
Modularizing Design Patterns with Aspects:
A Quantitative Study

Alessandro Garcia

Cláudio Sant’Anna Eduardo Figueiredo
 Uirá Kulesza Carlos Lucena Arndt von Staa

Software Engineering Laboratory - Computer Science Department
Pontifical Catholic University of Rio de Janeiro – PUC-Rio

{afgarcia; claudio; emagno; uira; lucena, arndt}@les.inf.puc-rio.br

ABSTRACT
Design patterns offer flexible solutions to common problems in
software development. Recent studies have shown that several
design patterns involve crosscutting concerns. Unfortunately,
object-oriented (OO) abstractions are often not able to modularize
those crosscutting concerns, which in turn decrease the system
reusability and maintainability. Hence, it is important verifying
whether aspect-oriented approaches support improved
modularization of crosscutting concerns relative to design
patterns. Ideally, quantitative studies should be performed to
compare OO and aspect-oriented implementations of classical
patterns with respect to important software engineering attributes,
such as coupling and cohesion. This paper presents a quantitative
study that compares aspect-based and OO solutions for the 23
Gang-of-Four patterns. We have used stringent software
engineering attributes as the assessment criteria. We have found
that most aspect-oriented solutions improve separation of pattern-
related concerns, although only 4 aspect-oriented implementations
have exhibited significant reuse.

Keywords
Design patterns, aspect-oriented programming, metrics.

1. INTRODUCTION
Since the introduction of the first software pattern catalog
containing the 23 Gang-of-Four (GoF) patterns [5], design
patterns have quickly been recognized to be important and useful
in real software development. A design pattern describes a proven
solution to a design problem with the goal of assuring reusable
and maintainable solutions. Patterns assign roles to their
participants, which define the functionality of the participants in
the pattern context. However, a number of design patterns involve
crosscutting concerns in the relationship between the pattern roles
and participant classes in each instance of the pattern [9]. The
pattern roles often crosscut several classes in a software system.
Moreover, recent studies [7, 8, 9] have shown that object-oriented
abstractions are not able to modularize these pattern-specific
concerns and tend to lead to programs with poor modularity. In
this context, it is important to systematically verify whether

aspect-oriented approaches [13, 19] support improved
modularization of the crosscutting concerns relative to the
patterns.
To the best of our knowledge, Hannemann and Kiczales [9] have
developed the only systematic study that explicitly investigated
the use of aspects to implement classical design patterns. They
performed a preliminary study in which they developed and
compared Java [11] and AspectJ [2] implementations of the GoF
patterns. Their findings have shown that AspectJ implementations
improve the modularity of most patterns. However, these
improvements were based on some attributes that are not well
known in software engineering, such as composability and
(un)pluggability. Moreover, this study was based only on a
qualitative assessment and empirical data is missing. To solve this
problem, this previous study should be replicated and
supplemented by quantitative case studies in order to improve our
knowledge body about the use of aspects for addressing the
crosscutting property of design patterns.
This paper complements Hannemann and Kiczales’ work [9] by
performing quantitative assessments of Java and AspectJ
implementations for the 23 GoF patterns. Our study was based on
well-known software engineering attributes such as separation of
concerns, coupling, cohesion, and size. We have found that most
aspect-oriented solutions improved the separation of pattern-
related concerns. In addition, we have found that:

(i) the use of aspects helped to improve the coupling and
cohesion of some pattern implementations;

(ii) the “aspectization” of design patterns reduced the number
of attributes of 10 patterns, and decreased the number of
operations and respective parameters of 12 patterns;

(iii) only 4 design patterns implemented in AspectJ have
exhibited significant reuse;

(iv) the relationships between pattern roles and application-
specific concerns are sometimes so intense that it seems not
trivial to separate those roles in aspects; and

(v) the use of coupling, cohesion and size measures was helpful
to assist the detection of opportunities for aspect-oriented
refactoring of design patterns.

The remainder of this paper is organized as follows. Section 2
presents our study setting, while giving a brief description of
Hannemann and Kiczales’ study. Section 3 presents the study
results with respect to separation of concerns, and Section 4
presents the study results in terms of coupling, cohesion and size
attributes. These results are interpreted and discussed in Section 5.
Section 6 introduces some related work. Section 7 includes some
concluding remarks.

2. STUDY SETTING
This section describes the configuration of our empirical study.
This study supplements the Hannemann and Kiczales work that is
presented in Section 2.1. Section 2.2 uses the Mediator pattern to
illustrate the crosscutting property of some design patterns.
Section 2.3 introduces the metrics used in the assessment process.
Section 2.4 describes our assessment procedures.

2.1 Hannemann & Kiczales’ Study
Several design patterns exhibit crosscutting concerns [9]. In this
context, Hannemann and Kiczales (HK) have undertaken a study
in which they have developed and compared Java [11] and
AspectJ [2] implementations of the 23 GoF design patterns [5].
They claim that programming languages affect pattern
implementation. Hence it is natural to explore the effect of aspect-
oriented programming techniques on the implementation of the
GoF patterns. For each of the 23 GoF patterns they developed a
representative example that makes use of the pattern, and
implemented the example in both Java and AspectJ.

Design patterns assign roles to their participants; for example, the
Mediator and Colleague roles are defined in the Mediator pattern.
A number of GoF patterns involve crosscutting structures in the
relationship between roles and classes in each instance of the
pattern [9]. For instance, in the Mediator pattern, some operations
that change a Colleague must trigger updates to the corresponding
Mediator; in other words, the act of updating crosscuts one or
more operation in each Colleague in the pattern.

Two kinds of pattern roles are identified in the HK study, which
are called defining and superimposed roles. A defining role
defines a participant class completely. In other words, classes
playing a defining role have no functionality outside the pattern.
The unique role of the Façade pattern is an example of defining
role. A superimposed role can be assigned to participant classes
that have functionality outside of the pattern. An example of
superimposed role is the Colleague role of the Mediator pattern,
since a participant class playing this role usually has functionality
not related to the pattern. These kinds of roles are used by the
authors to analyze the crosscutting structure of design patterns.

In the HK study, the goal of the AspectJ implementations is to
modularize the pattern roles. The authors have reported that
modularity improvements were reached in 17 of the 23 cases, and
12 aspect-oriented pattern implementations resulted in improved
reuse. The degree of improvement has varied. The next subsection
discusses these improvements and crosscutting pattern structures
in terms of the Mediator pattern.

2.2 Example: The Mediator Pattern
The intent of the Mediator pattern is to define an object that
encapsulates how a set of objects interact [5]. The Mediator
pattern defines two roles – Mediator and Colleague – to their
participant classes. The Mediator role has the responsibility for
controlling and coordinating the interactions of a group of objects.
The Colleague role represents the objects that need to
communicate with each other. Hannemann and Kiczales [9]
present a simple example of the Mediator pattern in the context of
a Java Swing application. In such a system the Mediator pattern is
used to manage the communication between two kinds of
graphical user interfaces components. A Label class plays the

Mediator role of the pattern and a Button class plays the
Colleague role.
Figure 1 depicts the class diagram of the OO implementation of
the Mediator pattern. The interfaces GUIMediator and
GUIColleague are defined to realize the roles of the Mediator
pattern. Specific application classes must implement these
interfaces based on the role that they need to play. In the example
presented, the Button class implements the GUIColleague
interface. The Label class implements the interface
GUIMediator in order to manage the actions to be executed
when buttons are clicked. Figure 1 also illustrates how the OO
implementation of the Mediator pattern is spread across the code
of the application classes. The shadowed attributes and methods
represent code necessary to implement the Colleague role of the
Mediator pattern in the application context.

Figure 1. The OO Design of the Mediator Pattern

Figure 2 illustrates the source code of the Button class. The
necessary changes to implement the Colleague role are shadowed.
The Button class implements the GUIColleague interface by
defining an attribute to reference a mediator (line 4) and the
respective setMediator() method (line 6-8). Moreover, the
clicked() method of the Button class defines the functionality
to communicate with the mediator (line 21).
01 public class Button extends JButton
02 implements GUIColleague {
03
04 private GUIMediator mediator;
05
06 public void setMediator(GUIMediator mediator){
07 this.mediator = mediator;
08 }
09 public Button(String name) {
10 super(name);
11 this.setActionCommand(name);
12 this.addActionListener(
13 new ActionListener() {
14 public void actionPerformed(
15 ActionEvent e)
16 clicked();
17 }
18 });
19 }
20 public void clicked() {
21 mediator.colleagueChanged(this);
22 }
23 }

Figure 2. The Button class of the OO implementation
In their study, Hannemann and Kiczales identified the common
part of several design patterns and isolated their implementation
by defining “abstract reusable aspects”. These aspects are reused
and extended in order to instantiate the pattern for a specific
application. In the AspectJ solution of the Mediator pattern, for
example, the code for implementing the pattern is textually
localized in two categories of aspects: (i) the
MediatorProtocol abstract aspect that encapsulates the
common part to all potential instantiations of the pattern; and (ii)

concrete extensions of the abstract aspect that instantiate the
pattern for specific contexts.
01 public abstract aspect MediatorProtocol {
02
03 protected interface Mediator { }
04
05 protected abstract void notifyMediator
06 (Colleague c, Mediator m);
07
08 protected interface Colleague { }
09
10 private WeakHashMap mappingColleagueToMediator =
11 new WeakHashMap();
12
13 private Mediator getMediator(Colleague c){
14 Mediator mediator = (Mediator)
15 mappingColleagueToMediator.get(c);
16 return mediator;
17 }
18
19 public void setMediator(Colleague c, Mediator m){
20 mappingColleagueToMediator.put(c, m);
21 }
22
23 protected abstract pointcut change(Colleague c);
24
25 after(Colleague c): change(c) {
26 notifyMediator(c, getMediator(c));
27 }
28 }

Figure 3. The MediatorProtocol aspect
Figure 3 presents the reusable MediatorProtocol abstract
aspect. Code related to the Colleague role is shadowed. Both roles
are realized as protected inner interfaces named Mediator and
Colleague (line 3 and line 8, respectively). Concrete extensions
of the MediatorProtocol aspect assign the roles to particular
classes. Implementation of the mapping from Colleague to
Mediator is realized using a weak hash map that stores for each
colleague its respective mediator (line 10-11). Changes to the
Colleague-Mediator mapping can be realized via the public
setMediator() method (line 19-21). The MediatorProtocol
aspect also defines an abstract pointcut named change and an
abstract method named notifyMediator(). The former
specifies points in the execution (join points) of colleague objects

where a communication with the mediator object needs to be
established. The latter defines the functionality to be executed by
a Mediator object when a change to a Colleague occurs. These
abstract elements must be concretized by the
MediatorProtocol subaspects. Finally, the communication
protocol between Mediator and Colleague is implemented by an
after advice (line 25-27) in terms of the change pointcut and the
notifyMediator() method.
In the AspectJ implementation of the Mediator pattern, all code
pertaining to the relationship between Mediators and Colleagues
is moved into aspects. In this way, code for implementing the
pattern is textually localized in aspects, instead of being spread
across the participant classes. Moreover, the abstract aspect code
can be reused by all pattern instances.

2.3 The Metrics
In our study, a suite of metrics for separation of concerns,
coupling, cohesion and size [17] was selected to evaluate
Hannemann and Kiczales’ pattern implementations. These metrics
have already been used in three different studies [6, 7, 14]. Some
of them have been automated in the context of a query-based tool
for the measurement and analysis of aspect-oriented programs [1].
This metrics suite was defined based on the reuse and refinement
of some classical and OO metrics [3, 4]. The original definitions
of the OO metrics [3] were extended to be applied in a paradigm-
independent way, supporting the generation of comparable
results.
The metrics suite also encompasses new metrics for measuring
separation of concerns. The separation of concerns metrics
measure the degree to which a single concern in the system maps
to the design components (classes and aspects), operations
(methods and advices), and lines of code. Table 1 presents a brief
definition of each metric, and associates them with the attributes
measured by each one. Refer to [6, 17] for further details about
the metrics.

In order to better understand the separation of concerns metrics,

Table 1. The Metrics Suite

Attributes Metrics Definitions

Concern Diffusion over
Components (CDC)

Counts the number of classes and aspects whose main purpose is to contribute to the
implementation of a concern and the number of other classes and aspects that access them.

Concern Diffusion over
Operations (CDO)

Counts the number of methods and advices whose main purpose is to contribute to the
implementation of a concern and the number of other methods and advices that access them.

Separation
of Concerns

Concern Diffusions over LOC
(CDLOC)

Counts the number of transition points for each concern through the lines of code. Transition
points are points in the code where there is a “concern switch”.

Coupling Between
Components (CBC)

Counts the number of other classes and aspects to which a class or an aspect is coupled.
Coupling

Depth Inheritance Tree (DIT) Counts how far down in the inheritance hierarchy a class or aspect is declared.

Cohesion Lack of Cohesion in
Operations (LCOO)

Measures the lack of cohesion of a class or an aspect in terms of the amount of method and
advice pairs that do not access the same instance variable.

Lines of Code (LOC) Counts the lines of code.

Number of Attributes(NOA) Counts the number of attributes of each class or aspect. Size
Weighted Operations per

Component (WOC)
Counts the number of methods and advices of each class or aspect and the number of its
parameters.

consider the object-oriented example of the Mediator pattern,
shown in Figure 1 (Section 2.2). In that example, there is code
related to the Colleague role in the GUIColleague interface and
in the shadowed methods of the Button class, i.e., this concern is
implemented by one interface and one class. Therefore, the value
of the Concern Diffusion over Components metric (CDC) for this
concern is two. Similarly, the value of the Concern Diffusion over
Operations metric (CDO) for the Colleague role is three, since
this concern is implemented by the one method of the
GUIColleague interface and the two shadowed methods of the
Button class. Figure 2 shows the shadowing of the Button class
in detail.
The metric Concern Diffusion over Lines of Code (CDLOC)
allows to measure the number of transition points for each
concern through the lines of code. A transition point is the point
in the code where there is a “concern switch”. CDLOC is
measured by shadowing lines of code in the application classes
related to the specific concern that you are interested to
investigate. After that, it is necessary to count the number of
transitions points through the source code of every shadowed
class. In the example presented in Figure 2, the Button class was
shadowed in order to make it possible to measure the value of
CDLOC for the Colleague role concern. The value of CDLOC is
four in that case, since that is the number of transition points
through the source code of the Button class.

2.4 Assessment Procedures
In order to compare the two implementations of the patterns, we
had to ensure that both versions of each pattern were
implementing the same functionalities. Therefore, some minor
modifications were realized in the code of the patterns. Examples
of such kinds of changes were: (i) to add or remove a
functionality – a method, a class or an aspect – in the aspect-
oriented (or object-oriented) implementation of the pattern in
order to ensure the equivalence between the two versions; we
decided to add or remove a functionality to the implementation by
evaluating its relevance for the pattern implementation; and (ii) to
ensure that both versions were using the same coding styles.

Afterwards, we changed both Java and AspectJ implementation of
the 23 GoF patterns to add new participant classes to play pattern
roles. For instance, in the Mediator pattern implementation, four
classes playing the role of Colleague were added, as the Button
class in Figure 1 (Section 2.2); furthermore, four classes playing
the role of Mediator were added, as the Label class in Figure 1.
These changes were introduced because the HK implementations
encompass few classes per role (in most cases only one). Hence
we have decided to add more participant classes in order to
investigate the pattern crosscutting structure. Table 2 presents the
roles of each studied pattern and the participant classes introduced
to each pattern implementation example. Finally, we have applied
the chosen metrics to the changed code. We analyzed the results
after the changes, comparing with the results gathered from the
original code (i.e. before the changes).

In the measurement process, the data was partially gathered by
the CASE tool Together 6.0 [20]. It supports some metrics: LOC,
NOA, WOC (WMPC2 in Together), CBC (CBO in Together),
LCOO (LOCOM1 in Together) and DIT (DOIH in Together). The
data collection of the separation of concerns metrics (CDC, CDO,
and CDLOC) was preceded by the shadowing of every class,

interface and aspect in both implementations of the patterns. Their
code was shadowed according to the role of the pattern that they
implement. Likewise the HK study, we treated each pattern role
as a concern, because the roles are the primary sources of
crosscutting structures. Figures 2 and 3 exemplify the shadowing
of some classes and aspects in both Java and AspectJ
implementations of the Mediator pattern by considering the
Colleague role of this pattern. After the shadowing, the data of the
separation of concerns metrics (CDC, CDO, and CDLOC) was
manually collected. Due to space limitation, this paper focuses on
the description of the more relevant results. The complete
description of the data gathered is reported elsewhere [16].

Table 2. The Design Patterns and Respective Changes

Design Pattern Introduced Changes
Abstract Factory 4 Factories
Adapter 4 Adaptee Methods
Bridge 2 Abstractions and 2 Implementors
Builder 4 Builders
Chain of Responsibility (CoR) 4 Handlers
Command 4 Commands and 2 Invokers
Composite 2 Composites and 2 Leafs
Decorator 4 Decorators
Façade No Change
Factory Method 4 Creators
Flyweight 4 Flyweights
Interpreter 4 Expressions
Iterator 2 Iterators and 2 Aggregates
Mediator 4 Mediators and 4 Colleagues
Memento 2 Mementos and 2 Originators
Observer 4 Observers and 4 Subjects
Prototype 4 Prototypes
Proxy 4 Proxies and 2 Real Subjects
Singleton 4 Singletons and 4 subclasses
State 4 States
Strategy 4 Strategies and 4 Contexts
Template Method 4 Concrete Classes
Visitor 4 Elements and 2 Visitors

3. SEPARATION OF CONCERNS
This Section and Section 4 present the results of the measurement
process. The data have been collected based on the set of defined
metrics (Section 2.3). The goal is to describe the results through
the application of the metrics before and after the selected
changes (Section 2.4). The analysis is broken into two parts. This
section focuses on the analysis of to what extent the aspect-
oriented (AO) and object-oriented (OO) solutions provide support
for the separation of pattern-related concerns. Section 4 presents
the results with respect to coupling, cohesion, and size. The
discussion about the interplay among all the results is
concentrated in Section 5. Section 5 also discusses the
relationships between our study’s results and the conclusions
obtained in the HK study.
Graphics are used to represent the data gathered in the
measurement process. The resulting graphics present the gathered
data before and after the changes applied to the pattern
implementation (Section 2.4). The graphic Y-axis presents the
absolute values gathered by the metrics. Each pair of bars is
attached to a percentage value, which represents the difference
between the AO and OO results. A positive percentage means that
the AO implementation was superior, while a negative percentage
means that the AO implementation was inferior. These graphics

support an analysis of how the introduction of new classes and
aspects affect both solutions with respect to the selected metrics.
The results shown in the graphics were gathered according to the
pattern point of view; that is, they represent the tally of metric
values associated with all the classes and aspects for each pattern
implementation.
For separation of concerns, we have verified the separation of
each role of the patterns on the basis of the three metrics defined
for this purpose (Section 2.3). For example, the isolation of the
Mediator and Colleague roles was analyzed in the
implementations of the Mediator pattern, while the
modularization of the Context and State roles was investigated in
the implementations of the State pattern. According the data
gathered, the investigated patterns can be classified into 3 groups.
Group 1 represents the patterns that the aspect-oriented solution
provided better results (Section 3.1). Group 2 represents the
patterns in which the OO solutions have shown as superior
(Section 3.2). Group 3 involves the patterns in which the use of
aspects did not impact the results (Section 3.3).

3.1 Group 1: Increased Separation
The first group encompasses all the patterns that aspect-oriented
implementations exhibited better separation of concerns. This
group includes the following list of 14 patterns: Decorator,
Adapter, Prototype, Visitor, Proxy, Singleton, Mediator,
Composite, Observer, Command, Iterator, CoR (Chain of
Responsibility), Strategy, and Memento. This list is decreasingly
ordered by the measures for separation of concerns, starting from
the design pattern that presents the best results for the aspect-
oriented solution, the Decorator pattern.

Figures 5 and 6 depict the overall results for the AO and OO
solutions based on the metrics. The figures only present a
representative set of the patterns in this group. Note that the
graphics present the measures before and after the execution of
the changes. Figure 5a presents the CDC results, i.e. to what
extent the pattern roles are isolated through the system
components in both solutions. Figure 5b presents the CDO results,
the degree of separation of the pattern roles through the system
operations. Figure 6 illustrates the CDLOC measures – the tally of
concern switches (transition points) through the lines of code.

Most of these graphics show significant differences in favor of the
aspect-based solutions. These solutions require fewer components
and operations than OO solutions to express these concerns. In
addition, they require fewer switches between role concerns, and
between role concerns and application concerns. In fact, these
patterns were ranked with good “locality” in the HK’s analysis
[9]. An analysis of Figures 5 and 6 shows that the best
improvements come primarily from isolating the superimposed
roles of the patterns (Section 2.1) in the aspects. For example, the
definition of the Component role required 8 classes, while only 2
modular units were necessary to encapsulate this concern before
the changes (Figure 5a). It is equivalent to 67% in favor of the
aspect-oriented design for the Decorator pattern. In fact, most
superimposed roles were better modularized in the AO solution,
such as Mediator (8 against 2), Colleague (7 against 3), and
Handler (9 against 3). The results were similar to the separation of
concerns over operations (Figure 5b) and lines of code (Figure 6).
In addition, we can also observe that good results are achieved on
the modularization of some defining roles, such as Decorator and
Colleague.

After a careful analysis of Figures 5 and 6, we come to the
conclusion that after the changes most AO implementations
isolated the roles 25% or higher than the OO implementations.

0

2

4

6

8

10

12

Component Decorator Mediator Colleague Handler Memento Originator

N
um

be
r o

f C
om

po
ne

nt
s

N
um

be
ro

f C
om

po
ne

nt
s

AO
OO
AO
OO

Decorator
Pattern

Mediator
Pattern

CoR
Pattern

Memento
Pattern

+67%

+80%

+50%

0%

0%

+57%

+40% -20%

+29%

+25%

-33%

Before After Before After Before After Before After Before After Before After Before After

+67%

0%

+67%

0

5

10

15

20

Component Decorator Mediator Colleague Handler Memento Originator

N
um

be
r o

f O
pe

ra
tio

ns
N

um
be

ro
f O

pe
ra

tio
ns

AO
OO
AO
OO

Decorator
Pattern

Mediator
Pattern

Memento
Pattern

+75%

+88%

+71%

0%

0%

+67%
-46%

-22%

+6%
+60%

-40%

Before After Before After Before After Before After Before After Before After Before After

+67%
-14%

-29%CoR
Pattern

 (a) Concern Diffusion over Components (b) Concern Diffusion over Operations
Figure 5. Separation of Concerns over Components and Operations (Group 1)

0

5

10

15

20

25

30

35

Component Decorator Mediator Colleague Handler Memento Originator

N
um

be
r o

f T
ra

ns
iti

on
 P

oi
nt

s
N

um
be

ro
f T

ra
ns

iti
on

Po
in

ts AO
OO
AO
OO

Mediator
Pattern

Memento
Pattern

+78%

+25%

+85%

+22%

0%

0%

Before After Before After Before After Before After Before After Before After Before After

+67%
0%

+92%CoR
Pattern

+88% Decorator
Pattern

+50%+50% 0%

+75%

50

Figure 6. Concern Diffusion over LOC (Group 1)

There are some cases where the difference is even bigger - the
superiority of aspects exceeds 70%. For the Component and
Colleague roles, the aspect-oriented solutions are even better
before of incorporation of new components. This problem
happens in the OO solution because several operation
implementations are intermingled with role-specific code. For
example, the code associated with the control and coordination of
the inter-object interactions (Mediator pattern – Section 2.2) is
amalgamated with the basic functionality of the application
classes. It increases the number of transition points and the
number of components and operations that deal with pattern-
specific concerns.

The results also show that the overall performance of the AO
solutions gradually improves as new components are introduced
into the system. It means that as more components are included
into an OO system, more role-related code is replicated through
the system components. Thus a gradual improvement takes place
in the aspect-oriented solutions of the patterns. The series of small
introduced changes (Section 2.4) affects negatively the
performance of the OO solution and positively the AO solution.
The changes lead to the degradation of the OO modularization of
the pattern-related concerns. This observation provides evidence
of the effectiveness of aspect-oriented abstractions for segregating
crosscutting structures for the patterns in this group.

Among the list of 14 patterns mentioned above, the 6 first ones
are the patterns that achieved the best results − Decorator,
Adapter, Prototype, Visitor, Proxy, and Singleton. These patterns
have several similar characteristics. They presented superior
results for the AO solution both before and after the introduced
changes. It means that the AO implementations of these patterns
are superior even in simple pattern instances, i.e. circumstances
where there are few application classes playing the pattern roles.
In fact, the role-specific concerns are easier to separate in these
patterns because the AspectJ constructs directly simplify the
implementation of most of these patterns, namely Decorator,
Adapter, Visitor, and Proxy. As a result, the implementation of
these patterns completely disappears [9], requiring fewer classes
and operations to address the isolation of the roles. All these 6
patterns have another common characteristic: they either involve
no reusable aspect (Decorator and Adapter) or involve very
simple reusable aspects (Prototype, Visitor, Proxy, Singleton).

The Decorator pattern is the representative of this kind of patterns
in Figures 5 and 6. Note that the AO solution for this pattern
exhibits meaningful advantages on the modularization of both
roles from all the perspectives: numbers of components (CDC),
operations (CDO), and transition points (CDLOC). One additional
observation is that these numbers remain unaltered as the change
scenarios are applied to the aspect-oriented implementation. For
example, the absolute number of operations and components for
specifying the Component role is the same before and after the
scenarios in the AO design. The changes do not affect the
measures. It demonstrates how well the aspect-oriented
abstractions localize these pattern roles. In addition, after the
scenarios are applied, the absolute difference on the measures
between AO and OO implementations tends to be higher in favor
of the AO solutions than before the change scenarios.

The following 5 patterns in Group 1 − Mediator, Composite,
Observer, Command, and Iterator − expressed similar results.

They manifested improved separation of concerns only after the
introduced changes. In general, the use of aspects led to inferior
or equivalent results before the application of the changes, but led
to substantially superior outcomes after the changes. It happens
because the AO implementations of these patterns involve generic
aspects that are richer; they encapsulate more operations and LOC
than the simple reusable aspects defined for the 4 patterns
mentioned before in this group. In this way, the benefit of
improved locality is observed in the AO solutions of these
patterns only when complex instances of the patterns are used.
The more pattern code can be captured in a reusable aspect, the
less has to be duplicated in the participant classes.

The Mediator pattern represents these 5 patterns in Figures 5 and
6. Note that after the changes, the isolation of the Mediator and
Colleague roles with aspects was 60% higher than the OO
solution for all the metrics. This is an interesting fact given that in
these cases the values were equivalent in both OO and AO
solutions before the implementation of the changes. The
definition of the Colleague role required 12 classes, while only 4
aspects were able to encapsulate this concern. This result was
similar in the other 4 patterns, i.e. absolute number of components
(CDC) did not vary after the modifications in the aspect-oriented
solutions. This reflects the suitability of aspects for the complete
separation of the roles associated with the 5 patterns. When new
classes are introduced, they do not need to implement pattern-
related code.

Finally, there were 3 AO solutions in this group (CoR, Strategy,
and Memento) that, although provided overall improvements in
the isolation of the roles, presented some negative results in terms
of a specific measure. Figures 5 and 6 illustrate 2 examples: CoR
and Memento. The AO implementation of CoR has fewer
components (Figure 5a) and transition points (Figure 6) both
before and after the changes. However, it has more operations
involved in the implementation of the pattern role (Figure 5b).
The AO solution of Memento isolates well the Memento role for
most the metrics (CDC and CDO). However, although the
implementation of the Originator role with aspects led to fewer
transition points (Figure 6), the same observation does not happen
to number of operations and components (Figure 5).

3.2 Group 2: Decreased Separation
The second group includes design patterns in which AO
implementations exhibited decreased separation of concerns. This
group includes 6 patterns, namely Template Method, Abstract
Factory, Factory Method, Bridge, Builder, and Flyweight. Figure
7 depicts the CDC, CDO and CDLOC measures of separation of
concerns for the pattern implementations in this group.

Although some measures presented similar results for the OO and
AO solutions of these patterns, several measures presented
differences in favor of OO implementations. As the pattern roles
are already nicely realized in OO, these patterns could not be
given more modularized aspect-oriented implementations. Thus
the use of aspects does not bring apparent gains to these pattern
implementations regarding to separation of concerns. On the
contrary, the OO implementations, in general, provided better
results, mainly with respect to the CDC measures (Figure 7a).

The main reason for this result is that all the patterns in this
group, except the Flyweight, are structurally similar: they have an
additional aspect to replace the abstract class mentioned in the

GoF solution by interfaces without losing the ability to associated
(default) implementations to their methods [9]. For example, the
Template Method pattern has an additional aspect that attaches
the template method and its implementation to a component that
plays the AbstractClass role, thereby allowing it to be an
interface. Although this kind of aspects makes the patterns more
flexible, it does not improve the separation of the pattern-specific
concerns.

The Flyweight pattern is an exception in this group. The OO
design provided better results than the AO design for all the
measures. The superiority of the OO solution reaches 33% for
most of the measures. It happens because the AO solution does
not help to separate a crosscutting structure relative to the pattern
roles. In fact, the classes playing the Flyweight role are similar in
both implementations. The aspects have no pointcuts and advices,
and the generic FlyweightProtocol aspect could be
implemented as a simpler class. As a result, the additional
components and operations introduced by the AO solution
decreases the separation of concerns since the roles
implementation are scattered over more design elements.

3.3 Group 3: No Effect
This group includes 3 patterns: Façade, Interpreter, and State.
Overall, no significant difference was detected in favor of a
specific solution; the results were mostly similar for the AO and
OO implementations of these patterns. The AO and OO
implementations of the Façade pattern are identical. There were
some minor differences, as in the State pattern, but they were
irrelevant (less than 5%). The outcomes of this group were highly
different from the ones obtained in Group 1 (Section 3.1) because
the OO implementations of the patterns do not exhibit significant
crosscutting structures. The role-related code in these patterns
affects a very small number of methods.

4. COUPLING, COHESION, AND SIZE
This section presents the coupling, cohesion and size measures.
We used graphics to present the data obtained before and after the
systematic changes (Section 2.4), similarly to the previous
section. The results represent the tally of metric values associated
with all the classes and aspects for each pattern implementation,
except the DIT metric. The DIT results represent the maximum
value of this metric for all the implementation. The patterns were
classified into 5 groups according to the similarity in their
measures.

4.1 Group 1: Better Results for AO
The first group includes the Composite, Observer, Adapter,
Mediator and Visitor patterns, which presented meaningful
improvements with respect to the attributes coupling, cohesion,
and size in the AO solution. In some cases, the improvement was
higher than 50%. Figure 8 shows the graphics with results for the
Mediator and Visitor patterns, which represent this group.

In the AO implementation of the Mediator pattern, the major
improvements were achieved in the CBC, LCOO, NOA and WOC
measures. The use of aspects led to a 17% reduction of CBC in
relation to the OO design. This occurs because the Colleague
classes are unaware of the Mediator class in the AO design
(Section 2.2), while in the OO implementation each Colleague
holds a reference to the Mediator. Thus, all the Colleague classes
are coupled to the Mediator class. In the same way, the AO
implementation of the Visitor pattern led to a 32% reduction after
the changes. The reason is that the Visitor classes are coupled to
all the Element classes in the OO implementation. These
couplings are not necessary in the AO solution.

Note that inheritance was not affected by the use of aspects. The
OO solution of the Mediator pattern used the interface
implementation to define the Colleague and Mediator
participants. The AO solution is based on specialization to define
a concrete Mediator protocol (Section 2.2). As a result, the DIT
was two for both solutions.

The AO solution was superior to the OO solution in terms of
cohesion. The cohesion in the AO implementation was 80%
higher than in the OO implementation because the Colleague and
Mediator classes in the OO solution implement role-specific
methods, which, in turn, are not related to the main functionality
of the classes. An example is the setMediator() method, which
is part of the Colleague role and is responsible for setting the
Mediator reference (see Figure 1). The aspect-oriented design
localizes these methods in the aspects that implement the roles,
increasing the cohesion of both classes and aspects. Likewise, the
OO solution of the Visitor pattern has a method defined in the
Element classes to accept the Visitor objects. This method is not
related to the main functionality of the Element classes and,
therefore, does not access any attribute of these classes. In the AO
solution, this method is moved to the aspect. Consequently, the
cohesion of the Element classes in the OO implementation is
inferior to the classes in the AO solution.

0

2

4

6

8

10

AbstractClass ConcreteClass Flyweight FlyweightFactory

p

Before After

Flyweight
Pattern

-20%

0%

-33%

-33%

p

-11%

-20%

Before After Before After Before After

AO
OO
AO
OO

Template Method
Pattern

0%

-33%

0

3

6

9

12

15

18

21

AbstractClass ConcreteClass Flyweight FlyweightFactory

Before After

Flyweight
Pattern

-50%

Before After Before After Before After

AO
OO
AO
OO

Template Method
Pattern 0%

0% 0%

0%
0%

0% -50%

0

4

8

12

16

20

AbstractClass ConcreteClass Flyweight FlyweightFactory
Before After

Flyweight
Pattern

-33%

Before After Before After Before After

AO
OO
AO
OO

Template Method
Pattern

0%

0%

0%

-20%

-33%

0%

-33%

 (a) Concern Diffusion over Components (b) Concern Diffusion over Operations (c) Concern Diffusion over LoC
Figure 7. Separation of Concerns (Group 2)

The number of attributes and weight of operations in the OO
implementation of the Mediator pattern were, respectively, 19%
and 22% higher than in the AO code after the introduction of new
components. In the OO solution, each Colleague class needs both
an attribute to hold the reference to its Mediator and a method to
set this reference. These elements are not required in the
Colleague classes of the aspect-oriented solution, because only
the aspect controls the relationship between Colleagues and
Mediators. A similar benefit was reached in the AO
implementation of the other patterns in this group.

The coupling, cohesion and size improvements in the aspect-
oriented solutions of the patterns in this group are directly related
to the achieved separation of concerns for them (Section 3.1). As
explained above, the coupling, cohesion and size of the Mediator
pattern are improved because the pattern roles are better isolated
in aspects and not spread over several classes. A similar result
occurs in the other 4 patterns.

4.2 Group 2: Better Results for AO in Most
Measures
This group encompasses the patterns in which aspect-oriented
solutions produced better results in most of the measures except in
one metric. This group includes the Decorator, Proxy, Singleton
and State patterns. The measures gathered from implementations
of the Decorator, Proxy, Singleton were mostly similar. The AO

implementation of these patterns showed improvements related to
all metrics except the CBC metric. On the other hand, the AO
solution of the State pattern did not show improvements only in
the number of attributes. Figure 9 presents the results of the
Decorator and State patterns as representative of this group.

The aspect-oriented implementations of the Decorator, Singleton
and Proxy patterns manifest similar benefits to the patterns of
Group 1 (Section 4.1). That is, the improvement in the separation
of the pattern-specific code (Section 3.1) conducted to
improvements in other attributes, such as, cohesion and size.
However, as shown in Figure 9 for the Decorator pattern, the
CBC measures were inferior in the AO implementation: 50% and
79% before and after the changes, respectively. This problem
occurs in the Decorator pattern because one of the Decorator
aspects has to declare the precedence among all the Decorator
aspects. Therefore, it is coupled to all the other aspects. In the
Singleton pattern, there is an additional aspect per Singleton class.
The coupling between the aspects and the Singleton classes
increased the results of the CBC metric.

The measures concerning the State pattern provided particular
results. Despite showing no improvements related to the
separation of concerns metrics (Section 3.3), the AO
implementation of the State pattern was superior in coupling,
cohesion and weight of operations (Figure 9). On the other hand,
the OO implementation provided better results in two measures:

0

10

20

30

40

50

60

70

CBC DIT LCOO NOA WOC CBC DIT LCOO NOA WOC LOC

Mediator
Pattern

Mediator
Pattern

Visitor
Pattern

Visitor
Pattern

LOC
Before After Before AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore After

AO
OO

350

300

250

200

150

100

50

0

+15%

+17%

0% 0% 0%
0%

0% 0%
0%

0%

0%

0%

+80%

+19% -25%

+22%

-21%-6%

+32%

-15%

+23%

+25%

+93%

+46%
105 ...110

0

10

20

30

40

50

60

70

CBC DIT LCOO NOA WOC CBC DIT LCOO NOA WOC LOC

Mediator
Pattern

Mediator
Pattern

Visitor
Pattern

Visitor
Pattern

LOC
Before After Before AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore After

AO
OO
AO
OO

350

300

250

200

150

100

50

0

+15%

+17%

0% 0% 0%
0%

0% 0%
0%

0%

0%

0%

+80%

+19% -25%

+22%

-21%-6%

+32%

-15%

+23%

+25%

+93%

+46%
105 ...110

Figure 8. The Mediator and Visitor Patterns: Coupling, Cohesion and Size (Group 1)

0

3

6

9

12

15

18

21

24

CBC DIT NOA CBC DIT NOA LOC

Decorator
Pattern

Decorator
Pattern

State
Pattern

State
Pattern

LOC
Before After Before AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore After

AO
OO

400

175

150

125

100

75

50

0

-50%

-79%

+50%
+67%

0%

+31%

+22%

+22%

-2%

+41%

0% 0%

-9%

-33%

-35%

+56%

+53%

...

25

WOC WOC

+33%
367 ... 374

0

3

6

9

12

15

18

21

24

CBC DIT NOA CBC DIT NOA LOC

Decorator
Pattern

Decorator
Pattern

State
Pattern

State
Pattern

LOC
Before After Before AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore After

AO
OO
AO
OO

400

175

150

125

100

75

50

0

-50%

-79%

+50%
+67%

0%

+31%

+22%

+22%

-2%

+41%

0% 0%

-9%

-33%

-35%

+56%

+53%

...

25

WOC WOC

+33%
367 ... 374

Figure 9. The Decorator and State Patterns: Coupling and Size (Group 2)

NOA and LOC. The coupling in the OO solution is higher than in
the AO solution because the classes representing the states are
highly coupled to each other. This problem is overcome by the
aspect-oriented solution because the aspects modularize the state
transitions (Figure 10), minimizing the coupling between the
pattern participants. Figure 10 shows that the coupling in the OO
solution is 7 because each State class needs to have references to
the other State classes. From the NOA point of view, the OO
design was superior because the AO design has additional
attributes in the aspects to hold references to the State elements.

4.3 Group 3: Better Results for OO in Most
Measures
This group includes the CoR, Command, Prototype and Strategy
patterns. The measures gathered from the implementations of
these patterns were similar in the sense that, in general, the OO
implementations provided better or similar results. The AO
solutions improved the results for only one size metric. The AO
implementation of the CoR, Command and Strategy patterns
required fewer attributes than the OO implementation (NOA
metric), while the AO solution of the Prototype pattern involved
fewer operations (WOC metric).
The CoR pattern is the representative element of this group.
Figure 11 shows the results for this pattern. Note that the OO
implementation had 75% more attributes than the AO
implementation after the inclusion of new Handler classes.
Nevertheless, the AO implementation showed inferior results
concerning lines of code and weight of operations. Moreover,
there was insignificant difference between the two solutions in
terms of the coupling metrics (CBC and DIT).
As shown in Section 3.1, these patterns benefit from the AO
implementation in terms of separation of concerns. However,
those benefits were not sufficient to improve most of the other
quality attributes. For instance, the OO implementation of the
CoR pattern requires the incorporation of an attribute to hold a
reference to its successor in the Handler class. In the AO
implementation, the chain of successors is localized in an aspect,
removing the successor attribute from the Handler classes. As a
consequence, the number of attributes was lower in the AO
implementation. However, the amount of additional operations
required in the aspect to handle the chain of successors affected
negatively the LOC and WOC measures. Furthermore, due to the
coupling between the aspect and all the Handler classes, the AO
solution did not provided significant improvements (CBC metric).
This phenomenon also happened in the other patterns of this
group. For instance, in the AO implementation of the Prototype
pattern, the methods to clone the Prototype classes were localized
in an aspect and not replicated in all the Prototype classes.

However, this design choice was only sufficient to reduce the
weight of operations (WOC metric)

4.4 Group 4: Better Results for OO
The fourth group comprises the patterns that the AO
implementation provided worse results related to coupling,
cohesion and size. This group includes the following list of eight
patterns: Template Method, Abstract Factory, Bridge, Interpreter,
Factory Method, Builder, Memento and Flyweight. The Template
Method and Memento patterns represent this group in Figure 12.
The measures of the Template Method, Abstract Factory, Bridge,
Interpreter, Factory Method and Builder patterns exhibited minor
differences in favor of the OO implementation. In fact, we have
already mentioned in Section 3.2 that these patterns are already
nicely realized in OO, thus could not be given more modularized
aspect-oriented implementations. The AO implementation of the
Template Method, for instance, showed higher coupling (33%)
and more lines of code (5%) than the OO implementation. The
other measures produced equal results for both solutions (see
Figure 12). This minor difference is due to the additional aspect
which associates (default) implementation to the methods in the
interface that plays the AbstractClass role.
The measures of the Flyweight and Memento patterns showed
better results for the OO implementation. The AO implementation
of the Memento pattern showed the worst results. Removing the
pattern-related code from the Originator classes and placing it in
an aspect makes the design more complex. This is shown by the
results of the CBC, DIT, WOC and LOC metric (see Figure 12).

4.5 Group 5: No Effect
This group includes the Iterator and Façade patterns. The
measures related to these patterns exhibited no significant
difference in favor of a specific solution. The AO and OO
implementations of the Façade pattern are essentially the same. In
the AO implementation of the Iterator pattern, the method which
returns a reverse iterator is removed from the Aggregate classes.
These methods are localized in an aspect. However, the number
of methods was not reduced since it was still necessary one
method per Aggregate class. Therefore, in spite of showing better
separation of concerns (Section 3.1), the AO implementation
provided insignificant improvements in terms of coupling,
cohesion and size.

0

5

10

15

20

25

30

35

40

45

50

CBC DIT LCOO NOA WOC

Chain of Responsibility
Pattern

Before AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore After

AO
OO

250

175

150

125

100

75

50

0

-7%

+3%

-92%

0%
+50%

0%

-92%

+75%

-45%

-22%

-9%

25

LOC

...64
65 -37%

200

225

0

5

10

15

20

25

30

35

40

45

50

CBC DIT LCOO NOA WOC

Chain of Responsibility
Pattern

Before AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore After

AO
OO
AO
OO

250

175

150

125

100

75

50

0

-7%

+3%

-92%

0%
+50%

0%

-92%

+75%

-45%

-22%

-9%

25

LOC

...64
65 -37%

200

225

Figure 11. The Chain of Responsibility Pattern: Coupling,
Cohesion and Size (Group 3)

<<ConcreteState>>
EmptyQueue

<<ConcreteState>>
NormalQueue

<<ConcreteState>>
FullQueue

<<Context>>
Queue

<<ConcreteState>>
NormalQueue

<<ConcreteState>>
EmptyQueue

<<ConcreteState>>
FullQueue

<<Context>>
Queue

QueueStateAspect

State Transition
Pointcuts

Dependence due to State Transition
LEGEND:

OO Solution
(coupling = 7)

AO Solution
(coupling = 4)

<<ConcreteState>>
EmptyQueue

<<ConcreteState>>
NormalQueue

<<ConcreteState>>
FullQueue

<<Context>>
Queue

<<ConcreteState>>
NormalQueue

<<ConcreteState>>
EmptyQueue

<<ConcreteState>>
FullQueue

<<Context>>
Queue

QueueStateAspect

State Transition
Pointcuts

Dependence due to State Transition
LEGEND:

OO Solution
(coupling = 7)

AO Solution
(coupling = 4)

Figure 10. Coupling in the State Pattern: OO vs. AO.

5. DISCUSSIONS
Empirical studies [4] are the most effective way to supply
evidence that may improve our understanding about software
engineering phenomena. Although quantitative studies have some
disadvantages [6], they are very useful because they boil a
complex situation down to simple numbers that are easier to grasp
and discuss. They supplement qualitative studies with empirical
data [6]. This section provides a more general analysis of the
previously observed results in Sections 3 and 4, and discussions
about the constraints on the validity of our empirical evaluation.

5.1 General Analysis
This section presents an overall analysis of the previously
observed results on the application of metrics for separation of
concerns, coupling, cohesion, and size.

5.1.1 Separable and Inseparable Concerns
As presented in Section 3.1, the AspectJ implementation of 14
patterns has shown better results in terms of the metrics of
separation of concerns. In addition, the Java implementation of 6
patterns presented superior separation of roles (Section 3.2), and 3
patterns presented similar results in both implementations
(Section 3.3). This observation provides evidence of the
effectiveness of AO abstractions for segregating crosscutting
structures. Indeed, most of these results have confirmed the
observations in the HK study in terms of the locality property.
However, the HK study also claimed that 3 additional patterns
offered locality improvements in the respective AO
implementations: Template Method, Flyweight, and State. Our
study’s results somewhat contradicts these claims. The solution of
patterns in Group 2 (Section 3.2), like Template Method, sounds
to be natural in the OO fashion, and it does not seem reasonable
or even possible to isolate the pattern roles into aspects. In fact,
the AO solution of the Template Method is not aimed at
improving the separation of the pattern roles, but increasing the
pattern flexibility [9] (Section 3.2). The AO implementation of
the Flyweight pattern is similar to the OO implementation with
additional aspects that do not assist in the isolation of crosscutting
pattern-specific concerns (Section 3.2). The separation of
concerns in the aspect-oriented version of the State pattern helps
to separate state transitions, but the differences in the measures
are not significant (Section 3.3).
An additional interesting observation in our study is that

sometimes the pattern roles are expressed separately as aspects,
but it remains non-trivial to specify how these separate aspects
should be recombined into a simple manner. A lot of effort is
required to compose the participant classes and the aspects that
modularize the pattern roles. For example, the AO design of the
Memento pattern provided better separation of the pattern-related
concerns (Section 3.1). However, although the AO solution
isolates the pattern roles in the aspects, it resulted in higher
complexity in terms of coupling (CBC), inheritance (DIT), and
lines of code (LOC), as described in Section 4.4. The same
observation can be made for the Strategy and CoR patterns
(Section 4.3). Hence, there are some cases where the separation of
the pattern-related concerns leads to more complex solutions.

5.1.2 Reducing Coupling and Increasing Cohesion
Based on the interplay of the results in Sections 3 and 4, we can
conclude that the use of aspects provided better coupling and
cohesion results for the patterns with high interaction between the
roles in their original definition. The Mediator, Observer, State,
Composite, Visitor patterns are examples of this kind of patterns.
The Mediator pattern, for instance, exhibits high inter-role
interaction: each Colleague collaborates with the Mediator, which
in turn collaborates with all the Colleagues. The use of aspects
was useful to reduce the coupling between the participants in the
pattern and increase their cohesion, since the aspect code
modularizes the collaboration protocol between the pattern roles.
Figure 10 illustrates how the aspect was used to reduce the
coupling of the OO solution of the State pattern. On the other
hand, the use of aspects did not succeed for improving coupling
and cohesion in the patterns whose roles are not highly
interactive. This is the case for the Prototype and Strategy
patterns and the patterns in Group 4, presented in Section 4.4.

5.1.3 Reusability Issues
The HK study observed reusability improvements in the AspectJ
versions of 12 patterns by enabling a core part of the pattern
implementation to be abstracted into reusable code (Section 2.2).
In our study, expressive reusability was observed only in 4
patterns: Mediator, Observer, Composite, and Visitor. These
patterns were also qualified as reusable in the HK study and have
several characteristics in common: (i) defined as reusable abstract
aspects, (ii) improved separation of concerns (Section 3.1), (iii)
low coupling – CBC – and high cohesion – LCOO (Section 4.1),
and (vi) decreased values for the LOC and WOC measures as the

0

5

10

15

20

25

30

35

40

45

50

CBC DIT NOA WOC CBC DIT NOA WOC

200

140

120

100

80

60

40

0

20

160

180

LOC

Template Method
Pattern

Template
Method
Pattern

Memento
Pattern

Memento
Pattern

LOC
Before After Before AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore After

AO
OO

-33% -33% 0% 0%
0% 0% 0%

0%

-35%

0%

0%

-37%

-28%
-5%

-50% -50%

-2%

-28%

-29%

+3%

0

5

10

15

20

25

30

35

40

45

50

CBC DIT NOA WOC CBC DIT NOA WOC

200

140

120

100

80

60

40

0

20

160

180

LOC

Template Method
Pattern

Template
Method
Pattern

Memento
Pattern

Memento
Pattern

LOC
Before After Before AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore After

AO
OO
AO
OO

-33% -33% 0% 0%
0% 0% 0%

0%

-35%

0%

0%

-37%

-28%
-5%

-50% -50%

-2%

-28%

-29%

+3%

Figure 12. The Template Method and Memento Patterns: Coupling and Size (Group 4)

changes are applied.

However, note that in our investigation the presence of generic
abstract aspects did not conduct necessarily to improved
reusability in several cases. The Flyweight, Command, CoR,
Memento, Prototype, Singleton, Strategy patterns have abstract
aspects and were ranked as “reusable” patterns in the HK study.
In contrast, an analysis of the results presented in Sections 3 and 4
leads to contrary conclusions for these patterns. In general,
reusable elements lead to less programming effort by requiring
fewer operations and lines of code to be written. However, the
LOC and WOC measures of the AO implementations of these
patterns were higher than in the respective OO implementations
both before and after the changes. In fact, the abstract aspects
associated with these patterns are very simple and do not enable a
reasonable degree of reuse.

5.1.4 Aspects and Size Attributes
We have found that the use of aspects has a considerable impact
on the size attributes of the pattern implementations in addition to
lines of code. In general, the AO solutions were superior. For 10
of the patterns, the AspectJ implementations had fewer attributes
than the Java implementations. Only one OO solution was
superior in terms of NOA. For 12 of the patterns, the AO
implementation reduced the number of operations and respective
parameters (WOC metric). The OO implementation provided
better results for 7 patterns with respect to the WOC metric. The
reduction in the program size in general decreases the likelihood
of developers introducing errors into the system.

5.2 Analysis of Specific Patterns
The measurements in this study were also important to assess the
AO implementation of each design pattern in particular. We have
found that some problems in the AO solutions are not related to
the AO paradigm itself, but to some design or implementation
decisions taken in the HK implementations. In this sense,
quantitative assessments are also useful to capture opportunities
for refactoring in AO software or for discarding a specific
solution. This section presents some examples of how the metrics
used in this quantitative study were useful to support either the
refactoring (Sections 5.2.1 and 5.2.2) or the discarding (Section
5.2.3) of some AO solutions of the GoF patterns.

5.2.1 Prototype
The use of the selected metrics for separation of concerns was
important to detect remaining crosscutting concerns relative to the
design patterns. For example, the original AspectJ implementation
of the Prototype pattern left the declaration of the Cloneable
interface, which is a pattern-specific responsibility, in the
description of the application-specific classes. This solution was
refactored based on the use of an inter-type declaration in order to
improve the separation of concerns, overcoming the crosscutting
problem present in the original version of the AspectJ
implementation [9].

5.2.2 Chain of Responsibility and Memento
The coupling measures were also important to detect
opportunities for improvements in the AO implementations. For
example, the implementations of some client classes, such as in
the CoR and Memento patterns, have explicit references to the
aspects implementing the pattern roles that increase the system

coupling. These references are used in the client classes to trigger
aspect initializations. This kind of coupling is unnecessary and
could be avoided. The aspects associated with these patterns
could incorporate, in addition to the initialization methods in the
aspects, the definition of simple pointcuts to capture the join
points where the initializations should be triggered. This finding
was also supported by the metrics for separation of concerns.

5.2.3 Flyweight
The presence of several negative results can also serve as
warnings of not helpful designs. As mentioned before, the
AspectJ implementation of the Flyweight implementation did not
provide evident benefits. All the metrics for separation of
concerns (Section 3.2) and almost all the metrics for coupling,
cohesion, and size (Section 4.4) supported this finding.

5.3 Study Constraints
Concerning our experimental assessment, there is one general
type of criticism that could be applied to the used software
metrics (Section 2.3). This refers to theoretical arguments leveled
at the use of conventional size metrics (e.g. LOC), as they are
applied to traditional (non-AO software) development. Despite, or
possibly even because of, simplicity of these metrics, it has been
subjected to severe criticism [23]. In fact, these measures are
sometimes difficult to evaluate with respect a software quality
attribute. For example, the LOC measures are difficult to interpret
since sometimes a high LOC value means improved
modularization, but sometimes it means code replication.

However, in spite of the well-known limitations of these metrics
we have learned that their application cannot be analyzed in
isolation and they have shown themselves to be extremely useful
when analyzed in conjunction with the other used metrics. In
addition, some researchers (such as Henderson-Sellers [10]) have
criticized the cohesion metric as being without solid theoretical
bases and lacking empirical validation. However, we understand
this issue as a general research problem in terms of cohesion
metrics. In the future, we intend to use another emerging cohesion
metrics based on program dynamics.

The limited size and complexity of the examples used in the
implementations may restrict the extrapolation of our results. In
addition, our assessment is restricted to the specific pattern
instances at hand. However, while the results may not be directly
generalized to professional developers and real-world systems,
these representative examples allow us to make useful initial
assessments of whether the use of aspects for the modularization
of classical design patterns would be worth studying further. In
spite of its limitations, the study constitutes an important initial
empirical work and is complementary to qualitative work (e.g.
[9]) previously performed. In addition, although the replication is
often desirable in experimental studies, it is not a major problem
in the context of our study due to the nature of our investigation.
Design patterns are generic solutions and, as a consequence,
exhibit similar structures across the different kinds of applications
where they are used.

6. RELATED WORK
There is little related work focusing either on the quantitative
assessment of AO solutions in general, or on the empirical
investigation of using aspects to modularize crosscutting concerns

of classical design patterns. Up to now, most empirical studies
involving aspects rest on subjective criteria and qualitative
investigation. In a previous work [18], we have quantitatively
analyzed only 6 patterns. The present paper presents a complete
study involving all the 23 design patterns.
One of the first case studies was conducted by Kersten and
Murphy [12]. They have built a web-based learning system using
AspectJ. In this study, they have discussed the effect of aspects on
their OO practices and described some rules they employed to
achieve their goals of modifiability and maintainability using
aspects. Since several design patterns were used in the design of
the system, they have considered which of them should be
expressed as classes and which should be expressed as aspects.
They have found that Builder, Composite, Façade, and Strategy
patterns [5] were more easily expressed as classes, once these
patterns had little or no crosscutting behaviors. We have found
here similar results for the Strategy, Builder and Façade patterns
(Section 5.2). However, the AO implementation of the Composite
pattern achieved better separation of concerns in our study.
Zhao and Xu [21, 22] have proposed new cohesion measures that
consider the peculiarities of the AO abstractions and mechanisms.
Their metrics are based on a dependence model for AO software
that consists of a group of dependence graphs. The authors have
shown that their measures satisfy some properties that good
measures should have. However, these metrics have not yet been
validated or applied to the assessment of realistic AO systems.

7. CONCLUSION
This paper presented a quantitative study comparing the AO and
OO implementations of the GoF patterns. The results have shown
that most aspect-oriented implementations provided improved
separation of concerns. However, some patterns resulted in higher
coupled components, more complex operations, and more LOCs
in the AO solutions. Another important conclusion of this study is
that separation of concerns can not be taken as the only factor to
conclude for the use of aspects. It must be analyzed in
conjunction with other important factors, including coupling,
cohesion, and size. Sometimes, the separation achieved with
aspects can generate more complicated designs. However, since
this is a first exploratory study, to further confirm the findings,
other rigorous and controlled experiments are needed.
It is important to notice that from this experience, especially in a
non-rigorous area such as software engineering, general
conclusions cannot be drawn. The scope of our experience is
indeed limited to (a) the patterns selected for this comparative
study, (b) the specific implementations from the GoF book [5]
and the HK study [9], (c) the Java and AspectJ programming
languages, and (d) a given subset of application scenarios that
were taken from our development background. However, the goal
was to provide some evidence for a more general discussion of
what benefits and dangers the use of AO abstractions might
create, as well as what and when features of the AO paradigm
might be useful for the modularization of classical design
patterns. Finally, it should also be noted that properties such as
reliability must be also examined before one could establish
preference recommendations of one approach relative to the other.

Acknowledgements. We would like to thank Jan Hannemann and
Gregor Kiczales for making the pattern implementations
available, and Brian Henderson-Sellers and Barbara Kitchenham

for the discussions on the selection of the software metrics. This
work has been partially supported by CNPq under grant No.
381724/04-2 for Alessandro, grant No. 140214/04-6 for Cláudio,
and under grant No. 140252/03-7 for Uirá. The authors are also
supported by the ESSMA Project under grant 552068/02-0.

8. REFERENCES
[1] Alencar, P. et al. A Query-Based Approach for Aspect

Measurement and Analysis. TR CS-2004-13, School of
Computer Science, Univ. of Waterloo, Canada, Feb 2004.

[2] AspectJ Team. The AspectJ Guide. http://eclipse.org/aspectj/.
[3] Chidamber, S. and Kemerer, C. A Metrics Suite for OO

Design. IEEE Trans. on Soft. Eng.,20-6, June 1994, 476-493.
[4] Fenton, N. and Pfleeger, S. Software Metrics: A Rigorous

Practical Approach. London: PWS, 1997.
[5] Gamma, E. et al. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, Reading, 1995.
[6] Garcia, A. From Objects to Agents: An Aspect-Oriented

Approach. Doctoral Thesis, PUC-Rio, Rio de Janeiro, Brazil,
April 2004.

[7] Garcia, A. et al. Separation of Concerns in Multi-Agent
Systems: An Empirical Study. In Software Engineering for
Multi-Agent Systems II, Springer, LNCS 2940, January 2004.

[8] Garcia, A., Silva, V., Chavez, and C., Lucena, C.
Engineering Multi-Agent Systems with Aspects and Patterns.
J. of the Brazilian Computer Society, 1, 8 (July 2002), 57-72.

[9] Hannemann, J., Kiczales, G. Design Pattern Implementation
in Java and AspectJ. Proc. OOPSLA’02, Nov 2002, 161-173.

[10] Henderson-Sellers, B. Object-Oriented Metrics: Measures of
Complexity. Prentice Hall, 1996.

[11] Java Reference Documentation.
http://java.sun.com/reference/docs/index.html.

[12] Kersten, M. and Murphy, G. Atlas: A Case Study in Building
a Web-based Learning Environment Using Aspect-Oriented
Programming. Proceedings of OOPSLA’99, November 1999.

[13] Kiczales, G. et al. Aspect-Oriented Programming. Proc. of
ECOOP’97, LNCS 1241, Finland, June 1997, 220-242.

[14] Soares, S. An Aspect-Oriented Implementation Method.
Doctoral Thesis, Federal Univ. of Pernambuco, Oct 2004.

[15] Lopes, C. D: A Language Framework for Distributed
Programming. PhD Thesis, Northeastern University, 1997.

[16] Modularizing Patterns with Aspects: A Quantitative Study.
http://www.teccomm.les.inf.puc-
rio.br/alessandro/GoFpatterns/empiricalresults.htm

[17] Sant’Anna, C. et al. On the Reuse and Maintenance of
Aspect-Oriented Software: An Assessment Framework.
Proc. of Brazilian Symposium on Software Engineering
(SBES’03), Manaus, Brazil, Oct 2003, 19-34.

[18] Sant’Anna, C. et al. Design Patterns as Aspects: A
Quantitative Assessment. Proc. of Brazilian Symposium on
Software Engineering (SBES’04), Brasília, Brazil, Oct 2004.

[19] Tarr, P. et al. N Degrees of Separation: Multi-Dimensional
Separation of Concerns. Proc. ICSE’99, May 1999, 107-119.

[20] Together Technologies. http://www.borland.com/together/.
[21] Zhao, J. Towards a Metrics Suite for Aspect-Oriented

Software.TR SE200213625,Inf. Proc. Society of Japan, 2002.
[22] Zhao, J. and Xu, B. Measuring Aspect Cohesion. Proc. Conf.

on Fundamental Approaches to Software Engineering
(FASE'04), LNCS 2984, Barcelona, March 2004, 54-68.

[23] Zuse, H. History of Software Measurement. Available on-
line at: irb.cs.tu-berlin.de/~zuse/metrics/History_00.html.

