties

of � and Lemma 3.2 we have thatv is a setB0, so thatÆ(_ �B ; B0) = �B [ B0 by definition. LetB1 = B \ B0 andB2 = BnB1 andB3 = B0nB2. ThenB1, B2 andB3 are mutually disjoint andB = B1 [B2 andB0 = B1 [B3. Thus, we have that'(� 01)! '(� 02) = fB1 �1; B2 �2; B3 �3; �g !fB1 �1; B2 �2; B3+; !g by definition of�i(_ �B). But sinceC;� ` B0 : �1 by assumption, and
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C  �1 � '(� 01) by properties of�, andC  fB1+; B2�; B3+;?g � �1 by Lemma 3.2, thereforeB1+ � B1 �1 andB2� � B2 �2 by properties of�. Further, sinceC;� ` �B : fB1�; B2�; B3+; !g
by definition of�i, thereforeC;� ` �B [ B0 : fB1+; B2�; B3+; !g by Lemma 3.4. But thenC;� ` �B [ B0 : fB1 �1; B2 �2; B3+; !g by the above reasoning and SUB, andC  '(� 02) � �2 by

properties of�, thereforeC;� ` Æ(; v) : �2 in this case by SUB.

Casê B. In this case'(� 01) is a set type by definition of each�i, therefore by properties

of � and Lemma 3.2 we have thatv is a setB0, so thatÆ(^B ; B0) = B\B0 by definition. Thus, we

have' = [�=�; �=�℄ and'(� 01) ! '(� 02) = fB�; �g ! fB�;?g, whereC  �1 � fB�; �g andC  fB�;?g � �2 by assumption and properties of�. But thenC;� ` B0 : fB�; �g by SUB, so

thatC;� ` B \B0 : fB�;?g by Lemma 3.4, henceC;� ` Æ(; v) : �2 in this case by SUB.

Case	B . In this case'(� 01) is a set type by definition of each�i, therefore by properties

of � and Lemma 3.2 we have thatv is a setB0, so thatÆ(	B ; B0) = B0nB by definition. Thus, we

have' = [�=�; �=�℄ and'(� 01) ! '(� 02) = fB�; �g ! fB�; �g, whereC  �1 � fB�; �g andC  fB�; �g � �2 by assumption and properties of�. But thenC;� ` B0 : fB�; �g by SUB, soC;� ` B0nB : fB�; �g by Lemma 3.4, soC;� ` Æ(; v) : �2 in this case by SUB.

Case_. In this case�1 is a set type by definition of�i and properties of8 ELIM and SUB.

Then by Lemma 3.2 we have thatv is either a setB or a coset�B, so the proof proceeds by subcases:

Subcasev = B. In this subcase�1 = fB�; &g whereB+ � B� (considering subtyping

in the model for brevity) and? � & by Lemma 3.2. Also,'(� 01) ! '(� 02) is of the formf&1g !f&2g ! f&3g by definition of�i, where&1 = (B�0; & 0) such thatB� � B�0 and& � & 0 by properties

of �. By definition of�i(_) and interpretation of conditional constraints we have&2 = (B �2; & 02)
and&3 = (B �3; & 03) such thatB+ � B �3, sinceB+ � B� � B�0, and& 02 � & 03, since? � & � & 0.
But then�2 = fB �4; &4g ! fB �5; &5g whereB �4 � B �2 and &4 � & 02 by properties of�, and

alsoB �3 � B �5 and & 03 � &5, again by properties of�. Now, sincev = B in this subcase,

thereforeÆ(_; B) = _B, and by8 ELIM we haveC;� ` _B : fB �4; &4g ! fB+; &4g. But

by the above reasoning we have&4 � & 02 � & 03 � &5, and alsoB+ � B �3 � B �5, thereforeC;� ` _B : fB �4; &4g ! fB �5; &5g, i.e. C;� ` _B : �2, so this subcase holds. Subcasev = �B
follows in a similar manner.

Casê . In this case�1 is a set type by definition of�i and properties of8 ELIM and SUB.

Then by Lemma 3.2 we have thatv is either a setB or a coset�B, so the proof proceeds by subcases:

Subcasev = B. In this subcase�1 = fB�; &g whereB+ � B� (considering subtyping

in the model for brevity) and? � & by Lemma 3.2. Also,'(� 01) ! '(� 02) is of the formf&1g !f&2g ! f&3g by definition of�i, where&1 = (B�0; & 0) such thatB� � B�0 and& � & 0 by properties
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of �. By definition of�i(^) and interpretation of conditional constraints we have&2 = (B �2; & 02)
and&3 = (B �3; & 03) such thatB �2 � B �3, sinceB+ � B� � B�0, and? � & 03, since? � & � & 0.
But then�2 = fB �4; &4g ! fB �5; &5g whereB �4 � B �2 and &4 � & 02 by properties of�, and

alsoB �3 � B �5 and & 03 � &5, again by properties of�. Now, sincev = B in this subcase,

thereforeÆ(^; B) = ^B , and by8 ELIM we haveC;� ` _B : fB �4; &4g ! fB �4;?g. But

by the above reasoning we have? � & 03 � &5, and alsoB �4 � B �2 � B �3 � B �5, thereforeC;� ` _B : fB �4; &4g ! fB �5; &5g, i.e. C;� ` _B : �2, so this subcase holds. Subcasev = �B
follows in a similar manner.

Case	. In this case�1 is a set type by definition of�i and properties of8 ELIM and

SUB. Then by Lemma 3.2 we have thatv is either a setB or a coset�B, so the proof proceeds by

subcases:

Subcasev = B. In this subcase�1 = fB�; &g whereB+ � B� (considering subtyping

in the model for brevity) and? � & by Lemma 3.2. Also,'(� 01) ! '(� 02) is of the formf&1g !f&2g ! f&3g by definition of�i, where&1 = (B�0; & 0) such thatB� � B�0 and& � & 0 by properties

of �. By definition of�i(	) and interpretation of conditional constraints we have&2 = (B �2; & 02)
and&3 = (B �3; & 03) such thatB� � B �3, sinceB+ � B� � B�0, and& 02 � & 03, since? � & � & 0.
But then�2 = fB �4; &4g ! fB �5; &5g whereB �4 � B �2 and &4 � & 02 by properties of�, and

alsoB �3 � B �5 and & 03 � &5, again by properties of�. Now, sincev = B in this subcase,

thereforeÆ(	; B) = 	B, and by8 ELIM we haveC;� ` 	B : fB �4; &4g ! fB�; &4g. But

by the above reasoning we have&4 � & 02 � & 03 � &5, and alsoB� � B �3 � B �5, thereforeC;� ` 	B : fB �4; &4g ! fB �5; &5g, i.e. C;� ` 	B : �2, so this subcase holds. Subcasev = �B
follows in a similar manner.

Case?b, subcaseS=1 . In this case'(� 01) is a set type by definition of�1, therefore by

Lemma 3.2 we have thatv is a setB andC  �1 = fB+;?g, soC;� ` B : fB+;?g by SUB. LetB0 = B�frg; thenC  �2 = (fb+; B0+; Æ�g ! �)! (fb�; B0+; Æ�g ! �)! � for some� by

definition of�1. But thenÆ(; v) = �f:�g:f(B) in this case ifb 2 B, andÆ(; v) = �f:�g:g(B) in

this case ifb 62 B. Suppose on the one hand thatb 2 B; thenC;� ` �f:�g:f(B) : (fB+; Æ�g !�) ! (fb�; B0+; Æ�g ! �) ! � is derivable by the type ofB specified above, two applications

of ABS and an instance of APP, soC;� ` Æ(; v) : �2 holds in this case by SUB. The result follows

in a similar manner ifb 62 B. SubcaseS�1 follows analogously modulo subtyping coercions.
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Case?b, subcaseSi2. Let:8����[D℄:� = �2(?b)' = [��=�; ��1=�1; ��2=�2; ��=�; ��1=�1; ��2=�2; =℄� 01 = fb; ��g� 02 = (fb+; ��1g ! ��1)! (fb�; ��2g ! ��2)! ��
Then by Lemma 2.6 and definition of�2 we have the following derivation in this case:�2(?b) = 8����[D℄:�C;� ` ?b : 8����[D℄:� C  '(D)C;� ` ?b : � 01 ! � 02 C  � 01 ! � 02 � �1 ! �2C;� ` ?b : �1 ! �2
By properties of� we have thatC  �1 � � 01, so by Lemma 3.2 we have thatv is a setB. andC  fB+;?g � �1. Suppose on the one hand thatb 2 B; then sinceC  fB+;?g � � 01 by

transitivity of�, it must be the case thatC  + �  by definition of� 01 and�.

Now, since we’ve assumedb 2 B, thereforeÆ(?b; B) = �f:�g:f(B) by definition. Let� 001 = fb+; ��g ! �� and� 002 = fb�; ��2g ! ��2 . Then sinceC;� ` B : �1 holds by assumption

andC  �1 � � 01 by properties of�, thereforeC;� ` B : � 01 by SUB. Hence by Lemma 3.4,C;� ` B : fb+; ��1g is derivable, so the following derivation is valid inS�2 :(�; f : � 001 ; g : � 002 )(f) = � 001C; (�; f : � 001 ; g : � 002 ) ` f : � 001 C;� ` B : fb�; ��gC; (�; f : � 001 ; g : � 002 ) ` f(B) : ��C; (�; f : � 001 ) ` �g:f(B) : � 002 ! �C;� ` �f:�g:f(B) : � 001 � � 002 ! �
But C  �� � ��1 ^ ��1 � �� holds sinceC  '(D) andC  + �  by the above, therefore by

properties of� we have thatC  � 001 ! � 002 ! �� � � 02, and alsoC  � 02 � �2, so by transitivity

of � and SUB we haveC;� ` Æ(; v) : �2 in this case. Ifb 62 B the case follows in a similar

manner. ut
Although thepmlB subprimitives are not visible to the programmer, it is possible to imag-

ine them as syntactic sugar for partial application of the general set operations, e.g.̂B , ^B; the
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following result demonstrates that the types remain consistent. This result will be useful in the next

Chapter.

Lemma 3.6 The following types are valid in anySreli :_B : 8��:fB�; �g ! fB+; �g^B : 8��:fB�; �g ! fB�;?g	B : 8��:fB�; �g ! fB ��; �g
Proof. We consider the type of_B first. Let' be defined as follows:' , [ (B+;?)=�1; (B�; �)=�2; (B+; �)=�3 ℄
Then, given�i(_) as defined in Fig. 3.8, with constraintC:'(C) = if + � (B+;?) then(B+;?) � (B+; �)^ if � � (B+;?) then(B�; �) � (B+; �)
Now, assuming thatB containsn elements and given the interpretation of constraints defined in

Fig. 3.7, this constraint is equivalent to the following:'(C) = (if + � + then+ � +) ^ � � � ^ (if + � + then+ � +)^ (if + � ? then? � �)^ (if � � + then1 � +) ^ � � � ^ (if � � + thenn � +)^ (if + � � then� � �)
We may then assert thattrue  '(C): clearly, each constraint(if + � + then+ � +) holds for

any assignment, as does(if + � ? then? � �) vacuously. Furthermore, each constraint of the

form (if � � + theni � +) holds vacuously for any assignment; and, for any assignmentof � the

constraint� � � must hold, hence the constraint(if + � � then� � �) holds for any assignment.

Thustrue  '(C) is valid, so by rules CONST and8 ELIM we have the following derivation:

true;? ` _ : �i(_) true  '(C)
true;? ` _ : fB+;?g ! fB�; �g ! fB+; �g

Furthermore, by rules CONST and APP, and sincetrue = true ^ true we have:

true ^ true;? ` _ : fB+;?g ! fB�; �g ! fB+; �g true ^ true;? ` B : fB+;?g
true ^ true;? ` _B : fB�; �g ! fB+; �g
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Finally, by8 INTRO we have:

true ^ true;? ` _B : fB�; �g ! fB+; �g �� \ fv(true ^ true;?) = ?
true ^ 9��:true;? ` _B : 8��[true℄:fB�; �g ! fB+; �g

Therefore, sincetrue = true ^ 9��:true and:8��[true℄:fB�; �g ! fB+; �g , 8��:fB�; �g ! fB+; �g
the Lemma holds in this case. The Lemma with respect to^B andB	 follows in a similar manner.ut
3.3.5 Type inference

Recall from Sect. 2.4 that for any instance of HM(X), it is sufficient to definegen andnormalize functions that satisfy the specifications laid out in Definitions 2.12 and 2.14 to ob-

tain type inference. For the systemsSreli , the definition of thegen function is trivial. To definenormalize , it is sufficient to turn to previous work to obtain a satisfactory procedure.

In [31], a method of row type unification is defined. In [24], a subtyping constraint solu-

tion algorithm is defined that treats conditional constraints. Thus, the HM(X) inference algorithm

can be instantiated with the method described in [31] to obtain �sec type inference inS=1 . The al-

gorithm can be instantiated with the method described in [24] to obtain�sec type inference inS�i ,

andS=2 with subtyping interpreted as equality. Since these methods have been proven correct in the

cited texts in a manner that complies with Definition 2.14, correct type inference for the systemsSreli is an immediate consequence– another manifest benefit of ouruse of HM(X).
Using our OCaml implementation of the HM(X) type inference algorithm in the ap-

pendix, theS=1 type inference algorithm may be implemented via the module:

Hm = Hmx.Make(GroundSig)(System)(Primitives)

whereGroundSig is an implementation of core HM(X) types, andSystem is a unification-based

constraint system with solution algorithmunify, with:

constrain node term = unify node term

The modulePrimitives is an implementation of the initial type bindings in�1 defined in

Sect. 3.3.1. The definitions ofGroundSig, System and Primitives are not included in

the Appendix, but are available online athttp://www.cs.jhu.edu/~ces/thesis/impl/

indirect.
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Chapter 4

Types for Access Control, Revisited

In this chapter, we return to our consideration of a static approach to stack inspection-

style security, first discussed in Chapter 1. The�Ssec language introduced in that chapter is here

extended and recast into a more technically appealing form,called�sec. In particular, we do away

with explicit stacks, using appropriately defined evaluation contexts to implicitly represent security

information.

The type system for�sec, including soundness results, is obtained via transformation into

thepmlB language that preserves the meaning of programs. This approach allows a proof of sound-

ness for the�sec type system to be derived from type soundness inpmlB , conserving significant

proof effort compared to anab initio approach. This approach also allows re-use of the set types

presented in Chapter 3, including existing implementations.

4.1 The�sec language definition

We now formally define the�sec language. Syntactically, the language is much the same

as�Ssec , but is simplified and extended with some new constructs. Thesemantics is presented in a

significantly different manner, without any explicit stackdefinitions; however, we demonstrate that

the language presented in Chapter 1 may be embedded in the redefined language, showing that this

simplified specification accurately reflects the JDK 1.2 implementation, since it subsumes�Ssec.

4.1.1 Syntax

The �sec grammar is defined in Fig. 4.1. Stacks and related constructs, i.e. function

closures and framed expressions, are unnecessary. Following Fournet and Gordon [9], we redefine
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r 2 R; R � R resourcesp 2 P; P � P;whereP = 2R principalsv ::= x j fix z:�x:f valuese ::= v j e e j letx = e in e j enable r in e j check r then e j expressions

test r then eelse e j ff ::= p:e signed expressionsE ::= [℄ j E e j v E j letx = E in e j enable r inE j p:E evaluation contexts

Figure 4.1: Grammar for�sec

the set ofprincipalsP as the powerset ofR— that is, we identify a principal with the set of resources

to which it has access. We usep andP to range over principals and over sets thereof, respectively,

and writenobodyfor the empty privilege set, that is, for the principal with no access rights.

As in the version of HM(X) presented in Chapter 2, function definitions now contain a re-

cursive binding mechanism, and we write�x:f to denotefix z:�x:f whenz has no free occurrences

in f . We also add alet construct to the language, to set the stage for let-polymorphism.

In the �sec definition, we replace thedoprivr constant with expressions of the form

enable r in e. Recalling thatdoprivr is used in application to functions with a dummy argument,

expressionsenable r in e activater for the evaluation ofe, and are thus a simplification ofdoprivr
applications. We also define a new construct that allows privilegetesting— that is, branching on the

presence or absence of a particular privilege: expressionsof the formtest r then e1 else e2 evaluate

to e1 if r is active, ande2 otherwise. This mechanism allows�sec to reflect a common idiom in the

Java JDK1.2 implementation, where an exception resulting from a failed privilege check is caught

and handled. As we will see in Sect. 4.4, using the typing machinery developed in the two previous

chapters allows us to treat this extension in a precise, yet flexible, manner.

Evaluation contexts for�secare also defined, and include ownership and privilege activa-

tion information. This addition to evaluation contexts allows a redefinition of stack inspection that

infers stack-based security information from evaluation contexts.
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r 2 p S ` rS:p ` r S ` rS:r0 ` r S ` r+S:r ` r S ` r+S:r0 ` r+ r 2 pS:p ` r+
Figure 4.2: Backward stack inspection algorithm

nobody;?; S ` R r 2 RS ` r p;R; � ` R q;R \ q; S ` R0p;R; q:S ` R0 p;R [ (frg \ p); S ` R0p;R; r:S ` R0
Figure 4.3: Forward stack inspection algorithm

4.1.2 Stack inspection

We now give a simplified specification of the stack inspectionprocess, by noticing that

stacks are implicitly contained in evaluation contexts, whose grammar is defined in Fig. 4.1. Indeed,

a context defines a path from the term’s root down to its activeredex, along which one finds exactly

the security annotations which the JDK 1.2 would maintain onthe stack, that is, code ownersp and

enabled resourcesr. In Sect. 4.2, we will demonstrate that the explicit stack inspection semantics

may be simulated in the implicit semantics.

To formalize this idea, we associate to every evaluation context E a finite stringjE j of

principals and resources, called astack. The right-most letters in the string correspond to the most

recent stack frames. We write� for the empty stack andS1:S2 for the concatenation of the stacksS1 andS2. j[℄j = � jE ej = jE jjv E j = jE j jletx = E in ej = jE jjenable r inE j = r:jE j jp:E j = p:jE j
We can now define a new, “implicit stack” inspection algorithm. We give two variants of it, a

backward (Fig. 4.2) and a forward one (Fig. 4.3). The former scans the stack, starting with the most

recent frames, then moving toward their ancestors. The latter, on the other hand, scans the stack in

the order it was built. Furthermore, its formulation is altered so that it internally computes not only

whether access to a given resourcer is legal, but also the set of all resources which may be legally

60



accessed given the current stack. These algorithms are referred to aslazyandeager, respectively, by

Gong [11]. While the former is employed by most current JVM implementations, the latter forms

the basis of the security-passing style [45] translation which we will introduce in Sect. 4.3.

The following theorem states that forward and backward stack inspection are in fact equiv-

alent. Subsequently, we will writeS ` r without specifying which of the two algorithms is being

used. We will also writeE ` r for jE j ` r.

Theorem 4.1 Assume given a stackS and a resourcer. LetP stand for the set of all principals

that containr. Then, the following three statements are equivalent:

1. S ` r holds according to the rules of Fig. 4.2;

2. S ` r holds according to the rules of Fig. 4.3;

3. some suffix ofS belongs to the regular languagePR?r(P j R)?.
Proof. We begin by proving that the first statement is equivalent to the third one. First, check that

the auxiliary judgementS ` r+ holds if and only if some suffix ofS belongs toPR?. Then, check

thatS ` r holds, according to the rules of Fig. 4.2, if and only if some suffix of S belongs to the

regular languagePR?r(P j R)?. Each of these checks is immediate.

We now prove that the second statement is equivalent to the third one. LetA (resp.B,

resp.C) be the set of stacksS such that9R0 3 r p;R; S ` R0 for some (or, equivalently, for all)p, R such thatp 63 r ^ R 63 r (resp. p 3 r ^ R 63 r, resp.p 3 r ^ R 3 r). It is straightforward

to check that, according to the last three rules in Fig. 4.3,A, B andC are the least solutions to the

following recursive equations:A ::= P:B j (P n P ):A j R:AB ::= P:B j (P n P ):A j r:C j (R n frg):BC ::= � j (P n P ):A j (P j R):C
An inductive argument shows thatA � B � C holds. Then, through a few rewriting steps, one

can bring the equations into a form where it is evident thatA is exactly(P j R)?PR?r(P j R)?.
We do not give the details. In principle, the check can be mechanized by verifying that the minimal

deterministic finite automaton (over the 4-symbol alphabetfrg,R n frg, P andP n P ) associated

with this regular expression is exactly the one described bythe above equations. There remains to

conclude by noticing that, according to the first rule in Fig.4.3,S ` r holds if and only ifS 2 A.ut
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4.1.3 Operational semantics

We define the operational semantics of�sec, using implicit stack inspection, via the fol-

lowing reduction rules:E[(fix z:�x:f) v℄ ! E[f [v=x℄[fix z:�x:f=z℄℄E[let x = v in e℄ ! E[e[v=x℄℄E[check r then e℄ ! E[e℄ if E ` rE[test r then e1 else e2℄ ! E[e1℄ if E ` rE[test r then e1 else e2℄ ! E[e2℄ if :(E ` r)E[enable r in v℄ ! E[v℄E[p:v℄ ! E[v℄
An evaluation contextE is a component of every rule, which allows inspection of it when needing

to perform security checks. Note that it isnot the case thate ! e0 impliesE[e℄ ! E[e0℄. Indeed,

enclosinge within a new evaluation contextE may cause more or fewer privileges to be enabled,

changing the outcome of stack inspection.

The first two rules are standard. The next rule allowscheck r then e to reduce intoe only

if stack inspection succeeds (as expressed by the side condition E ` r); otherwise, execution is

blocked. The following two rules use stack inspection in a similar way to determine how to reduce

test r then e1 else e2; however, they never cause execution to fail. The last two rules state that

security annotations become unnecessary once the expression they enclose has been reduced to a

value. In the explicit stack inspection semantics of Chapter 1, these rules are implemented simply

by popping stack frames (and the security annotations they contain) after executing a method.

This operational semantics constitutes a concise, formal description of Java stack inspec-

tion in a higher-order setting. It is easy to check that everyclosed term either is a value, or is

reducible, or is of the formE[check r then e℄ where:(E ` r). Terms of the third category are

stuck; they represent access control violations. An expressione is said togo wrongif and only ife!? e0, wheree0 is a stuck expression, holds.

4.2 Simulating�Ssec in �sec

In this section we demonstrate that�Ssec can be simulated in�sec. This result provides

confidence in the faithfulness of�sec to real implementations, since�Ssecwas defined as a low-level

model of the JDK1.2 implementation.

62



We begin by defining transformations from�Ssec expressions and evaluation contexts to�secexpressions and contexts. The transformation is fairly obvious, the principal novelty being the

treatment ofdopriv expressions, which ensures that the evaluation ofJeK in the transformation of

doprivre is not accorded excessive privileges.

Definition 4.1 Letok , �x:nobody:x; then we define the�Ssec-to-�secexpression transformation as

follows: JxK = xJp:eK = p:JeKJ�x:eK = �x:JeKJC(; �x:e)K = J(�x:e)KJe1e2K = Je1KJe2KJdoprivreK = let frun = JeK in enable r in frun(ok)Jcheck r then eK = check r then JeK
Definition 4.2 We define the�Ssec-to-�seccontext transformation as follows:J(S; ; [ ℄)K = [ ℄J(S; ; Ee)K = J(S; ; E)KJeKJ(S; ; vE)K = JvKJ(S; ; E)KJ(S; ;doprivrE)K = let frun = J(S; ; E)K in enable r in frun(ok )J(h0; p;o� i ::S; ; �E�)K = p:J(S; (; 0); E)KJ(h0; p;on(r)i ::S; ; �E�)K = enable r in p:J(S; (; 0); E)K

In the context transformation, stacks are analyzed from the“outside-in”. Since stacks

are LIFO data structures, this means that the “oldest” variable bindings will be at the bottom of

the stack. Thus, while the context transformation deconstructs stacks in the usual manner, we will

apply the transformation to reversed stacks; see e.g. Definition 4.3. For this purpose, we define the

functionrev, where:rev(h1; p1; f1i :: � � � :: hn; pn; fni ::nil ) = (hn; pn; fni :: � � � :: h1; p1; f1i ::nil )
Now, we define asimulationrelationC, based on the transformations defined above. It

will be our task to demonstrate that this relation is preserved between an arbitrary computation in�Ssecand its simulacrum in�sec.
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Definition 4.3 The relation(S; e)C e0 holds iffS; e is well-formed, and there existsE1 ande1 such

that e = E1[e1℄ andJ(rev(S);?; E1)K[JS(e1)K℄ = e0.
Note that this definition allows, to a degree, an arbitrary choice ofE1 ande1. This raises

the question, can a�Ssecconfigurations be simulated by more than one�secexpression? The answer

is no, the relationC is in fact a mapping from�Ssecconfigurations to�secexpressions. However, we

must prove this fact; we begin by proving some useful properties of the context transformation.

Lemma 4.1 The following properties hold:

1. If JE[e℄K is defined, the frame depth ofE is 0
2. If JS(E[e℄)K is defined, thenJS(E[e℄)K = J(nil ; env(S); E)K[JS(e)K℄
3. If E = E1[E2℄ where the frame depth ofE1 equals the length ofS, andJ(rev(S); ; E)K is

defined, thenJ(rev(S); ; E)K = J(rev(S); ; E1)K[J(nil ; (; env(S)); E2)K℄
Proof. Each assertion is treated individually:

1. Immediate by definition ofJE[e℄K, since the transformation is defined only on unframed

expressions.

2. By structural induction onE. In the basisE = [ ℄, and sinceJ(nil ; env(S); [ ℄)K = [ ℄,
thereforeJE[e℄K = J(nil ; env(S); E)K[JeK℄ = JeK in this case. The proof then proceeds by case

analysis on compositeE, which excludes contexts of the form�E0� by assertion 1.

CaseE = E0e0. In this caseJ(nil ; env(S); E)K = J(nil ; env(S); E0)KJe0(env(S))K, and

sinceE[e℄ = (E0[e℄)e0 we also haveJS(E[e℄)K = JS(E0[e℄)KJS(e0)K. But by the induction hypoth-

esis it is the case thatJS(E0[e℄)K = J(nil ; env(S); E0)K[JS(e)K℄, andJ(nil ; env(S); E)K[JS(e)K℄ =J(nil ; env(S); E0)K[JS(e)K℄Je0(env(S))K, and sincee0(env(S)) = S(e0) ande(env(S)) = S(e) by

definition, this case holds.

The other cases follow in a similar, straightforward mannerby the induction hypothesis,

due to the tight correspondence of the term and context transformations.

3. By structural induction onE1. In the basis we have thatE1 = [ ℄, soE1[E2℄ = E2 = E,

andS = nil since the frame depth ofE1 equals the length ofS by assumption, soenv(S) = ? and; env(S) = . But thenJ(rev(S); ; E)K = J(nil ; ; E)K, and sinceJ(rev(S); ; [ ℄)K = [ ℄ thereforeJ(rev(S); ; E1)K[J(nil ; (; env(S)); E2)K℄ = J(nil ; ; E2)K, so this case hold. The induction step

proceeds by case analysis on compositeE1.
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CaseE1 = �E01�, subcaserev(S) = h0; p;o�i :: S0. In this case we haveE = �E0[E2℄�
and: J(h0; p;o� i ::S0; ; E1)K = p:J(S0; (; 0); E01)KJ(h0; p;o� i ::S0; ; E)K = p:J(S0; (; 0); E01[E2℄)K
by definition and assumption. LetS00 = rev(S0); now, since the frame depth ofE1 is equal to the

length ofS by assumption, therefore the frame depth ofE01 is equal to the length ofS0, so by the

induction hypothesis we have that:J(S0; (; 0); E01)K[J(nil ; (; 0; env(S00)); E2)K℄ = J(S0; (; 0); E01[E2℄)K
But sinceS00 = rev(S0), andrev(S) = h0; p;o� i :: S0, therefore(; 0; env(S00)) = ; env(S), so

we have: J(S0; (; 0); E01)K[J(nil ; (; env(S)); E2)K℄ = J(S0; (; 0); E01[E2℄)K
which gives us:p:J(S0; (; 0); E01)K[J(nil ; (; env(S)); E2)K℄ = p:J(S0; (; 0); E01[E2℄)K
therefore this case holds. The other cases follow in a similar manner by the induction hypothesis.ut

Now, we may prove the desired result, that the relationC is indeed a mapping; this will

have the advantage of allowing us toconstructsimulations, and be certain that this construction is

exhaustive.

Lemma 4.2 The relationC is a mapping from�Ssecconfigurations to�secexpressions; i.e., if(S; e)Ce0 and(S; e) C e00 thene0 = e00.
Proof. LetE1, E01, e1 ande01 be such thatE1[e1℄ = E01[e01℄ = e, andJ(rev(S);?; E1)K[JS(e1)K℄ =e0 and J(rev(S);?; E01)K[JS(e01)K℄ = e00. Assume w.l.o.g. thate1 = E[e01℄ for someE, so thatE01 = E1[E℄. SinceJS(e1)K is defined, therefore the frame depth ofE is 0 by Lemma 4.1, so

also by Lemma 4.1 we have thatJS(e1)K = J(nil ; env(S); E)K[JS(e01)K℄. Further, sinceS; e is well-

formed by definition ofC andJS(e1)K is defined and thuse1 is unframed, therefore the frame depth

of E1 equals the length ofS, so thatJ(rev(S);?; E01)K = J(rev(S);?; E1)K[J(nil ; env(S); E)K℄ by

Lemma 4.1. ThusJ(rev(S);?; E01)K[JS(e01)K℄ = J(rev(S);?; E1)K[J(nil ; env(S); E)K℄[JS(e01)K℄ =J(rev(S);?; E1)K[JS(e1)K℄, soe0 = e00. ut
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Next, we want to demonstrate that the transformation preserves security information with

respect to stack inspection in�Ssec and�sec. This is accomplished with the following Lemmas,

followed by other miscellaneous results.

Lemma 4.3 Let jSj be defined as follows: jnil j = �jh; p;o� i ::Sj = jSj:pjh; p;on(r)i ::Sj = jSj:p:r
Then it is the case thatinspet(S; r) = true iff jSj ` r.

Proof. Straightforward by definition ofinspet, the backward stack inspection algorithm presented

in this Chapter, and induction on the length of the stack. ut
Lemma 4.4 If J(rev(S); ; E)K = E0, thenjSj = jE0 j.
Proof. Straightforward by definition of the translation and induction onE. ut
Lemma 4.5 If J(rev(S); ; E1)K = E2 theninspet(S; r) = true iff E2 ` r.

Proof. Immediate by Lemma 4.3 and Lemma 4.4. ut
Lemma 4.6 JeK[JvK=x℄ = Je[v=x℄K
Proof. By structural induction one. In the basise = x0; sinceJx0K = x0, if x0 6= x then we

haveJeK[JvK=x℄ = Je[v=x℄K = x0, otherwiseJeK[JvK=x℄ = Je[v=x℄K = JvK. The other cases follow

trivially by the induction hypothesis. ut
Lemma 4.7 The following assertions hold:

1. If J(rev(S); ; E1)K = E2 thenJ(rev(h0; p;o�i ::S); ; E1[�[ ℄�℄)K = E2[p:[ ℄℄.
2. If J(rev(S); ; E1)K = E2 thenJ(rev(h0; p;on(r)i ::S); ; E1[�[ ℄�℄)K = E2[enable r in p:[ ℄℄.

Proof. Both assertions follow by a straightforward structural induction onE1. ut
Now, we may demonstrate a simulation result with regard to one step of reduction in�Ssec,

stated and proved as follows:
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Lemma 4.8 If (S; ee)C ei andS; ee ! S0; e0e, thenei !? e0i such that(S0; e0e)C e0i.
Proof. By definition, any reductionS; ee ! S0; e0e can be taken as an instance ofcontext, whereee = E1[e1℄ ande0e = E1[e01℄ andS; e1 ! S0; e01 by a reduction rule other than context. The proof

then proceeds by case analysis on these rules:

Casevar. In this case we havee1 = x, e01 = S(x) andS = S0. Let e2 = JS(x)K andE2 = J(rev(S);?; E1)K, so that(S; ee) C E2[e2℄ by definition. But since rng(env(S)) is a set of

closed values by definition, thereforee2 = JS(S(x))K, hence(S; e0e) C E2[e2℄ by definition, andE2[e2℄!? E2[e2℄ by reflexivity of!?.
Caseclosure. In this case we havee1 = �x:e, e01 = C(env(S); �x:e) andS0 = S. LetE2 = J(rev(S);?; E1)K ande2 = J(�x:e)(env(S))K, so that(S; ee)CE2[e2℄ by definition. Further,

by definition of the transformation we have:JC(env(S); �x:e)K = J(�x:e)(env(S))K
therefore(S; e0e)CE2[e2℄, andE2[e2℄!? E2[e2℄ by reflexivity of!?, so this case holds.

Caseapp. In this case we havee1 = C(; �x:p:e)v, e01 = �e� andS0 = h[v=x℄; p;o� i ::S.

Let E2 = J(rev(S);?; E1)K ande2 = JC(; �x:p:e)vK so that(S; ee)C E2[e2℄ by definition. Then

by definition of the transformation we have:JC(; �x:p:e)vK = (�x:p:Je(nx)K)JvK
and by definition of�secreduction we have:E2[(�x:p:Je(nx)K)JvK℄! E2[p:Je(nx)K[JvK=x℄℄
But by Lemma 4.6 we haveJe(nx)K[JvK=x℄ = Je(nx)[v=x℄K, and clearlyJe(nx)[v=x℄K =Je([v=x℄)K; further, sinceC(; �x:p:e) is closed by well-formedness of configurations, thereforee([v=x℄) = S0(e), so thatJe([v=x℄)K = JS0(e)K, hence:E2[p:Je(nx)K[JvK=x℄℄ = E2[p:[JS0(e)K℄℄
and since by Lemma 4.7 we have thatJ(rev(S0);?; E1[�[ ℄�℄)K = E2[p:[ ℄℄, therefore it is the case

that(S0; e0e)CE2[p:[JS0(e)K℄℄, so this case holds.

Casedopriv. In this casee1 = doprivrC(; � :p:e), e01 = �e� andS0 = h; p;on(r)i :: S.

LetE2 = J(rev(S);?; E1)K ande2 = JdoprivrC(; � :p:e)K, so that(S; ee)CE2[e2℄ by definition.

Then by definition of the transformation we have:JdoprivrC(; � :p:e)K = (let frun = � :p:JeK in enable r in frun(ok ))
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and by definition of�secreduction we have:E2[let frun = � :p:JeK in enable r in frun(ok)℄!?E2[enable r in ((� :p:JeK)ok)℄!E2[enable r in (p:JeK)℄
But by Lemma 4.7 we haveJ(rev(S0);?; E1[�[ ℄�℄)K = E2[enable r in p:[ ℄℄, so this case holds by

definition ofC.

Casecheckpriv. In this case we havee1 = check r then e, e01 = e andS0 = S, withinspet(S; r) = true. Let E2 = J(rev(S);?; E1)K ande2 = Jcheck r then eK, so that(S; ee) CE2[e2℄ by definition. Then by definition of the transformation we have:Jcheck r then eK = check r then JeK
and sinceinspet(S; r) = true, thereforeE2 ` r by Lemma 4.5, so by definition of�sec reduction

we have: E2[check r then JeK℄! E2[JeK℄
so this case holds by definition ofC.

Casepop. In this case we havee1 = �v�, e01 = v andS = h; p; fi ::S0. Let e2 = JvK, and

letE2 = J(rev(S0);?; E1)K, so that(ei; S0)CE2[e2℄ by definition. The proof then proceeds via the

following subcases:

Subcasef = o� . In this subcaseJ(rev(S);?; E1[�[ ℄�℄)K = E2[p:[ ℄℄ by Lemma 4.7, so

that(S; ee)CE2[p:JvK℄ by definition, and by definition of�secreduction we have:E2[p:JvK℄! E2[JvK℄
so this case holds.

Subcasef = on(r). In this subcaseJ(rev(S);?; E1[�[ ℄�℄)K = E2[enable r in p:[ ℄℄ by

Lemma 4.7, so that(S; ee)CE2[enable r in p:JvK℄ by definition, and by definition of�secreduction

we have: E2[enable r in p:JvK℄!? E2[JvK℄
so this case holds. ut

We then extend the previous Lemma to arbitrary computationsin �Ssec in Lemma 4.9. We

also demonstrate that the simulation preserves dynamic properties of expressions in Lemma 4.10.
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Lemma 4.9 If (S; ee)C ei andS; ee !? S0; e0e, thenei !? e0i such that(S0; e0e)C e0i.
Proof. By Lemma 4.8 and induction on the length of the reductionS; ee !? S0; e0e. ut
Lemma 4.10 If (S; ee)C ei andee is a value, then so isei, if ee is not a value nor of the form�x:e
thenei is not a value, and if(S; ee) is stuck then so isei.
Proof. If ee is a value then it is a closure, soei = JeeK by definition ofC, and the transformation

of a closure is a function, which is of course a value.

If ee is not a value nor of the form�x:e thenei is not a value by definition ofC, since

only closures and expressions�x:e are translated to values.

If (S; ee) is stuck thenee = E[check r then e℄ and inspet(S; r) = false. Let E0 =J(rev(S);?; E)K ande0 = Jcheck r then eK = check r then JeK, so that(S; ee) C E0[e0℄. Then by

Lemma 4.5E0 6` r, soE0[e0℄ is also stuck. ut
It is now possible to demonstrate the principal result of this section, that�Ssec may be

simulated in�sec, in a straightforward manner.

Theorem 4.2 (Simulation of�Ssec in �sec) If e evaluates tov then JeK evaluates toJvK. If e goes

wrong thenJeK goes wrong. Ife diverges thenJeK diverges.

Proof. Supposenil ; e!? nil ; v. We have that(nil ; e)C JeK and(nil ; v) C JvK by definition ofC.

But JeK!? JvK by Lemma 4.9, andJvK is a value by Lemma 4.10.

Supposenil ; e diverges. We have that(nil ; e) C JeK; suppose on the contrary that there

existsv such thatJeK !? v. But by Lemma 4.9 there must existe0 such thatnil ; e !? S; e0 and(S; e0)C v, and by Lemma 4.10 we have thate0 is either a closure or an expression�x:e00, which is

a contradiction, either outright or because(S; �x:e00) evaluates.

Supposenil ; e !? S; e0 andS; e0 is stuck. We have that(nil ; e) C JeK by definition. Let(S; e0)C e00; thenJeK!? e00 by Lemma 4.9, ande00 is stuck by Lemma 4.10. ut
4.3 The�sec-to-pmlB transformation

Now, we move on to the translation of�sec into pmlB , defined in Fig. 4.4. The distin-

guished identifierss and are assumed not to appear in source expressions. Notice thats may

appear free in translated expressions. Translating an (unsigned) expression requires specifying the

current principalp.
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JxKp = xJfix z:�x:fKp = fix z:�x:�s:JfKJe1 e2Kp = Je1Kp Je2Kp sJletx = e1 in e2Kp = letx = Je1Kp in Je2KpJenable r in eKp = let s = (frg \ p) _ s in JeKpJcheck r then eKp = let = s 3 r in JeKpJtest r then e1 else e2Kp = ?s r (�s:Je1Kp) (�s:Je2Kp)JfKp = JfKJp:eK = let s = p ^ s in JeKp
Figure 4.4:�sec-to-pmlB transformation

One will often wish to translate an expression under minimalhypotheses, i.e. under the

principal nobodyand a void security context. To do so, we defineL e M = JeKnobody[?=s℄. Notice

thats does not appear free inL e M. If e is closed, then so isL e M.
The idea behind the translation is simple: the variables is bound at all times to the set of

currently enabled resources. Every function acceptss as an extra parameter, because it must execute

within its caller’s security context. As a result, every function call hass as its second parameter.

The constructsenable r in e andp:e causes to be locally bound to a new value, reflecting the new

security context; more specifically, the former enablesr, while the latter disables all privileges not

available top. The constructscheck r then e andtest r then e1 else e2 are implemented simply by

looking up the current value ofs. In the latter,s is re-bound, within each branch, to thesamevalue.

This may appear superfluous at first sight, but has an important impact on typing, because it allowss to be given a different (more precise) type within each branch.

This translation can be viewed as a generalization of Wallach’s security-passing style

transformation [45] to a higher-order setting. Whereas Wallach advocated this idea as an imple-

mentation technique, with efficiency in mind, we use it only as a vehicle in the proof of our type

systems. Here, efficiency is not at stake: it is sufficient that the translation scheme be correct. The

next section is devoted to proving this fact.
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4.3.1 Properties

A basic property of the translation is thats never appears free in the translation of a value.

Furthermore, the translation of a value does not depend on the current principal, so we writeJvK
instead ofJvKp.

Since�sec has no state, we are concerned only with the state-free subset of pmlB in

this Chapter, and so define the syntactic sugare ! e0 , e;? ! e0;? for pmlB reductions, for

brevity. For the purposes of our proofs, we need to isolate a particular sub-class of target language

reductions, which we wish to view as “administrative” (in a sense to be explained later). Let!s
be the subset of!? defined by: a ::= R j R _ a j R ^ a

let s = a in e !s e[R=s℄ if a!? RE[e℄ !s E[e0℄ if e!s e0
Our first lemma expresses the fact that the translationimplementsthe forward stack in-

spection algorithm of Fig. 4.3. It states that ifp;R;E ` R0, then evaluatingJE[e℄Kp in a context

wheres is bound toR leads to evaluatingJeKp0, for somep0, in a context wheres is bound toR0.
Furthermore, this is a purely administrative reduction sequence. That is, it only affects the security

context, and does not reflect any computational steps apparent in the original program. The proof

of the lemma presents no difficulty, because of the close similarity between the definitions of the

translation function and of the stack inspection algorithm.

Lemma 4.11 Assumep;R; S ` R0 andS = jE j. Then, there exist a (target) evaluation contextE0
and a principalp0 such that, for every source expressione,JE[e℄Kp[R=s℄!?s E0[JeKp0 [R0=s℄℄
Proof. By induction over the structure ofE. Let � and�0 stand for the substitutions[R=s℄ and[R0=s℄, respectively.

CaseE = [℄. Then,S = � andR = R0. Thus, pickingE0 = [℄ andp0 = p trivially

satisfies our requirement.

CaseE = E1 e1. Then,JE[e℄Kp� = JE1[e℄Kp� Je1Kp� R
Furthermore, the induction hypothesis, applied toE1, yieldsE01 andp0 such thatJE1[e℄Kp� !?sE01[JeKp0�0℄. So, pickingE0 = E01 Je1Kp� R fits the bill.

71



CaseE = v E1. This case is similar to the previous one. Apply the induction hypothesis

to obtainE01 andp0. Then, pickE0 = JvK E01 R. (E0 is indeed an evaluation context, becauseJvK is

a value.)

CaseE = letx = E1 in e1. This case is also similar. Apply the induction hypothesis to

obtainE01 andp0. Then, pickE0 = letx = E01 in Je1Kp�.

CaseE = enable r inE1. Then,S = r:S1, whereS1 = jE1 j. Thus, fromp;R; S ` R0,
we may deducep;R1; S1 ` R0, whereR1 stands forR [ (frg \ p). Define�1 = [R1=s℄. Then,JE[e℄Kp� = let s = (frg \ p) _R in JE1[e℄Kp!s JE1[e℄Kp�1
Applying the induction hypothesis toE1 yieldsE01, p0 such thatJE1[e℄Kp�1 !?s E01[JeKp0�0℄. So,

pickingE0 = E01 meets our goal.

CaseE = p1:E1. Then,S = p1:S1, whereS1 = jE1 j. Thus, fromp;R; S ` R0, we may

deducep1; R1; S1 ` R0, whereR1 stands forp1 \R. Define�1 = [R1=s℄. Then,JE[e℄Kp� = let s = p1 ^R in JE1[e℄Kp1!s JE1[e℄Kp1�1
Applying the induction hypothesis toE1 yieldsE01, p0 such thatJE1[e℄Kp1�1 !?s E01[JeKp0�0℄. So,

pickingE0 = E01 meets our goal. ut
We now come to our central lemma, stating that, if a source expressione leads, in one

computation step, to a source expressione0, then the translation ofe reduces, modulo administrative

reductions, to the translation ofe0.
Lemma 4.12 e! e0 impliesL e M!? � ?s L e0 M.
Proof. Becausee ! e0, e ande0 must be of the formE[e0℄ andE[e00℄, respectively. LetS = jE j.
There exists a uniqueR such thatnobody;?; S ` R. Clearly, for any resourcer,E ` r is equivalent

to r 2 R. Define� = [R=s℄. According to Lemma 4.11, there exist an evaluation contextE0 and a

principalp such that, for any source expressione,LE[e℄ M !?s E0[JeKp�℄
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Assume, for the time being, thatJe0Kp� !? Je00Kp� holds. Then, we haveL e M = LE[e0℄ M !?s E0[Je0Kp�℄!? E0[Je00Kp�℄?s LE[e00℄ M = L e0 M
which is the desired result. Hence, there only remains to prove Je0Kp� !? Je00Kp�, which we will

now do, by cases on the form ofe0 ande00.
Casee0 = (fix z:�x:f) v, e00 = f [v=x℄[fix z:�x:f=z℄. Then,Je0Kp� = J(fix z:�x:f) vKp�= (Jfix z:�x:fK JvK s)�= (fix z:�x:�s:JfK) JvKR becauses cannot appear free in values!2 JfK[JvK=x℄[Jfix z:�x:fK=z℄�= Jf [v=x℄[fix z:�x:f=z℄K� by a straightforward auxiliary lemma= Je00Kp�

The auxiliary lemma mentioned above takes advantage of the fact that the translation of a valueJvKp
does not depend upon the parameterp. We omit its proof.

Casee0 = letx = v in e1, e00 = e1[v=x℄. Then,Je0Kp� = Jletx = v in e1Kp�= letx = JvK in Je1Kp� becauses is not free inJvK! Je1Kp�[JvK=x℄= Je1Kp[JvK=x℄�= Je1[v=x℄Kp� by the same auxiliary lemma= Je00Kp�
Casee0 = enable r in v, e00 = v. Then,Je0Kp� = Jenable r in vKp� = let s = (frg \ p) _R in JvK!2 JvK = Je00Kp�

Again, we take advantage of the fact thats does not occur free inJvK.
Casee0 = check r then e1, e00 = e1. We must haveE ` r, hencer 2 R. Then,Je0Kp� = Jcheck r then e1Kp� = let = R 3 r in Je1Kp�!2 Je1Kp� becauser 2 R= Je00Kp�
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Casee0 = test r then e1 else e2. Then,e00 equalsei, wherei = 1 if E ` r (or, equiva-

lently, if r 2 R), andi = 2 otherwise. Thus, we haveJe0Kp� = Jtest r then e1 else e2Kp� = ?R r (�s:Je1Kp) (�s:Je2Kp)!3 (�s:JeiKp)R! JeiKp� = Je00Kp�
Casee0 = p1:v, e00 = v. Then,Je0Kp� = Jp1:vKp� = let s = p1 ^R in JvK!2 JvK = Je00Kp�

Again, we take advantage of the fact thats does not occur free inJvKp, and of the fact that this

expression does not depend onp. ut
This result is easily generalized to reduction sequences ofarbitrary length:

Lemma 4.13 e!? e0 impliesL e M!? � ?s L e0 M.
Proof. By induction on the length of the reduction sequencee !? e0. In the base case, we havee = e0, and the result is immediate. In the inductive case, we havee ! e1 !? e0. By applying

Lemma 4.12, on the one hand, and the induction hypothesis, onthe other hand, we obtainL e M!? � ?s L e1 M!? � ?s L e0 M
Because the operational semantics of the target language isdeterministic, one of the two reduction

sequences starting atL e1 M above must be a sub-sequence of the other. In either case, thediagram

collapses down to L e M!? � ?s L e0 M
hence the result. ut

As a corollary, we obtain a soundness theorem for the translation. It essentially states that

security-passing style is a valid implementation of the Java stack inspection discipline.

Theorem 4.3 (�sec-to-pmlB transformation correctness) If e!? v, thenL e M !? L v M. If e goes

wrong, thenL e M goes wrong. Ife diverges, thenL e M diverges.

Proof. First, assumee reduces to a valuev. Then, Lemma 4.13 yieldsL e M!? � ?s L v M. BecauseL v M is a value, this diagram collapses down toL e M!? L v M.
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Second, assumee goes wrong. Then,e !? e0, wheree0 is stuck, holds. We prove thatL e M goes wrong by induction on the length of this reduction sequence.

In the base case, we havee = e0, i.e. e is stuck. Therefore, we have thate must be of

the formE[check r then e1℄, where:(E ` r). Let S = jE j. There exists a uniqueR0 such that

nobody;?; S ` R0. Necessarily,r 62 R0. According to Lemma 4.11,L e M may be reduced to a term

of the formE0[Jcheck r then e1Kp0�0℄, where�0 = [R0=s℄. It is easy to check that such a term is

stuck. Hence,L e M goes wrong.

In the inductive case, we havee ! e1 !? e0. Our induction hypothesis shows thatL e1 M
goes wrong. Furthermore, Lemma 4.12 shows thatL e M reduces to some reduct ofL e1 M. Because

reduction is deterministic,L e M must go wrong as well. The result follows.

Third, assumee admits an infinite reduction sequence. This sequence must involve an

infinite number of�-reduction steps, because the semantics of�sec, deprived of the�-reduction

rule, is terminating. Now, a slight generalization of Lemma4.13 states that if a reduction frome toe0 involvesk �-reduction steps, thenL e M reduces toL e0 M (modulo administrative reductions) in at

leastk �-reduction steps. (The proof, which we omit, hinges on the fact that�-reduction is not an

administrative reduction.) This implies thatL e M admits an infinite reduction sequence as well.ut
4.4 Types for�sec

In this section we introduce a let-polymorphic type analysis for�sec. In fact, using the type

machinery in place forpmlB and Theorem 4.3, we are able to define more than one type systemfor

the language. We have argued that the transformational approach allows us to easily develop a type

system for�sec; we will demonstrate this in Sect. 4.4.1 by immediately obtaining an indirect type

analysis for�sec, via composition of the�sec-to-pmlB transformation andpmlB type judgements.

But as even more significant evidence of the benefits of the transformational approach, it is made

apparent in Sect. 4.4.2 that proof of correctness for adirect �sec type analysis is significantly easier

using this approach.

4.4.1 Indirect types

The type systemsS reli for pmlB were specified in Definition 3.2. Sect. 4.3 defined a

translation of�sec into pmlB. Composing the two automatically gives rise to a type systemfor �sec,

also calledS reli for simplicity, whose safety is a direct consequence of Theorems 4.3 and 3.2.
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Definition 4.4 Let e be a closed�sec expression. By definition,C;� ` e : � holds if and only ifC;� ` L e M : � holds.

Theorem 4.4 If C;� ` e : � holds, thene does not go wrong.

Turning type safety into a trivial corollary was the principal motivation for basing our

approach on a transformation. Indeed, because Theorem 4.3 concerns untyped terms, its proof is

straightforward, and constitutes the principal proof effort for this�secsoundness result. It was nec-

essary to proveÆ-typability for pmlB in Lemma 3.5, which did involve types, but this is a subjective

requirement of the target language. And, as we will show in Chapter 4, thepmlB language, along

with its type soundness, can be re-used as the target language in other applications of the transfor-

mational approach.

4.4.2 Direct types

Definition 4.4, although simple, is not adirect definition of typing for�sec— where by

direct we mean a type analysis of�secexpressions themselves, rather than their transformed images.

There are several reasons why a direct analysis is desirable, chief among them that the�sec-to-pmlB
transformation might be inefficient for an implementation of �sec, and also type error reporting

would be problematic. We thus will give rules which allow typing �secexpressions without explic-

itly translating them intopmlB . These direct rules can bederivedin a rather systematic way from

the definition ofS reli and the definition of the translation. This method will allowus to prove type

safety for the direct�sec type analysis by a proof of correspondence between the direct and indirect

analyses. The proof is straightforward, far simpler than a direct proof of type soundness for�sec

would be.

For the direct system we re-use the type and constraint language of RS defined in Fig. 3.3,

and the abbreviated set types of Sect. 3.2.4. For clarity in the subsequent presentation, we constrain� to range over types of kindType,' to range over types of kindCap, and� to range over abbreviated

row types of kindRow()?; the? symbol indicates an arbitrary principal. Further, we constrain & to

range over abbreviated set types of the formf�g; in the direct type system,& is used to represent

some security context, i.e. a set of available resources. Torecover the more intuitive and readable

notation proposed in Sect. 1.3, we define the macro�1 &2�! �2 , �1 ! &2 ! �2; as an artifact of the�sec-to-pmlB translation, where all functions are given an additional parameter, and the fact that we

derive direct types from the indirect, all function types inthe direct system are of this form.
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VAR�(x) = �p; &;� ` x : � ABS?; &2; (�; z : �1 &2�! �2;x : �1) ` f : �2p; &1;� ` fix z:�x:f : �1 &2�! �2
APPp; &;� ` e1 : �2 &�! � p; &;� ` e2 : �2p; &;� ` e1 e2 : � LETp; &;� ` e1 : � p; &; (�;x : �) ` e2 : �p; &;� ` letx = e1 in e2 : �8 INTROp; &;� ` e : � �� \ fv(&;�) = ?p; &;� ` e : 8��:� 8 ELIMp; &;� ` e : 8��:�p; &;� ` e : � [��=��℄ ENABLE FAILUREp; f�g;� ` e : � r 62 pp; f�g;� ` enable r in e : �

ENABLE SUCCESSp; fr+; �g;� ` e : � r 2 pp; fr'; �g;� ` enable r in e : � CHECKp; fr+; �g;� ` e : �p; fr+; �g;� ` check r then e : �
TESTp; fr+; �g;� ` e1 : � p; fr�; �g;� ` e2 : �p; fr'; �g;� ` test r then e1 else e2 : �

SIGNp; fr1'1; : : : ; rn'n;?g;� ` e : � p = fr1; : : : ; rng?; fr1'1; : : : ; rn'n; �g;� ` p:e : �
Figure 4.5: Typing rules for�secderived fromS=1
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VAR�(x) = � C  �p; &; C;� ` x : � SUBp; &; C;� ` e : � C  � � � 0p; &; C;� ` e : � 0
ABS?; &2; C; (�;x : �1) ` f : �2p; &1; C;� ` �x:f : �1 ! &2 ! �2 APPp; &; C;� ` e1 : �2 ! & ! � p; &; C;� ` e2 : �2p; &; C;� ` e1 e2 : �

LETp; &; C;� ` e1 : � p; &; C; (�;x : �) ` e2 : �p; &; C;� ` letx = e1 in e2 : �8 INTROp; &; C ^D;� ` e : � �� \ fv(&; C;�) = ?p; &; C ^ 9��:D;� ` e : 8��[D℄:� 8 ELIMp; &; C;� ` e : 8��[D℄:�p; &; C ^D;� ` e : �9 INTROp; &; C;� ` e : � �� \ fv(&;�; �) = ?p; &;9��:C;� ` e : � ENABLE FAILUREp; f�g; C;� ` e : � r 62 pp; f�g; C;� ` enable r in e : �
ENABLE SUCCESSp; fr+; �g; C;� ` e : � r 2 pp; fr'; �g; C;� ` enable r in e : � CHECKp; fr+; �g; C;� ` e : �p; fr+; �g; C;� ` check r then e : �

TESTp; fr+; �1g; C;� ` e1 : �1 p; fr�; �2g; C;� ` e2 : �2 C  if + � ' then� � �1C  if � � ' then� � �2 C  if + � ' then�1 � � C  if � � ' then�2 � �p; fr'; �g; C;� ` test r then e1 else e2 : �
SIGNp; fr1'1; : : : ; rn'n;?g; C;� ` e : � p = fr1; : : : ; rng?; fr1'1; : : : ; rn'n; �g; C;� ` p:e : �

Figure 4.6: Typing rules for�secderived fromS�2
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Figure 4.6 gives rules for the system derived fromS�2 , the most complex element in our

array of type systems. Judgements have the formp; &; C;� ` e : �.

Fig. 4.5 gives derived rules forS=1 , the simplest of our type systems. There, all constraints

are equations. As a result, all type information can be represented in term form, rather than in

constraint form [41]. We exploit this fact to give a simple presentation of the derived rules. Type

schemes have the form8��:� , and judgements have the formp; &;� ` e : �.

4.4.3 Direct type safety and optimizations

We will prove progress and type safety forS=1 in this section, Theorems 4.6 and 4.7.

The proofs are quite straightforward, requiring only that we prove a correspondence between the

direct and indirect systems, Theorem 4.5, rather than provenon-trivial subject reduction result from

scratch. We observe that the same result follows forS�2 in a similar manner. Again, the ease of

these results demonstrates the effectiveness of the transformational approach. We also discuss some

run-time optimizations that can be performed as a consequence of these results.

First, we may prove the correspondence result in one direction, by showing that if a type

judgement is derivable in the direct type system, then the same type judgement is derivable in the

indirect one.

Lemma 4.14 If p; &;� ` e : � is derivable then so istrue; (�; s : &) ` JeKp : �.

Proof. Let �0 = (�; s : &); then the proof proceeds by induction on the height of the derivation ofp; &;� ` e : � and case analysis on the final step of the judgement:

Case VAR. In this casee is a variablex and�(x) = � by VAR, so�0(x) = � sincex 6= s
by definition by definition of the translation. Therefore theLemma holds in this case by the HM(X)
VAR rule, sinceJxKp = x.

Case ABS. In this casee = fix z:�x:f , � = �1 &0�! �2 and:?; & 0; (�; z : �1 &0�! �2;x : �1) ` f : �2
is derivable. But since:(�; z : �1 &0�! �2;x : �1; s : & 0) = (�0; z : �1 &0�! �2;x : �1; s : & 0)
therefore by the induction hypothesis the judgement:

true; (�0; z : �1 &0�! �2;x : �1; s : & 0) ` JfKp : �2
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is derivable, thustrue;�0 ` fix z:�x:�s:JfKp : �1 ! & 0 ! �2 is derivable by two applications of the

HM(X) ABS rule, so the Lemma holds by definition ofJeKp in this case.

Case APP. In this casee = e1e2, � = � andp; &;� ` e1 : �2 &�! � andp; &;� ` e2 : �2
are derivable. But then by the induction hypothesis it is thecase thattrue;�0 ` Je1Kp : �2 ! & ! �
andtrue;�0 ` Je2Kp : �2 are derivable, so thattrue;�0 ` Je1KpJe2Kp : & ! �2 is derivable by the

HM(X) APP rule. Buttrue;�0 ` s : & by the HM(X) VAR rule, hencetrue;�0 ` Je1KpJe2Kp s : �2
by the HM(X) APP rule, so the Lemma holds by definition ofJeKp in this case.

Case LET. In this casee = letx = e1 in e2, andp; &;� ` e1 : �0 andp; &; (�;x : �0) `e2 : � are derivable. But thentrue;�0 ` Je1Kp : �0 andtrue; (�0;x : �0) ` Je2Kp : � are derivable

by the induction hypothesis, so the Lemma holds by the HM(X) LET rule and the definition ofJeKp
in this case.

Case8 INTRO. In this case� = 8��[true℄:� where�� \ fv(&;�) = ? andp; &;� ` e : �
is derivable. But then�� \ fv(true;�0) = ?. Now, by the induction hypothesis,true;�0 ` JeKp : �
is derivable, so alsotrue ^ true;�0 ` JeKp : � sincetrue ^ true is equivalent totrue. Thus by the

HM(X) 8 INTRO rule it is the case thattrue ^ 9��:true;�0 ` JeKp : � is derivable, so the Lemma

holds in this case sincetrue ^ 9��:true is equivalent totrue.

Case8 ELIM . In this case� = [��=��℄� andp; &;� ` e : 8��[true℄:� is derivable. But then

true;�0 ` JeKp : 8��[true℄:� is derivable by the induction hypothesis, andtrue  [��=��℄true since[��=��℄true = true, so this case holds by the HM(X) 8 ELIM rule.

Case ENABLE FAILURE. In this casee = enable r in e0 wherer 62 p so thatp\frg = ?,� = � and p; &;� ` e0 : � is derivable. Now, by Lemma 3.6 and8 ELIM it is the case that

true;�0 ` _? : & ! & is derivable, andtrue;�0 ` s : & is derivable by the HM(X) VAR rule,

thereforetrue;�0 ` ? _ s : & by the HM(X) APP rule. But true;�0 ` Je0Kp : � is derivable by

the induction hypothesis, so alsotrue; (�0; s : &) ` Je0Kp : � since�0 = (�0; s : &), therefore the

Lemma holds by the HM(X) LET rule and the definition ofJeKp in this case.

Case ENABLE SUCCESS. In this casee = enable r in e0 wherer 2 p so thatp \ frg =frg, & = fr'; �g, � = � andp; fr+; �g ;� ` e0 : � is derivable. Now, by Lemma 3.6 and8 ELIM

it is the case thattrue;�0 ` _frg : fr'; �g ! fr+; �g is derivable, andtrue;�0 ` s : & is

derivable by the HM(X) VAR rule, thereforetrue;�0 ` frg _ s : fr+; �g by the HM(X) APP

rule. But true; (�; s : fr+; �g) ` Je0Kp : � is derivable by the induction hypothesis, so also

true; (�0; s : fr+; �g) ` Je0Kp : � since(�; s : fr+; �g) = (�0; s : fr+; �g), therefore the Lemma

holds by the HM(X) LET rule and the definition ofJeKp in this case.

Case CHECK. In this casee = enable r in e0 and� = � , & = fr+; �g andp; &;� ` e0 : �
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is derivable. But by the induction hypothesis it is the case that true;�0 ` Je0Kp : � is derivable, so

alsotrue; (�0; : �0) ` Je0Kp : � for any�0, since does not appear ine0, therefore the Lemma holds

by the HM(X) LET rule and the definition ofJeKp in this case.

Case TEST. In this casee = test r then e1 else e2 and � = � , & = fr'; �g andp; fr+; �g;� ` e1 : � andp; fr�; �g;� ` e2 : � are derivable. Let�00 = (�); then by the induction

hypothesis it is the case thattrue; (�00; s : fr+; �g) ` Je1Kp : � and true; (�00; s : fr�; �g) `Je2Kp : � , so alsotrue; (�0; s : fr+; �g) ` Je1Kp : � and true; (�0; s : fr�; �g) ` Je2Kp : � ,

since(�00; s : fr'; �g) = (�0; s : fr'; �g). Thus by the HM(X) ABS rule it is the case that

true;�0 ` �s:Je1Kp : fr+; �g ! � and true;�0 ` �s:Je2Kp : fr�; �g ! � are derivable. Now,

by the definition of�1, and CONST and8 ELIM it is the case thattrue;�0 ` ?r : fr'; �g !(fr+; �g ! �) ! (fr�; �g ! �) ! � is derivable, andtrue;�0 ` s : fr'; �g is derivable by the

HM(X) VAR rule, therefore the Lemma holds by three applications of theHM(X) APP rule and

the definition ofJeKp in this case.

Case SIGN. In this casep = ?, e = p0:e0, & = fr1'1; : : : ; rn'n; �g, � = � andp0; fr1'1; : : : ; rn'n;?g;� ` e0 : � , wherep0 = fr1; : : : ; rng. Let & 0 = fr1'1; : : : ; rn'n;?g;
then by the induction hypothesis it is the case thattrue; (�; s : & 0) ` Je0Kp0 : � is derivable, so also

true; (�0; s : & 0) ` Je0Kp0 : � , since(�; s : & 0) = (�0; s : & 0). Now by Lemma 3.6 and8 ELIM

it is the case thattrue;�0 ` ^p0 : & ! & 0 is derivable, andtrue;�0 ` s : & is derivable by VAR,

so true;�0 ` p0 ^ s : & 0 is derivable by the HM(X) APP rule, therefore the Lemma holds by the

HM(X) LET rule and the definition ofJeKp in this case. ut
Now, we prove the other direction, that if a type judgement isderivable in the indirect�sec type system, then it is derivable in the direct system, Lemma4.18. First, a couple more utility

Lemmas are stated:

Lemma 4.15 A type scheme8��[D℄:� is deadiff �� \ fv(D; �) = ?. If C; (�;x : 8��[D℄:�) ` e : �
is derivable and8��[D℄:� is dead, thenC; (�;x : �) ` e : � is also derivable in the same height.

Lemma 4.16 If C; (�;x : �) ` e : �0 is derivable andx does not occur free ine, thenC;� ` e : �0
is also derivable in the same height.

Lemma 4.17 If C; (�) ` Jfix z:�x:fKp : � is derivable, then� is of the form�1 ! & ! �2.
Proof. This property holds by virtue of the transformation, sincef must be of the formp0:e, hence:Jfix z:�x:fKp = fix z:�x:�s:let s = p0 ^ s in JeKp0
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This form ensures that all function types reflect the two arguments of transformed terms, with the

type of the second arguments being a set type&, sinces is always the argument of a set intersection

in the transformation. ut
Thus, we may prove the correspondence in the other directionas follows. In this Lemma,

we abbreviate type schemes8��[true℄:� as8��:� and judgementstrue;� ` e : � as� ` e : �,

omitting the trivial requirementtrue  true from instances of8 ELIM and VAR:

Lemma 4.18 If (�; s : &) ` JeKp : � is derivable in HM(RS=), thenp; &;� ` e : � is derivable inS=1 .

Proof. By Lemma 2.6 and definition of RS=, it is the case that(�; s : &) ` JeKp : � follows by

a syntax-directed rule and at most one instance of8 ELIM . Let �0 = (�; s : &); the proof then

proceeds by induction on the height of the derivation of�0 ` JeKp : � and case analysis onJeKp:
CaseJeKp = x. In this casee = x 6= s andx 2 dom(�) by definition of the translation.

By Lemma 2.6 we have a derivation of the following form, where� = [��=��℄� 0:�0(x) = 8��:� 0�0 ` x : 8��:� 0�0 ` x : [��=��℄� 0
But then by definition ofS=1 we have the following derivation:�(x) = 8��:� 0p; &;� ` x : 8��:� 0p; &;� ` x : [��=��℄� 0
Therefore, this case holds.

CaseJeKp = fix z:�x:�s:JfKp. In this casee = fix z:�x:f , and by Lemma 2.6 we have

the following subderivations, where� is of the form�1 ! & 0 ! �2 by Lemma 4.17:�0; z : �1 ! & 0 ! �2;x : �1; s : & 0 ` JfKp : �2�0; z : �1 ! & 0 ! �2;x : �1 ` �s:JfKp : & 0 ! �2�0 ` fix z:�x:�s:JfKp : �1 ! & 0 ! �2
But since: (�0; z : �1 ! & 0 ! �2;x : �1; s : & 0) = (�; z : �1 ! & 0 ! �2;x : �1; s : & 0)
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therefore by the induction hypothesis we have thatp; & 0; (�; z : �1 ! & 0 ! �2;x : �1) ` f : �2 is

derivable, so thatp; &;� ` fix z:�x:f : �1 ! & 0 ! �2 is derivable by ABS.

CaseJeKp = Je1KpJe2Kps. In this casee = e1e2, and by Lemma 2.6 we have a subderiva-

tion of the following form:�0 ` Je1Kp : � 0 ! & ! � �0 ` Je2Kp : � 0�0 ` Je1KpJe2Kp : & ! � �0(s) = &�0 ` s : &�0 ` Je1KpJe2Kps : �
But then by the induction hypothesis we have thatp; &;� ` e1 : � 0 ! & ! � andp; &;� ` e2 : � 0
are derivable inS=1 , hencep; &;� ` e1e2 : � is derivable inS=1 by APP.

CaseJeKp = letx = Je1Kp in Je2Kp. In this casee = letx = e1 in e2, and we have a

subderivation of the following form:�0 ` Je1K:� (�; s : &;x : �) ` Je2K:��0 ` letx = Je1Kp in Je2Kp : �
But sincex 6= s we have(�; s : &;x : �) = (�;x : �; s : &), therefore by the induction hypothesis

we have that bothp; &;� ` e1 : � andp; &; (�;x : �) ` e2 : � are derivable, so this case follows by

LET in S=1 .

CaseJeKp = let s = (frg \ p)_ s in Je0Kp. In this casee = enable r in e0, and by Lemma

2.6 and Lemma 3.6 and8 ELIM we have subderivations of the following form, whereR = p\ frg,& = fR �'; �g and& 0 = fR+; �g:�0 ` _R : fR �'; �g ! & 0 �0(s) = fR �'; �g�0 ` s : fR �'; �g�0 ` R _ s : & 0�0 ` R _ s : & 0 �� \ fv(�0) = ?�0 ` R _ s : 8��:& 0 �0; s : 8��:& 0 ` Je0Kp : ��0 ` let s = R _ s in Je0Kp : �
However, since& occurs unbound in�0 so that any variables in� are free in�0, and�� \ fv(�0) = ?
by the above, therefore8��:& 0 is dead and thus�0; s : & 0 ` Je0Kp : � is derivable by Lemma 4.15.

Therefore, since(�0; s : & 0) = (�; s : & 0), we have thatp; & 0;� ` e0 : � is derivable by the induction
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hypothesis, so thatp; &;� ` enable r in e0 : � is derivable by ENABLE FAILURE if r 62 p, or

ENABLE SUCCESSif r 2 p.

CaseJeKp = let = s 3 r in Je0Kp. In this casee = check r then e0, and by Lemma 2.6

and definition of�1 we have a subderivation of the following form, where& = fr+; �g:�0 `3r: & ! & �0(s) = &�0 ` s : &�0 ` s 3 r : & �� \ fv(�0) = ?�0 ` s 3 r : 8��:& �0; : 8��:& ` Je0Kp : ��0 ` let = s 3 r in Je0Kp :
But since does not occur ine0, therefore by Lemma 4.16 we have that�0 ` Je0Kp : � is derivable

such thatp; &;� ` e0 : � is derivable by the induction hypothesis. Thus,p; &;� ` check r then e0 : �
is derivable by CHECK.

CaseJeKp = ?s r (�s:Je1Kp) (�s:Je2Kp). In this casee = test r then e1 else e2 and by

Lemma 2.6 and definition of�1 we have subderivations of the following form, where& = fr'; �g:�0 ` ?r : fr'; �g ! (fr+; �g ! �)! (fr�; �g ! �)! � �0 ` s : fr'; �g�0 ` ?s r : (fr+; �g ! �)! (fr�; �g ! �)! ��0; s : fr+; �g ` Je1Kp : ��0 ` �s:Je1Kp : fr+; �g ! � �0; s : fr�; �g ` Je1Kp : ��0 ` �s:Je2Kp : fr�; �g ! ��0 ` ?s r : (fr+; �g ! �)! (fr�; �g ! �)! � �0 ` �s:Je1Kp : fr+; �g ! ��0 ` ?s r (�s:Je1Kp) : (fr�; �g ! �)! ��0 ` ?s r (�s:Je1Kp) : (fr�; �g ! �)! � �0 ` �s:Je2Kp : fr�; �g ! ��0 ` ?s r (�s:Je1Kp) (�s:Je2Kp) : �
But since(�0; s : fr�; �g) = (�; s : fr�; �g), therefore by the induction hypothesis and the

above we have thatp; fr+; �g;� ` e1 : � and p; fr�; �g;� ` e2 : � are both derivable, sop; fr'; �g;� ` test r then e1 else e2 : � is derivable by TEST.

CaseJeKp = let s = p0 ^ s in Je0Kp0. In this casee = p0:e0, and by Lemma 2.6, Lemma 3.6
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and8 ELIM we have subderivations of the following form, where& = fp0 �'; �g and& 0 = fp0 �';?g:�0 ` ^p0 : fp0 �'; �g ! & 0 �0(s) = fp0 �'; �g�0 ` s : fp0 �'; �g�0 ` p0 ^ s : & 0�0 ` p0 ^ s : & 0 �� \ fv(�0) = ?�0 ` p0 ^ s : 8��:& 0 �0; s : 8��:& 0 ` Je0Kp0 : ��0 ` let s = p0 ^ s in Je0Kp0 : �
However, since& occurs unbound in�0 so that any variables in�' are free in�0, and��\ fv(�0) = ?
by the above, therefore8��:& 0 is dead and thus�0; s : & 0 ` Je0Kp : � is derivable by Lemma 4.15.

Therefore, since(�0; s : & 0) = (�; s : & 0), we have thatp0; & 0;� ` e0 : � is derivable by the induction

hypothesis, so thatp; &;� ` p0:e0 : � is derivable by SIGN. ut
Two more utility Lemmas to handle the details of the top-level �sec-to-pmlB transforma-

tion L e M, and then the desired correspondence result:

Lemma 4.19 If C;�;x : �0 ` e : � andC;� ` v : �0 are derivable then so isC;� ` e[v=x℄ : �.

Lemma 4.20 If C;� ` e[R=x℄ : � andC;� ` R : & is derivable, then so isC; (�;x : &) ` e : �.

Theorem 4.5 The judgment nobody; f?g ;� ` e : � is derivable inS=1 iff true; (�; s : f?g) `L e M : � is derivable in HM(RS=).
Proof. Suppose on the one hand thatnobody; f?g ;� ` e : � is derivable. By Lemma 4.14 we

have thattrue; (�; s : f?g) ` JeKnobody : � is derivable, so that by Lemma 4.19 we have that

true; (�) ` L e M : � is derivable, sinceL e M = JeKnobody[?=s℄ andtrue; (�) ` ? : f?g is derivable

by definition of�1 and CONST.

Suppose on the other hand thattrue; (�) ` L e M : � is derivable. Therefore, sinceL e M = JeKnobody[?=s℄ and true; (�) ` ? : f?g by definition of�1 and CONST, we have that

true; (�; s : f?g) ` JeKnobody : � is derivable by Lemma 4.20. But then by Lemma 4.18 we have

thatnobody; f?g;� ` e : � is derivable. ut
Given this correspondence and Theorem 4.3, progress and type safety results for�sec in

the directS=1 system are immediate:
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Theorem 4.6 (�secProgress) If e is well-typed then eithere!? v or e diverges.

Theorem 4.7 (�secType Safety) If e is well-typed thene does not go wrong.

Furthermore, we note that by these results and Theorem 4.2, Theorems 1.2 and 1.1 follow,

since the language and type system presented in this Chaptersubsume those presented in Chapter 1.

Another important consequence of these results is that, similarly to Proposition 1.1, we

may now formally assert that runtime stack inspection for privilege checks is no longer necessary,

which follows immediately by Theorem 4.7:

Corollary 4.1 (�secOptimization) Let be defined as!, but with the rule:E[check r then e℄ ! E[e℄ if E ` r
replaced with: E[check r then e℄  E[e℄
and supposee is well-typed; thene ? v iff e!? v.

This result states that runtime stack inspection in programs that contain only privilege

checks may be eliminated entirely. Note, however, that this result says nothing about runtime

checks performed in the case of privilegetests. In fact, recalling the initial bindings in Fig. 3.9, the

systemsSrel1 do not have precise enough types for eliminating run-time stack inspection for privilege

tests. The systemsSrel1 do, but the mechanism for doing so would be more complicated,involving

the trimming of branches which are statically known, by the type conditions, to be unfollowed. It

is not clear what balance of type precision and run-time tests would be most effective in practice,

remaining an interesting topic for future work.

4.4.4 Type inference

Type inference for�sec can be obtained in the same manner as the logical type systems.

Indirect type inference may be defined as the composition of the�sec-to-pmlB transformation with

any of thepmlB type inference methods discussed in Sect. 3.3.5.Direct type inference for�secmay

be derived from indirect inference in the same manner that direct judgements are derived from the

indirect.

In the Appendix, a direct type inference algorithm for�sec in S=1 is defined in the mod-

ule Typing, specifically in the functorSystem. This functor is parameterized by a moduleC
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: Context, which specifies a local access control list and initial principal; an example of such a

module is given inLocalContext. This type inference algorithm uses exactly the same constraint

system and normalization procedureunify employed forpmlB S=1 type inference. Proving this

direct inference algorithm correct would then be a straightforward manner of showing a correspon-

dence between the syntax-directed inference rules in modulesHmx andTyping. The OCaml im-

plementation of the�secconstraint system andunify procedure are not included in the Appendix,

but are available online athttp://www.cs.jhu.edu/~ces/thesis/impl/direct.

4.5 Examples and discussion

In this section, we give examples which illustrate the expressivity (and limitations) of our

type system. These examples allow discussing the differences between the variants of the system,

yielding insights into the possible trade-offs between precision and cost.

4.5.1 Security wrappers

A library writer often needs to surround numerous internal functions with “boilerplate”

security code before making them accessible. To avoid redundancy, it seems desirable to allow

the definition of genericsecurity wrappers. When applied to a function, a wrapper returns a new

function which has the same computational meaning but different security requirements. Assume

given a principalp = fr; sg; here are two security wrappers likely to be useful to programmers:

enabler , �f:p:�x:p:enable r in f x
requirer , �f:p:�x:p:check r then f x

In systemS=1 , these wrappers receive the following (most general) types:

enabler : 8 : : : :(�1 fr+;s1;?g�������! �2) f�1g���! (�1 fr2;s1;�2g��������! �2)
requirer : 8 : : : :(�1 fr+;s1;?g�������! �2) f�1g���! (�1 fr+;s1;�2g�������! �2)

These types are very similar; they may be read as follows. Both wrappers expect a functionf which

allows thatr be enabled (r+), i.e. one whicheither requiresr to be enabled,or doesn’t care about

its status. (Indeed, as in ML, the type of the actual argumentmay be more general than that of the

formal.) They return a new function with identical domain and codomain (�1, �2), which works

regardless ofr’s status (enabler yields r2) or requiresr to be enabled (requirer yields r+). The
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new function retainsf ’s expectations abouts (s1). f must not require any further privileges (?),

because it is invoked byp, which enjoys privilegesr ands only.

These polymorphic types are very expressive. Our main concern is that, even though

the privileges is not mentioned in thecodeof these wrappers, it does appear in theirtype. More

generally, every privilege available top may show up in the type of a function written on behalf of

principal p, which may lead to very verbose types. An appropriate type abbreviation mechanism

may be able to address this problem; this is left as a subject for future work.

4.5.2 Use and types of securitytests

This example displays two typical programming idioms involving test. One (arguably the

most common) is very simple, and may be typed inS=1 . The other is more complex and requires

at leastS=2 . We take this opportunity to discuss various problems related to the interpretation of

conditional constraints.

Imagine an operating system with two kinds of processes, root processes and user pro-

cesses. Killing a user process is always allowed, while killing a root process requires the privilege

killing. At least one distinguished principalroot has this privilege. The system functions which

perform the killing are implemented byroot as follows, assuming the trivial addition of a unit value

and type to�sec:

kill , �(p : process):root:check killing then : : : () – kill the process

killIfUser , �(p : process):root: : : : () – kill the process if it is user-level

In systemS=1 , these functions receive the following (most general) types:

kill : 8�:process
fkilling+;�g�������! unit

killIfUser : 8�:process
f�g��! unit

The first function can be called only if it can be statically proven that the privilegekilling is enabled.

The second one, on the other hand, can be called at any time, but will never kill a root process.

To complement these functions, it may be desirable to define afunction which provides a “best

attempt” given the current (dynamic) security context. This may be done by dynamically checking

whether the privilege is enabled, then calling the appropriate function:

tryKill , �(p : process):root:
test killing then kill (p) else killIfUser(p)
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This function is well-typed in systemS=1 . Indeed, within the first branch of thetest construct, it is

statically known that the privilegekilling must be enabled; this is why the sub-expressionkill (p) is

well-typed. The inferred type shows thattryKill does not have any security requirements:

tryKill : 8�:process
f�g��! unit

In the functiontryKill , the sensitive actionkill is performed within the lexical scope of the

test construct, which is why it is easily seen to be safe. However,one can also move it outside of

the scope, as follows:

tryKill’ , �(p : process):root:
let action= test killing then kill else killIfUser in actionp

Here, the dynamic security check yields a closure, whose behavior depends on the check’s outcome.

It can be passed on and used in further computations. Such a programming idiom is useful in

practice, because it allows hoisting a security check out ofa loop. For instance, if we were to kill

a set of processes, instead of a single one, we would applyaction successively to each element of

the set. Thus, only one security check would have to be performed, regardless of the number of

processes in the set.

Is tryKill’ also well-typed? This is more subtle. In thoseS reli where i = 1, the two

branches of atest construct must receive the same type. Because the functionkill requires a non-

trivial security context, it is conservatively assumed that action may do so as well. As a result, in

e.g.S=1 , tryKill’ has the following (most general) type:

tryKill’ : 8�:process
fkilling+;�g�������! unit

which is the same askill ’s type. Thus, it is well-typed, but its type is more restrictive than expected.

To solve this problem, we need to keep track of the fact that the behavior (i.e. the type)

of actiondepends on the outcome of the check, i.e. on whether the privilegekill is enabled. This is

precisely the reason for moving to the columni = 2 in our array of type systems. In this column,

the result of atest construct is described by conditional constraints, which encode the desired

dependency. Indeed, inS=2 , tryKill’ has the following (most general) type:

tryKill’ : 8�[C℄:process
fkilling;�g�������! �

whereC = if + �  thenunit� �^ if � �  thenunit � �
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This type no longer requires the privilegekill to be enabled: our analysis was smart enough to prove

that this code is safe.

The reader may wonder why we haven’t unified� with unit, since both = + and = �
imply unit = �. This is because there remain other cases (namely = ? and = >) where� is

unconstrained; as a result, these conditional constraintsdo not logically implyunit = �. To fix this

apparent problem, it would be possible to remove? and> from the model. In that case, imposing

unit = � would be a valid simplification. However, this would make theconstraint satisfaction

problem much more complex – we conjecture, exponential. To see why, notice that the system

would then be powerful enough to express disjunctive types.Indeed, the type�1 _ �2 would be

expressible as a type variable� accompanied with the constraints

if + � � then�1 � �
if � � � then�2 � �

(where� and� are fresh). The fact that� must be equal to either+ or� (because there are no other

elements in the model) means that� must be equal to�1 or �2. Implementing a constraint solver

which does not naïvely try both cases separately seems problematic.

Another interesting possibility consists in giving a different interpretation to conditional

constraints. Notice that we really wish to use conditional constraints in application to privilegetests

in only a very limited way. We want to allow the branches of atest construct to receive different

types— but we do not wish for these types to differ anarbitrary ways; we only wish to allow their

security annotationsto differ. Doing so turns out to be very easy, at least from a purely theoretical

point of view. Define� as the binary relation which is uniformly true onJRow()?K, and extend it

as a straightforward equivalence toJkK for every kindk. Then, re-define the interpretation of simple

conditional constraints as follows:�(� 0) � �(� 00)  � �(�)) � ` � 0 � � 00� ` if  � � then� 0 � � 00
This interpretation requires the types which appear in the conclusion of a conditional constraint

(here,� 0 and � 00) to be equal modulo security annotations. This allows thestructureof types to

be determined using rigid rules (which is desirable, because many programming errors are then

detected earlier), while keeping the flexibility of conditional reasoning on security annotations.

Under such an interpretation, theS=2 type of tryKill’ specified above is logically equivalent to the

following, as desired:

tryKill’ : 8�:process
f�g��! unit
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4.5.3 Subtyping

All of the examples given so far can be given useful types inS=i for somei 2 f1; 2g. In

other words, these examples do not require subtyping. Nevertheless, there are a few cases where the

extra precision afforded by subtyping becomes necessary.

Imagining the straightforward addition of a conditional construct to the language, suppose

that we write a slightly modified version of the wrapperenabler presented in Sect. 4.5.1 as follows,

whereP is some condition:

maybeEnabler , �f:p:�x:p: ifP then fxelse enable r in fx
This wrapper may or may not enable the privileger before callingf . In S=i , its (most general) type

is as follows:

maybeEnabler : 8 : : : :(�1 fr+;s1;?g�������! �2) f�1g���! (�1 fr+;s1;�2g�������! �2)
But this is exactly the same as the type ofrequirer specified in Sect. 4.5.1— in other words, the type

system thinks application ofmaybeEnabler yields a function that requires the privileger! How was

such an overly conservative conclusion drawn?

The cause of this imprecision is unification together with the restrictions inherent in let-

polymorphism. Becausef is �-bound (notlet-bound), all of its uses must receive the same type,

say�1 &�! �2. In the second branch of theif statement,f is called withr enabled; thus,& must be

of the formfr+; : : :g within that branch. In the first branch of theif statement,f is called within

an unmodified security context. The type system then concludes that the wrapped function has the

same security requirementfr+; : : :g in both branches, as a result of our use of equality constraints

and unification— becausef maybe called withr enabled, this leads us to believef mustbe called

with r enabled.

One standard solution is to move to a system where equality isreplaced with subtyping,

e.g.S�1 . There, we may obtain the following type formaybeEnabler:
maybeEnabler : 8 : : : [C℄:(�1 fr;s1;?g�������! �2) f�1g���! (�1 fr2;s1;�2g��������! �2)

whereC = + �  ^ 2 � 
This type is much more permissive, because2 �  � + does not allow concluding2 � +
(as is the case when� is interpreted by equality). Indeed, it may be that2 assumes the type�,

i.e. application ofmaybeEnabler yields a function that requiresr to be disabled. The constraint+ �  ^ 2 �  then requires> � , i.e. f must be able to accept either state of the privileger.
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Our experience seems to indicate that subtyping is useful only when polymorphism is

inhibited, i.e. when using higher-order functions. Java has no such construct. Java does have

first-class objects, which contain methods, but it seems reasonable to require that methods be given

explicit polymorphic types by the user as part of class declarations. Considering that subtyping has

substantial cost in terms of readability and efficiency, it may then be interestingnot to use it in a

real-world system. However, more work is needed to confirm this conjecture.
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Chapter 5

Types for Object Confinement

In this Chapter we switch gears a bit, turning our attention to a different language-based

security model— object confinement, aka capability-based security for OO languages. However,

while the security model is different, we will use the sametransformationaltechnique to develop a

static analysis for the language. Somewhat surprisingly, we will in fact be able to use the same target

language for the transformation studied here— the languagepmlB defined in Chapter 2— as that

used for the�sec transformation in Chapter 4. The benefits of this transformational approach will

again be a significantly reduced proof effort for demonstrating type safety, while the benefits of a

static analysis will again include the possibility of run-time optimizations, and a clearer declaration

of security policies.

The confinement of object references is a significant security concern in languages such

as Java. Aliasing and other features of OO languages can makethis a difficult task; recent work

[43, 5] has focused on the development of type systems for enforcing various containment policies

in the presence of these features. In this chapter, we describe a new language and type system for

the implementation of object confinement mechanisms that ismore general than previous systems,

and which is based on a different notion of security enforcement.

Object confinement is closely related tocapability-based security, utilized in several op-

erating systems such as EROS [36], and also in programming language (PL) architectures such as

J-Kernel [13], E [8], and Secure Network Objects [42]. A capability can be defined as a reference

to a data segment, along with a set of access rights to the segment [17]. An important property of

capabilities is that they areunforgeable: it cannot be faked or reconstructed from partial informa-

tion. In Java, object references are likewise unforgeable,a property enforced by the type system;

thus, Java can also be considered a statically enforced capability system.
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So-calledpure capability systems rely on their high level design for safety, without any

additional system-level mechanisms for enforcing security. Other systemshardenthe pure model by

layering other mechanisms over pure capabilities, to provide stronger system-level enforcement of

security; theprivate andprotected modifiers in Java are an example of this. Types improve

the hardening mechanisms of capability systems, by providing a declarative statement of security

policies, as well as improving run-time efficiency through static, rather than dynamic, enforcement

of security. Our language model and static type analysis focuses on capability hardening, with

enough generality to be applicable to a variety of systems, and serves as a foundation for studying

object protection in OO languages.

5.1 Overview of thepop system

In this section, we informally describe some of the ideas andfeatures of our language,

called pop, and show how they improve upon previous systems. As will be demonstrated in

Sect. 5.5,pop is sufficient to implement various OO language features, e.g. classes with meth-

ods and instance variables, but with stricter and more reliable security.

Use vs. communication-based security

Our approach to object confinement is related to previous work on containment mech-

anisms [2, 43, 5], but has a different basis. Specifically, these containment mechanisms rely on

a communication-based approach to security; some form of barriers between objects, or domain

boundaries, are specified, and security is concerned with communication of objects (or object ref-

erences) across those boundaries. In ouruse-based approach, we also specify domain boundaries,

but security is concerned with how objects areusedwithin these boundaries. Practically speaking,

this means that security checks on an object are performed when it is used (selected), rather than

communicated.

The main advantage of the use-based approach is that security specifications may be more

fine-grained; in a communication based approach we are restricted to a whole-object “what-goes-

where” security model, while with a use-based approach we may be more precise in specifying what

methods of an object may be used within various domains. Thisis particularly relevant to access

control. Use-based security also more closely correspondsto traditional capability-based security

models in practice, where capabilities are not just references, but are references plus an interface
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specifying access rights.

In addition, our use-based security model allows “tunneling” of objects: a capability may

pass through a domain where its use is disallowed, provided it is not used in that domain. This

supports the multitude of protocols which rely on an intermediary that is not fully trusted. In

a communication-based model capabilities are prevented from passing through unauthorized do-

mains, so tunneling is impossible.

Static protection domains

Thepop language is an object-based calculus, where object methodsare defined by lists of

method definitions in the usual manner. For example, substituting the notation: : : for the syntactic

details, the definition of a file object with read and write methods would appear as follows:[read() = : : : ;write(x) = : : :℄ � : : : � : : :
Additionally, every object definition statically asserts membership in a specificprotection domaind, so that expanding on the above we could have:[read() = : : : ;write(x) = : : :℄ � d � : : :
While the system requires that all objects are annotated with a domain, themeaningof these domains

is flexible, and open to interpretation. Our system, considered in a pure form, is a core analysis that

may be specialized for particular applications. For example, domains may be as interpreted code

owners, or they may be interpreted as denoting regions of static scope—e.g. package or object

scope.

Along with domain labels, the language provides a method forspecifying a security pol-

icy, dictating how domains may interact, viauser interfacedefinitions'. Each object is annotated

with a user interface, so that letting' be an appropriately defined user interface and again expanding

on the above, we could have:[read() = : : : ;write(x) = : : :℄ � d � '
We describe user interfaces more precisely below, and illustrate and discuss relevant examples in

Sect. 5.5. For now, we note that the flexibility in the interpretation of domains implies a flexibility

in the style of policies that may be enforced: e.g. if domainsare interpreted as code-owner labels,

then the policy is access control, while if domains are interpreted as static scope, then the policy is

a use-based access modifier mechanism.
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Object interfaces

Other secure capability-based language systems have been developed [13, 42, 8] which

include a notion of an access-rights interface, in the form of object types. Our system provides a

more fine-grained mechanism: for any given object, its user-interface definition' may be defined

so that different domains are given more or less restrictiveviews of the same object, and these

views are statically enforced. Note that the use-based, rather than communication-based approach

to security is an advantage here, since the latter allows us to more precisely modulatehowan object

may be used by different domains, via object method interfaces.

For example, we can imagine that any object in domaind is a “friend” and should be

given free reign over other objects ind, whereas objects in domaind0 are somewhat trusted but

potentially hostile, so that we might wish such objects to read data ind but not be able to alter it.

Thus, returning to our previous example, an appropriate definition of ' in the file object definition,

given these security preconceptions, would be as follows:[read() = : : : ;write(x) = : : :℄ � d � �d 7! fread;writeg ; d0 7! freadg	
User interfaces may additionally contain mappings for adefaultuser�, which allows the program-

mer to specify interfaces for domains which may not be known at compile time. Thus, the system

allows for a degree of “open-endedness” in its design. Returning to the previous example, if our

policy was to allowanydomain read access to files in domaind, we could define files and associated

interfaces in that domain as follows:[read() = : : : ;write(x) = : : :℄ � d � fd 7! fread;writeg ; � 7! freadgg
The notation� matches any domain. As is the case for normal interface specifications, the access

rights associated with default interfaces are statically enforced.

The user interface is a mapping from domains to access rights—that is, to sets of methods

in the associated object that each domain is authorized to use. This looks something like an ACL-

based security model; however, ACLs are defined to mapprincipals to privileges. Domains, on

the other hand, are fixed boundaries in the code which may havenothing to do with principals.

The practical usefulness of a mechanism with this sort of flexibility has been described in [4],

in application to mobile programs. Other applications and more detailed examples are discussed

in Sect. 5.5, including an encoding ofprivate andprotected method and instance variable

modifiers.
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Weak capabilities

The EROS weak capabilities mechanism, described in [36], allows an enforcement of

“transitive read-only” properties via a sort of deep-casting mechanism. We model weak capabilities

in the system presented here, and statically enforce weakening properties via types. In fact, we

provide a generalization of the EROS conception of weak capabilities.

In EROS, capabilities are low-level entities which may possess a fixed number of primi-

tive access rights such as read and write. A weakened capability is read only, and any capabilities

read from a weakened capability are automatically weakened. In our higher-level system, capabili-

ties are objects, with access rights corresponding to the user-defined methods in these objects; our

weakening mechanism is similarly generalized to apply to any method access rights. This general-

ization of the EROS weakening mechanism is particularly useful in the realm of recursively defined

object structures. For example, it can be used to enforce recursive read-only properties in a filesys-

tem where files may contain other filehandles, or recursivelydisable delete permissions throughout

a directory tree. We now elaborate on this latter example.

If o is a directory object and delete is a directory object methodthat allows deletion of

entities in a directory, then the expressionweakfdeleteg(o)
denotes a weakening ofo such that deletion within that directory is disallowed, andfurthermore,

if m 6= delete is an accessible method ofo which returns another directory objecto0, theno0 will

be similarly weakened to disallow deletion. The type systemstatically enforces this mechanism

in a flexible manner. A concrete example of weakened read-write cell definitions, along with type

system enforcement of these properties, is given in Sect. 5.5.

Casting

We also provide acastingmechanism, that allows removal of access rights from particular

views of an object, allowing a greater attenuation of security when necessary. Again, this casting

discipline is statically enforced. For example, lettingo be thepop object defined immediately above,

if some circumstance suggests that we should no longer allowobjects in domaind0 read access to

files ind, then we may make the following cast:o p(d0;?)
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This removes all ofd0 access privileges ono, by setting the set ofd0’s accessible methods to?.

Significantly, we allow only “upcasts”, so that privileges can be removed, but never added.

Type systems already have a built-in notion of interface andof restriction of interfaces,

via subtyping and subsumption. Our system is inspired by andsits on a foundation of subtyping,

but is significantly more general. Most importantly, privileges can be restricted by subtyping in

standard systems, but this is only with respect to two implicit domains: the local one and everything

else. With our explicit domains and fine-grained user interface definitions, casting restrictions may

be significantly more fine-grained, as seen in the previous example.

Rights amplification

Capability-based security systems support several forms of rights amplification, the tem-

porary and disciplined amplification of rights in certain program contexts. One form of rights ampli-

fication is by indirection. obtained, it For example, letting o be the file object as defined immediately

above, and recalling thatd was the only domain allowed write access too, we may allow another

object in domaind to function as a write-access “proxy” too, as in the following definition:[proxywrite(x) = o:write(x)℄ � d � f� 7! fproxywritegg
Any object in any domain may use this object to gain write-access too, thoughdirectwrite-access too is restricted. This example is extreme and not a recommendedprogramming style, but a limited use

“by proxy” of capabilities not directly held is a common idiom in capability-based programming.

This must also must be kept in mind when a capability is doled out—the doler must be aware

of both direct and indirect actions allowed by it. In contrast, the stack-inspection security model

discussed in previous chapters allows restrictions to be placed on what an invoker can induce in an

invoked object—if the original invoker had no access rights, this is recorded on the stack and access

can be prevented. This is one of the most significant differences between the stack-inspection and

capability-based security models.

5.2 Thepop language definition

We now formally define the syntax and operational semantics of pop, an object-based

language with state and capability-based security features, described informally in the previous

sections.
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m;x; s; set;get 2 ID ; � � ID identifiersl 2 Lo locationsd 2 D; D � D domains' 2 D ! 2ID interfaces% ::= mi(x) = ei 0<i�n method listss ::= [%℄ self objectso ::= [%℄ � d j l core objectso ::= o � 'n� j s objectsv ::= x j o valuese ::= v j e:m(e) j e p(d; �) j weak�(e) j letx = v in e j ref'e j �e� expressionsE ::= [ ℄ j E:m(e) j v:m(E) j E p(d; �) j ref'E j weak�(E) j �E� evaluation contexts

Figure 5.1: Grammar forpop
5.2.1 Syntax

The grammar forpop is defined in Fig. 5.1. It includes a countably infinite set of iden-

tifiers D which we refer to asprotection domains. The definition also includes the the following

notation for method lists%:(mi(x) = ei 0<i�n) , (m1(x) = e1; : : : ;mn(x) = en)
Henceforth we will use a similar vector abbreviation notation for all language forms, with obvious

meaning. We write(m(x) = e) 2 % iff % is of the form(: : : ;m(x) = e; : : :). Read-write cells

are defined as primitives, with a cell constructor ref'v that generates a read-write cell containingv, with user interface'. The object weakening mechanismweak�(o), described in the previous

section, is also provided.

Objects definitions are of the form[%℄ � d � 'n�, where� carries any methods removed

by weakening. For convenience, and to retrieve the notationpresented in the previous section, we

define the syntactic sugar(o � ') , (o � 'n?). Self objects[%℄ are run-time entities, the dynamic

implementation of self, and are disallowed in top-level programs.

User interfaces' are total mappings from domain identifiers to sets of method names.

Since they are user-defined in programs, the following syntactic sugar is provided, allowing a finite
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d :: Æ; ([%℄ � d0 � 'n�):m(v); � ,! d0 :: d :: Æ; �(weak�(e[[%℄=s℄[v=x℄))�; � (send)
if (m(x) = e) 2 % andm 2 ('(d; �)n�)Æ; [%℄:m(v); � ,! Æ; e[[%℄=s℄[v=x℄; � if (m(x) = e) 2 % (self)Æ; (o � 'n�) p(d0; �0); � ,! Æ; (o � ('[d0 7! �0℄)n�); � �0 � '(d0; �) (cast)Æ;weak�(o � 'n�0); � ,! Æ; o � 'n(�[�0); � (weaken)Æ; ref'v; � ,! Æ; l � 'n?; �[l 7! v℄ l 62 dom(�) (newcell)d :: Æ; (l � 'n�):set(v); � ,! d :: Æ;weak�(v); �[l 7! v℄ (set)l 2 dom(�) and set2 ('(d; �)n�)d :: Æ; (l � 'n�):get(); � ,! d :: Æ;weak�(�(l)); � get2 ('(d; �)n�) (get)Æ; let x = v in e; � ,! Æ; e[v=x℄; � (let)d :: Æ; �v�; � ,! Æ; v; � (pop)Æ; E[e℄; � ! Æ0; E[e0℄; �0 if Æ; e; � ,! Æ0; e0; �0 (context)

Figure 5.2: Operational semantics forpop
specification of interfaces by implicitly mapping unspecified domains to?:�di 7! �i 0<i�n	 , �di 7! �i 0<i�n; di+1 7! ?; : : :	
We require that for any' andd, the method names'(d) are a subset of the method names in the

associated object. Note that object method definitions may contain the distinguished identifiers
which denotesself, and which is bound by the scope of the object; objects alwayshave full access

to themselves via the identifiers. We require that self never appear “bare”—that is, the variables must always appear in the context of a method selections:m(e). This restriction ensures thats cannot escape its own scope, unintentionally providing a “back-door” to the object. Self, and

associated semantics, is discussed more thoroughly below.

5.2.2 Operational semantics

The small-step operational semantics forpop is defined in figure 5.2 as the relation!
on configurationsÆ; e; �, wherestores� are partial mapping from locationsl to valuesv, andÆ is
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a non-emptydomain stack, the top element of which is called thecurrent domain. Notation and

language relevant to domain stacks is defined follows:

Definition 5.1 Domain stacks are inductively defined as:Æ ::= nil j d :: Æ domain stacks

Thelengthof a domain stack(d1 :: � � � :: dn :: nil) is n. The domain stack reversal functionrev is

defined as: rev(d1 :: � � � :: dn :: nil) , (dn :: � � � :: d1 :: nil)
The notationf [x 7! v℄ denotes the function which mapsx to v and otherwise is equivalent

to f . If x 62 dom(f), f [x 7! v℄ denotes the function which extendsf , mappingx to v. We define'(d; d0) , '(d) [ '(d0). Substitution is defined as one may expect, with the following caveat:

Definition 5.2 The identifiers is bound by the scope of objects, so in particularo[[%℄=s℄ = o;

otherwise, substitution is defined as usual.

We defineframe depthandunframedexpressions in the same manner as Chapter 1, and

similarly disallow framed subexpressions in objects of anysort. We then define well-formedness of

configurations as follows:

Definition 5.3 A configurationd :: Æ; e; � is well-formed iff e is closed and there existsE and

unframede0 such thate = E[e0℄ and the frame depth ofE equals the length ofÆ.
Corollary 5.1 If d :: Æ; e; � is well-formed ande = E[e0℄ with e0 unframed, then the frame depth ofE equals the length ofÆ.

Hereafter we consider only well-formed configurations. It is easy to see that these well-

formedness requirements are sensible and not overly restrictive via the following lemma, the proof

of which follows by a straightforward (and tedious) case analysis, which is left as an exercise for

the masochistic reader:

Lemma 5.1 If a well-formed configurationd :: Æ; e; � is stuck, thene = E[e0℄ wheree0 is of the

following form:

1. (o � 'n�):m(v) wherem 2 � or m 62 '(d; �)
2. [%℄:m(v) and(m(x) = e) 62 %
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3. (l � 'n�):m(v) andm 62 fset;getg
4. (o � 'n�) p(d0; �0) where�0 6� '(d0; �)
5. (l � 'n�):get() wherel 62 dom(�)
6. (l � 'n�):set(v) wherel 62 dom(�)

The reflexive, transitive closure of! is denoted!?. Other language relevant to properties

of evaluation is defined as follows:

Definition 5.4 The domaind1 is the top-level domain. An expressione is top-level if it contains

no subexpressions of the form�e0� or [%℄:m(e0) or l � 'n�. If d1 :: nil ; e;? !? d1 :: nil ; v; � for

top-levele, we say thate evaluates tov. If there does not existv such thate evaluates tov thene
diverges, and ifd1 :: nil ; e;?!? d1 :: nil ; e0; � andd1 :: nil ; e0; � is stuck, thene goes wrong.

An important feature of the semantics is that it requires that every domain hasat leastthe

default access rights to an object. In thesendrule, we always require a test to ensure that the active

protection domain is authorized for the specified use of the object: this detail is the essence of our

use-based security model, as opposed tocommunication-based, in the sense that authorization for

object access is checked when the object is used, not when it is communicated via message send or

assignment. Theweak mechanism semantics ensures that any return value from a message send to

a weakened object is similarly weakened, and that the message send itself is allowable with respect

to the weakening. Thecastrule requires that any castrestrictsaccess rights to a capability, so that

increasing rights beyond the initial policy specification is disallowed. we will see in Sect. 5.4, thepop type system statically enforces all of these checks, so thatthe authorization checks associated

with casting, weakening, and message sends, may be safely removed from the runtime system.

The self variable and self objects

In order for objects to always have complete access to themselves, the semantics specifies

a rule for the use of self objects which imposes no run-time authorization checks; indeed, self objects

have no interface or weakenings. The restriction that the variables cannot appear unselected—that

is, if s occurs in a program it must always be in an expression of the form s:m(e)—ensures thats cannot escape its own scope. This implies that givings “full strength” is safe, since it cannot

provide a “back-door” to the object by being communicated outside. Rights amplification via self,
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discussed in Sect. 5.1, is still possible, but this is afeatureof capability-based security, not a flaw of

the model.

5.3 Thepop-to-pmlB transformation

In this section we define thepop-to-pmlB transformation. We begin by defining a trans-

formation ofpop user interfaces intopmlB records with default values, denoted'̂, as follows:\fd1 7! �1; : : : ; dn 7! �n; � 7! �g = f?gf� = �gfd1 = �1g � � � fdn = �ng
In words, interface definitions are encoded as rows with fields indexed by domain names, includ-

ing the default domain. Also, for brevity in the transformation definition we define the following

syntactic sugar:fm1 = e1; : : : ;mn = eng , f?gfm1 = e1g � � � fmn = eng
fix s:� :e , fix s:�x:e x not free inee1; e2 , letx = e1 in e2 x not free ine2e � � , e 3 m1; : : : ; e 3mn � = fm1; : : : ;mng

Thepop-to-pmlB transformation is then defined in Fig. 5.3. The translation is effected by trans-

forming pop objects into rows with obj fields containing method transformations, ifc fields con-

taining interface transformations, and strong fields containing sets denoting methods on which the

object isnot weak.

Of technical interest is the use ofpmlB lambda abstractions with recursive binding to

encode the self variables in the transformation. Also of technical note is the manner in which

weakenings are encoded. In apop weakened objectweak�(o), the set� denotes the methods which

are inaccessible via weakening. In the encoding these sets are turned “inside out”, so that the strong

field in objects denotes the fields whichare accessible; in an unweakened object definition, this

field contains�?. Accordingly, in the translation of message sends, any resulting composition of

weakenings is encoded as anintersectionof the composed strong fields, rather than a union. We

define the translation in this manner to allow a simple definition of set subtyping, as well as typings

of set operations in thepmlB type system, which translate into a simpler direct type system forpop.

See Sect. 5.4 for details.

As for the�sec-to-pmlB transformation defined in Chapter 4, we will prove correctness of

thepop-to-pmlB transformation, in the sense that the transformation preserves program semantics.
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JxKd = xJs:m(e)Kd = (sfg:m)JeKdJ[mi(x) = ei 0<i�n℄ � d0 � 'n�Kd = fobj = fix s:� :fmi = �x:JeiKd0 0<i�ng;
ifc = '̂;
strong= ��gJe1:m(e2)Kd = let os = fo1 = Je1Kd; o2 = Je2Kdg in

let i = os:o1:ifc in

letw = os:o1:strongin

let o = (os:o1:obj)fg in((i:d _ i:�) ^ w) 3 m;
let o3 = o:m(os:o2) ino3fstrong= (w ^ o3:strong)gJe p(d0; �)Kd = let o1 = JeKd in(o1:ifc:d0 _ o1:ifc:�) � �;o1fifc = ((o1:ifc)fd0 = �g)gJweak�(e)Kd = let o1 = JeKd ino1fstrong= (�� ^ o1:strong)gJref'eKd = letx = ref JeKd in

let o = � :fget= �y:!x; set= �y:x := yg infobj = o; ifc = '̂; strong= �?gJletx = v in eKd = letx = JvKd in JeKd
Figure 5.3: Thepop-to-pmlB term transformation
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It is a simulation result which, aside from providing confidence in the faithfulness of the transfor-

mation, will allow us to immediately obtain an indirect typesoundness result forpop based on

soundness of thepmlB type system, and will make direct type soundness forpop easier to prove as

well. The desired property is stated as follows, and proved in the next section:

Theorem 5.1 (pop-to-pmlB transformation correctness) If e evaluates tov thenJeKd1 evaluates

to JvKd1 . If e diverges then so doesJeKd1 . If e goes wrong thenJeKd1 goes wrong.

5.3.1 Properties

Our proof of Theorem 5.1 will be based on an induction on arbitrary computations inpop.

However, to state the induction properly, it is necessary toextend thepop-to-pmlB transformation

to run-time entities, as follows:

Definition 5.5 To treatpop run-time entities, we extend the transformation via the following defi-

nitions:

1. J[mi(x) = ei 0<i�n℄:m(e)Kd = ((fix s:� :fmi = �x:JeiKd 0<i�ng)fg:m)JeKd
2. Jl � 'n�Kd = fobj = � :fget= �y:!l; set= �y:l := yg; ifc = '̂; strong= ��g
3. Jfl1 7! v1; : : : ; ln 7! vngK = fl1 7! Jv1Kd; : : : ; ln 7! JvnKdg

Note that in the above definition, the transformation of values in stores may be parameter-

ized by arbitrary domain labelsd; the following Lemma demonstrates that this is reasonable,since

the transformation of valuesJvKd does not depend ond:

Lemma 5.2 For all d andd0, if JvKd is defined thenJvKd = JvKd0 .
Proof. Immediate by definition of the transformation, since for anycase ofv the identifierd does

not appear in the RHS of the definition ofJvKd. ut
Next, we define twosubstitutionLemmas relevant to the transformation:

Lemma 5.3 If JeKd is defined thenJeKd[JvKd0=x℄ = Je[v=x℄Kd.
Proof. By structural induction one. In the basis we havee = x0, where by definitionJxKd = x0.
If x0 6= x thenJeKd[JvKd0=x℄ = Je[v=x℄Kd = x0. Otherwise we haveJxKd[JvKd0=x℄ = JvKd0 ; butJvKd0 = JvKd by Lemma 5.2, andJx[v=x℄Kd = JvKd, so this case holds. The other cases follow in a

straightforward manner by the induction hypothesis. ut
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Lemma 5.4 Lets = [mi(x) = ei 0<i�n℄ and letv = fix s:� :fmi = �x:JeiKd 0<i�ng. Then ifJeKd
is defined,JeKd[v=s℄ = Je[s=s℄Kd.
Proof. By structural induction one. In the basis we havee = x such thatx 6= s, sinceJsKd is

undefined, so thatx[s=s℄ = x andJxKd = x by definition, thereforeJeKd[v=s℄ = Je[s=s℄Kd = x.

The induction step proceeds by case analysis one. In casee = s:m(e0), we have thate[s=s℄ =[mi(x) = ei 0<i�n℄:m(e0[s=s℄) by definition of self substitution, and:J[mi(x) = ei 0<i�n℄:m(e0)Kd = ((fix s:� :fmi = �x:JeiKd 0<i�ng)fg:m)Je0[s=s℄Kd
by definition of the transformation. ButJs:m(e0)Kd = (sfg:m)Je0Kd, so that:((sfg:m)Je0Kd)[v=s℄ = ((fix s:� :fmi = �x:JeiKd 0<i�ng)fg:m)(Je0Kd[v=s℄)
andJe0[s=s℄Kd = Je0Kd[v=s℄ by the induction hypothesis, so this case holds. The other cases follow

in a straightforward manner by the induction hypothesis. ut
We may now prove the core of our simulation result, by showingthat one-step reductions,! may be simulated via the transformation.

Lemma 5.5 The following assertions hold:

1. If d :: Æ; e1; � ,! d0 :: d :: Æ; �e2�; � by send, thenJe1Kd; J�K!? Je2Kd0 ; J�K.
2. If d0 :: d :: Æ; �v�; � ,! d :: Æ; v; � by pop, thenJvKd; J�K!? JvKd0 ; J�K.
3. If d :: Æ; e1; �1 ,! d :: Æ; e2; �2 by some rule besides send or pop, thenJe1Kd; J�1K !?Je2Kd; J�2K.

Proof. Each assertion is treated individually:

1. In this case by definition ofsendwe have:e1 = ([%℄ � d0 � 'n�):m(v) where% = (mi(x) = ei 0<i�n) and(m(x) = e) 2 %e2 = weak�(e[[%℄=s℄[v=x℄)
andm 2 ('(d; �)n�), thereforem 62 � andm 2 '(d; �). But by definition of the transformation we

have: J[%℄ � d0 � 'n�Kd = fobj = fix s:� :fmi = �x:JeiKd0 0<i�ng;
ifc = '̂;
strong= ��g
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therefore, lettingv0 = fix s:� :fmi = �x:JeiKd0 0<i�ng we have:J[%℄ � d0 � 'n�Kd:ifc; J�K ! '̂; J�KJ[%℄ � d0 � 'n�Kd:strong; J�K ! ��; J�K(J[%℄ � d0 � 'n�Kd:obj)fg; J�K !? fmi = �x:JeiKd0 [v0=s℄ 0<i�ng; J�K
Further, sincem 62 � andm 2 '(d; �), it is the case thatm 2 ('̂:d [ '̂:�) andm 2 ��, i.e.m 2 (('̂:d [ '̂:�) \ ��). Therefore we have thatJeKd; J�K!? e00; J�K in this case, where:e00 = let o3 = JeKd0 [v0=s℄[JvKd=x℄ in (o3fstrong= (�� ^ o3:strong)g)
by definition of the transformation andpmlB reduction. But by Lemma 5.4 and Lemma 5.3 we have

that(JeKd0 [v0=s℄[JvKd=x℄) = Je[[%℄=s℄[v=x℄Kd0 , so:e00 = let o3 = Je[[%℄=s℄[v=x℄Kd0 in (o3fstrong= (�� ^ o3:strong)g)
ande00 is equivalent toJweak�(e[[%℄=s℄[v=x℄)Kd0 , that is, toJe2Kd0 , so the assertion holds.

2. This assertion holds immediately by Lemma 5.2 and reflexivity of !.

3. This assertion follows by case analysis on the remaining reduction rules.

Caseself. In this case�1 = �2, e1 = [%℄:m(v), where% = (mi(x) = ei 0<i�n) and(m(x) = e) 2 %, and e2 = e[[%℄=s℄[v=x℄. Let v0 = fix s:� :fmi = �x:JeKd 0<i�ng; then by

definition of the transformation we have:Je1Kd = (v0fg:m)JvKd
therefore: Je1Kd; J�1K!? JeKd[v0=s℄[JvKd=x℄; J�2K
But by Lemma 5.3 and Lemma 5.4 we have thatJeKd[v0=s℄[JvKd=x℄ = Je[[%℄=s℄[v=x℄Kd = Je2Kd, so

this case holds.

Casecast. In this case�1 = �2 ande1 = (o �'n�) p(d0; �0) ande2 = (o � ('[d0 7! �0℄)n�),
with �0 � '(d0; �). Let e = (o � 'n�); then there existse0 such that:JeKd = fobj = e0; ifc = '̂; strong= ��gJe2Kd = fobj = e0; ifc = \'[d0 7! �0℄; strong= ��g
by definition of the transformation. Further:Je1Kd = let o1 = JeKd in(o1:ifc:d0 _ o1:ifc:�) � �0;o1fifc = ((o1:ifc)fd0 = �0g)g
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Let o1 = JeKd. Since�0 � '(d0; �), therefore� � (o1:ifc:d0 [ o1:ifc:�), and sinceo1:ifc; J�2K !?'̂; J�2K we have: (o1:ifc)fd0 = �0g; J�2K!? \('[d0 7! �0℄); J�2K
etc., thereforeJe1Kd; J�1K!? Je2Kd; J�2K in this case by definition of!?.

Caseweaken. In this case�1 = �2, e1 = weak�(o � 'n�0) ande2 = o � 'n(�[�0). Lete = o � 'n�0 ; then by definition of the transformation there existse0 such that:JeKd = fobj = e0; ifc = '̂; strong= ��gJe2Kd = fobj = e0; ifc = b'; strong= ��0 \ ��g
and: Je1Kd = let o1 = JeKd in o1fstrong= (��0 ^ o1:strong)g
so clearlyJe1Kd; J�1K! Je2Kd; J�2K in this case.

Casenewcell. In this casee1 = ref'v, e2 = l � 'n?, and�2 = �1[l 7! v℄ wherel 62 dom(�1). By definition of the transformation we have:Je1Kd = letx = ref JvKd in

let o = � :fget= �y:!x; set= �y:x := yg infobj = o; ifc = '̂; strong= �?gJe2Kd = fobj = � :fget= �y:!l; set= �y:l := yg; ifc = '̂; strong= �?g
Now, sincel 62 dom(�), thereforel 62 dom(J�K), so by definition ofpmlB !?:Je1Kd; J�1K!? Je2Kd; J�1K[l 7! JvKd℄
But J�1K[l 7! JvKd℄ = J�1[l 7! v℄K by definition and Lemma 5.2, so this case holds.

Caseset. In this casee1 = (l � 'n�):set(v) wherel 2 dom(�) and set2 ('(d; �)n�),e2 = weak�(v) and�2 = �1[l 7! v℄. Then by definition of the transformation we have:Jl � 'n�Kd = fobj = � :fget= �y:!l; set= �y:l := yg; ifc = '̂; strong= ��g
so by definition of!? we have:Jl � 'n�Kd:ifc; J�K ! '̂; J�KJl � 'n�Kd:strong; J�K ! ��; J�K(Jl � 'n�Kd:obj)fg; J�K !? fget= �y:!l; set= �y:l := yg; J�K
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Further, since set2 ('(d; �)n�) therefore set62 � and set2 '(d; �), so it is the case that set2('̂:d [ '̂:�) and set2 ��, i.e. set2 (('̂:d [ '̂:�) \ ��). Therefore we have that:Je1Kd; J�1K!? e00; J�1K[l 7! JvKd℄
in this case, where: e00 = let o3 = JvKd in (o3fstrong= (�� ^ o3:strong)g)
by definition of the transformation andpmlB reduction. Bute00 is equivalent toJe2Kd, andJ�1K[l 7!JvKd℄ = J�1[l 7! v℄Kd by definition, so this case holds.

Caseget. In this casee1 = (l � 'n�):get() where get2 ('(d; �)n�), �1 = �2 ande2 = weak�(�2(l)). Then by definition of the transformation we have:Jl � 'n�Kd = fobj = � :fget= �y:!l; set= �y:l := yg; ifc = '̂; strong= ��g
so by definition of!? we have:Jl � 'n�Kd:ifc; J�K ! '̂; J�KJl � 'n�Kd:strong; J�K ! ��; J�K(Jl � 'n�Kd:obj)fg; J�K !? fget= �y:!l; set= �y:l := yg; J�K
Further, since get2 ('(d; �)n�) therefore get62 � and get2 '(d; �), so it is the case that get2('̂:d['̂:�) and get2 ��, i.e. get2 (('̂:d['̂:�)\��). Therefore we have thatJe1Kd; J�1K!? e00; J�2K
in this case, where:e00 = let o3 = J�2K(l) in (o3fstrong= (�� ^ o3:strong)g)
by definition of the transformation andpmlB reduction. Letv = �2(l); then J�2K(l) = JvKd by

definition and Lemma 5.2, soe00 is equivalent toJe2Kd by definition, therefore this case holds.

Caselet follows trivially by Lemma 5.3. ut
Before turning to arbitrary-length computations, we stateanother result relevant to the

expression transformation:

Lemma 5.6 For all v, if v is a closed value andJvKd is defined, thenJvKd is a value.
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J[ ℄KÆ = [ ℄J[mi(x) = ei 0<i�n℄:m(E)Kd::Æ = ((fix s:� :fmi = �x:JeiKd 0<i�ng)fg:m)JEKd::ÆJE:m(e)Kd::Æ = let os = fo1 = JEKd::Æ; o2 = JeKdg in

let i = os:o1:ifc in

letw = os:o1:strongin

let o = (os:o1:obj)fg in((i:d _ i:�) ^ w) 3 m;
let o3 = o:m(os:o2) ino3fstrong= (w ^ o3:strong)gJv:m(E)Kd::Æ = let os = fo1 = JvKd; o2 = JEKd::Æg in

let i = os:o1:ifc in

letw = os:o1:strongin

let o = (os:o1:obj)fg in((i:d _ i:�) ^ w) 3 m;
let o3 = o:m(os:o2) ino3fstrong= (w ^ o3:strong)gJe p(d; �)KÆ = let o1 = JEKÆ in(o1:ifc:d _ o1:ifc:�) � �;o1fifc = ((o1:ifc)fd = �g)gJweak�(E)KÆ = let o1 = JEKÆ ino1fstrong= (�� ^ o1:strong)gJref'EKÆ = let x = ref JEKÆ in

let o = � :fget= �y:!x; set= �y:x := yg infobj = o; ifc = '̂; strong= �?gJ�E�Kd::Æ = JEKÆ
Figure 5.4: Thepop-to-pmlB evaluation context transformation
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Proof. Immediate by definition of the transformation; the only closed value form for whichv
is undefined isv = [%℄; but since unselected self is disallowed in programs, this is a reasonable

situation. ut
Now, we consider arbitrary-length computations with respect to!?. To perform the

necessary analysis, we extend thepop-to-pmlB transformation to evaluation contexts in a straight-

forward manner. The context transformation is defined in Fig. 5.4. Similar to the the�Ssec-to-�sec

simulation in Chapter 4, we will apply transformations to contexts along with thereverseof do-

main stacks in a configuration, since the oldest stack frameswill apply to the outermost variables

in contexts. We note that the current transformation is a indeed a transformation from contexts to

contexts:

Lemma 5.7 For all closedE, any definedJEKÆ is a well-formed evaluation context.

Proof. Immediate by definition of the context transformation; the only mildly interesting case isE = v:m(E), but in this caseJEKÆ is well-formed by Lemma 5.6. ut
Then, we prove some relevant properties of the transformation:

Lemma 5.8 The following properties hold:

1. If JE[e℄Kd is defined, then the frame depth ofE is 0
2. If JE[e℄Kd is defined, thenJE[e℄Kd = JEKd::nil [JeKd℄
3. If E = E1[E2℄ where the frame depth ofE1 equals the length ofÆ, andJEKrev(d::Æ) is defined,

thenJEKrev(d::Æ) = JE1Krev(d::Æ)[JE2Kd::nil ℄
Proof. Each assertion is treated individually:

1. Immediate by definition ofJE[e℄Kd, since the transformation is defined only on un-

framed expressions.

2. By structural induction onE. In the basisE = [ ℄, and sinceJ[ ℄Kd::nil = [ ℄, there-

fore JE[e℄Kd = JEKd::nil [JeKd℄ = JeKd in this case. The proof then proceeds by case analysis on

compositeE, which excludes contexts of the form�E0� by assertion 1.

CaseE = [mi(x) = ei 0<i�n℄:m(E0). In this caseJEKd::nil is equivalent to:((fix s:� :fmi = �x:JeiKd 0<i�ng)fg:m)JE0Kd::nil
thereforeJEKd::nil [JeKd℄ is equivalent to:((fix s:� :fmi = �x:JeiKd 0<i�ng)fg:m)JE0Kd::nil [JeKd℄
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and sinceE[e℄ = [mi(x) = ei 0<i�n℄:m(E0[e℄) in this case,JE[e℄Kd is equivalent to:((fix s:� :fmi = �x:JeiKd 0<i�ng)fg:m)JE0[e℄Kd
But by the induction hypothesis we have thatJE0Kd::nil [JeKd℄ = JE0[e℄Kd, so the assertion holds in

this case. The other cases follow in a similar, straightforward manner by the induction hypothesis,

due to the tight correspondence of the term and context transformations.

3. By structural induction onE1. In the basis we have thatE1 = [ ℄, so Æ = nil .
But rev(d :: nil) = (d :: nil), so thatJEKrev(d::Æ) = JE2Kd::nil , andJ[ ℄Krev(d::nil) = [ ℄, so thatJE1Krev(d::Æ)[JE2Kd::nil ℄ = JE2Kd::nil , therefore the basis holds. The induction step proceeds by case

analysis on compositeE1.
CaseE1 = �E0�. Since the frame depth ofE1 equals the length ofÆ by assumption, there-

fore the length ofÆ is at least 1 in this case, henceÆ = (d1 :: � � � :: dn :: nil) for n � 1. Also,

we have thatJE1Krev(d::d1::���::dn::nil) = JE0Krev(d::d1::���::dn�1::nil) andJE1[E2℄Krev(d::d1::���::dn::nil) =JE0[E2℄Krev(d::d1::���::dn�1::nil) by definition. But since the frame depth ofE1 equals the length ofÆ, therefore the frame depth ofE0 equals the length ofd1 :: � � � :: dn�1 :: nil , so by the induc-

tion hypothesis we have thatJE0Krev(d::d1::���::dn�1::nil)[JE2Kd::nil ℄ = JE0[E2℄Krev(d::d1::���::dn�1::nil),
therefore this case holds.

The other cases follow in a similar manner by the induction hypothesis. ut
Next, we define a simulation relation betweenpop andpmlB , in terms of the expression

and context transformations:

Definition 5.6 For all d :: Æ, pop expressionse andpmlB expressionse0, the relation(d :: Æ; e)Ce0
holds iff there existsE1 ande1 such thate = E1[e1℄, the frame depth ofE1 equals the length ofÆ,
ande0 = JE1Krev(d::Æ)[Je1Kd℄.
We then prove that this relation is a mapping:

Lemma 5.9 If (Æ; e) C e0 and(Æ; e) C e00 thene0 = e00.
Proof. Let Æ = (d :: Æ0), and letE1, E01, e1 and e01 be such thatE1[e1℄ = E01[e01℄ = e,
with the frame depths ofE1 andE01 equal to the length ofÆ0 and JE1Krev(d::Æ0)[Je1Kd℄ = e0 andJE01Krev(d::Æ0)[Je01Kd℄ = e00. Assume w.l.o.g. thate1 = E[e01℄ for someE, so thatE01 = E1[E℄.
SinceJe1Kd is defined, therefore the frame depth ofE is 0 by Lemma 5.8, so also by Lemma 5.8

we have thatJe1Kd = JEKd::nil [Je01Kd℄. Further, since the frame depth ofE1 equals the length ofÆ0,
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thereforeJE01Krev(d::Æ0) = JE1Krev(d::Æ0)[JEKd::nil ℄ by Lemma 5.8. But thenJE01Krev(d::Æ0)[Je01Kd℄ =JE1Krev(d::Æ0)[JEKd::nil [Je1Kd℄℄ = JE1Krev(d::Æ0)[Je1Kd℄, thereforee0 = e00. ut
The following result shows that the simulation relation maybe preserved through one step

of pop reduction:

Lemma 5.10 If Æ1; e1; �1 ! Æ2; e2; �2 and (Æ1; e1) C e01 then e01; J�1K !? e02; J�2K such that(Æ2; e2)C e02.
Proof. By contextwe have thate1 = E[e℄ ande2 = E[e0℄ with Æ1; e; �1 ,! Æ2; e0; �2. The proof

then proceeds by cases corresponding to those treated in theassertions enumerated in Lemma 5.5:

Case 1. In this caseÆ1 = (d :: Æ), Æ2 = (d0 :: d :: Æ), �1 = �2 ande0 is of the form�e00� with JeKd; J�1K !? Je00Kd0 ; J�2K. Let e01 = JEKrev(Æ1)[JeKd℄ ande02 = JE[�[ ℄�℄Krev(Æ2)[Je00Kd0 ℄.
The frame depth ofE equals the length ofÆ by Corollary 5.1, so also the frame depth ofE[�[ ℄�℄
equals the length ofd :: Æ, therefore we have that(Æ1; e1) C e01 and(Æ2; e2)C e02 by definition. But

clearly JE[�[ ℄�℄Krev(Æ2) = JEKrev(Æ1), soe01; J�1K !? e02; J�2K in this case by multiple applications

of context.

Case 2. In this caseÆ1 = (d0 :: d :: Æ), Æ2 = (d :: Æ), �1 = �2, and e is of the

form �v� ande0 = v. Let e01 = JE[�[ ℄�℄Krev(Æ1)[JvKd0 ℄ ande02 = JEKrev(Æ2)[JvKd℄. The frame depth

of E[�[ ℄�℄ equals the length ofÆ2 by well-formedness of configurations, so also the frame depth

of E equals the length ofÆ, therefore we have that(Æ1; e1) C e01, and(Æ2; e2) C e02 by definition.

But clearly JE[�[ ℄�℄Krev(Æ1) = JEKrev(Æ2), and JvKd0 = JvKd by Lemma 5.2, hencee01 = e02, soe01; J�1K!? e02; J�2K in this case by reflexivity of!?.
Case 3. In this caseÆ1 = Æ2 = d :: Æ, with JeKd; J�1K !? Je0Kd; J�2K. Let e01 =JEKrev(Æ1)[JeKd℄ ande02 = JEKrev(Æ2)[Je0Kd℄. By definition of,! bothe ande0 are unframed, so the

frame depth ofE in this case is equal to the length ofÆ by Corollary 5.1, hence(Æ1; e1) C e01, and(Æ2; e2) C e02 by definition. Furthermore, sinceÆ1 = Æ2 we have thatJEKrev(Æ1) = JEKrev(Æ2), soe01; J�1K!? e02; J�2K in this case by multiple applications ofcontext. ut
The previous result then generalizes easily to arbitrary computations, since the simulation

relation is a mapping:

Lemma 5.11 If Æ1; e1; �1 !? Æ2; e2; �2 and(Æ1; e1)Ce01 thene01; J�1K!? e02; J�2K where(Æ2; e2)Ce02.
Proof. Straightforward by Lemma 5.10 and induction on the length ofthe reductionÆ1; e1; �1 !?Æ2; e2; �2. ut
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One final step before proving the main result is the observation that relevant dynamic

properties of configurations are preserved in transformation:

Lemma 5.12 If Æ; e; � is stuck and(Æ; e) C e0, thene0; J�K goes wrong. If(Æ; v) C e0 thene0 is a

value. If(Æ; e) C e0 ande0 is not a value nor of the form�v�, thene0 is not a value.

Proof. SupposeÆ; e; � is stuck; thene = E[e0℄ wheree0 is one of the forms specified in Lemma 5.1.

For each form, it is easy to see that the transformationJe0Kd; J�K will go wrong, and here we only

sketch the relevant case analysis: ife is stuck becausee0 is a method select onm which is unau-

thorized to the active domain, or which has been disallowed by weakening, then the transformation

implements a check which will also fail. Ife is stuck becausee0 is a method select onm which does

not exist in the object, then anm field will not exist inJe0Kd, so a projection of that field will fail. Ife is stuck becausee0 is a set or a get on a cell object with locationl such thatl 62 �, thenl 62 J�K, so

the transformation of these actions will also fail, as the transformation preserves store locations.

Suppose that(Æ; v)C e0; thene0 = JvKd whereÆ = d :: Æ by definition ofC, andJvKd is a

value by Lemma 5.6.

Finally, supposee is not a value nor of the form�v�. Let Æ = d :: Æ; since(Æ; e)C e0, there

existsE ande00 such thate = E[e00℄ ande0 = JEKrev(Æ)Je00Kd by definition. Suppose thatE = [ ℄;
thene00 is not a value, and clearlyJe00Kd is not a value by definition of the transformation. SupposeE is composite; then clearlyJEKrev(Æ)Je00Kd is not a value by definition of the transformation, sinceE is not of the form�[ ℄� by assumption, and for anye000, JEKrev(Æ)[e000℄ is not a value in this case.ut

We may now restate and prove the principal result of this section, that is, the correctness

of thepop-to-pmlB transformation, as follows:

Theorem 5.1 (pop-to-pmlB transformation correctness) If e evaluates tov thenJeKd1 evaluates

to JvKd. If e diverges then so doesJeKd1 . If e goes wrong thenJeKd1 goes wrong.

Proof. Suppose for top-levele we haved1 :: nil ; e;?!? d1 :: nil ; v; �. Then(d1 :: nil ; e)CJeKd1
and(d1 :: nil ; v)CJvKd1 by definition, andJeKd1 ;?!? JvKd1 ; J�K by Lemma 5.11 and Lemma 5.9,

andJvKd1 is a value by Lemma 5.12.

Suppose for top-levele we have thatd1 :: nil ; e;? does not terminate, and suppose on

the contrary that there exists� andv such thatJeKd1 ;? !? v; �. Since(d1 :: nil ; e) C JeKd1 by

definition, by Lemma 5.11 there must existe0, �0 and Æ such that(Æ; e0) C v and� = J�0K andd1 :: nil ; e;? !? Æ; e0; �0, wheree’ is not a value nor of the form�v0� by assumption, since in the

latter caseÆ; e0; �0 would evaluate tov0 by definition of!? and well-formedness of configurations.
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But thenv is not a value by Lemma 5.12, which is a contradiction.

Finally, suppose for top-levele we haved1 :: nil ; e;? !? Æ; e0; � andÆ; e0; � is stuck.

Since(d1 :: nil ; e) C JeKd1 by definition, thereforeJeKd1 ;? !? e00; J�K such that(Æ; e0) C e00 by

Lemma 5.11, ande00; J�K goes wrong by Lemma 5.12. ut
5.4 Types forpop

In this section we introduce a let-polymorphic type analysis for pop, which we develop

using the same transformational method described in Chapter 5, where type systems for�sec were

defined. In particular, we easily obtain anindirect type analysis forpop via composition of thepop-to-pmlB transformation andpmlB type judgements, which is sound by Theorem 5.1 and The-

orem 3.2. Furthermore, the development of, and soundness proof for, adirect pmlB type analysis

is made significantly easier using this approach. This demonstrates the usefulness of thepmlB lan-

guage, insofar as it may be used as a transformational targetfor two distinct source languages,�sec

andpmlB.

5.4.1 Indirect types

The type systemsS reli for pmlB were specified in Definition 3.2. Sect. 5.3 defined a

translation ofpop into pmlB . Composing the two automatically gives rise to a type systemfor pop,

whose safety is a direct consequence of Theorems 5.1 and 3.2.

Definition 5.7 Let e be a closedpop expression. By definition,C;� ` e : � holds if and only ifC;� ` JeKd1 : � holds.

Theorem 5.2 (Indirect pop type soundness)If e is a closedpop expression andC;� ` JeKd1 : �
is valid, thene does not go wrong.

As in the case of�sec, turning type safety into a trivial corollary was the principal motiva-

tion for basing our approach on a transformation. Indeed, because Theorem 5.1 concerns untyped

terms, its proof is straightforward, and constitutes the principal proof effort for thispop soundness

result.
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� ::= �; �; : : : j f�g j [� ℄ j [� ℄�� j m : � ! � ; � j d : � ; � j m; � j �
Figure 5.5: Directpop type grammar� 2 Vk� : k � : MethM ;SetM ; IfcD m 62M � : SetM[fmgm; � : SetM�1 : Type �2 : Type m 62M � : MethM[fmgm : �1 ! �2 ; � : MethM � : Meth?[� ℄ : Type�1 : Set? d 62 D � : IfcD[fdgd : f�1g ; �2 : IfcD �1 : Meth? �2 : Ifc? �3 : Set?[�1℄f�2gf�3g : Type

Figure 5.6: Directpop type kinding rules

5.4.2 Direct types

While this indirect type system is a sound static analysis for pop, it is desirable to define

a direct static analysis forpop, for the same reasons that this was desirable in the case of�sec.

That is, the term transformation required for the indirect analysis is an unwanted complication

for compilation, the indirect type system is not a clear declaration of program properties for the

programmer, and type error reporting would be extremely troublesome. Thus, we define a direct

type system forpop, the development of which significantly benefits from the transformational

approach. In particular, type soundness for the direct system may be demonstrated by a simple

appeal to soundness in the indirect system, rather thanab initio.

While direct type system forpop is based on thepmlB type system, we also develop a

specialized type language for the sake of readability, and for an intuitive correspondence withpop
expressions. The direct type language forpop is defined in Fig. 5.5. The most novel feature of thepop type language is the form for objects[� ℄f�1gf�2g, where�2 is the type of any weakening set imposed

on the object, and�1 is the type of its interface. Types of sets are essentially the sets themselves,

modulo polymorphic features; we abbreviate a type of the form � ; � or �; � as� . As always, we

immediately restrictpop types to meaningful forms by requiring them to be well-kinded, with the
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L [� ℄ M = f�f?gg ! fL � MgL [�1℄f�2gf�3g M = fobj : L [�1℄ M ; ifc : fL �2 Mg ; strong: fL �3 M�g ; �f?ggLm : �1 ! �2 ; � M = m : L �1 M! L �2 M ; L � ML d : f�1g ; �2 M = d : fL �1 M+g ; L �2 ML � M = �f?gL� M; L� M+; L� M� = �Lm; � M+ = m+; L � M+L � M+ = ?Lm; � M� = m�; L � M�L � M� = !
Figure 5.7: Thepop-to-pmlB type transformation

relevant rules defined in Fig. 5.6.

The directpop type language has a straightforward interpretation in thepmlB type lan-

guage, defined in Fig. 5.7; since we will base the direct type system onS�1 , the model for the directpop type language is thus the RS�1 model defined in Sect. 3.2.2. The interpretation is extendedto

constraints and typing environments in the obvious manner.In this interpretation, we turn weaken-

ing sets “inside-out”; this is to allow the types of weakenings to correspond to disallowed method

names, in keeping with the operational meaning of weakenings inpop. Turning these types inside-

out in the type transformation also corresponds to the manner in which weakening sets are turned

inside-out in thepop–to–pmlB language term transformation. One of the benefits of this approach

is with regard to subtyping; weakening sets can be safely strengthened, and user interfaces safely

weakened, in a uniform manner via subtyping coercions.

The direct type judgement system forpop, the rules for which arederivedfrom S�1 type

judgements for transformedpop expressions, is defined in Fig. 5.8. For simplicity, we do not

include constraints in type judgements, but rely only on atomic subtyping. The following definition

describes new relations appearing in thepop type judgement rules:

Definition 5.8 The relation� � � 0 holds iff true  L � M � L � 0 M holds inRS�1 . The relation
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INTERFACE` �di 7! �i 0<i�n	 : fdi : f�ig 0<i�ng VAR�(x) = �d;� ` x : � SUBd;� ` e : � � � � 0d;� ` e : � 0
LETd;� ` v : � d; (�;x : �) ` e : �d;� ` letx = v in e : � 8 INTROd;� ` e : � �� \ fv(�) = ?d;� ` e : 8��:� 8 ELIMd;� ` e : 8��:� 0d;� ` e : [��=��℄� 0

REF d;� ` e : � ` ' : �'d;� ` ref'e : [set: � ! �;get : � 0 ! � ℄�'f�g
OBJ` ' : �' � 0' = d0 : fmi 0<i�ng (d0;�;x : �j ; s : [mi : �i ! � 0i 0<i�n℄ ` ej : � 0j) 0<j�nd;� ` [mi(x) = ei 0<i�n℄ � d0 � 'n� : [mi : �i ! � 0i 0<i�n℄f�'gf�g

SENDd;� ` e1 : [m : � 0 ! � �'f�wg ; �1℄fd:fm; �2g ; �3gf�wg d;� ` e2 : � 0 m 62 �wd;� ` e1:m(e2) : � �'f�wg
SELFd;� ` s : [m : � 0 ! � ; � 00℄ d;� ` e : � 0d;� ` s:m(e) : �

CASTd;� ` e : [� ℄fd0:fmi 0<i�n ; �1g ; �2g�w � = �mi 0<i�n	d;� ` e p(d0; �) : [� ℄fd0:� ; �2g�w
WEAKd;� ` e : � �'fmi 0<i�n;� 0g � = �mi 0<i�n	d;� ` weak�(e) : � �'fmi 0<i�n;� 0g

Figure 5.8: Direct type judgements forpop
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m 62 �w holds iff true 6 9�:(L �w M+ � Lm;� M+) holds inRS�1 , where� 62 fv(C; �w).
5.4.3 Direct type safety and optimizations

The easily proven, tight correlation between the indirect and directpop type systems is

clearly demonstrated with the following lemma, which follows in the same manner as Theorem 4.5;

the proof is straightforward, since the direct type judgements can be viewed simply as syntactic

sugar forS�1 judgements:

Lemma 5.13 d;� ` e : � is valid iff true; L� M ` JeKd : L � M is in S�1 .

Then, along with Theorem 5.1, this correlation is sufficientto immediately establish direct type

soundness forpop:

Theorem 5.3 (Direct type soundness)If e is a closedpop expression andd;� ` e : � is valid,

thene does not go wrong.

This result again demonstrates the advantages of the transformational method, which has

allowed us to define a direct, expressive static analysis forpop with a minimum of proof effort.

The next lemma provides further confidence in our directpop type system, by ensuring

that the derived system is complete, in the sense that if a transformedpop expression hasany

type in thepmlB S�1 system (not necessarily a type which is the image of anpop–to–pmlB type

transformation), then it will be typable in the derived system:

Lemma 5.14 If true;� ` JeKd : � is valid in S�1 , then there exists�0; � 0 such thattrue; L�0 M `JeKd : L � 0 M is valid.

The proof follows in a straightforward manner by rule induction on the judgementC;� ` JeKd : �
and definition of thepop-to-pmlB transformation.

Another benefit of our static analysis forpop, as forpmlB and�sec, is that security checks

in well-typed programs may be eliminated at run-time, sincewell-typed programs are guaranteed to

be safe. The optimizations that may be effected forpop are particularly substantial; in fact, the only

reason for user interfaces to have any run-time presence at all in well-typed programs is for the sake

of separate compilation. The optimized semantics forpop is defined in Fig. 5.9. The safety of these

semantics is verified with the following result, which follows by definition of!? and Theorem 5.3:

Corollary 5.2 Lete be a closedpop expression; thend; e;? ? d0; v; � iff d; e;?!? d0; v; �.
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d :: Æ; ([%℄ � d0 � 'n�):m(v); �  d0 :: d :: Æ; �(weak�(e[[%℄=s℄[v=x℄))�; � (send)
if (m(x) = e) 2 %Æ; [%℄:m(v); �  Æ; e[[%℄=s℄[v=x℄; � if (m(x) = e) 2 % (self)Æ; (o � 'n�) p(d0; �0); �  Æ; (o � ('[d0 7! �0℄)n�); � (cast)Æ;weak�(o � 'n�0); �  Æ; o � 'n(�[�0); � (weaken)Æ; ref'v; �  Æ; l � 'n?; �[l 7! v℄ l 62 dom(�) (newcell)d :: Æ; (l � 'n�):set(v); �  d :: Æ;weak�(v); �[l 7! v℄ l 2 dom(�) (set)d :: Æ; (l � 'n�):get(); �  d :: Æ;weak�(�(l)); � (get)Æ; let x = v in e; �  Æ; e[v=x℄; � (let)d :: Æ; �v�; �  Æ; v; � (pop)Æ; E[e℄; �  Æ0; E[e0℄; �0 if Æ; e; �  Æ0; e0; �0 (context)

Figure 5.9: Optimized operational semantics forpop
Conceivably, the semantics can be optimized even further; since all access control with

respect to weakening and interfaces is enforced statically, it is no longer necessary to propagate this

information through run-time. However, we maintain the information in the optimized semantics

for the purposes of modularity.

5.5 Examples and discussion

In this section we provide several examples that demonstrate the usage and flexibility of

the pop system, including a scheme for embedding the ownership types of [5] in pop in a type-

safe manner, as well as a scheme for encoding class definitions with public, private and

protected instance modifiers.

5.5.1 Basic typing examples

Here is a brief example illustrating the features ofpop and the expressiveness of its direct

type system. We may create a cell which is read-write in domaind but read-only elsewhere,
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containing a valuev, as follows:  = reffd7!fget;setg;� 7!fgetgg(v)
Then supposingv : � , the cell has the following type: : [get : unit! �; set: � ! � ℄fd:fget;setg;�:fgetggfg
Note how the interface is expressed in the type, and how no weakenings show up in the type.

However, if we read-weaken, this information is expressed in the type:weakfsetg() : [get : unit! �; set: � ! � ℄fd:fget;setg;�:fgetggfsetg
Given the requirements of the SEND rule, attempting to use the set method of this weakened ca-

pability will not be well typed in any context, nor will an attempted set ofv returned by reading

the weakened capability. This is true even assuming thatv is a cell, since weakening information

is propagated to� by the type system, just as weakening is propagated tov by the operational

semantics: (weakfsetg()):set(e) not well-typed

let 0 = (weakfsetg()):get() in 0:set(e) not well-typed

5.5.2 Ownership types embedding

A language model for alias analysis, together with anownershiptype analysis, is proposed

in [5]. Here we show that their system can be realized inpop (albeit with a use-based security

model, rather than the communication-based model of [5]) bychoosing an appropriate naming

scheme. Assume the following object definition in the language of [5], with the containment relationp1 �: p2 �: p3: [m(x) = e℄p2p1
a similar specification can be defined and statically enforced in pop with the following object defi-

nition: [m(x) = e℄ � p1 � fp1 7! fmg ; p2 7! fmg ; p3 7! fmgg
In general, given any set of contextsC, partial ordering(C;�:) and objectopq , we can transform the

object into the formo � q � ', where dom(') = fp0 j p0 �: pg and for allp 2 dom('), '(p) is all ofo’s methods, and carry the transformation recursively through any objects defined ino’s methods.

Additionally, our type analysis is polymorphic, unlike ownership types, and is thus more flexible.
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5.5.3 Classes,privateand protected

By choosing different naming schemes, a variety of securityparadigms can be effectively

and reliably expressed inpop. One such scheme enforces a strengthened meaning of theprivate

andprotected modifiers in class definitions, a focus of other communication-based capability

type analyses [5, 43]. As demonstrated in [43], aprivate field can leak by being returned by

reference from apublic method. Here we show how this problem can be addressed in a use-

based model. Assume the following Java-like pseudocode packagep, containing class definitions1, 2, and possibly others, where2 specifies a methodm that leaks aprivate instance variable:

packagep begin

class1 f
public :f(x) = x
private :g(x) = x
protected :h(x) = xg

class2 f
public :m(x) = ba = new1
private :b = new1
protected : = new1g

� � �
end

We can implement this definition as follows. Interpreting domains as class names inpop, let p
denote the set of all class names1; : : : ; n in packagep, and letp 7! � be syntactic sugar for1 7! �1; : : : ; n 7! �n. Then, the appropriate interface for objects in the encoding of class1 is as

follows: '1 , fp 7! ff; hg ; � 7! ffgg
(Recall that all objects automatically have full access to themselves, so full access for1 need not

be explicitly stated). The class1 can then be encoded as an objectfactory, an object with only one

publicly available method that returns new objects in the class, and some arbitrary labeld:o1 , [f(x) = x; g(x) = x; h(x) = x℄ � 1 � '1ftry1 , [new(x) = o1℄ � d � f� 7! fnewgg
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To encode2, we again begin with the obvious interface definition for objects in the encoding of

class2: '2 , fp 7! fm;a; g ; � 7! fm;agg
However, we must now encodeinstance variables, in addition to methods. In general, this is accom-

plished by encoding instance variablesa containing objects as methodsa() that return references

to objects. Then, any selection ofa is encoded asa():get(), and any update withv is encodeda():set(v). By properly constraining the interfaces on these references, a “Java-level” of modi-

fier enforcement can be achieved; but casting the interfacesof stored objectsextendsthe security,

by making objectsunusableoutside the intended domain. Lete p (fd1; : : : ; dng ; �) be sugar fore p (d1; �) p � � � p (dn; �). Using ftry1 , we may create apublic version of an object equivalent too1, without any additional constraints on its confinement, as follows:oa , ftry1 :new()
Letting p0 = p� f2g, we may create a version of an object equivalent too that isprivate with

respect to the encoding of class2, using casts as follows:ob , (ftry1 :new()) p(�;?) p(p0;?)
We may create a version of an object equivalent too that isprotectedwith respect to the encod-

ing of packagep, as follows: o , (ftry1 :new()) p(�;?)
Let o2 be defined as follows:o2 , let ra = reff� 7!fset;getggoa in

let rb = reff1 7!fset;getggob in

let r = reff1 7!fset;getg;p7!fset;getggo in[m(x) = s:b():get();a(x) = ra;b(x) = rb;(x) = r ℄ � 2 � '2
Thenftry2 is encoded, similarly toftry1 , as:ftry2 , [new(x) = o2℄ � d � f� 7! fnewgg
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Given this encoding, if an object stored inb is leaked by a non-local use ofm, it is unusable. This

is the case because, even though a non-local use ofm will return b, in the encoding this return value

explicitly states it cannot be used outside the confines of2; as a result of the definition of'1 and

casting, the avatarob of b in the encoding has an interface equivalent to:�2 7! ff; hg ; p0 7! ?; � 7! ?	
While the communication-based approach accomplishes a similar strengthening of mod-

ifier security, the benefits of greater flexibility may be enjoyed via the use-based approach. For

example, aprotected reference can be safely passed outside of a package and then back in, as

long as a use of it is not attempted outside the package. Also for example are the fine-grained inter-

face specifications allowed by this approach, enabling greater modifier expressivity— e.g. publicly

read-only but privately read/write instance variables.
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Conclusion

This thesis has focused on the development of type systems for programming language-

based security. We have shown that static type systems are applicable to two distinct security

models— the access control model with stack inspection, andthe object confinement model. For

a consideration of the former, the�Ssec language was defined, which reflects the low-level behavior

of the Java JDK1.2 implementation.�Ssecuses explicit call-stacks with security annotations, and an

explicit stack inspection algorithm for run-time securitychecks. A monomorphic type system was

defined for static enforcement of security in�Ssec, which includes succinct, readable type terms. A

type safety theorem implies that run-time stack inspectioncan be eliminated, but the proof of the

theorem was delayed pending development of the�sec language.

The�sec language was a re-figuration of�Ssec, with a simpler, more abstract definition of

expressions, and a notion of implicit stacks contained in evaluation contexts. This conception of

the language is more appealing mathematically, especiallyfor rigorous proof of type safety. By

proving that�Ssec can be simulated in�sec, confidence was gained in the language’s faithfulness to

real implementations. A family of polymorphic type systemswere developed for�sec, which was

proven safe.

For a consideration of object confinement security, thepop language was defined, an

object-based calculus with features for specifying and enforcing object confinement security poli-

cies. Thepop language is a low-level, flexible system for implementing a variety of higher-level

systems. Several examples were discussed, including a class-based languages with strengthened

private andprotectedmodifiers, which prevent leaking of references themselves,rather than

merely affecting visibility of instance variable names. A static type discipline forpop was then

developed and proven correct; as in the case of�sec, this type system provides readable declarations

of security properties, and type safety implies that run-time security checks can be eliminated.

The type systems for�secandpop were both developed using the same methodology; the
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languages were transformed into the same target language, calledpmlB, which is pre-equipped with

a sound type system. By proving that these transformations are correct, in that program semantics

are preserved, sound indirect type systems were immediately obtained as the composition of the

transformations andpmlB type judgements. Direct type systems were also developed, which exploit

the transformation and the foundations of thepmlB type system for easy development of soundness

proofs, as well as for the design of direct type terms and judgements.

ThepmlB language and type system were developed and proven correct by instantiating

the HM(X) type and constraint framework with a term language comprising records, sets of atomic

elements, and associated operations, and a polymorphic type language comprising row types and

conditional constraints. Since the�secandpop direct type languages are based on that ofpmlB , they

reflect the expressivity and notational convenience of row types. Also, since sound implementations

of row types and conditional constraints exist, the�sec andpop type systems benefit from type

inference methods. Type safety forpmlB relies on type safety in HM(X); while type safety results

do exist for the latter, the first purely syntactic type safety result for HM(X) was provided to ensure

a rigorous formal basis for the development of all type systems and associated results, including

subject reduction in all cases.

Given these results, the�sec and pop languages and type systems provide a versatile

theoretical foundation for the development of static type disciplines, specifically designed for the

specification and enforcement of programming language-based security.
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Appendix A

Type System Implementations

(**************************************************************)
(* *)
(* module Seclang: implements \lambda_{sec} language of *)
(* expressions *)
(* *)
(**************************************************************)
(* Written by Christian Skalka, Johns Hopkins University 2001 *)
(**************************************************************)

type principal =
string

type privilege =
string

type variable =
string

type expression =
| Unit
| Var of variable
| Fix of variable * variable * expression
| App of expression * expression
| Let of variable * expression * expression
| Enablepriv of privilege * expression
| Checkpriv of privilege * expression
| Testpriv of privilege * expression * expression
| Own of principal * expression
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type phrase =
| PhraseExpr of expression
| PhraseLet of variable * expression

(**************************************************************)
(* *)
(* module localContext: implements a sample local context for *)
(* \lambda_{sec} programs *)
(* *)
(**************************************************************)
(* Written by Christian Skalka, Johns Hopkins University 2001 *)
(**************************************************************)

(* The initial principal *)
let initp = "_initp"

(* A fixed access credentials mapping. *)
let credentials = function
| "root" ->

[ "disk"; "power"; "memory"; "file"; "thread"; "socket" ]
| "Joe" ->

[ "disk" ]
| "Sue" ->

[ "power" ]
| _ ->

[]

(**************************************************************)
(* *)
(* module Typing: implements \lambda_{sec} S1= type inference *)
(* *)
(**************************************************************)
(* Written by Christian Skalka, Johns Hopkins University 2001 *)
(**************************************************************)

module System = Herbrand.Make

module type Context = sig

(* the initial principal in this context *)
val initp : Seclang.principal

(* context access control list *)
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val credentials : Seclang.principal -> Seclang.privilege list

end

module Make (C : Context) = struct

open System
open GroundSig
open Seclang

type scheme = System.scheme
type phrase = Seclang.variable * Seclang.expression
type environment = (Seclang.variable * System.node) list

(*
own_rows : privilege list -> node * node
own_rows [r1,...,rn] returns a pair of rows
({r1 : ’a1; ...; rn : ’an; Abs},
{r1 : ’a1; ...; rn : ’an; rho}
where ’a1,...,’an and rho are fresh

*)

let own_rows rs =
let rec fr rs =
match rs with
| [] ->
(row_uniform (lo TAbsent), fresh())

| r::rs’ ->
let (s1, s2) = fr rs’ in
let phi = fresh() in
(row_component r phi s1, row_component r phi s2)

in
let (s1, s2) = fr rs in
(lo (TSet s1), lo (TSet s2))

(*
make_row : privilege -> variable -> variable -> node
make_row r v1 v2 returns a row {r : v1; v2 }

*)
let make_row r v1 v2 = lo (TSet(row_component r v1 v2))

(* Type inference. *)

let rec infer p s env = function
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| Unit -> lo TUnit

| Var x ->

(* Find the named entry in the current typing
environment. *)

let scheme = try
List.assoc x env

with Not_found ->
failwith ("Unbound program variable: " ^ x) in

(* Instantiate the type scheme. This returns the body of the
type scheme’s instance, and implicitly affects the global
constraint set. *)

instantiate scheme

| Fix (z, x, Own (p, e)) ->

let domain = fresh() in
let fixt = fresh() in
let env’ = (z, inject fixt) :: (x, inject domain) :: env in
let (s_abs, s_rho) = own_rows (C.credentials p) in
let codomain = infer p s_abs env’ e in
unify fixt (lo (arrow domain (lo (arrow s_rho codomain))));
fixt

| Fix _ ->

failwith "The body of a function must be signed."

| Own _ ->

failwith "Signed expressions disallowed in this context"

| App (e1, e2) ->

let t1 = infer p s env e1 in
let t2 = infer p s env e2 in
let alpha = fresh() in
unify t1 (lo (arrow t2 (lo (arrow s alpha))));
alpha
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| Let (x, e1, e2) ->

(* Infer a type for [e1] and generalize it. Infer a type for
[e2] within an augmented type environment. *)

let sigma = infer_and_generalize p s env e1 in
infer p s ((x, sigma) :: env) e2

| Testpriv (r, e1, e2) ->

let rho = fresh() in
unify (make_row r (fresh()) rho) s;
let t1 = infer p (make_row r (lo TPresent) rho) env e1 in
let t2 = infer p (make_row r (lo TAbsent) rho) env e2 in
unify t1 t2;
t1

| Enablepriv (r, e) ->

if List.mem r (C.credentials p)
then

let rho = fresh() in
unify (make_row r (fresh()) rho) s;
infer p (make_row r (lo TPresent) rho) env e

else
failwith ("User " ^ p ^ " unauthorized for enable " ^ r)

| Checkpriv (r, e) ->

try
unify (make_row r (lo TPresent) (fresh())) s;
infer p s env e

with Inconsistency ->
failwith ("Resource [" ^ r ^ "] is unauthorized")

and infer_and_generalize p s env e =

(* Infer a type for [e], making sure that all variables
freshly created in this sub-derivation are marked as
such, i.e. would be quantified by a $(\exists Intro)$
rule. Generalize the type thus obtained. *)

scope (fun () ->
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generalize (infer p s env e)
)

(* External interface. *)

let run env (x, e) =
let rec initrow rs =
match rs with
| [] ->
row_uniform (lo TAbsent)

| r::rs’ ->
row_component r (lo TPresent) (initrow rs’)

in
let s = (lo (TSet(initrow (C.credentials C.initp)))) in
x, infer_and_generalize C.initp s env e

end

(***********************************************************)
(* *)
(* module Hmx: implements HM(X) type inference *)
(* *)
(***********************************************************)
(* Written by Francois Pottier *)
(* projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 2002 Institut National de Recherche en *)
(* Informatique et Automatique. *)
(***********************************************************)

module type S = sig

(* Names of primitive operations. *)

type primitive

(* Type variables. *)

type variable

(* Type schemes. *)

type scheme
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(* Type environments. *)

type environment =
(string * scheme) list

(* Program terms. A phrase is a single
toplevel \texttt{let} definition. *)

type expression =
| Prim of primitive
| Var of string
| Fix of string * string * expression
| App of expression * expression
| Let of string * expression * expression

type phrase =
string * expression

(* Type inference. This function accepts an environment and
a phrase. It infers a type, generalizes it, and returns
it, together with the name of the variable being defined. *)

val run: environment -> phrase -> string * scheme

end

module Make
(G : Ground.Signature)
(X : ConstraintSystem.S with type ’a preterm = ’a G.term)
(P : Primitives.S with type scheme = X.scheme)
: S with type primitive = P.name

and type variable = X.variable
and type scheme = X.scheme

module Make
(G : Ground.Signature)
(X : ConstraintSystem.S with type ’a preterm = ’a G.term)
(P : Primitives.S with type scheme = X.scheme)

= struct

(* Names of primitive operations. *)

type primitive = P.name
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(* Type variables. *)

type variable = X.variable

(* Type schemes. *)

type scheme = X.scheme

(* Type environments. *)

type environment =
(string * scheme) list

(* Program terms. A phrase is a single toplevel
let definition. *)

type expression =
| Prim of primitive
| Var of string
| Fix of string * string * expression
| App of expression * expression
| Let of string * expression * expression

type phrase =
string * expression

(* Type inference. *)

let rec infer env = function
| Prim name ->

(* Look up the named primitive, and instantiate its type
scheme. *)

X.instantiate (P.map name)

| Var x ->

(* Find the named entry in the current typing
environment. *)

let scheme = try
List.assoc x env

with Not_found ->
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failwith ("Unbound program variable: " ^ x) in

(* Instantiate the type scheme. This returns the body of the
type scheme’s instance, and implicitly affects the global
constraint set. *)

X.instantiate scheme

| Fix (z, x, e) ->

let domain = X.fresh() in
let fixt = X.fresh()
let codomain =

infer ((z, X.inject fixt) ::
(x, X.inject domain) :: env) e

in
X.constrain fixt (G.arrow domain codomain);
lo (G.arrow domain codomain);

| App (e1, e2) ->

let alpha = X.fresh() in
X.constrain (infer env e1) (G.arrow (infer env e2) alpha);
alpha

| Let (x, e1, e2) ->

(* Infer a type for [e1] and generalize it. Infer a type
for [e2] within an augmented type environment. *)

infer ((x, infer_and_generalize env e1) :: env) e2

and infer_and_generalize env e =

(* Infer a type for [e], making sure that all variables
freshly created in this sub-derivation are marked as
such, i.e. would be quantified by a ($\exists$ Intro)
rule. Generalize the type thus obtained. *)

X.scope (fun () ->
X.generalize (infer env e)

)

(* External interface. *)
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let run env (x, e) =
x, infer_and_generalize env e

end

(***********************************************************)
(* *)
(* signature ConstraintSystem: describes the expected *)
(* form of an instance of HM(X) *)
(* *)
(***********************************************************)
(* Written by Francois Pottier *)
(* projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 2002 Institut National de Recherche en *)
(* Informatique et Automatique. *)
(***********************************************************)

module type S = sig

type variable

type ’a preterm

type term =
variable preterm

type scheme

(* [fresh()] returns a fresh variable. *)

val fresh: unit -> variable

(* [lo term] returns a fresh variable. It implicitly
makes [term] its lower bound in the global constraint
set. [hi term] returns a fresh variable. It implicitly
makes [term] its upper bound in the global constraint set. *)

val lo: term -> variable
val hi: term -> variable

(* [row_component l v1 v2] returns a fresh variable,
implicitly equated with the row (l: v_1; v_2).
[row_uniform v] returns a fresh variable, implicitly
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equated with the row \delta(v). *)

val row_component: string -> variable -> variable -> variable
val row_uniform: variable -> variable

(* [constrain v term] adds a subtyping constraint
between [v] and [term] to the global constraint set.
The exception [Inconsistency] is raised if the constraint
set becomes inconsistent as a result of this addition. *)

exception Inconsistency

val constrain: variable -> term -> unit

(* [scope action] executes the specified [action], with the
side effect that all variables freshly created during its
scope are marked as such. *)

val scope: (unit -> ’a) -> ’a

(* [generalize v] creates a type scheme out of the constraints
created during the current invocation of [exists], whose
entry point is assumed to be [v]. *)

val generalize: variable -> scheme

(* [instantiate scheme] creates a fresh instance of the type
scheme [scheme]. It returns its entry point, and implicitly
affects the global constraint set. *)

val instantiate: scheme -> variable

(* [inject v] turns a type variable into a (trivial) type
scheme. *)

val inject: variable -> scheme

(* Printing terms. *)

module Print : sig

(* [reset] resets the mechanism which assigns new names to
type variables. *)

137



val reset: unit -> unit

(* [variable v] prints a type variable, together with
the constraints bearing on it. [scheme] prints a type
scheme. *)

val variable: variable -> string
val scheme: scheme -> string

end
end

(***********************************************************)
(* *)
(* signature Primitives: describes the expected form of *)
(* type scheme and primitive constant binding *)
(* implementations for instances of HM(X) *)
(* *)
(***********************************************************)
(* Written by Francois Pottier *)
(* projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 2002 Institut National de Recherche en *)
(* Informatique et Automatique. *)
(***********************************************************)

module type S = sig

(* Names of primitive operations. *)

type name

(* Type schemes. *)

type scheme

(* A mapping between the two. *)

val map: name -> scheme

end
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(***********************************************************)
(* *)
(* signature Ground: describes the operations which *)
(* abstractly represent a free term algebra *)
(* *)
(***********************************************************)
(* Written by Francois Pottier *)
(* projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 2002 Institut National de Recherche en *)
(* Informatique et Automatique. *)
(***********************************************************)

module type Signature = sig

(* The type of terms. *)

type ’a term

(* Abstract operations on terms. *)

exception Iter2

val arity: ’a term -> int
val map: (’a -> ’b) -> ’a term -> ’b term
val fork: (’a -> ’b * ’c) -> ’a term -> ’b term * ’c term
val iter: (’a -> unit) -> ’a term -> unit
val fold: (’a -> ’b -> ’b) -> ’a term -> ’b -> ’b
val iter2: (’a -> ’b -> unit) -> ’a term -> ’b term -> unit

(* The type of symbols, i.e. head constructors of terms. *)

type symbol

val matches: symbol -> ’a term -> bool
val sprint: symbol -> string

(* The type of labels, used to name every argument of every
type constructor. *)

type label

(* [print term] returns a list of labeled sub-terms and
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tokens. [parenthesize label subterm] tells whether the
given [subterm] must be parenthesized, if found at the
given [label] within a larger term. [safe label] tells
whether a label occurs between two tokens, i.e. subterms
at this label \emph{never} need to be parenthesized. *)

val print: ’a term -> (label * ’a) Tree.element list
val parenthesize: label -> ’a term -> bool
val safe: label -> bool

(* Injections into terms. These are provided for use by the
typechecker -- constraint generation would be impossible
if terms were entirely abstract! *)

val arrow: ’a -> ’a -> ’a term

end
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