
Chapter 1

RNC Algorithms for the
Uniform Generation of Combinatorial Structures

Michele Zito, Ida Pu, Martyn Amos and Alan Gibbons∗

University of Warwick, Coventry CV4 7AL, UK

Abstract

We describe several RNC algorithms for generating graphs

and subgraphs uniformly at random. For example, unla-

belled undirected graphs are generated in O(lg3 n) time us-

ing O
(

εn2

lg3 n

)
processors if their number is known in advance

and in O(lg n) time using O
(

εn2

lg n

)
processors otherwise. In

both cases the error probability is the inverse of a polynomial

in ε. Thus ε may be chosen to trade-off processors for error

probability. Also, for an arbitrary graph, we describe RNC al-

gorithms for the uniform generation of its subgraphs that are

either non-simple paths or spanning trees. The work measure

for the subgraph algorithms is essentially determined by the

transitive closure bottleneck. As for sequential algorithms,

the general notion of constructing generators from counters

also applies to parallel algorithms although this approach is

not employed by all the algorithms of this paper.

1 Introduction.

This paper is concerned with problems of generating com-
binatorial structures uniformly at random (u.a.r.) by
means of efficient parallel algorithms. Our model of com-
putation is the well-known (see [11], for example) parallel
random access machine (PRAM) augmented with a fa-
cility to generate random numbers in [0, 1]. By efficient
algorithms we mean algorithms that run in polylogarith-
mic time in the problem size using a polynomial number of
processors. Such problems define the class NC, or specifi-
cally RNC if the facility for generating random numbers is
employed. Our algorithms generally run on the exclusive-
read exclusive-write variant of the PRAM (the EREW
PRAM).

Our domain of discourse is graph theory. Very little
seems to be known about the parallel complexity of gener-
ation problems. With the exception of [5] the authors are
not aware of any other graph theoretic parallel uniform
generation algorithm. In the spirit of work in sequential
algorithms, the general notion of constructing generators
from counters may apply to parallel algorithms as well
but this approach is not employed by all the algorithms
of this paper.

∗Partially supported by the ESPRIT BRA programme contract
No.20244, ALCOM IT. E-address: amg@dcs.warwick.ac.uk

A few graph theoretic problems have very easy solu-
tions. For example, labelled graphs or, more generally,
subgraphs of a given labelled graph can be generated
u.a.r. by simply selecting edges with probability 1/2, us-
ing n2 processors this only requires constant time. We
also observe that it is easy to generate u.a.r. the Eulerian
subgraphs of a given graph. Given a subset of the fun-
damental circuits of G (each such circuit is chosen to be
in the subset with probability 1/2), an Eulerian subgraph
is generated u.a.r. by taking the ring sum of the subset.
A spanning tree of G and thence a set of fundamental
circuits can be found by standard NC algorithms.

An interesting aspect of some of the algorithmic solu-
tions involves the conversion of sequential expected time
to parallel worst case time with reasonably small error
probability (i.e. a small probability that the parallel al-
gorithm fails to produce any result). In these cases, algo-
rithmic work can be traded-off for higher success proba-
bility. For problem size n, we will abbreviate phrases of
the form with probability at least 1−n−c for any c > 0 by
the acronym whp.

Those complexity parameters of our algorithms which
employ counters are generally dominated by the cost of
counting which, for the problems we consider, is deter-
mined by repeated matrix multiplication. The well-known
costliness of this in terms of numbers of processors is fre-
quently referred to as the transitive closure bottleneck. On
the other hand, the work required by these algorithms
is within logarithmic factors of the sequential algorithms
known to us.

In Section 2 we describe two algorithms for selecting
unlabelled graphs uniformly at random. The first is based
on a sequential method described in [9] and shows that
the uniform generation problem for unlabelled graphs can
be reduced to the problem of counting the number of such
graphs. As a by-product we describe an NC algorithm for
enumerating a polynomial number of integer partitions in
weak ascending lexicographic order. The second algorithm
originates from a sequential strategy described in [27].
This approach requires no information about the number
of graphs and uses a simpler sampling method.

In Section 3, given an arbitrary graph G, we describe
RNC algorithms for the uniform generation of non-simple
paths and spanning trees of G. As a subprocedure, the
uniform generation of spanning trees algorithm requires
a parallel solution to the problem of generating random

1

2 ZITO, PU, AMOS, GIBBONS

walks which we also describe.
The final section is devoted to conclusions and open

problems.

2 Unlabelled Graphs.

Sequential methods for generating graphs u.a.r. can be
grouped into two broad classes. The first class includes
methods based, either explicitly or implicitly (via recur-
rence relations or asymptotic enumeration), on counting
formulas (see [26] for a survey). Graph theoretic prob-
lems are reduced to number theoretic ones, then concepts
from linear algebra or combinatorics are used to obtain
the desired algorithm. Very often this approach leads to
algorithms running in time linear in the size of the ob-
ject to be generated. Another option is given by Markov
chain based methods (see [22] for a complete descrip-
tion and many exemplar applications). The combinatorial
structure of interest is generated by simulating a suitably
defined Markov chain until the process converges to its
stationary distribution. The Markov chain approach is
particularly useful when no exact uniform generation al-
gorithm is known. In many cases it is possible to prove
that an object can be generated in polynomial time almost
u.a.r. (see for instance [14, 15]). The rest of this section
describes parallel algorithms based on the first method
described above.

2.1 Conjugacy Classes and Exact Count-
ing.

In this section we describe a parallel algorithm for gen-
erating unlabelled graphs u.a.r. Some preliminaries are
needed. Let G be a given finite group acting on a set
Ω 6= ∅. The action of G induces an equivalence relation
∼ on Ω (α ∼ β iff α = gβ for some g ∈ G). The equiv-
alence classes are called orbits. For each g ∈ G, define
Fix(g) = {α : gα = α}. Basic facts:

(a) (Frobenius-Burnside Lemma) The number of orbits
is m = 1

|G|
∑

g∈G |Fix(g)|.

(b) For each orbit ω, |{(g, α) : α ∈ ω ∩ Fix(g)}| = |G|.

(c) Given a conjugacy class (cf. [20]) C ⊆ G, for all f, g ∈
C and for each ω ∈ Ω, |Fix(f) ∩ ω| = |Fix(g) ∩ ω|
and |Fix(f)| = |Fix(g)|.

Dixon and Wilf [9] describe a sequential algorithm for
generating orbits ω ⊆ Ω u.a.r. as follows:

(1) select a conjugacy class C ⊆ G with probability
|C||Fix(g)|

m|G| (where g is any member of the class);
(2) select u.a.r. α ∈ Fix(g) and return its orbit.

Using (a)-(c) above it is easy to show that it is equally
likely for α to be in any of the orbits.

The algorithm above can be adapted to generate unla-
belled graphs of given order. Ω is the set of all labelled
graphs with n vertices while G = Sn, where Sn is the per-
mutation group. The action of G on Ω is a mapping which,
given a graph and a permutation, relabels the vertices of
the graph according to the permutation. In this case m
is the number of unlabelled graphs gn. The number of
conjugacy classes in Sn (cf. [20]) is the number p(n) of
integer partitions of n. Throughout the paper the nota-
tion [k1, k2, . . . , kn] will be used equivalently for conjugacy
classes and partitions: g ∈ [k1, k2, . . . , kn] has k1 cycles of
length 1, k2 cycles of length 2 and so on. Sometimes π
will be used to denote conjugacy classes. The cardinality
of [k1, k2, . . . , kn] is n!

Πi(ikiki!) while |Fix(g)| = 2q(g) where

q(g) is the number of cycles of the permutation on pairs
g∗ definable in terms of g.

Step (2) can be easily solved in O(n2) sequential time.
The probabilities in Step (1) have the form Pr(π) =

2q(g)

gnΠi(ikiki!) . The selection of π ⊆ Sn is involved because

of the large number of conjugacy classes. The solution is
obtained by noticing that classes of permutations moving
only a few elements are much more likely to be chosen.
This leads to an O(n2) expected time sequential algo-
rithm.

In deriving a parallel solution the number of partitions
has to be fixed in advance (processors have to be allocated
for enumerating them). In what follows we prove that a
polynomial number of partitions can be enumerated fast
in parallel and that, using them, it is possible to devise
an RNC algorithm for generating unlabelled graphs whp.

Partitions. Integer partitions of n in descending lex-
icographic order can be enumerated with constant delay
in parallel using O(n) processors [1]. For the purposes of
this paper partitions are to be generated fast in parallel
in the following weak ascending lexicographic order (walo
for short): πj follows πi if the number of ones in πi is not
less than the number of ones in πj .

Let si(n) be the number of partitions of n whose small-
est element is i; let u(n, k) (resp. u(n, k)) be the num-
ber of partitions of n with smallest element equal to one
and having exactly (resp. at least) n − k occurrences of
it. The following lemma describes some relationships of
these numbers.

Lemma 2.1 For all n, k ∈ N+ with 1 ≤ k ≤ n,

1. p(n) ∼ eπ
√

2n/3

4n
√

3
;

2. p(n) = 1 +
∑bn/2c

i=1 si(n);

3. sk(n) = sk(n− k) + sk+1(n + 1);

4. p(n) = s1(n + 1);

5. u(n, k) = 1 +
∑bk/2c

i=2 si(k).

6. u(n, k) = 1 +
∑k

i=2 u(n, i).

RNC ALGORITHMS FOR UNIFORM GENERATION 3

7. u(n, k) = p(k).

Proof. See [23] for detailed combinatorial proofs. 2

Results 5 and 6 of Lemma 2.1 give a way to enumerate
all partitions of n having n−k ones by generating all par-
titions of k with smallest part at least 2 and then padding
them out with n − k ones on the left. The algorithm for
enumerating all partitions of n having at least n− k ones
in walo simply iterates this procedure.

Lemma 2.2

1. If k ∈ Θ(ln2 n) then there exist two constants c1 < c2

such that nc1 ≤ u(n, k) ≤ nc2 .

2. In particular if k = A ln2 n then u(n, k) ∈
Θ(nπ

√
2A/3).

Proof. If we choose 1 ≤ A ln2 n ≤ k ≤ B ln2 n then we
can claim (using Lemma 2.1)

u(n, k) = p(k) ≤ (1 + ε)
eπ
√

2k/3

4k
√

3
≤ (1 + ε)

4
√

3
nπ
√

2B/3

and

u(n, k) = p(k) ≥ (1− ε)
eπ
√

2k/3

4k
√

3
≥ (1− ε)

4
√

3
n

(
π
√

2A/3−1
)

Notice that if we impose π
√

2B/3 ≥ π
√

2A/3− 1 we get
the following constraint on B,

B ≥

(
1− 3

π

√
2
3

)
A +

3
2π2

.

The second part of the proof is a simple special case. 2

The next result describes a parallel algorithm for enu-
merating all partitions of a given number n.

Theorem 2.1 All partitions of any given number n can
be enumerated in O(n1.5) time on an EREW PRAM using
O(p(n)) processors.

Proof. Partitions of n in descending lexicographic order
can be grouped w.r.t. their largest element i. The enu-
meration problem then is solved recursively by concate-
nating this i with all the partitions of n − i with largest
element at most i.

Since for any given partition π ≡ [k1, . . . , kn] the iden-
tity

∑
i iki = n holds then only at most b

√
2nc terms ki

are non-zero so that the resulting computation tree has
depth O(

√
n) in each path and has p(n) paths. The result

follows. 2

Using Theorem 2.1 and the value for k given by Lemma
2.2 it is possible to prove the following result:

Theorem 2.2 If k = ln2 n then the first u(n, k) parti-
tions of n in walo can be enumerated in O(lg3 n) on an
EREW PRAM using O(u(n, k)) processors.

Proof. By Lemma 2.2 and Lemma 2.1 if k = 3
32π2 ln2 n

the task of enumerating in parallel u(n, k) partitions of
n in walo can be reduced to the parallel enumeration of
all partitions of i (for all i ∈ {2, . . . , k}) with smallest
element at least 2 (padded with n − i leading ones). A
slight variation of the algorithm in Theorem 2.1 can be
applied. The overall algorithm runs in O(k1.5) steps on
an EREW PRAM with nO(1) processors. 2

Selecting a Cycle Type. The parallel algorithm is
described below.

enumerate first u(n, k) partitions πj in walo;
for all u(n, k) partitions compute Pr(πj);
choose u.a.r. ξ ∈ [0, 1);
Parallel Prefix on Pr(π), results in P ;
for all j, 1 ≤ j ≤ u(n, k) in parallel do

if ((Pj−1 ≤ ξ) and (Pj > ξ))
then output(πj) and stop;

output(ERROR);

Notice that the algorithm is parameterized by the number
of partitions used.

Lemma 2.3 If gn is given and k ∈ Θ(lg2 n) then all prob-
abilities Pr(πj) = 2q(n)

gnΠi(ikiki!) for j = 1, . . . , u(n, k) are

computable in O(lg3 n) steps using O
(

n3/2u(n,k)

lg3 n

)
proces-

sors on an EREW PRAM.

Proof. q(g) = 1
2

{∑n
i=1 l(i)2ϕ(i)− l(1) + l(2)

}
(see [9])

where ϕ is the Euler totient function while l(i) =
∑

i|j kj .
In particular q(g) ≤ (n

2) for all g ∈ Sn. The algorithm for
computing the probabilities above requires the following
preprocessing steps:

(1) Compute 2j for all j = 1, . . . , (n
2). Using parallel

prefix this requires O(lg n) steps using O(n2/ lg n)
processors.

(2) Compute j! for all j = 0, 1, . . . , n (again O(lg n) steps
using O(n2/ lg n) processors).

(3) Compute ϕ(j) for all j = 1, . . . , n. Using results
in [24] this requires O(lg n) steps using O((n/ lg n)2)
processors.

The steps above can all be slowed down to run in
O(lg3) time on O

(
n3/2u(n,k)

lg3 n

)
processors. Once the pre-

processing above has been done l(i) =
∑

i|j kj , q(g)
and Πi

(
ikiki!

)
can be computed in O(lg3 n) steps using

O
(

n3/2u(n,k)

lg3 n

)
processors (using again the fact that only

O(
√

n) components of each partition are non-zero) and
the well known Brent Scheduling principle. 2

Let tn(ξ) be the random variable denoting the least in-
teger nj such that Pj > ξ in the algorithm. The following
lemma gives a useful bound on the i-th moment of tn(ξ).

4 ZITO, PU, AMOS, GIBBONS

Lemma 2.4 For all n and j ≥ 1 there exist constants
0 < c2 ≤ 2 and c3, c4 > 0 such that

E(tn(ξ)i) ≤ c2 + 2(c3i
√

n+lg2 n)−(c4n lg2 n+lg n).

Proof. It is worth remembering that E(tn(ξ)i) =∑p(n)
l=1 liPr(πl). The proof refines a claim in [9] and fol-

lows from enumeration results in [13]. 2

Now we can state and prove the main theorem concern-
ing the algorithm above.

Theorem 2.3 There is an m ∈ Θ(n) such that if gn is
given then the algorithm above runs in O(lg3 n) time with

O
(

n3/2u(n,k)

lg3 n

)
processors on an EREW PRAM with error

probability less than m−1.

Proof. We can enumerate a polynomial number of par-
titions using the algorithm of Theorem 2.2 in O(lg3 n)
parallel steps using O(u(n, k)) processors. For all j =
1, . . . ,m we can compute Pr(πj) in O(lg3 n) time using

O
(

n3/2u(n,k)

lg3 n

)
processors (by Lemma 2.3). The thresh-

olds Pj =
∑j

i=1 Pr(πi) for all j = 1, . . . , u(n, k) can be
evaluated by running parallel prefix and the appropriate
partition can be chosen accordingly in O(lg3 n) time again

using O
(

n3/2u(n,k)

lg3 n

)
processors.

Using the i-th moment expression of the Chebishev
inequality (cf. [19]), Lemma 2.4 and the hypothesis
u(n, k) ≥ nc, the error probability Pr(tn(ξ) > u(n, k))
of the algorithm can be bounded above by c2

nci and well
known powering techniques can then be applied to reduce
the error probability below any polynomial factor. 2

Notice that smaller error probability is traded off for
a larger number of processors used. Moreover by using
Θ(
√

n) partitions we can make this algorithm work effi-
ciently (in the sense of [11]).

Selecting a Graph. Given π ≡ [k1, k2, . . . , kn] ob-
tained in phase one, the second phase is accomplished by
choosing g ∈ π and then selecting u.a.r. α ∈ Fix(g).

The permutation g can be represented by an array A
of n elements such that Ai contains the address (i.e. the
index) of the element following i in its cycle (e.g. A ≡
[1, 3, 2, 5, 6, 4] corresponds to g = (1)(2 3)(4 5 6)). The
array A can be built in O(lg n) steps using O(n2/ lg n)
processors.

The construction of g∗ and the random choice of its cy-
cles to form the selected α ∈ Fix(g) involves the following
steps:

(1) build the two-dimensional matrix A∗ whose entries
are pairs of integers such that for all i, j = 1, 2, . . . , n
with i 6= j, A∗

i,j = (Ai, Aj) means g∗({i, j}) =
{Ai, Aj} = {g(i), g(j)} (a single parallel step using
n2 processors).

(2) compute the cycles of A∗ (this requires O(lg n) steps
and O(n2/ lg n) processors by standard pointer dou-
bling techniques).

(3) define α selecting A∗’s cycles with probability 1/2.

Thus we have the following result.

Theorem 2.4 Given π ⊆ Sn and g ∈ π, a graph in
Fix(g) can be selected u.a.r. in O(lg n) parallel time on
an EREW PRAM with O(n2/ lg n) processors. 2

Putting together results 2.3 and 2.4 in this section we
get an RNC algorithm for generating u.a.r. unlabelled
graphs of given order if their number is part of the input.

2.2 Avoiding the Counting.

In [27] an alternative sequential algorithm is described
which doesn’t require the number gn. The basic idea is
to use a so-called restarting procedure, i.e. a procedure
which accepts a result and outputs it only with a certain
probability (otherwise it restarts the whole probabilistic
process). If an upper bound B is known for gn a restarting
procedure can be devised to generate unlabelled graphs
u.a.r.. A second feature of this method is the use of a
different (much smaller) decomposition of Sn. This im-
plies a simplified selection procedure: probabilities can be
tabulated and equivalence classes selected accordingly. A
minor drawback is that, once a particular class has been
selected, the representative g of this class also has to be
chosen u.a.r. and this in turn will introduce some ineffi-
ciency in the algorithm.

Define R1 containing only the identical permutation
and, for 2 ≤ i ≤ n, Ri = {g : g ∈ Sn moving i objects}.
Clearly |R1| = 1, |Ri| = n!/(n − i)! for all i ≥ 2 and
Sn =

⋃n
i=1 Ri.

Lemma 2.5 Let Ri be defined as above, and let B1 =
2(n

2) and for 2 ≤ i ≤ n let Bi = 2(n
2)−H(n,i) n!

(n−i)! where

H(n, i) = i
(

n
2 −

(i+2)
4

)
. Then |Ri| ≤ Bi for all i =

1, . . . , n.

Proof. See [27]. 2

Given the following definitions

Φg = g × Fix(g), Φ =
⋃

g∈Sn

Φg, B =
n∑

i=1

Bi

the sequential generation algorithm is described by the
following steps:

(1) select Ri with probability Bi

B ;
(2) select u.a.r. g ∈ Ri;
(3) select u.a.r. α ∈ Fix(g) and output its orbit with

probability |Ri||Fix(g)|
Bi

otherwise back to step (1).

In what follows the probabilistic behaviour of this al-
gorithm is described in detail. The expected number of
restarts of this procedure is bounded above by a constant
K. Let T be the random variable which counts the num-
ber of restarts before termination.

Lemma 2.6 The random variable T has geometric dis-
tribution with parameter |Φ|/B.

RNC ALGORITHMS FOR UNIFORM GENERATION 5

Proof. The random variable T assumes values 0, 1, 2, . . .,
moreover any iteration of the algorithm is performed inde-
pendently from all the others and the success probability
at each iteration is

Pr(Su) =
∑
Φ

Pr(Su|s)P (s) =
∑
Φ

P (s)
B · P (s)

=
|Φ|
B

Su is shorthand for “success” and s for any compound
object (g, α) ∈ Φ generated by the algorithm above.
Pr(Su|s) is the expression given in step (3) of algorithm
above whereas Pr(s) = Bi

B|Ri||Fix(g)| . From the previous
remarks it follows that T has geometric distribution with
parameter |Φ|/B. 2

The parallel algorithm is based again on a conver-
sion from sequential expected time to worst case paral-
lel time whp. There is a preprocessing stage in which
all the Bi, for i = 1, . . . , n are computed. Then ρ
classes Ri1 , . . . , Riρ

, permutations gj ∈ Rij
and numbers

ξj ∈ [0, 1] are selected. If ρ is sufficiently large the proba-

bility that, for all j, ξj >
|Rij

||Fix(gj)|
Bij

is less than ρ−c for

any c > 0. Let ĵ = min
{

j : ξj ≤
|Rij

||Fix(gj)|
Bij

}
; the algo-

rithm returns the orbit corresponding to an α randomly
chosen in Fix(gĵ). The following paragraphs describe the
three main phases of the algorithm.

Notice that calculations involved in Step (3) above
can be easily performed using results of the preceding
steps and a subroutine for computing |Fix(g)| = 2q(g)

(which takes O(lg n) steps using O(n2/ lg n) processors
since q(g) ≤ n2). A graph can be output using the second
phase of algorithm in 2.1.

Preprocessing stage. B1 and for all i = 2, . . . , n
the numbers 2H(n,i) can be computed in O(lg n) steps
using O(n2/ lg n) processors. Moreover for i = 2, . . . , n
the numbers n!/(n− i)! = Πn

j=n−i+1j can be found using
a modified parallel prefix computation (starting from the
list of numbers in reverse order) in O(lg n) steps using
O(n/ lg n) processors. From these remarks it follows that
all Bi and

∑
Bi can be computed in O(lg n) steps using

O(n2/ lg n) processors. Finally parallel prefix is run on
the probabilities Bi/

∑
Bi to define the threshold values

Pi for the sampling procedure in the next paragraph.

Selecting a class. Once the probabilities involved
have been computed the selection of Ri can be done by
choosing a real number in [0, 1], copying it into an array
of size n and comparing it in parallel with the thresholds
Pi (one step using n processors).

Selecting an element. There are several algorithms
for generating permutations in parallel u.a.r. (see for in-
stance [1, 4, 25]). In [27], Wormald outlines a method for
uniformly generating permutations in Ri (i.e. permuta-
tions which move exactly i elements out of n). Combining
these two facts we obtain the following result.

Lemma 2.7 Elements of Ri can be generated u.a.r. in
O(lg n) parallel steps using O(δn) processors whp if δ ≥
c lg n for all c > 0.

Proof. δ groups of O(n) processors are allocated. Each
of them selects a random permutation of 1, 2, . . . , i (in
O(lg n) time steps using a result in [4]). Let the random
variable X denote the number of derangements in m1 tri-
als. X is binomially distributed with success probability
p = i¡/i! ∼ e−1 (where i¡ is the sub-factorial of i as de-
fined for example in [12, pp. 194–196]). Then the failure
probability is (1− p)δ which is less or equal than n−c for
any c > 0 if δ > c lg1/(1−p) n. 2

Theorem 2.5 If ρ ∈ Ω(n) then there exists a randomized
parallel algorithm for generating unlabelled graphs u.a.r.
in time O(lg2 n) using O

(
ρ n2

lg n

)
processors on an EREW

PRAM whp.

Proof. The algorithm listed after this proof solves the
problem. The time to compute every iteration of the in-
ner loop is dominated by the time to generate g ∈ Ri

u.a.r. (which is O(lg n) and O(δn) processors by Lemma
2.7) and the time to compute |Fix(g)| = 2q(g). To com-
pute |Fix(g)| the cycle type of g has to be determined
first and then 2q(g) can bew computed using a simplified
version of the algorithm in Lemma 2.3 in O(lg n) time us-
ing O(n2/ lg n) processors. The final selection of α can be
performed again as in the algorithm in 2.1. So the over-
all running time is O(lg n) using at most O

(
ρ n2

lg n + n2

lg n

)
processors.

Let M and Y be the random variables denoting respec-
tively the number of successful selections of gj ∈ Rij

and
the number of times ξj ≤ |Rij

||Fix(gj)|/Bij
. The failure

probability of the whole algorithm is:

Pr(Y = 0) =
ρ∑

x=0

Pr(Y = 0|M = x)Pr(M = x)

If ρ ∈ Ω(n) then, using Lemma 2.6

Pr(Y = 0) ≤

≤
lg n∑
x=0

Pr(M = x) +
(

1− |Φ|
B

)lg n

=
lg n∑
x=0

(
ρ
x

)
Ax(1−A)ρ−x +

(
1− |Φ|

B

)lg n

where A = 1 − (1 − p)δ is given by Lemma 2.7 and the
last expression is less than n−c for some c > 0.

An improved algorithm with polynomially small error
probability can be obtained by using the powering tech-
nique again. 2

B1 ← 2n(n−1)/2;
for all i, 2 ≤ i ≤ n in parallel do

Compute Bi;

6 ZITO, PU, AMOS, GIBBONS

B ←
∑

Bi;
for all j, 1 ≤ j ≤ ρ in parallel do

Choose ij ∈ {1, . . . , n} with Pr(i) = Bi

B ;
Generate a random permutation gj ∈ Rij

;
Choose ζj ∈ [0, 1] u.a.r.;

if (gj generated) ∧
(
ζj ≤

|Rij
||Fix(gj)|
Bij

)
then Aj ← 1;
else Aj ← 0;

ĵ = min{j | Aj 6= 0};
if defined(ĵ) then

Choose α ∈ Fix(gĵ);
Return the orbit of α; Stop;

3 Generation of Subgraphs.

In what follows a graph G = (V,E) with n vertices is
given. We describe how to generate u.a.r. non-simple
paths and spanning trees of G. The generation of span-
ning trees in this way requires the parallel generation of
random walks, this also will be described.

3.1 Uniform Generation of Non-Simple
Paths.

A non-simple path in a graph is a path which may visit
any vertex or any edge more than once. In this section
an RNC algorithm for uniformly generating polynomial
length non-simple paths based on a counter is given. Cru-
cially the problem is shown to be self-reducible (in the
sense of [21]).

Let A be the adjacency matrix of G. It is well known
(see [10] for example) that the (i, j)-th entry of Ak, the
k-th power of A, is the number of non-simple paths from
vertex i to vertex j of length k (Ak may be found in time
S(n) lg k using n3/ lg n processors where S(n) is the time
required to square an n× n matrix).

Let s, t ∈ V and let k ∈ nO(1). Moreover, for the mo-
ment at least, assume that k = 2m for some positive
integer m. A non-simple path Pst of length k from s
to t can be thought of as being recursively constructed
from two paths Psu and Put, each of length k/2 for some
u ∈ V . Clearly such a self-reducible description of Ps−t

has depth logarithmic in k and thus, for k = nO(1), has
depth O(lg n). Such a description of Pst may be used to
uniformly generate the paths of length k between s and t.

The midpoint u of Pst is chosen with probability
Ak/2

s,u A
k/2
u,t

Ak
s,t

which, of all paths of length k from s to t, is the proportion
that have u as a midpoint. Psu and Put are recursively
computed in parallel.

In what follows an array p stores the path output by
the algorithm: for 0 ≤ i ≤ k, pi is the i-th vertex in the
path (initially p0 = s and pk = t). Before an arbitrary
step vertices pa and pb may have been identified without
yet having identified pi for a < i < b. Let the algorithmic

action of choosing pi = u be URV (a, i, b). Notice that, if
the powers of A are given, using prefix sums URV (a, i, b)
takes O(lg n) parallel steps by an optimal algorithm on a
PRAM allowing concurrent reads.

The following recursive program URP (x, y) computes
the path using URV (a, i, b) as a subroutine (notice x and
y are always powers of 2).

URP (x, y)
if (y − x) > 1 then

URV (x, (x + y)/2, y);
in parallel

URP (x, (x + y)/2);
URP ((x + y)/2, y);

URP (0, k) is merely a formulation of the algorithm de-
scribed earlier.

It is easy to generalise the algorithm for any integer
value of k ∈ nO(1). In O(lg n) time a single processor may
express k as a sum of (at most a logarithmic number)
of powers of 2. In the following description the array R
stores these powers of 2 for any input value of k.

input k;
K ← k; i← 1; Mi ← 1; j ← 0;
repeat

i← i + 1; Mi ← 2Mi−1

until K < Mi;
repeat

i← i− 1;
if K ≥Mi then

j ← j + 1; Rj ←Mi; K ← K −Mi;
until K = 0;
Parallel prefix on R result in Q for 1 ≤ i ≤ j;
for i = 1 to lg R1 do

A2i ← A2i−1
A2i−1

;
for i = 2 to j do

AQi ← AQi−1APi ;
Q0 ← 0;
for i = j − 1 downto 1 do

URV (0, Qi, Qi+1)
for all i, 0 ≤ i ≤ j − 2 in parallel do

URP (Qi, Qi+1)

The first two loops compute P . The array Q stores the
positions in the array p which divide its length into por-
tions each a power of 2 in length. The vertices that are
located at these positions are chosen sequentially (these
choices require the computation of a number of Ap for
which p is not a power of 2 as shown). Finally, the last
for loop deals, in parallel, with all subsections of the gen-
erated path which are a power of 2 in length.

The running cost of the above algorithm is dominated
by the evaluation of the Ap. This takes O(lg2 n) time
using n3/ lg n processors. If these quantities are precom-
puted the complexity parameters are O(lg n) time and

RNC ALGORITHMS FOR UNIFORM GENERATION 7

n2 processors. This is yet another example in which the
so-called transitive closure bottleneck is dominant.

Theorem 3.1 A non-simple path of length k ∈ nO(1)

between two vertices s, t ∈ V can be generated u.a.r.
in O(lg2 n) time using n3/ lg n processors on an CREW
PRAM.

Proof. The algorithm above solves the problem. Let p0 =
s and pk = t. The probability that any path (p0, . . . , pk)
is generated is given by the product of the probabilities
that each of the vertices on the path is chosen to occupy
its position. After cancelling many terms, this is easily

seen to be:
Πk−1

i=0 Api,pi+1
Ak

p0,pk

= 1
Ak

p0,pk

and the result follows.
2

The algorithm may be easily modified to generate a
non-simple path of length k without specified endpoints.
The endpoints are then chosen with probability based on
the number of paths of length k that have these endpoints.
By similar means we can obtain an RNC uniform gener-
ation algorithm for non-simple paths of maximum length
k.

3.2 Random Walks and Spanning Trees.

In [2, 6] it is shown that a spanning tree T of an undirected
graph is obtained by generating a random walk starting
at a vertex s which covers the graph and including in T ,
for each node i but s, the edge {j, i} used for the first
entry to i during the walk. Using Markov chain analysis
it is possible to show that if the starting point of the walk
is chosen according to the stationary distribution of the
walk then T is uniformly distributed among all undirected
spanning trees of G. This approach can be parallelized as
described below.

3.2.1 Random Walks.

Two algorithms for the parallel generation of random
walks are described. One is based on a counter-like ap-
proach while the other is not.

In each step of a random walk in a graph, if v is the
currently visited vertex, the next vertex visited is adjacent
to v and is chosen with probability d−1

v , where dv is the
degree of v.

The same algorithmic approach taken for non-simple
paths in the previous section can be adopted if the ad-
jacency matrix, A, is replaced by the so-called transition
matrix, T with Ti,j = 1/di if j is adjacent to i (zero oth-
erwise). It is well known from Markov Chain theory (see
[18] for example) that the (i, j)-th entry of the k-th power
of T is the probability that a random walk starting at i
terminates at j after k steps. The following result is im-
mediate.

Theorem 3.2 There exists an RNC algorithm for gen-
erating a random walk of given polynomial length between
two specified endpoints. 2

Notice that the probability that any random walk
(v0, v1, v2 . . . vk) starting at v0 and ending at vk is gen-
erated is given by the product of the probabilities that
each of the vertices is chosen to occupy its position.
After cancelling many terms, this is easily seen to be
Πk−1

i=0 Tvi,vi+1
T k

v0,vk

which is analoque to the expression in 3.1.

As was the case for non-simple paths, the algorithm may
be easily modified to generate a random walk of length
k without specified endpoints. The endpoints are cho-
sen with probability based on the number of random
walks of length k that have these endpoints (in this case
Pr((v0, v1, v2, . . . , vk)) = Πk−1

i=0 Tvi,vi+1 as required by us-
ing Markov chain theory). It is also very easy to modify
the algorithm so as to generate random walks of maximum
length k. Clearly the above algorithm works within the
same complexity constraints as the parallel uniform gen-
erator of non-simple paths: O(lg2 n) time using n3/ lg n
processors.

An alternative algorithm which generates random walks
without recourse to a counter-like facility is described
next. The algorithm generates a random walk of fixed
specified length from each vertex of the graph. As de-
scribed later, the uniform generation of a spanning tree
follows from the generation of a random walk which covers
the graph. Thus a counter-like approach is not needed for
the generation of spanning trees. While the following al-
gorithm is good enough for applications like spanning tree
generation it is not as flexible as the previous approach.
For example, it does not allow the prior specification of
both endpoints of the random walk.

For a graph with n vertices, we can obtain a random
walk of length k in constant time using nk processors as
follows. In parallel, each processor Pi,j , 1 ≤ i ≤ n, 1 ≤
j ≤ k, chooses a neighbour of vertex i with probability
d−1

i and stores this in the (i, j)-th location of the array N .
For any starting vertex i visited at time t = 0, the array
N stores a random walk such that if the vertex visited at
time t, 0 ≤ t < k is vit (note: vi0 = i), then the vertex
visited at time t+1 is given by Nvi,t,t+1. This immediate
and natural algorithm was employed in [17].

3.2.2 Uniform Generation of Spanning Trees.

Given a graph G = (V,E) and a random walk starting
at s ∈ V which covers the graph, a spanning tree T of
G can be obtained by selecting for each v ∈ V − {s} the
first entry edge for v in the walk. If p is an array storing
successive vertices in the walk, the first entry edges are
obtainable by sorting lexicogaphically pairs (pi, i) so that
if i < j but pi = pj then (pi, i) precedes (pj , j). Then
the leftmost occurence of each vertex is selected and the
corresponding entry edge can be found in W using the
index component. The following instructions give a more
detailed algorithm.

input p;
for all i, 1 ≤ i ≤ k in parallel do

8 ZITO, PU, AMOS, GIBBONS

Wi,1 ← (pi−1, pi);
for all i, 0 ≤ i ≤ k in parallel do

Si,1 ← pi;
Si,2 ← i;

Sort (Si,1, Si,2);
S−1,1 ← 0; S−1,3 ← 0;
for all i, 0 ≤ i ≤ k in parallel do

if Si,1 = Si−1,1 + 1 then Si,3 ← 1
else Si,3 ← 0;

for all i, 0 ≤ i ≤ k in parallel do
if Si,3 = 1 then WSi,2,2 ← 1
else WSi,2,2 ← 0;

Prefix computation on Wi,2;
for all i, 1 ≤ i ≤ k in parallel do

if (Wi,2 > 0) ∧ (Wi,2 = Wi−1,2 + 1)
then TWi−1,2 ←Wi,1;

The dominant cost arises from the sorting operation. This
can be carried out in O(lg k) time with k processors by
the optimal algorithm of [8]. The essential question from
the complexity point of view is: how large should k be
in order that every vertex of the graph has a high chance
of being visited and such that the complexity resources
required are not too large? Several authors have studied
the so-called cover-time, CG (for example [3, 7, 19]) which
is the expected time to visit all vertices. The value for
CG is O(n lg n) for almost all graphs and O(n3) for the
worst graphs. By choosing k sufficently larger than CG

the algorithm above will generate a spanning tree u.a.r.
whp. The result is summarized in the following theorem.

Theorem 3.3 Given an undirected graph G there ex-
ists an RNC algorithm running in O(lg2 n) time using
O(n3/ lg n) processors which generates a spanning tree of
G u.a.r. whp.

Proof. We choose the starting point s of the walk with
probability ds/

∑n
i=1 di (i.e. the stationary distribution

of the walk, see [19, p. 56] for details). Let the length of
the walk be k ∈ Ω(nCG) and, using the required powers
of the transition matrix T , select the end point t of the
walk with probability equal to the proportion of random
walks of length k starting at s which end up at t. Finally
a random walk of length k from s to t and a spanning tree
T are generated as described in the previous part of this
section.

Let TG be the number of steps required to cover the
graph; by the Chebishev inequality, the error probability
of this algorithm is Pr(TG ≥ k) ≤ CG

k ≤ 1
n since k ∈

Ω(nCG). The result follows by powering again. 2

4 Conclusion and Open Problems.

In this paper two RNC algorithms for generating unla-
belled graphs u.a.r. were described. The first provides an
efficient solution to the problem if the number of graphs
is known. The second algorithm uses an upper bound on

the number of unlabelled graphs and a simplified selec-
tion procedure but, if an arbitrarily polynomially small
error probability is sought, it is a linear factor away from
efficiency. An interesting open problem is whether the
efficiency of the algorithms can be improved by a better
approximation for gn.

Moreover we showed how, given an arbitrary graph, the
following associated combinatorial structures can be gen-
erated u.a.r. by RNC algorithms: labelled subgraphs, Eu-
lerian subgraphs, non-simple paths and spanning trees. In
general, although we obtained RNC algorithms, the num-
ber of processors required is too large to be really satis-
factory. Any improved algorithm would have to avoid the
transitive closure bottleneck incurred by repeated matrix
multiplication. On the other hand, the work measure for
our algorithms is little different from known sequential
algorithms.

One specific problem for which we were unable to find
an RNC solution is that of generating uniformly (or nearly
uniformly) at random a simple path between a pair of
specified vertices. This task might have many uses as a
subprocedure in randomised algorithms for (for example)
determining the connectivity of a graph or for flow aug-
mentation in a flow network.

References

[1] S.G. Akl and I. Stojmenovic. Parallel Algorithms
for Generating Integer Partitions and Compositions.
Journal of Comb. Math. and Comb. Computing,
13:107–120, April 1993.

[2] D.J. Aldous. The Random Walk Construction
of Uniform Spanning Trees and Uniform Labelled
Trees. SIAM Journal on Discrete Mathematics,
3(4):450–464, November 1990.

[3] R. Aleliunas, R.M. Karp, R.J. Lipton, L. Lovasz, and
C. Rackoff. Random Walks, Universal Traversal Se-
quences and the Complexity of Maze Problems. 20th
Annual Symp. on Foundations of Computer Science,
pages 218–223. 1979.

[4] M.D. Atkinson and J.R. Sack. Uniform Generation of
Combinatorial Objects in Parallel. Technical Report
SCS-TR-185, Carleton University, Ottawa, Canada,
January 1991.

[5] M.D. Atkinson and J.R. Sack. Uniform Generation
of Binary Trees in Parallel. Journal of Parallel and
Distributed Computing, 23:101–103, 1994.

[6] A.Z. Broder. Generating Random Spanning Trees.
30th Symp. on Foundations of Computer Science,
pages 442–447. 1989.

[7] A.Z. Broder and A.R. Karlin. Bounds on the Cover
Time. Journal of Theoretical Probability, 2(1):101–
120, 1989.

RNC ALGORITHMS FOR UNIFORM GENERATION 9

[8] R. Cole. Parallel Merge Sort. 27th Symp. on Foun-
dations of Computer Science, pages 511–516. 1986.

[9] J.D. Dixon and H.S. Wilf. The Random Selection
of Unlabelled Graphs. Journal of Algorithms, 4:205–
213, 1983.

[10] A.M. Gibbons. Algorithmic Graph Theory. Cam-
bridge University Press, 1985.

[11] A.M. Gibbons and W. Rytter. Efficient Parallel Al-
gorithms. Cambridge University Press, 1988.

[12] R.L. Graham, D.E. Knuth, and O. Patashnik. Con-
crete Mathematics. Addison-Wesley, 1989.

[13] F. Harary and E.M. Palmer. Graphical Enumeration.
Academic Press, 1973.

[14] M. Jerrum. Uniform Sampling Modulo a Group of
Symmetries Using Markov Chain Simulation. Tech-
nical Report ECS-LFCS-94-288, University of Edin-
burgh, 1994.

[15] M. Jerrum and A. Sinclair. Fast Uniform Generation
of Regular Graphs. Theoretical Computer Science,
73:91–100, 1990.

[16] M.R. Jerrum, L.G. Valiant, and V.V. Vazirani. Ran-
dom Generation of Combinatorial Structures from a
Uniform Distribution. Theoretical Computer Science,
43(2–3):169–188, 1986.

[17] D.R. Karger, N. Nisan, and M. Parnas. Fast
Connected Components Algorithms for the EREW
PRAM. 4th Symp. on Parallel Algorithms and Ar-
chitectures, 1992.

[18] J.G. Kemeny and J.L. Snell. Finite Markov Chains.
Springer-Verlag, 1976.

[19] S. Naor. Probabilistic Methods in Computer Science.
Lecture Notes - Technion (Israel), 1992.

[20] J.J. Rotman. The Theory of Groups: An Intro-
duction. Advanced Mathematics. Allyn and Bacon,
1965.

[21] C.P. Schnorr. Optimal Algorithms for Self-Reducible
Problems. 3rd International Colloquium on Au-
tomata, Languages and Programming, pages 322–
337, 1976.

[22] A. Sinclair. Algorithms for Random Generation and
Counting: a Markov Chain Approach. Birkhäuser,
1993.

[23] A. Slomson. An Introduction to Combinatorics.
Chapman and Hall, 1991.

[24] J. Sorenson and I. Parberry. Two Fast Parallel
Prime Number Sieves. Information and Computa-
tion, 114:115–130, 1994.

[25] I. Stojmenovic. On Random and Adaptive Par-
allel Generation of Combinatorial Objects. Inter-
nat. Journal of Computer Mathematics, 42:125–135,
1992.

[26] G. Tinhofer. Generating Graphs Uniformly at Ran-
dom. Computing, 7:235–255, 1990.

[27] N.C. Wormald. Generating Random Unlabelled
Graphs. SIAM Journal on Computing, 16(4):717–
727, 1987.

