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The following sections critique several existing languages before discussingmeans of improving �le-handling within functional programs. There appear tobe two broad generations of �le interfaces in current functional languages. The�rst generation includes the interfaces provided by LML[2], Miranda[13], KRC[12] and Orwell[14]. These interfaces present several di�culties, including thelack of incremental read/write, evaluation-order issues, type issues, the loss oftype information, the loss of sharing within stored data structures and eventhe loss of referential transparency. More recent languages such as Hope+[7],Haskell[4], or Concurrent Clean[9] have improved second-generation �le inter-faces, based on continuations, response/request and event I/O, respectively.None of these interfaces provides incremental read/write primitives, thoughthey may be added in each case2.It is worth distinguishing between problems which are fundamental to ma-nipulating persistent data and those which arise simply because features havebeen omitted from current languages. Incremental read/write and loss of shar-ing within persistent data structures are problems that can be solved by carefulre-design and implementation. Indeed preliminary proposals for both are in-cluded in Section 4. Preserving type security over �les appears to be moredi�cult with the static type systems based on name equivalence which areused in most functional languages.Three means of improving the persistent data manipulation facilities offunctional languages are investigated. Firstly, and in the short-term, a languagecan be better integrated with the �le system. Secondly, for large amounts ofdata or concurrent access a language can be grafted onto a database: SoftwareAG's Natural Expert[10] is an example of this approach. Thirdly, and in thelonger-term, a language can be made fully persistent, as has been done withStaple or Poly/ML [5, 6].The remainder of this paper is structured as follows. Section 2 describes�le-handling in non-persistent languages. Section 3 outlines the problems en-countered using these constructs. Section 4 investigates the means of improvingthe �le manipulation facilities of functional languages. Section 5 concludes.2 Current File Constructs2.1 Read/Write OperationsAll non-trivial functional languages provide some mechanism for reading andwriting �les. These mechanism are not necessarily functional, however. Forexample, KRC's well documented read and write functions have the followingspeci�cation.� write fname x will print the value of x into the �le called fname.� read fname will return the contents of the �le fname.This means that a program that copies the contents of a �le \old" to a �le\new" can be written as simply:2In fact, we have been informed that incremental I/O primitives have now been added toConcurrent Clean, in response to an earlier draft of this paper.



write "new" (read "old")The semantics of read and write are not so simple. The read function islazy: the contents of the �le are retrieved when demanded by the program.The write operation is hyper-strict: a single write is performed when the resultof the write function is demanded. Data is written to the �le using the normalprinting function, so the integer 103 would be written as the string "103", forexample. Nothing prevents written data being read as a value of a di�erenttype. In addition, the evaluation order may determine the result of a seriesof reads and writes. This is undesirable since referential transparency may belost.2.2 Response/Request StreamsHaskell uses streams of responses and requests to communicate with the �lesystem, and indeed with the operating system in general. A Haskell programthat interacts with the �le system is a stream-processing function that producesa stream of requests for �le operations and receives a stream of responses corre-sponding to the requests. More formally, �le manipulating programs the havetype [Response] -> [Request] and, if Name and IOError are some sensiblevalues,data Request = ReadFile Name | WriteFile Name String | ...data Response = Success | Str String | Failure IOError | ...The operations have the obvious meanings, for example the program that copies\old" to \new" �les can be written:main resps = [ReadFile "old", WriteFile "new"(case head resps of Str contents -> contentsFailure error -> "Error Reading old")]The body of main is the list containing the ReadFile and WriteFile requests.The parameter is the list of responses, with the �rst response giving the resultof the ReadFile request.The Haskell �le interface is much more elaborate than described here. How-ever, the only signi�cant di�erence from the viewpoint of persistent data isthat �les may contain data of type Bin instead of String. This type is animplementation-de�ned, space-e�cient representation, which can be used formost data types. It is described further in Section 3.3.3 Issues3.1 Incremental Read/WriteCompilers are generally the largest programs written in most functional lan-guages. A compiler reads the entire source �le and generates a complete target�le, possibly repeating this process in several passes. Most functional languagesmanage this type of interaction well.



However, many �le application programs do not have this pattern of inter-action. Instead they retrieve and modify only a small part of a �le or �les. Forexample to record the delivery of an item of stock in a warehouse, the recordassociated with just that item is modi�ed. Staple[5] is the only functional lan-guage which the authors are aware of that permits the modi�cation of part of a�le (or persistent data structure) without rewriting the entire �le. In the ware-house example this would require rewriting the entire stock �le just to recordthe delivery of a single item, a clearly undesirable e�ect.Both the read operation and the ReadFile request provide incrementalreading, in part because the contents of the �le are only retrieved when de-manded by the program. Hence a query about some item in the stock �lewould only need to read the stock �le until the item was encountered. Theremainder of the �le need not be read, and so only half of the �le is read onaverage. In contrast, in a language with random access �les, only the desireditem would be read.3.2 StateThe state, or contents, of a �le may change during the execution of a program:the �le may be written by this or another program. Without care, referentialtransparency may be lost in a program which reads a �le that could change.The read operation in KRC and other languages can either not observe thechanging state of a �le or is not referentially transparent. It is possible to de�nefunctions that do not permit the observation of state changes. Hence when theKRC functiongetold = read "old"is �rst called it returns the contents of the �le named \old". Even if the contentsof \old" are changed, subsequent invocations of getold will return the originalvalue.Miranda's read operation apparently allows the changing state of a �le tobe observed. This option violates referential transparency as the same expres-sion read "new" can return di�erent values when evaluated at di�erent times.Programmers are admonished: \users who write Miranda programs that readand write the same �le are warned that they are treading on dangerous groundand that the behaviour of such programs is unlikely to be reliable"[13].In Haskell every ReadFile request notionally retrieves the entire �le and somust, at least logically, duplicate the �le to prevent subsequent writes to thesame �le from changing the value read. If the �le is long, duplicating it mightbe an expensive operation.Duplication of the �le by requests like ReadFile can be avoided by read-locking the �le. In the prototype Glasgow Haskell implementation, a write to aread-locked �le causes the �le to be renamed. The renamed �le is deleted if theprogram terminates normally. This has the (signi�cant) advantage that no �leduplication need occur. However, under an OS such as Unix, the applicationsare responsible for maintain these locks.



3.3 Printable RepresentationThe type of the �le contents in both the write operations and the WriteFilerequest is String. Non-string data is typically coerced into a string by a showfunction, for example 130 becomes \130". Storing a printable representationhas some serious disadvantages.� The �le must be reparsed on input.� A text �le is marginally less secure as it is easily edited.� Typically the data expands in size. For example a 4-byte real 3.1789E12becomes the 9-byte string \3.1789E12".� Type information may be lost. In particular type abstractions may bebreached. For example was \160" a height or a weight? See also Section3.5� Without explicit e�orts to preserve it, sharing within data structures islost.To avoid these problems Haskell introduced the Bin�le construct. Bin isa primitive abstract data type and values of type Bin are implementation-dependent representations of values in the language. There is a class Binaryof types that can be coerced into type Bin. The coercions to and from Bin areperformed by showBin and readBin respectively. The request WriteBinFileis identical to WriteFile except that the �le contents are of type Bin. Becausean internal representation has been used,� The �le does not need to be reparsed on input,� The �le is slightly more secure, and� Data expansion is reduced.There are some serious limitations with current implementations, however.� A Bin�le can only be used within a single implementation, i.e. one thatuses the same internal representation.� Sharing within data structures may still be lost by current implementa-tions.� Type information is still lost, including the breaking of type abstraction.In section 4.2 we argue that both the sharing and type abstraction problemscan be overcome by a suitable modi�cation of the Bin�le implementation.3.4 Hyperstrict WritesBoth the write operation and the WriteFile request are hyperstrict in thevalue written to the �le. Hyperstrictness precludes the preservation of� Partially evaluated, and hence any potentially in�nite data structures.



� Data structures containing functions.It has been argued that, to make error detection easier, only completely evalu-ated values should be stored in data �les. If unevaluated values are stored, thena programmay encounter an erroneous closure that is the legacy of an unknownprogram that was evaluated at some unknown time [11]. In contrast, the Staplepersistent functional language permits the storage of partially evaluated values.3.5 Type IssuesPreserving all of the type information associated with persistent values is di�-cult. Section 3.3 described how type abstractions could be broken if structuraltype equivalence is used. Our preferred solution is to use dynamic name equiv-alence, similar to the static name equivalence used for internal types in mostfunctional languages, and to provide a mapping between the static and dynamictypes. This design avoids loss of type abstraction, without needing to modifythe type system (as may be necessary with full dynamic types). There are stillseveral problems, however:1. It must be possible to convert any stored value into its equivalent internalform, and no other. This can be achieved by suitable mappings betweenthe static and dynamic types, as suggested above.2. It is impossible to communicate data between two independent programsunless they share identical types. This is a consequence of requiring strongtype abstraction.3. Since there is no strong connection between a program and its data, aprogrammer may change a type without changing the persistent datawhich uses that type. In this case, some mechanism must be provided toconvert between old and new type representations, if the existing data isstill to be used.Although we believe these are very important issues we will not considerthem further here, since they are general issues which apply to all persistentsystems and not to functional languages per se. Instead, we concentrate ourattention on proposals to improve the underlying facilities for persistent datamanipulation.3.6 SummaryThe Haskell Bin�le and response/request constructs overcome or amelioratemany of the problems with read and write operations. However, some problemsremain. The most important of these is the lack of incremental read/write.Coping with state changes, and preserving both type information and sharingwithin data structures are also desirable.



4 Improvements4.1 Indexed File SystemIncremental Read/WriteAs argued above (in Section 3.1) any serious functional language requires sup-port for incremental �le read/write. This section outlines one possible designbased on indexed �les.A new, optional, indexed �le type could be added to Haskell's existingtext and binary �le types. The associated requests are similar to the existingReadVal and WriteVal optional requests. The model underlying indexed �les isthat of an indexed sequential �le that stores key, value pairs. Strings have beenused to represent keys because they have a complete order and also becausevalues of most data types can be easily converted into a string using show.The stored values must be of type Bin. Finally, the present Haskell �le mode(a Boolean) is generalised to include a mode which allows both reading andwriting.type Index = Stringdata Mode = RMode | WMode | RWModedata Request = ...| OpenIxFile Name Mode| ReadIx File Index| DeleteIx File Index| InsertIx File Index Bin| ReplaceIx File Index Bin| ReadNextIx File| ReadPrevIx Filedata Response = ...| IndexBin Index BinOpenIxFile is analogous to OpenFile, and the existing CloseFile is gener-alised to also close indexed �les. ReadIx returns a key, value pair correspondingto the least key greater than or equal to the key supplied. This facilitates pro-grams that, for example, list all names beginning with \D". InsertIx of anexisting key value is an error. DeleteIx or ReplaceIx of a key that does notexist is an error. ReadNextIx (ReadPrevIx) returns the key, value pair withthe next (previous) greatest key, on a newly opened �le it returns the �rst key,value pairWhile indexed �les do allow incremental read/write, they provide no moretype security than the existing �le types. In fact, because values may be storedincrementally they allow the creation of heterogeneous �les, that is a �le mightcontain an Integer and a String.
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. . .Figure 1: Improved BinFile implementation4.2 Improved Bin�le ImplementationAn alternative approach is to provide an improved Bin�le implementation.We believe that a carefully constructed implementation of the Haskell Bin-�le can provide a �le system which preserves sharing and enables incrementalread/write. Such an implementation may provide many of the bene�ts of apersistent system without the high implementation cost of providing fully or-thogonal persistence (as described in Section 4.4).The idea is to give the runtime system the task of moving the data betweenthe heap and the �le. This process can be made to preserve the structurewithin the �le and restore it in the heap when the data is subsequently read.It is initiated by modi�ed WriteBinFile and ReadBinFile requests:� The new WriteBinFile request forces evaluation of the data and writesit into the �le. File o�set pointers are used within the Bin�le to preservethe structure of the original data.� The new ReadBinFile request opens the �le and reads the �rst closure.Rather than reading the entire data structure, special \read" closuresare constructed which contain the �le and an o�set within the �le foreach data item which should be read (see �gure 1). This constitutes an\address" which can be used to access the data in the �le. When theprogram demands the value of a \read" closure the runtime system readsthe �le and constructs the closure. A random access �le facility, like theUnix seek system call, is required to provide e�cient �le/o�set access.



Preserving SharingSharing is preserved by maintaining twomappings: (heap address ! �le/o�set)and (�le/o�set ! heap address)3. Before a closure is written into a �le theheap address is looked up in the (heap address ! �le/o�set) mapping: If theclosure already resides in the �le being written the o�set returned is used toreference the �le copy of the closure. If the closure does not reside in the �lebeing written it is written into the �le. Entries are added to both mappingsindicating the new �le/o�set for this heap address, and the new o�set used toreference the �le copy of the closure. A similar process occurs when a closure isread except that the (�le/o�set ! heap address) mapping is used to determineif the �le/o�set is already in the heap.This process of transferring data between the heap and a �le is very sim-ilar to the transfer between the local and global memories described for theparallel GRIP machine[8]. Here the (heap address ! �le/o�set) mapping isimplemented by attaching an extra word to every closure containing its globalmemory address (if present). GRIP does not yet implement the (�le/o�set !heap address) mapping so sharing is lost when reading from global memory,with multiple copies being created in the local memory. A similar technique tothat described above could be used to preserve sharing.Incremental Read/WriteIf a Bin�le is read modi�ed and then written back to the same �le one mightexpect the old �le to be removed and a new modi�ed version created. Thisneed not happen. Instead the runtime system can extend the existing Bin�lewriting back the modi�ed data structure. Now any part of the data whichhas not been modi�ed already resides in the �le. This will be detected whenthe (heap address ! �le/o�set) mapping is examined and the unmodi�ed dataneed not be written back to the �le | the �le o�set given by the mapping isused.By making use of appropriate data structures, such as trees, modi�ed ver-sions of the data can be built and the changes written. Consider the followingbatch update transaction processor:main ~(Str upd: ~(Bn oldbin: _))= [ReadFile "update", ReadBinFile "datafile",WriteBinFile "datafile" newbin]where olddata :: Tree Key Data(olddata, _) = readBin oldbinnewbin = showBin (update upd olddata) nullBinThe Bin data structure stored in the �le, "data", is a tree. Only the path(s)modi�ed by the updates will be written back to the �le. This program makesuse of irrefutable pattern-matching (~) to match the response lazily.The �nal step of the WriteBinFile request is to update the �le header to ref-erence the new data. This commits the entire write. Subsequent ReadBinFilerequests will now return the new data. If an error occurs before the header is3These are address translation tables. Persistent systems may refer to the latter mappingas the PIDLAM | Persistent Identi�er to Local Address Mapping.



written, the old version of the data remains intact and will be accessed by subse-quent ReadBinFile requests instead. Transaction processing can be simulatedby performing a WriteBinFile request data after each committed transaction.Unfortunately this scheme causes fragmentation: Bin�les increase monoton-ically in size with old data cluttering the �le. The �le itself must be garbagecollected to recover this unused space. A simple utility program which copiesexactly the live data from the old Bin�le to a new �le would su�ce for a basicimplementation. For example, the following Haskell program could be used:main ~(Bn old: _) = [ReadBinFile "old", WriteBinFile "new" old]The actual copying would be performed by the runtime system with the strictWriteBinFile request forcing the lazy read from "old".One Persistent FileInstead of implementing Bin�les as multiple �les in the operating system, allBin�les could be written into a single �le. This �le could itself be a Bin�lecontaining a single value of type Tree String Bin. The tree provides an indeximplementing the logical �le naming structure. The actual Bin values are storedat the leaves. All Bin�le requests would then access this one �le directly, usingthe index to perform the necessary �lename ! Bin mapping.This idea could be extended to make the single �le a persistent store. Theruntime system would then allocate objects in this store rather than manipu-lating the �le directly. The store would provide the required garbage collectionand locking facilities. Such a scheme would not pay the runtime cost of imple-menting the entire language on top of the store as with the Staple system[5].Local computations are still executed in the local heap with data being trans-ferred between the program and the store by Bin�le requests. In particular,the runtime garbage collection costs (which are large for Staple) would be nogreater than for a normal functional program.This is still not an orthogonally persistent system, however: neither func-tions nor suspensions could be stored in the persistent store.Type CheckingDynamic type checking needs to occur when the data is extracted from a Binvalue by readBin. This Bin value may have been read from a �le or created inthe heap by a showBin during the run of this program. In either case suitabletype information can be attached to the Bin value by showBin (see �gure 1). Infact, the principal purpose of these functions is to provide type security whencoercing data to and from Bin values.The fact that showBin and readBin are incremental (e.g. showBin ::Binary a => a -> Bin -> Bin) adds some complication when using thesefunctions4. It would be preferable to use non-incremental versions instead (e.g.showBin :: Binary a => a -> Bin), and de�ne readBin to return a suitableerror if the dynamic type check fails.Any developments in dynamic type checking could be incorporated intothis scheme by attaching appropriate type information to Bin values. Indeed4An incremental showBinmight also cause loss of sharing in some circumstances.



we hope that such a Bin�le implementation would encourage further researchinto this area.4.3 DatabaseTo implement real applications with large amounts of data, many program-ming languages have been integrated with a database. For example, C withembedded Ingres SQL. A functional language that has been integrated witha database is Software AG's Natural Expert [10]. Their model directs certainrequests to the database in addition to handling the standard operating systemrequests.The advantages of this approach are as follows:� Incremental read/write are provided.� Sharing within data structures is preserved by the referential integrity ofthe database.� Concurrent access to data is provided by transactions.� A DoQuery request permits e�cient interrogation of the database.The disadvantages are as follows:� The type problem is compounded by the mismatch between the higher-order type system in the functional language and the data types supportedby the database (e.g. tuples and relations in a relational database).� The DoQuery request requires meta-programming to construct the stringrepresenting the query.� Portability might be lost as the databases may not be available on somearchitectures.This approach would seem most suitable for applications that require in-cremental read/write of, e�cient queries over, or concurrent access to largequantities of data.4.4 Orthogonal PersistenceConventional languages only allow certain types of data to persist, e.g. stringsin LML or sequences of most types in Pascal. Languages with orthogonalpersistence permit data of any type to persist. Staple[5] is a functional languagewith orthogonal persistence, and Poly/ML[6] is a near-functional language withorthogonal persistence.The advantages of this approach are as follows.� Incremental read and write can be implemented on persistent data struc-tures, but the programmer must explicitly reconstruct a new version ofthe data structure. New versions of only some data structures can becheaply constructed. For example a new version of a tree can be cheaplyconstructed, but a new version of an association-list cannot. There areseveral data structures that are useful for storing persistent data butcannot be cheaply copied[11].



� Sharing within a data structure can be preserved.� Concurrent and lazy evaluation are both possible. See Section 3.4.� Persistence is elegant: transfer to and from persistent storage is performedwithout explicit programmer control.The disadvantages are as follows.� Persistent languages use structural type equivalence and it is not clearhow to integrate this with the name equivalence used in most functionallanguages.� At present persistence is a new technology, and not well understood.Implementations are slow, small and experimental. Considerable e�ortis required to make a language persistent. In contrast, much less e�ortis required to produce a good Bin�le implementation, as described inSection 4.2.It is conceivable that the structural versus name equivalence issue can beresolved, and that persistent language technology will become well-established.In this case orthogonal persistence appears to o�er the most elegant means ofmanipulating persistent data in a functional language.5 ConclusionThe �le system interfaces provided by current functional languages have beendescribed, and some problems have been identi�ed. Many of these problems areresolved or alleviated by the Haskell Bin�le and response/request constructs.Some outstanding problems with the Haskell interface have been identi�ed,the most important being the lack of incremental update. Following an earlierversion of this paper, incremental I/O has now been implemented in at leastone functional system (the Concurrent Clean compiler mentioned earlier). Wehope that other implementors will be similarly motivated to improve their �lesystem interface.Three approaches to resolving the remaining problems with a response/ re-quest interface have been investigated. We conclude that, in the short term,an improved �le system interface with a better implementation of Bin�les willmake it easier to implement many application systems. For applications re-quiring access to large quantities of data, concurrent access or e�cient queries,a database interface may be necessary. In the long term, if the type equiva-lence issues can be resolved and persistent language technology becomes well-developed, orthogonal persistence appears to o�er the most elegant means ofmanipulating persistent data in a functional language.6 AcknowledgementsWewould like to thank John Launchbury, John O'Donnell and Rinus Plasmeijerfor reading and commenting on earlier versions of this paper.
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