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Summary: Purpose: The main objective of this research is the
development of automated video processing and analysis proce-
dures aimed at the recognition and characterization of the types
of neonatal seizures. The long-term goal of this research is the
integration of these computational procedures into the develop-
ment of a stand-alone automated system that could be used as
a supplement in the neonatal intensive care unit (NICU) to pro-
vide 24-h per day noninvasive monitoring of infants at risk for
seizures.

Methods: We developed and evaluated a variety of compu-
tational tools and procedures that may be used to carry out
the three essential tasks involved in the development of a
seizure recognition and characterization system: the extraction of
quantitative motion information from video recordings of neona-
tal seizures in the form of motion-strength and motor-activity
signals, the selection of quantitative features that convey some
unique behavioral characteristics of neonatal seizures, and the
training of artificial neural networks to distinguish neonatal
seizures from random infant behaviors and to differentiate
between myoclonic and focal clonic seizures.

Results: The methods were tested on a set of 240 video record-
ings of 43 patients exhibiting myoclonic seizures (80 cases), fo-
cal clonic seizures (80 cases), and random infant movements

(80 cases). The outcome of the experiments verified that optical-
flow methods are promising computational tools for quantifying
neonatal seizures from video recordings in the form of motion-
strength signals. The experimental results also verified that the
robust motion trackers developed in this study outperformed con-
siderably the motion trackers based on predictive block matching
in terms of both reliability and accuracy. The quantitative fea-
tures selected from motion-strength and motor-activity signals
constitute a satisfactory representation of neonatal seizures and
random infant movements and seem to be complementary. Such
features lead to trained neural networks that exhibit performance
levels exceeding the initial goals of this study, the sensitivity goal
being >80% and the specificity goal being >90%.
Conclusions: The outcome of this experimental study pro-
vides strong evidence that it is feasible to develop an automated
system for the recognition and characterization of the types
of neonatal seizures based on video recordings. This will be
accomplished by enhancing the accuracy and improving the reli-
ability of the computational tools and methods developed during
the course of the study outlined here. Key Words: Motion
segmentation—Motion tracking—Motion-strength signal—
Motor-activity signal—Neonatal seizure—Seizure-type
characterization—Seizure-type recognition—Video recording.

Seizures occur in two to five per 1,000 live births,
depending on studied populations and methods (1-8).
Seizure occurrence represents one of the most frequent
clinical signs of central nervous system dysfunction in
the newborn (9-11) and has been associated with sig-
nificant long-term adverse sequelae such as neurologic
impairment, developmental delay, and postnatal epilepsy
(2-4,10,12—17). Identification of seizures in the newborn
initiates a prompt evaluation for a wide range of etiolo-
gies and, whenever possible, treatment of the underlying
pathologic processes. In some situations, antiepileptic
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medication is provided to diminish the likelihood of
recurrent seizures and to limit any systemic or physiologic
instability that may occur during seizures. Prompt recog-
nition of clinical seizures by those who care for neonates
is the critical first step in the diagnosis and management
of underlying neurologic problems.

Despite the importance of seizure recognition, anumber
of limitations exist in rapid and accurate clinical identifi-
cation. Seizures in the neonate have clinical characteris-
tics that are distinct from those of older children; various
seizure types may be based on different pathophysiologic
mechanisms; and not all clinical seizures are associated
with electroencephalographic seizure activity. Most im-
portantly, neonatal seizures may be fleeting—short in du-
ration and unpredictable in occurrence and frequency. This
requires continuous surveillance for effective recognition.



902 N. B. KARAYIANNIS ET AL.

Neonates cared for in intensive care units are at
greatest risk for seizure occurrence. Although this set-
ting may provide the greatest opportunity for con-
tinuous seizure surveillance, the clinical demands of
caring for sick neonates limit continuous 24-h/day obser-
vation. In addition, significant variability is found among
nursery caregivers in the level of skill and experience in
recognition of clinical seizures. Finally, even when clin-
ical seizures are recognized, there is typically no perma-
nent visual record of these events that can be reviewed
and used for diagnostic confirmation. These factors il-
lustrate the clear need for improved seizure surveillance
methods that supplement direct observation by nurses
and physicians and that are practical and economically
feasible.

Early attempts to characterize neonatal seizures in-
volved primarily bedside observation and relatively brief
EEG recordings. The development of portable EEG/video/
polygraphic monitoring techniques has allowed inves-
tigators to assess and characterize neonatal seizures at
the bedside and has permitted retrospective review (18—
21). Investigations using these techniques have confirmed
that clinical neonatal seizures are either electroclinical
(electrographic and clinical features that are temporally
linked) or clinical only (clinical features with no consistent
electrographic correlate) in character (22). Electrical-only
seizures are not associated with clinical events. The over-
whelming majority of neonatal seizures have a clinical
component (electroclinical or clinical only) (22).

Most research involving neonatal seizures has focused
on analysis of EEG features, and few investigations have
used quantitative techniques to characterize clinical fea-
tures (19). However, significant progress has been made
in automated video processing and analysis that, until
recently, has not been applied to clinical seizures. Au-
tomated video processing and analysis may supplement
and extend human analysis of clinical seizure behav-
iors and provide new information leading to more useful
classification schemes.

The results of our ongoing project, “Video Technolo-
gies for Neonatal Seizures,” provided evidence suggest-
ing that the analysis of motion in video can facilitate the
recognition and characterization of the types of neonatal
seizures (23-30) and revealed the potential of comput-
erized video as a relatively inexpensive and noninvasive
health-monitoring tool. Computerized video processing
and analysis of video recordings of neonatal seizures can
generate novel methods for extracting quantitative infor-
mation that is relevant only to the seizure. This infor-
mation can be used to develop automated mechanisms
capable of detecting the onset of clinical seizures, refine
the characterization of repetitive motor behaviors, and fa-
cilitate the differentiation of certain clinical seizures from
other abnormal paroxysmal behaviors not associated with
seizures.
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The main objective of the research outlined here is
the development of automated video analysis procedures
aimed at the recognition and characterization of the
types of neonatal seizures. The long-term goal of this re-
search is the integration of the proposed computational
procedures into the development of a stand-alone auto-
mated system that could be used as a supplement in the
neonatal intensive care unit (NICU) to provide 24-h/day
noninvasive monitoring of infants at risk for seizures. Such
a system would be capable of detecting neonatal seizures,
processing video recordings of neonatal seizures, and fa-
cilitating the analysis and characterization of the types of
videotaped neonatal seizures by physicians during retro-
spective review.

METHODS

Data collection and preprocessing

This study relied on video recordings selected from a
database developed by the Clinical Research Centers for
Neonatal Seizures (CRCNS) in Houston, Texas, U.S.A.,
established by the National Institute of Neurological Dis-
orders and Stroke (31). The overall goal for this ini-
tiative was to develop a comprehensive understanding
of the clinical and EEG features, predisposing risk fac-
tors, etiology, and outcome of seizures in the newborn. A
comprehensive database includes detailed demographic
information and maternal and infant risk factors, med-
ical and neurologic problems, neurologic examinations,
weekly tracking of subjects throughout hospitalization,
and long-term follow-up at ages 6, 12, and 24 months.
As part of this work, bedside video/EEG/polygraphic
monitoring was performed (minimum of 2 h for initial
study), followed by repeated 1-h studies 3—5 days after
the initial seizure characterization, and at the time of dis-
charge. Additional studies were performed whenever clin-
ically indicated, particularly when new seizure behaviors
occurred.

The CRCNS database contains several hundred indi-
vidual clinical seizures, which have been characterized
and classified by a team of clinical neurophysiologists
and neonatal electroencephalographers in terms of their
electrographic and behavioral features, and the associated
physiological manifestations have been documented. In
making these determinations, the team members stud-
ied each video recording together with simultaneously
recorded EEG. Decisions on characterization of seizures
were made during group reviews (face-to-face discus-
sions) in a way that a consensus was reached for each
seizure included in the CRCNS database. The analog
video recordings contained in the CRCNS database were
digitized with a temporal sampling rate of 30 frames/s,
which is considered high enough to capture sudden and
rapid motion. The digitized frames that contained an
image of the infant together with EEG were of size
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352 x 240 pixels. After the elimination of the EEG sig-
nals, the video recordings produced sequences of frames
of size 203 x 240 pixels.

Extraction of quantitative motion information
from video

The first specific aim of this project was to extract
quantitative motion information from video recordings of
neonatal seizures and other normal and abnormal clinical
events not associated with seizures in the form of temporal
motion-strength and motor-activity signals.

Extraction of motion-strength signals

In principle, motion-strength signals quantify motion
by measuring the area of each frame occupied by mov-
ing body parts affected by seizures. As the seizure
progresses in time, the area measurements A produce
temporal motion-strength signals A(#). The extraction of
motion-strength signals requires an automated procedure
capable of segmenting the infants’ moving body part(s) at
each frame of the sequence.

In this study, we attempted to improve the extraction
of motion-strength signals by modifying the procedure
developed in our preliminary study (23). This investiga-
tion resulted in a new procedure, which extracts motion-
strength signals from video recordings by applying
nonlinear filtering, clustering, and morphological filter-
ing on the differences between adjacent frames (24). Our
experiments indicated that the combination of the new
clustering scheme with morphologic filtering improves
considerably the robustness of the new extraction pro-
cedure to noise. However, this procedure underestimated
motion in most of the cases and failed completely in some
video recordings.

The extraction of quantitative motion information from
videotaped neonatal seizures in the form of motion-
strength signals also was attempted by relying on optical-
flow computation methods (25). Optical flow is the
term used to indicate the velocity field generated by
the relative motion between an object and the cam-
era in a sequence of frames (32). Optical flow pro-
vides important information for analyzing motion in
video. Our work produced a methodology for the de-
velopment of regularized optical-flow computation meth-
ods based on a continuous formulation that involved
a broad variety of smoothness constraints (25). As an
alternative, we also developed a discrete formulation
of the optical-flow problem, which relied on the dis-
crete approximation of a family of quadratic function-
als (25). The optical-flow methods produced by the pro-
posed formulations were used to extract quantitative
information from video recordings of neonatal seizures
in the form of motion-strength signals. Motion-strength
signals were obtained after the computation of the veloc-
ity fields by measuring the area at each frame containing
all pixels with velocities exceeding a certain threshold.

Extraction of motor-activity signals

In principle, motor-activity signals are obtained by pro-
jecting to the horizontal and vertical axes an anatomical
site located on the body part affected by the seizure. As the
seizure progresses in time, the projection X of the anatom-
ical site of interest to the horizontal axis and its projection
Y to the vertical axis produce temporal signals X(f) and
Y (¢) recording motor activity of the body parts of interest.
The extraction of motor-activity signals requires an auto-
mated procedure capable of tracking an anatomical site of
interest throughout the video frame sequence.

Temporal motor-activity signals were extracted in our
preliminary study (23) by the KLT algorithm, which tracks
selected anatomical sites throughout a video-frame se-
quence by relying on a pure translation block-motion
model (33,34). The KLT algorithm was generally success-
ful in extracting motor-activity signals from video record-
ings of neonatal seizures. However, in some cases, the al-
gorithm lost anatomical sites that were located on moving
body parts tracked throughout the video-frame sequence
(23). The susceptibility of the KLT algorithm to “lost
sites” motivated several approaches aimed at the develop-
ment of more accurate and reliable motion trackers. Such
approaches dealt with several aspects of motion track-
ing, including the use of more sophisticated block-motion
models (34,35).

Motion tracking was performed in this study by using
adaptive block matching to track a block of pixels located
on a moving body part throughout a sequence of frames
(26). Although adaptive block matching was generally
successful, it was not always reliable, because it attempts
to find the best match of the block of interest within a large
search window in the next frame. Our investigation led to
the development of predictive block matching, a method
developed to track motion by exploiting the advantages
of block-motion estimation and adaptive block matching
7).

Motion tracking also was performed in this study by
trackers based on novel minimization approaches (28) and
a variety of block-motion models (29). The motion track-
ers developed in this study overcome most of the problems
associated with the application of existing motion trackers
in video recording of neonatal seizures, with the most no-
table being the occasional failure to track throughout the
sequence of video frames. However, such motion trackers
were found to be susceptible to noise and other record-
ing imperfections. We addressed this problem recently by
developing robust motion trackers, which are specifically
designed to suppress the effect of noise (29).

Motion tracking in video also requires an automated
procedure capable of selecting anatomical sites on the
moving body part, which also was developed in this study
(30). This automated procedure was developed even fur-
ther to perform tracking of multiple anatomical sites lo-
cated on moving body parts. This is necessary because
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neonatal seizures are frequently associated with motion
of multiple extremities.

Selection of quantitative features from video

The second specific aim of this project was to select
quantitative features that convey some unique behavioral
characteristics of neonatal seizures and nonseizure in-
fant behaviors from temporal signals extracted from video
recordings. Quantitative features can be obtained based on
a global view of the temporal signals to represent some of
their key properties and also to reveal their relation with
the underlying clinical event.

Quantitative features from motion-strength signals

The quantitative features obtained from motion-
strength signals were the variance of time intervals, the
energy ratio, the maximum spike duration, and the num-
ber of spikes. This article shows only the results obtained
for the first three of the features, which were experimen-
tally found to provide the most solid basis for separating
the classes.

Variance of time intervals. This feature can be obtained
from motion-strength signals by computing the variance
of the time intervals between any two adjacent spikes. If
a motion-strength signal contains one or two spikes, the
variance can be assigned an arbitrary large value. This
feature was introduced to measure the rhythmicity of the
infants” movements based on the observation that rhyth-
mic movements would produce variance values close to
zero. The variance of time intervals can be useful for dis-
tinguishing myoclonic seizures from focal clonic seizures
because it is expected to take small values for focal clonic
seizures but considerably higher values for myoclonic
seizures.

Energy ratio: The correlation sequence of any two sig-
nals provides a measure of how similar these signals are
and for how long they remain similar when one of them
is shifted with respect to the other. The autocorrelation
sequence is the correlation sequence of a signal with it-
self and may be used to measure the rhythmicity of motion
manifested as quasiperiodic spikes in motion-strength sig-
nals. For a motion-strength signal that is N samples long,
the autocorrelation was computed by shifting the signal
with respect to itself by up to 0.6 x N samples. The en-
ergy ratio of the autocorrelation sequence, or simply the
energy ratio, was calculated as the ratio of the energy con-
tained by the last 75% of the samples of the autocorrelation
sequence to the energy contained by the first 25% of sam-
ples of the autocorrelation sequence. If two signals are
similar in shape, their correlation sequence decays very
slowly, and the corresponding energy ratio is expected to
take large values. This is expected to be the case for the
energy ratio computed for motion-strength signals pro-
duced for focal clonic seizures due to the rhythmicity of
motion that is their signature. In contrast, the energy ratio
is expected to take small values for myoclonic seizures
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because their autocorrelation sequence decays very fast,
whereas most of its energy is contained by a few samples
near the origin.

Maximum spike duration: The maximal spike duration
provides a quantitative measure of the speed of the infants’
movements. The maximum spike duration is expected to
take the smallest values for myoclonic seizures, which are
typically associated with rapid movements of short dura-
tion. Such values can differentiate neonatal seizures from
random infant movements, which are typically slower and
produce spikes of longer duration.

Number of spikes: This feature can be obtained from
motion-strength signals by counting the number of spikes
per time unit. Such a feature can be obtained by shifting
a window over the entire frame sequence and counting
the number of spikes per window. By fixing the size of the
window, this feature becomes independent of the length of
the frame sequence. The selection of such a feature can be
justified by the fact that myoclonic seizures are expected
to produce a small number of spikes because they are typ-
ically associated with isolated and rapid movements. In
contrast, focal clonic seizures are expected to produce a
large number of spikes per time unit because they are typi-
cally associated with thythmic movements of considerable
duration.

Quantitative features from motor-activity signals

Our investigation indicated that the selection of quan-
titative features from motor-activity signals can be facili-
tated by computing the motion trajectories for each of the
moving body parts. The motion trajectory signal Z = Z(t)
was computed to measure the fluctuations of the motor
activity signals X = X(¢) and Y = Y(¢) from their means
X and Y, respectively. The quantitative features selected
from the motion trajectory signals were the energy ratio,
the maximum spike duration, the variance of the time in-
tervals between the extrema, and the number of extrema.
Once again, this article shows only the results obtained for
the first three of them, which formed the most successful
set.

Energy ratio: The procedure outlined for computing the
energy ratio for motion-strength signals also can be used
for computing the energy ratio from the autocorrelation se-
quence of motion trajectory signals. For “sawtooth-like”
signals produced for focal clonic seizures, the energy of
the autocorrelation sequence is distributed over all its sam-
ples, and the energy ratio is expected to take large values.
In contrast, the energy ratio is expected to take relatively
small values for myoclonic seizures. This can be attributed
to the fact that most of the energy of their autocorrelation
sequence is contained by a few samples near the origin.

Maximum spike duration: The maximum spike dura-
tion provides a quantitative measure of the speed of the
infants’ movements. The maximum spike duration is ob-
tained from the gradient of the motion trajectory signals
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Z =Z(t). If amovement produces a step-like displacement
in the motion trajectory signal, the gradient would produce
a spike at the step location. The duration of the spike would
provide a measure of the speed, with rapid movements
producing sharp spikes of short duration. The maximum
spike duration is expected to take the smallest values for
myoclonic seizures, which are typically associated with
rapid movements of short duration. Such values can dif-
ferentiate myoclonic seizures from random infant move-
ments, which are typically slower and smoother than those
associated with myoclonic seizures.

Variance of time intervals: The rhythmicity of the in-
fants’ movements can be quantified by computing the
variance of time intervals between the extrema of the
motion trajectory signals. In case of signals containing
a single extremum or two extrema, the variance of time
intervals between the extrema can be set to a predefined
high value. This measure was established based on the ob-
servation that rhythmic movements would produce small
variance values. Motor-activity signals produced by ran-
dom infant movements may contain a large number of
extrema as well, but the duration of the intervals between
those extrema may vary considerably. As a result, such
random infant movements are expected to produce high
values for the variance of the intervals between extrema.

Number of extrema: This feature can be obtained from
motor-activity signals by counting the number of extrema
per time unit. The selection of such a feature can be
justified by the fact that focal clonic seizures are ex-
pected to produce the largest number of extrema. This is
consistent with the rhythmicity of motion characterizing
these clinical events. The number of extrema is expected
to be significantly smaller in the motor-activity signals ex-
tracted from myoclonic seizures and random infant move-
ments.

Recognition and characterization of neonatal seizures
based on neural networks

The third specific aim of this project was to train artifi-
cial neural networks to recognize neonatal seizures of the
focal clonic and myoclonic types and differentiate them
from normal and abnormal infant behaviors not associated
with seizures. The development of an automated seizure-
recognition system is essentially the problem of classify-
ing a set of temporal signals that describe neonatal seizures
and clinical events not associated with seizures. Neural
networks provide a solid basis for the development of a
seizure-recognition system because of their versatility and
flexibility. Neural networks are nonlinear computational
models that can be trained by examples to implement clas-
sifiers with no a priori assumptions regarding the statistics
of the data or the size of the available data set (36,37).

The development of an automated seizure-recognition
system relied on traditional feed-forward neural networks
(FFNNSs) (36,37). The FFNNSs trained to recognize and

characterize neonatal seizures contained a single hidden
layer with 20 units and three sigmoid output units that
represented the classes myoclonic seizure, focal clonic
seizure, and random infant movement. The number of hid-
den units was chosen in these experiments by trial and
error. The specific procedure used for determining the
number of hidden units aimed at selecting the minimal
number of hidden units required by the FFNNs to im-
plement the mapping defined by the training set without
degrading the generalization ability of the trained mod-
els. The FFNNs were trained by a learning algorithm de-
veloped to accelerate the training of supervised neural
network models by gradient descent (38). The training
was terminated when the classification error computed on
the testing set increased for five consecutive iterations.

RESULTS

The methods were tested on a set of 240 video record-
ings of 43 patients exhibiting myoclonic seizures (80
cases), focal clonic seizures (80 cases), and random infant
movements (80 cases).

Extraction of quantitative motion information
from video

Figures 1 to 3 show the motion-strength and motor-
activity signals extracted by the procedures developed
during this project from video recordings of myoclonic
seizures, focal clonic seizures, and random infant move-
ments. The locations of the moving body parts during the
clinical event are shown in representative frames of each
video recording. The frames of the video recordings shown
in Figs. 1-3 can be used as a reference to verify the con-
sistency of the temporal signals with the corresponding
clinical events. The values of the signals corresponding
to the frames shown at the top of each figure are indi-
cated by dots, whereas the moving body part in each video
recording is shown within a box.

Figure 1 shows the temporal motion-strength and
motor-activity signals produced for a myoclonic seizure.
In the myoclonic seizure shown in Fig. 1, the infant’s right
hand is moving rapidly toward the bottom of the frame be-
tween frames 112 and 122 and from frame 200 to frame
220. According to Fig. 1a, this motion was captured and
quantified correctly by the optical-flow method, which
also captured the slow motion between frames 108 and
110. The motion-segmentation method based on cluster-
ing and morphologic filtering underestimated the area of
the frames occupied by the moving body part by almost an
order of magnitude. Both methods used for extracting the
motor-activity signals shown in Fig. 1b managed to track
the anatomical site selected by the automated procedure
on the infant’s right hand.

Figure 2 shows the temporal motion-strength and
motor-activity signals produced for a focal clonic seizure.
The focal clonic seizure shown in Fig. 2 affected the
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FIG. 1. (i) Selected frames of video recordings of a myoclonic seizure affecting an infant’s right hand and quantitative motion information
extracted in the form of (a) motion-strength signals produced by (ii) the motion-segmentation method based on clustering and morphological

filtering and (iii) the optical-flow method, (b) motor-activity signals produced by (ii) the predictive block-matching method and (iii) the robust
block motion-tracking method.
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FIG. 2. (i) Selected frames of video recordings of a focal clonic seizure affecting an infant’s left leg and quantitative motion information
extracted in the form of (a) motion-strength signals produced by (ii) the motion-segmentation method based on clustering and morphological
filtering and (iii) the optical-flow method, (b) motor-activity signals produced by (ii) the predictive block-matching method and (iii) the robust
block motion-tracking method.
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FIG. 3. (i) Selected frames of video recordings of a random movement of an infant’s left hand and quantitative motion information extracted
in the form of (a) motion-strength signals produced by (ii) the motion-segmentation method based on clustering and morphological filtering,
and (iii) the optical-flow method, (b) motor-activity signals produced by (ii) the predictive block-matching method and (iii) the robust block

motion-tracking method.

infant’s left leg. The motion-strength signals produced by
both methods captured the rhythmicity of the movements
associated with this seizure. However, the motion-
segmentation method based on clustering and morpho-
logical filtering underestimated the area of the frames
occupied by the moving body part, as indicated by com-
paring the heights of the spikes present in the two motion-
strength signals shown in Fig. 2a. According to Fig. 2b,
both methods used for extracting motor-activity signals
captured the rhythmicity of motion and produced very
similar signals quantifying the motion along the vertical
direction. However, only the signal X, () produced by the
robust block motion-tracking method is consistent with the
motor activity of the infant’s left leg along the horizontal
direction.

Figure 3 shows the temporal motion-strength and
motor-activity signals produced for a random infant move-
ment. The two methods used in the experiments for ex-
tracting motion-strength signals captured the significant
motion observed in the video recording during the ran-
dom movement of the infant’s left hand shown in Fig.
3a. The motion-segmentation method based on clustering
and morphological filtering missed the movement of the
infant’s left hand between frames 300 and 310 that was
captured by the optical-flow method. Figure 3b shows the
motor-activity signals obtained for the random movement
of the infant’s left hand. The predictive block-matching
method failed to track the anatomical site selected on the
infant’s left hand by the automated initialization proce-
dure. The motion in this video recording was quantified
accurately by the motor-activity signals produced by the
robust block motion-tracking method.

Selection of quantitative features from video

Quantitative features from motion-strength signals
Figure 4 shows a collection of intermediate results ob-
tained in the process of selecting quantitative features from
motion-strength signals. According to Fig. 4c, the auto-
correlation sequence obtained from the myoclonic seizure
decays quickly to values close to zero and remains close to
zero most of the time, except during a short interval prior to
frame 100. In contrast, the autocorrelation sequence com-
puted from the focal clonic seizure takes nonzero values
most of the time, a fact that is consistent with the rhyth-
micity of motion associated with seizures of this type. The
autocorrelation sequence obtained from the random infant
movement is closer to that obtained from the focal clonic
seizure. However, the proportion of the energy contained
by its last 75% of samples is lower than that corresponding
to the focal clonic seizure. The energy ratio for the ran-
dom infant movement was 0.363, which can be compared
with the energy ratio value of 0.561 corresponding to the
focal clonic seizure. The rhythmicity of motion associated
with the focal clonic seizure is also revealed by the time
intervals between the spikes, many of which are of compa-
rable length. This is the reason that the focal clonic seizure
produced the lowest value of the variance of the time in-
tervals. The highest variance value was obtained for the
myoclonic seizure, whereas the random infant movement
produced a variance value between the two extremes cor-
responding to the two types of seizures. The random infant
movement produced the longest spikes, an outcome that
is consistent with the fact that random infant movements
are typically slower than the rapid and jerky movements
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FIG. 4. (a) Selected frame from the video recordings of a myoclonic seizure (MCS), focal clonic seizure (FCS), and random infant
movement (RIM); (b) the motion-strength signals A(t) extracted from the video recordings by the optical-flow method; (c) the autocorrelation
sequences computed from the motion-strength signals, and (d) the motion-strength signals together with the time intervals between the
spikes. Variance of time intervals: 150 (MCS), 12.2 (FCS), 38.1 (RIM); energy ratio: 0.216 (MCS), 0.561 (FCS), 0.363 (RIM); maximal
spike duration: 23 (MCS), 15 (FCS), 29 (RIM); and number of spikes per 50 frames: 0.6 (MCS), 1.5 (FCS), 1.1 (RIM)

associated with neonatal seizures. The focal clonic seizure
produced the largest number of spikes, whereas the sec-
ond largest number of spikes was obtained for the random
infant movement. This is consistent with the fact that fo-
cal clonic seizures are events of considerable duration,
whereas myoclonic seizures are manifested as an isolated
movement or as a short sequence of movements.

Table 1 shows the Fisher ratio (FR) for the three fea-
tures selected from motion-strength signals produced by
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the motion-segmentation method based on clustering and
morphological filtering for the video recordings of 80
cases of myoclonic seizures, 80 cases of focal clonic
seizures, and 80 cases of random infant movements. The
FR is a statistical measure of class separability; increasing
values of the FR computed for two classes reveal improv-
ing class separability (39). The FR was computed for three
pairs of the classes myoclonic seizure, focal clonic seizure,
and random infant movement. Table 1 also shows the
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TABLE 1. Fisher ratio and generalized Fisher ratio computed for three features selected from motion-strength signals

Variance of time Maximal spike

Class separability measure Classes intervals Energy ratio duration
Fisher ratio Focal clonic seizure/myoclonic seizure 0.806 0.435 0.008
Fisher ratio Myoclonic seizure/random movement 0.449 0.410 0.294
Fisher ratio Focal clonic/random movement 0.029 0.008 0.183
Generalized Fisher ratio All three classes 0.071 0.047 0.027

The motion-strength signals were extracted from video recordings of 80 myoclonic seizures, 80 focal clonic seizures, and 80 random infant
movements by the motion segmentation method based on clustering and morphological filtering.

generalized Fisher ratio (GFR) for the same features,
which was computed according to the formula suggested
for multiple classes by Krishnan and Rao (39). The same
measures are shown in Table 2 for the features selected
from motion-strength signals produced by the optical-flow
method. Comparison of Tables 1 and 2 reveals the supe-
riority of the features selected from the motion-strength
signals produced by the optical-flow method. According
to Table 2, the features selected from motion-strength sig-
nals produced by the optical-flow method can be rated
in terms of class separability as follows: variance of
time intervals (highest GFR value), energy ratio, and
maximum spike duration (lowest GFR value). Finally,
Table 2 indicates that the most challenging problem is
to distinguish random movements from either myoclonic
or focal clonic seizures. These conclusions are consistent
with Fig. 5, which shows a scatterplot of the energy ratio
and the variance of time intervals obtained for motion-
strength signals extracted by the two methods tested in
the experiments from the video recordings of 40 cases
of myoclonic seizures, 40 cases of focal clonic seizures,
and 40 cases of random infant movements. According to
Fig. 5a, the motion-segmentation method based on clus-
tering and morphological filtering placed a relatively large
number of random movements in the region occupied by
myoclonic seizures. Even more cases of random move-
ments were placed by this method in the region occupied
by focal clonic seizures. According to Fig. Sb, most of the
myoclonic seizures produced high values of the variance
of time intervals. Figure 5b also explains why differen-
tiating random infant movements from either myoclonic
seizures or focal clonic seizures is by far a more chal-
lenging problem than distinguishing myoclonic from focal
clonic seizures.

Quantitative features from motor-activity signals

Figure 6 shows a collection of intermediate results ob-
tained in the process of selecting quantitative features
from motion trajectory signals. According to Fig. 6c,
the autocorrelation sequence computed for the myoclonic
seizure decays very fast and takes values close to zero
for large time intervals. This is consistent with the rapid
and jerky movements that are the signature of myoclonic
seizures. In contrast, the sustained rhythmic movements
that characterize focal clonic seizures produce autocor-
relation sequences that do not decay to zero, such as
that shown for the focal clonic seizure in Fig. 6¢c. Ran-
dom infant movements can produce a great variety of au-
tocorrelation sequences that typically constitute a com-
promise between myoclonic and focal clonic seizures in
terms of their decay patterns. The rapid movements as-
sociated with neonatal seizures produce spikes of short
duration, as indicated by the gradient of the motion tra-
jectory signals shown in Fig. 6d for the myoclonic and
focal clonic seizures. Figure 6d also describes a situa-
tion in which the random infant movement produced a
sequence of short spikes followed by spikes of longer du-
ration. In this case, the maximum spike duration associ-
ated with the random infant movement was longer than
those corresponding to the myoclonic and focal clonic
seizures. The sustained rhythmic movements associated
with focal clonic seizures correspond to time intervals be-
tween the extrema that are almost equal in length. This
is the reason focal clonic seizures lead to small values of
the interval variance compared with myoclonic seizures
and random infant movements. Such clinical events pro-
duce relatively large values of the interval variance be-
cause they correspond to irregular time intervals between
the extrema, as indicated by Fig. 6d. The number of

TABLE 2. Fisher ratio and generalized Fisher ratio computed for three features selected from motion-strength signals

Variance of time Maximal spike

Class separability measure Classes intervals Energy ratio duration
Fisher ratio Focal clonic seizure/myoclonic seizure 8.711 7.459 0.101
Fisher ratio Myoclonic seizure/random movement 3.600 1.812 0.844
Fisher ratio Focal clonic/random movement 0.139 1.521 0.012
Generalized Fisher ratio All three classes 0.692 0.554 0.053

The motion-strength signals were extracted from video recordings of 80 myoclonic seizures, 80 focal clonic seizures, and 80 random infant

movements by the optical-flow method.

Epilepsia, Vol. 46, No. 6, 2005
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extrema was low for myoclonic seizures, which are typi-
cally associated with a few isolated movements, and ran-
dom infant movements. Figure 6d shows a situation in
which the random infant movement produced a higher
number of extrema per time unit compared with both the
myoclonic seizure and the focal clonic seizure. This is an
indication that this particular quantitative feature may not
always be reliable.

Epilepsia, Vol. 46, No. 6, 2005

Tables 3 and 4 show the FR and the GFR for the three
features selected from motor-activity signals produced
by the predictive block-matching method and the robust
block motion-tracking method, respectively, for the video
recordings of 80 cases of myoclonic seizures, 80 cases
of focal clonic seizures, and 80 cases of random infant
movements. Tables 3 and 4 indicate that the robust block
motion-tracking method produced features that provide
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FIG. 6. (a) Selected frame from the video recordings of a myoclonic seizure (MCS), focal clonic seizure (FCS), and random infant
movement (RIM). (b) The motion trajectory signals Z(t) extracted from the video recordings by the robust block motion method. (¢) The
autocorrelation sequences computed from the motion trajectory signals. (d) The signals produced by computing the gradient of the motion
trajectory signals. Energy ratio: 0.174 (MCS), 0.609 (FCS), 0.303 (RIM); maximal spike duration: 7 (MCS), 16 (FCS), 34 (RIM); variance
of time intervals: 50.1 (MCS), 11.7 (FCS), 29.4 (RIM); number of extrema per 50 frames: 0.6 (MCS), 1.0 (FCS), 1.3 (RIM).

a more reliable basis for class separation. According to
Table 4, the features selected from motor-activity signals
produced by the robust block motion-tracking method can
be rated in terms of class separability as follows: energy
ratio (highest GFR value), maximum spike duration, and
variance of time intervals (lowest GFR value). Just like
the features extracted from motion-strength signals, the
features selected from motor-activity signals indicate that
distinguishing myoclonic and focal clonic seizures from

random infant movements is a more challenging problem
than that of distinguishing between focal clonic and my-
oclonic seizures. This evaluation can be verified by Fig. 7,
which shows a scatterplot of the energy ratio and the maxi-
mum spike duration obtained for motor-activity signals ex-
tracted by the two methods tested in the experiments from
the video recordings of 40 cases of myoclonic seizures, 40
cases of focal clonic seizures, and 40 cases of random in-
fant movements. Figure 7a indicates that predictive block

Epilepsia, Vol. 46, No. 6, 2005
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TABLE 3. Fisher ratio and generalized Fisher ratio computed for three features selected from motor-activity signals

Variance of time Maximal spike

Class separability measure Classes intervals Energy ratio duration
Fisher ratio Focal clonic seizure/myoclonic seizure 7.282 2.904 2.473
Fisher ratio Myoclonic seizure/random movement 2.128 2.033 0.832
Fisher ratio Focal clonic/random movement 1.843 1.561 1.067
Generalized Fisher ratio All three classes 0.625 0.361 0.243

The motor-activity signals were extracted from video recordings of 80 myoclonic seizures, 80 focal clonic seizures, and 80 random infant movements

by the predictive block matching method.

matching placed a large proportion of focal clonic seizures
in the regions of the 2-D feature space occupied by ran-
dom infant movements or myoclonic seizures or both. This
can be attributed to the fact that predictive block matching
failed occasionally to capture and quantify the rhythmicity
of motion associated with focal clonic seizures. According
to Fig. 7b, myoclonic seizures produced the lowest values
of the energy ratio when motor-activity signals were ex-
tracted by the robust block motion-tracking method. The
values of the energy ratio can be used to distinguish my-
oclonic seizures from focal clonic seizures, which pro-
duced the highest values of the energy ratio. Figure 7b
also indicates that random infant movements produced the
largest values of the maximum spike duration. Such values
are consistent with the fact that random infant movements
are typically slower than those associated with neonatal
seizures. According to Fig. 7b, the majority of myoclonic
seizures produced low values of the maximum spike dura-
tion. This outcome is consistent with the rapid and “jerky”
movements that are the signature of myoclonic seizures.

Recognition and characterization of neonatal seizures
based on neural networks

This experimental study evaluated the performance of
FFNNSs trained to recognize and characterize the types of
neonatal seizures by using a set of 240 video recordings
of 43 patients exhibiting myoclonic seizures (80 cases),
focal clonic seizures (80 cases), and random movements
(80 cases). Each of the training and testing sets contained
120 video recordings (40 cases of myoclonic seizures,
40 cases of focal clonic seizures, and 40 cases of ran-
dom movements). The inputs used for training the FFNNs
were formed in terms of (a) features extracted from tem-

poral motion-strength signals, (b) features extracted from
temporal motor-activity signals, and (c) features extracted
from temporal motion-strength and motor-activity signals.
Each FFNN was trained and tested in 50 trials by using
a different initial set of weights in each trial. The results
of the 50 trials provided the basis for computing the sam-
ple mean u and standard deviation o for the sensitivity
and specificity. These values were used to obtain the 95%
confidence intervals shown in Tables 5-7.

Table 5 shows the sensitivity and specificity for my-
oclonic seizures and focal clonic seizures on the training
and testing sets by the FFNN trained to recognize and
characterize the types of neonatal seizures by using quan-
titative features selected from motion-strength signals. On
average, the sensitivity and specificity of the FFNN ex-
ceeded 95% on the training set. When the FFNN was
tested on the testing set, the average sensitivity reduced
to ~90% with a standard deviation ~2%. The specificity
of the FFNN on the testing set was on average >90%,
whereas its standard deviation was considerably lower.

Table 6 shows the sensitivity and specificity for my-
oclonic seizures and focal clonic seizures on the training
and testing sets by the FFNN trained to recognize and char-
acterize the types of neonatal seizures by using quantita-
tive features selected from motor-activity signals. When
the FFNN was tested on the training set, the average sen-
sitivity and specificity were both >90%. When the FFNN
was tested on the testing set, the average sensitivity was
slightly <90% with a standard deviation ~2%. Compared
with the FENN trained by using quantitative features ob-
tained from motion-strength signals, the FENN trained by
using quantitative features obtained from motor-activity
signals exhibited lower sensitivity. However, training
the FFNN by using quantitative features obtained from

TABLE 4. Fisher ratio and generalized Fisher ratio computed for three features selected from motor-activity signals

Variance of time Maximal spike

Class separability measure Classes intervals Energy ratio duration
Fisher ratio Focal clonic seizure/myoclonic seizure 10.016 3.894 3.423
Fisher ratio Myoclonic seizure/random movement 4.786 2.044 1.969
Fisher ratio Focal clonic/random movement 3.617 1.200 0.448
Generalized Fisher ratio All three classes 1.029 0.397 0.324

The motor-activity signals were extracted from video recordings of 80 myoclonic seizures, 80 focal clonic seizures, and 80 random infant movements

by the robust block motion tracking method.

Epilepsia, Vol. 46, No. 6, 2005
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motor-activity signals led to specificity values >90%.
The sensitivity for myoclonic seizures was higher than
that of the FFNN trained by using quantitative features
obtained from motion-strength signals.

Table 7 shows the sensitivity and specificity for my-
oclonic seizures and focal clonic seizures on the training
and testing sets by the FFNN trained to recognize and
characterize the types of neonatal seizures by using quan-

Energy Ratio of Autocorrelation Sequence

(b)

titative features selected from motion-strength and motor-
activity signals. Training the FFNN by using quantitative
features obtained from both motion-strength and motor-
activity signals led to sensitivity and specificity values
>95% on the training set. This training strategy also in-
creased the average sensitivity values obtained on the test-
ing set, with the sensitivity for myoclonic seizures reach-
ing values well above 90% and specificity values >95%.

Epilepsia, Vol. 46, No. 6, 2005
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TABLE 5. Recognition and characterization of neonatal seizures based on three features extracted from motion-strength signals
(variance of time intervals, energy ratio, and maximum spike duration)

Training set

Testing set

Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%)
Myoclonic seizure 946 £19 99.1 £22 925+ 1.7 925+£0.8
Focal clonic seizure 925+1.2 96.8 £ 1.7 89.4+£24 96.3 £ 0.4

Sensitivity and specificity (95% confidence intervals) produced for the training and testing sets by a feed-forward neural networks trained to
recognize myoclonic seizures, focal clonic seizures, and random infant movements.

Compared with the FFNNSs trained by using quantitative
features obtained from either motion-strength or motor-
activity signals, the FFNN trained in these experiments ex-
hibited a lower sensitivity for focal clonic seizures (~85%)
but higher sensitivity for myoclonic seizures (~95%). The
specificity values shown in Table 7 for the testing set are
higher than those of the FFNNs trained by using quan-
titative features obtained from either motion-strength or
motor-activity signals.

DISCUSSION

In the study outlined here, we developed and evaluated
a variety of computational tools and procedures that may
be used to carry out the essential tasks involved in the
development of a computerized video system for moni-
toring infants at risk for seizures; these tasks include the
extraction of quantitative motion information from video
recordings of neonatal seizures in the form of motion-
strength and motor-activity signals, the selection of quan-
titative features that convey some unique behavioral
characteristics of neonatal seizures, and the training of
neural networks to recognize and characterize the types of
neonatal seizures. These three tasks were carried out by
relying on short video segments containing either neonatal
seizures or random infant movements not associated with
seizures. The computational tools and procedures devel-
oped to carry out each of the three tasks were tested and
evaluated separately by using as a sole criterion the ob-
jective of each task. To achieve the long-term goals of
this project, we plan to upgrade the procedures developed
during the ongoing project by automating their operation,
enhancing their accuracy, and improving their robustness
and reliability. The upgraded computational tools and pro-

cedures will be used to enhance the diagnostic value of
video recordings of infants monitored for seizures. This
will be accomplished by developing automated quantifica-
tion procedures and visualization tools designed to assist
physicians during retrospective review. The same compu-
tational tools and procedures will be integrated to develop
an automated system trained to recognize and characterize
the types of neonatal seizures in long recordings that may
contain neonatal seizures. The remainder of this section
discusses some open problems revealed by our experimen-
tal study and outlines some of our future research plans.

Extraction of quantitative motion information
from video

The signals produced by the optical-flow method con-
tain spikes that are wider than those produced for the
same movements by the motion-segmentation method
based on clustering and morphological filtering. This
is an indication that the motion-segmentation method
based on clustering and morphological filtering underes-
timated the duration of most of the infants’ movements
because it missed the beginnings and the ends of those
movements. This experimental study indicated that the
motion-strength signals produced by the best regular-
ized optical-flow methods captured and quantified the
defining characteristics of focal clonic and myoclonic
seizures.

The experiments indicated that predictive block match-
ing failed on some occasions to track the anatomical site
selected on the moving body part throughout the frame
sequence. Tracking motion based on block motion mod-
els appeared to be a more reliable approach. Block motion
estimation improved considerably from the introduction
of fractional block-motion models, which outperformed

TABLE 6. Recognition and characterization of neonatal seizures based on three features extracted from motor-activity signals
(energy ratio, maximum spike duration, and variance of time intervals)

Training set

Testing set

Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%)
Myoclonic seizure 90.6 £2.5 984 £ 1.1 89.2+49 95.7+£25
Focal clonic seizure 954 +3.6 94.0 £ 2.1 88.7£3.9 93.5+22

Extracted from motor-activity signals (energy ratio, maximal spike duration, and variance of time intervals). Sensitivity and specificity (95%
confidence intervals) produced for the training and testing sets by an FFNN trained to recognize myoclonic seizures, focal clonic seizures, and random

infant movements.

Epilepsia, Vol. 46, No. 6, 2005
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TABLE 7. Recognition and characterization of neonatal seizures. Based on three features extracted from motion-strength signals
(variance of time intervals, energy ratio, and maximum spike duration) and three features extracted from motor-activity signals
(energy ratio, maximal spike duration, and variance of time intervals)

Training set

Testing set

Sensitivity (%)

Specificity (%)

Sensitivity (%) Specificity (%)

100.0 £0.0
95.0+ 1.0

Myoclonic seizure
Focal clonic seizure

100.0 £ 0.0
984 +1.2

944 £20
855+13

96.1 £0.8
979+12

Sensitivity and specificity (95% confidence intervals) produced for the training and testing sets by a feed-forward neural network with three output

units trained to recognize and characterize neonatal seizures.

considerably a pure translation model and an affine block-
motion model. The experimental results verified that the
robust motion trackers developed in this study are resistant
to noise and other recording imperfections.

Selection of quantitative features from video

The Fisher ratio measure used in this experimental study
provided the basis for evaluating the quantitative features
obtained from motion-strength and motor-activity signals
using as a criterion the class separability. This evalua-
tion is of critical importance given the long-tem goals
of this project. The outcome of these experiments ver-
ified that optical-flow methods are more reliable than
the method based on clustering and morphological filter-
ing for quantifying neonatal seizures from video record-
ings in the form of motion-strength signals. Even when
the motion-segmentation method based on clustering and
morphological filtering managed to quantify motion, the
optical-flow method produced motion-strength signals
that constitute a more accurate representation of the in-
fants’ movements. The experimental results also verified
that the robust motion trackers developed in this study
outperformed considerably the motion trackers based on
predictive block matching in terms of both reliability and
accuracy.

The quantitative features selected from motion-strength
and motor-activity signals constitute a satisfactory repre-
sentation of neonatal seizures and random infant move-
ments. Nevertheless, the set of quantitative features
extracted in this study is not unique. Other features may
exist whose combination provides a more effective rep-
resentation of neonatal seizures and random infant move-
ments. Thus the search for the best quantitative features
from motion-strength and motor-activity signals is still an
open problem worthy of further investigation.

Recognition and characterization of neonatal seizures
based on neural networks

The outcome of this experimental study provides ev-
idence suggesting that it is feasible to develop an au-
tomated system for the recognition and characterization
of the types of neonatal seizures based on video record-
ings. This will be accomplished by enhancing the accu-
racy and improving the reliability of the computational

tools and methods developed during the course of the on-
going study. In the next phase of this project, we plan
to evaluate the available computational tools and proce-
dures when they become the ingredients of the proposed
seizure-recognition system. This evaluation will be carried
out at three levels:

Level 1

Can the system recognize most of the true seizures while
minimizing the proportion of true seizures classified as
nonseizure behaviors? This measures sensitivity, the goal
of the next phase of this project being >90%.

Level 2

Can the system recognize most of the nonseizure infant
behaviors while minimizing the proportion of nonseizure
infant behaviors classified as seizures? This measures
specificity, the goal of the next phase of this project being
>95%.

Level 3

Can the system assign a degree of certainty to seizure
classification that is consistent with the evaluation of hu-
man experts? This assessment will investigate whether the
response of the trained neural networks provides a reliable
basis for identifying and quantifying uncertainty.

The ongoing study revealed that the performance of
neural network models trained to perform seizure recog-
nition and characterization is affected mainly by the ex-
istence of uncertain events. One source of uncertainty is
the lack of contextual information. In the case of electro-
clinical seizures, the physicians who classified the video
segments of the CRCNS database were able to observe
simultaneous EEG recordings over multiple channels.
These EEG recordings provided the physicians with nu-
merous hints and clues that were critical for seizure recog-
nition. However, such contextual information is not readily
available to a classifier trained by examples to recognize
neonatal seizures from video recordings.

Seizure recognition and characterization was performed
during the ongoing study by training conventional FFNNs
(36,37). However, despite their advantages, FFNNs are
not capable of effectively dealing with the uncertainty
typically involved in pattern-classification tasks. The in-
ability of FFNNs to deal effectively with uncertainty

Epilepsia, Vol. 46, No. 6, 2005
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motivated the development of a class of inherently fuzzy
neural networks known as quantum neural networks
(QNNs) (40,41). QNNs use multilevel hidden units that
produce a better structured representation of the input
space by identifying overlapping between different classes
of data. As aresult, QNN can identify and quantify the un-
certainty typically associated with pattern-classification
tasks. The superior performance of QNN in the presence
of uncertainty was revealed by a recent study that relied
on FFNNs and QNNs to improve the detection of epileptic
segments from neonatal EEG (42,43).

Combination of video with EEG analysis

One of our future goals is to enhance the overall ac-
curacy and improve the reliability of automated seizure
recognition by merging the video-analysis procedures
and tools developed in this project with complementary
techniques and procedures developed to analyze neonatal
EEGs (42-46). Although recognition of seizures in the
intensive care environment is still largely dependent on
human observation, this mode is ineffective in the case of
therapeutically paralyzed or restrained infants and does
not identify patients experiencing purely EEG events.
On the other hand, clinical seizures that have no elec-
trographic correlate cannot be detected by EEG analysis.
Consequently, an appropriate combination of automated
video and EEG analytic approaches would be expected to
result in a significant improvement in the ability to de-
tect promptly the occurrence of all seizure types in this
population.
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and Stroke under contract NO1-NS-2316, and the Peter Kellaway
Research Endowment, Baylor College of Medicine.

REFERENCES

1. Eriksson M, Zetterstrom R. Neonatal convulsions: incidence and
causes in the Stockholm area. Acta Paediatri Scand 1979;68:807—
11.

2. Holden KR, Mellitis ED, Freeman JM. Neonatal seizures, I: cor-
relation of prenatal and perinatal events with outcomes. Pediatrics
1982;70:165-76.

3. Bergman I, Painter MJ, Hirsch RP, et al. Outcome in neonates
with convulsions treated in an intensive care unit. Ann Neurol
1983;14:642-17.

4. Ellenberg JH, Hirtz DG, Nelson KB. Age at onset of seizures in
young children. Ann Neurol 1984;15:127-34.

5. Spellacy WN, Peterson PQ, Winegar A, et al. Neonatal seizures
after cesarean delivery: higher risk with labor. Am J Obstet Gynecol
1987;157:377-9.

6. Lanska MJ, Lanska DJ, Baumann RJ, et al. A population-based
study of neonatal seizures in Fayette County, Kentucky. Neurology
1995;45:724-32.

7. Ronen GM, Penney S. The epidemiology of clinical neonatal
seizures in Newfoundland, Canada: a five-year cohort. Ann Neu-
rol 1995;38:518-9.

8. Saliba R, Annegers JF, Mizrahi EM. The incidence of neona-
tal seizures, Harris County, Texas; 1992-1994. Am J Epidemiol
1999;150:763-9.

Epilepsia, Vol. 46, No. 6, 2005

9. Fenichel GM. Neonatal neurology. 3rd ed. New York: Churchill-
Livingstone, 1990.

10. Volpe 11. Neurology of the newborn. Philadelphia: WB Saunders,
1995.

11. Mizrahi EM. Neonatal seizures. In: Shinnar S, Amir N, Branski D,
eds. Childhood seizures: pediatric and adolescent medicine. Basel:
Krager, 1995;6:18-31.

12. Mellitis ED, Holden KR, Freeman JM. Neonatal seizures, II: a
multivariate analysis of factors associated with outcome. Pediatrics
1982;70:177-85.

13. Clancy RR, Legido A. Postnatal epilepsy after EEG-confirmed
neonatal seizures. Epilepsia 1991;32:69-76.

14. Scher MS, Aso K, Beggarly M, et al. Electrographic seizures in
preterm and full-term neonates: clinical correlates, associated brain
lesions, and risk for neurologic sequelae. Pediatrics 1993;91:128—
34.

15. Ortibus EL, Sum JM, Hahn JS. Predictive value of EEG for outcome
and epilepsy following neonatal seizures. Electroencephalogr Clin
Neurophysiol 1996;98:175-85.

16. Bye AME, Cunningham CA, Chee KY, et al. Outcome of neonates
with electrographically identified seizures, or at risk of seizures.
Pediatr Neurol 1997;16:225-31.

17. Mizrahi EM. Acute and chronic effects of seizures in the develop-
ing brain: lessons from clinical experience. Epilepsia 1999;40(suppl
1):S42-50.

18. Mizrahi EM, Kellaway P. Characterization of seizures in
neonates and young infants by time-synchronized electroencephalo-
graphic/polygraphic/video monitoring. Ann Neurol 1984;16:383.

19. Kellaway P, Frost JD Jr. Monitoring at the Baylor College of
Medicine, Houston. In: Gotman J, Ives JR, Gloor P, eds. Long-term
monitoring in epilepsy. Amsterdam: Elsevier Science, 1985:403-14.

20. Mizrahi EM. Neonatal electroencephalography: clinical features of
the newborn, techniques of recording, and characteristics of the nor-
mal EEG. Am J EEG Tech 1986;26:81-103.

21. Wise MS, Mizrahi EM, Hrachovy RA, et al. Seizures in very low
birthweight (VLBW) infants: seizure characterization using bedside
EEG/video/polygraphic monitoring. Epilepsia 1999;40:161.

22. Mizrahi EM, Kellaway P. Characterization and classification of
neonatal seizures. Neurology 1987;37:1837—-44.

23. Karayiannis NB, Srinivasan S, Bhattacharya R, et al. Extraction of
motion strength and motor activity signals from video recordings of
neonatal seizures. IEEE Trans Med Imaging 2001;20:965-80.

24. Karayiannis NB, Tao G. Improving the extraction of temporal mo-
tion strength signals from video recordings of neonatal seizures.
Proc 2003 IEEE Conference on Advances in Video Signal-Based
Surveillance. Miami, Florida, 2003:87-92.

25. Karayiannis NB, Varughese B, Tao G, et al. Quantifying motion in
video recordings of neonatal seizures by regularized optical flow
methods. [EEE Trans Image Process (in press).

26. Karayiannis NB, Sami A, Frost JD Jr, et al. Automated extraction of
temporal motor activity signals from video recordings of neonatal
seizures based on adaptive block matching. IEEE Trans Biomed Eng
2005;52:676-86.

27. Karayiannis NB, Sami A, Frost JD Jr, et al. Quantifying motion in
video recordings of neonatal seizures by feature trackers based on
predictive block matching. Proc 26th International Conference of
IEEE EMBS, San Francisco, 2004:1447-50.

28. Karayiannis NB, Xiong Y, Frost JD Jr, et al. Improving the accu-
racy and reliability of motion tracking methods used for extracting
temporal motor activity signals from video recordings of neonatal
seizures. [EEE Trans Biomed Eng 2005;52:747-9.

29. Karayiannis NB, Xiong Y, Frost JD Jr, et al. Quantifying motion
in video recordings of neonatal seizures by robust feature trackers
based on block motion models. I[EEE Trans Biomed Eng (in press).

30. Sami A, Karayiannis NB, Frost JD Jr, et al. Automated tracking of
multiple body parts in video recordings of neonatal seizures. Proc
2004 Int Symp Biomed Imaging, Arlington, Virginia, 2004:312—
5

31. Mizrahi EM, Clancy RR, Dunn JK, et al. Neurologic impairment,
developmental delay, and postneonatal seizures 2 years after EEG-
video documented seizures in near-term and term neonates: re-
port of the clinical research centers for neonatal seizures. Epilepsia
2001;42(suppl 7):102-3.



32.

33.

34.

3s5.

36.

37.

38.

39.

40.

ANALYSIS OF VIDEOTAPED NEONATAL SEIZURES

Horn BKP, Schunck BG. Determining optical flow. Artif Intell
1981;17:185-203.

Tomasi C, Kanade T. Detection and tracking of point features. Tech-
nical Report CMU-CS-91-132. Carnegie Mellon University, 1991.
Shi J, Tomasi C. Good features to track. Proc IEEE Conf Comput
Vision Pattern Recogn Seattle, Washington, 1994:593—-600.
Tommasini T, Fusiello A, Trucco E, et al. Making good features
track better. Proc IEEE Int Conf Comput Vision Pattern Recogn,
Santa Barbara, California, 1998:178-83.

Bishop CM. Neural networks for pattern recognition. Oxford: Ox-
ford University Press, 1995.

Haykin S. Neural networks: a comprehensive foundation. Upper
Saddle River, NJ: Prentice Hall, 1999.

Karayiannis NB. Accelerating the training of feed-forward neu-
ral networks using generalized Hebbian rules for initializing the
internal representations. /[EEE Trans Neural Netw 1996;7:419—
26.

Krishnan S, Rao PVS. Feature selection for pattern classification
with Gaussian mixture models: a new objective criterion. Pattern
Recogn Lett 1996;17:803-9.

Purushothaman G, Karayiannis NB. Quantum neural networks

41.

42.

44.

45.

46.

917

(QNNs): inherently fuzzy feed-forward neural networks. IEEE
Trans Neural Netw 1997;8:679-93.

Purushothaman G, Karayiannis NB. Feed-forward neural architec-
tures for membership estimation and fuzzy classification. IntJ Smart
Eng System Design 1998;1:163-85.

Karayiannis NB, Mukherjee A, Glover JR, et al. Quantifying and
visualizing uncertainty in EEG data of neonatal seizures. Proc 26th
Int Conf IEEE EMBS, San Francisco, California, 2004:423-26.

. Karayiannis NB, Mukherjee A, Glover JR, et al. An evaluation of

quantum neural networks in the detection of epileptic seizures in the
neonatal EEG. Soft Comput J (in press).

Glover JR, Ktonas PY, Shastry M, et al. Methodology and sys-
tem architecture for automated detection of epileptic seizures in the
neonatal EEG. Proc 24th Int Conf IEEE EMBS, Houston, Texas,
2002:70-1.

Gotman J, Flanagan D, Zhang J, et al. Automated seizure detection
in the newborn: methods and initial evaluation. Electroencephalogr
Clin Neurophysiol 1997;103:356-62.

Gotman J, Flanagan D, Rosenblatt B, et al. Evaluation of an auto-
mated seizure detection method for the newborn EEG. Electroen-
cephalogr Clin Neurophysiol 1997;103:363-9.

Epilepsia, Vol. 46, No. 6, 2005



