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Introduction 

 

The rainflow method is a method for counting fatigue stress-reversal cycles from a time history, as shown 

in Reference 1.  The rainflow method allows the application of the Palmgren-Miner rule in order to assess 

the fatigue life of a structure subject to complex loading. 

Fatigue counting can also be performed in the frequency domain using semi-empirical methods.  A 

comprehensive review of such methods for estimating fatigue damage from variable amplitude loading is 

presented.  The dependence of fatigue damage accumulation on power spectral density (PSD) is 

investigated for random processes relevant to real structures such as in offshore or aerospace 

applications.   

 

Beginning with the Rayleigh (or narrow band) approximation, attempts at improved approximations or 

corrections to the Rayleigh approximation are examined by comparison to rainflow analysis of time 

histories simulated from PSD functions representative of simple theoretical and real world applications.  

Methods investigated include corrections by Wirsching and Light, Lutes et al., Ortiz and Chen, the Dirlik 

formula, and the Single-Moment method, among other more recent proposed methods. 

 

An average cumulative damage index is proposed based on these methods. 

 

 

Variables 

 

 

D() is the accumulated damage function due to stresses or strains occurring up to the time  

NBD  is the narrowband damage 

A is the fatigue strength coefficient 

 is the irregularity factor 

  is the spectral width 

β k is the generalized spectral bandwidth  


0

 is the equivalent frequency (Hz) based on rate of positive slope zero crossings 
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p  is the rate of peaks 

m is the fatigue strength exponent from the material S-N curve 

F is the frequency (Hz) 

sW  is the one-sided, wideband stress power spectral density (stress^2/Hz) 

M j   is the j th moment of the one-sided spectral density 

S is the stress cycle range (peak-to-valley) 

N(S)   is the histogram function for stress cycles 

 is the exposure time (sec) 

S is the response stress overall RMS level 

  is the narrowband correction factor 

 is the gamma function 

 

 

The fatigue strength coefficient A for the purpose of this paper is taken as the stress level on the S-N 

curve where N=1/2 cycles, assuming no reduction in slope due to strain hardening in the low-cycle range.     

 

An alternate method is to calculate the A value using fracture mechanics for the case of a preexisting 

crack. 

 

Note that 

 





0

j
j df)f(WfM s                                                                                                  (1) 

 

The index j may be a non-integer. 

 

The rate of zero up-crossings can be estimated as 

 

020
MM                                                                                                                     (2) 

 

 

The rate of peaks is 

 

24p MM                                                                                                                     (3) 

 

 

The irregularity factor is 
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A special case is 

 

p
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

                                                                                                           (5) 

 

 

The spectral width is 

 

2
21                                                                                                                              (6) 

 

 

 

Narrowband Stress 

 

The narrowband damage NBD  from Reference 2 is 
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Note that failure is assumed to occur when D > 1.0.   But some references use thresholds which are 

conservatively lower. 

 

 

Wideband Stress Methods 

 

Correction Factor 

 

The wideband damage can be estimated from the narrowband damage as  

 

NBDD                                                                                                                (8) 

 

The  value is a generic scale factor.  Specific types are given 

 

 

Wirsching and Lite 

Wirsching and Lite developed the following correction factor by simulating processes having a variety of 

spectral shapes, in Reference 2. 

 

     )m(b1)m(a1)m(am,W                                                                                    (9)                                                                                                                        

 

a(m) = 0.0926 - 0.033 m                                                                                                             (10) 

 

b(m) = 1.587 m – 2.323                                                                                                              (11) 
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Note that Wirsching and Lite used the S-N slope m values of 3, 4, 5 and 6 for the simulations. 

 

 

 

Larsen and Lutes 

 

Larsen and Lutes have given the following empirical correction factor, referred to in the literature as the 

Single-Moment method, in References 3 and 4. 

 

 
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                                                                                                       (12) 

 

Note that the   2/m
m/2M term is evaluated using  j = 2/m  in equation (1) 

 

The direct Larsen and Lutes cumulative damage is  
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                                                                       (13) 

 

Equation (13) shows the single-moment dependency. 

 

 

Oritz and Chen 

 

Ortiz and Chen developed the following correction factor by applying the generalized spectral bandwidth 

to the Rayleigh distribution, from Reference 2. 
 

 

  
2

m
k

k



                                                                                                                             (14) 

 

 

The generalized spectral bandwidth is 
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Benasciutti & Tovo   

 

The first Benasciutti & Tovo correction factor from Reference 5 is   

 

 

2
1m

2
)b1(bBT 





 


                                                                                                   (16)   

 

where                                                                                                                            

 

        

2

212212121 11.2exp)(1112.1
b




                                 (17) 

 

 

0.75
α  Method 

 

The 
75.0

 correction factor from Reference 5 proposed by Benasciutti & Tovo  is 

 

 

2
75.0

                                                                                                                             (18) 

 

 

 

 

Dirlik 

 

The Dirlik method is shown in Appendix A, from Reference 5.  It approximates the cycle-amplitude 

distribution by using a combination of one exponential and two Rayleigh probability densities. 

 

 

Zhao-Baker 

 

Zhao and Baker combined theoretical assumptions and simulation results to give an expression for the 

cycle distribution as a linear combination of the Weibull and Rayleigh probability density function. There 

method is shown in Appendix B, from Reference 5. 
 

 

Rainflow Cycle Count in the Time Domain 

 

A time history with a normal distribution can be synthesized to match an applied force or base excitation 

power spectral density.   The excitation can then be applied to a structural model.  The structure’s 

response can then be calculated via a modal transient analysis.  The resulting stress can then be calculated 

as a post-processing step from the strain response.  The rainflow cycles can then be calculated using the 

method in Reference 1.  The cumulative damage is then calculated via the Palmgren-Miner formula, per 

Reference 6. 
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Palmgren-Miner Index 

 

Palmgren-Miner’s cumulative damage index D is given by 

 

                           




1i i

i

N

n
D                                                                                                                     (19) 

 

where 

 

ni 

 

is the number of stress cycles accumulated during the vibration testing at a given level stress 

level represented by index i 

Ni 

 

is the number of cycles to produce a fatigue failure at the stress level limit for the 

corresponding index 

 

 

The damage index D for a single-segment S/N curve can be expressed as 

 

                           




1i
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i
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A

1
D                                                                                                             (20)                                                                                                                  

 
 

Analysis Approach 

The input and stress response levels for a sample dynamic system are given in Appendix C. 

 

The resulting fatigue cycles were calculated using the time domain simulation with rainflow cycle 

counting, as well as the frequency domain methods previously given.  The time domain results are 

considered as the reference by which the frequency domain methods are evaluated, although the time 

domain results remain a simulation. 

Assumptions 

 

1. Single-segment S-N curve 

2. Neglect endurance limit 

3. All stresses below yield 

4. Fatigue cycles are fully reversed with zero mean stress 

5. Stationary stress time histories 

 

Materials 

Three material cases were considered as shown in Table 1.  These materials have nearly the same specific 

stiffness values such that a common stress PSD can be applied for the three materials.    
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Table 1. Material Properties, For Reference Only 

Material M A Reference 

Butt-Welded Steel  3.5 1.26e+11 ksi^3.5 2 

Stainless Steel
1
 6.54 1.32E+18 ksi^6.54 7 

Aluminum 6061-T6 9.25 9.77e+17 ksi^9.5 6 

 

Note that offshore steel structures with welded joints typically have a fatigue exponent of m  3 per 

Reference 8. 

 

Example 1 

A single-mode stress response PSD is shown in Figure C-3.  The fatigue analysis results are shown in 

Table 2. 

Table 2.  Cumulative Damage Results D, Single-mode Stress Response PSD 

Method Material 

 
Butt-Welded 

Steel 

Stainless 

Steel 
Aluminum 

Rainflow Cycle Count 0.00373 0.00559 0.00119 

Narrowband 0.00394 0.00620 0.00139 

Wirsching Light 0.00339 0.00447 0.000867 

75.0
  0.00382 0.00602 0.00135 

Ortiz Chen 0.00402 0.00631 0.00141 

Lutes Larsen 0.00379 0.00591 0.00132 

Benasciutti Tovo  0.00369 0.00546 0.00118 

Zhao Baker  0.00372 0.00591 0.00139 

Dirlik 0.00377 0.00565 0.00113 

Average 0.00380 0.00588 0.00130 

 

The average is obtained by using the six methods in Table 2 starting with 
75.0

  and ending with Dirlik, 

in Tables 2 through 4. 

                                                           
1 Martensitic precipitation/age-hardening stainless steel, unnotched PH13-8Mo (H1000) hand forging 

 



8 
 

 

Example 2 

A bimodal stress response PSD is shown in Figure C-4. 

The resulting fatigue cycles are shown in Table 3. 

 

Table 3.  Cumulative Damage Results D, Bimodal Stress Response PSD 

Method Material 

 
Butt-Welded 

Steel 

Stainless 

Steel 
Aluminum 

Rainflow Cycle Count 0.0212 0.0818 0.0400 

Narrowband 0.0244 0.0961 0.0488 

Wirsching Light 0.0203 0.0684 0.0303 

75.0
  0.0209 0.0825 0.0419 

Ortiz Chen 0.0213 0.0814 0.0409 

Lutes Larsen 0.0203 0.0767 0.0384 

Benasciutti Tovo  0.0197 0.0672 0.0320 

Zhao Baker  0.0215 0.0831 0.0420 

Dirlik 0.0199 0.0717 0.0324 

Average 0.0206 0.0771 0.0379 
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Example 3 

A tri-modal stress response PSD is shown in Figure C-5. 

The resulting fatigue cycles are shown in Table 4. 

 

Table 4.  Cumulative Damage Results D, Tri-modal Stress Response PSD 

Method Material 

 
Butt-Welded 

Steel 

Stainless 

Steel 
Aluminum 

Rainflow Cycle Count 0.0211 0.0774 0.0393 

Narrowband 0.0252 0.0929 0.0480 

Wirsching Light 0.0209 0.0661 0.0298 

75.0
  0.0207 0.0760 0.0393 

Ortiz Chen 0.0210 0.0737 0.0375 

Lutes Larsen 0.0199 0.0688 0.0348 

Benasciutti Tovo  0.0196 0.0620 0.0302 

Zhao Baker  0.0219 0.0790 0.0407 

Dirlik 0.0196 0.0654 0.0301 

Average 0.0204 0.0708 0.0354 
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Summary 

The damage results from the three examples are given in Table 5. 

 

Table 5.  Absolute Error Ratios for Frequency Domain Relative to Time Domain Damage 

Case 
75.0

  
Ortiz  

Chen 

Lutes  

Larsen 

Benasciutti 

Tovo 

Zhao  

Baker 
Dirlik Average 

1 0.024 0.078 0.016 0.011 0.003 0.011 0.019 

2 0.077 0.129 0.057 0.023 0.057 0.011 0.052 

3 0.134 0.185 0.109 0.008 0.168 0.050 0.092 

4 0.014 0.005 0.042 0.071 0.014 0.061 0.028 

5 0.009 0.005 0.062 0.178 0.016 0.123 0.057 

6 0.048 0.023 0.040 0.200 0.050 0.190 0.052 

7 0.019 0.005 0.057 0.071 0.038 0.0196 0.033 

8 0.018 0.048 0.111 0.199 0.021 0.0654 0.085 

9 0.000 0.046 0.115 0.232 0.036 0.0301 0.099 

Mean 0.038 0.058 0.068 0.110 0.045 0.062 0.057 

Max 0.134 0.185 0.115 0.232 0.168 0.190 0.099 

 

The error values are absolute values. 

The six cases represent stress PSD and material combinations. 

Cases 1 through 3 are taken from Table 2, for butt-welded steel, stainless steel, and aluminum, 

respectively.  Cases 4 through 6 are taken from Table 3.   Cases 7 through 9 are likewise taken from Table 

3. 

The average in the last column is not the average error for a given case.  Rather it is the error of the 

average frequency domain damage relative to the time domain rainflow cycle damage.   

The results in Table 5 show that the 
75.0

 method gives the smallest mean damage error. 

The Lutes-Larsen method gives the least maximum error. 

The average of the six methods gives a maximum error than any of the individual methods. 
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Table 6.  Error Ratios for Frequency Domain Relative to Time Domain Damage 

Case 
75.0

  
Ortiz  

Chen 

Lutes  

Larsen 

Benasciutti 

Tovo 

Zhao  

Baker 
Dirlik 

1 0.024 0.078 0.016 -0.011 -0.003 0.011 

2 0.077 0.129 0.057 -0.023 0.057 0.011 

3 0.134 0.185 0.109 -0.008 0.168 -0.050 

4 -0.014 0.005 -0.042 -0.071 0.014 -0.061 

5 0.009 -0.005 -0.062 -0.178 0.016 -0.123 

6 0.048 0.023 -0.040 -0.200 0.050 -0.190 

7 -0.019 -0.005 -0.057 -0.071 0.038 -0.071 

8 -0.018 -0.048 -0.111 -0.199 0.021 -0.155 

9 0.000 -0.046 -0.115 -0.232 0.036 -0.234 

Mean 0.027 0.035 -0.027 -0.110 0.044 -0.096 

 

The results in Table 6 show that the 
75.0

 and Lutes Larsen methods give the smallest mean damage 

error.  Zhao Baker is the most conservative. 

 

Conclusions 

The several frequency domain methods tend to provide reasonably good estimates of the cumulative 

fatigue damage with some limitations.  The Narrowband method should only be used with an applied 

correction factor.  In addition, the Wirsching-Light method should only be used for cases with fatigue 

exponents in the range of 3 to 6, inclusive. 

      

An average cumulative damage index based on the six methods in Table 5 is recommended for 

calculating an estimate with enhanced reliability.   Note that the computation time for implementing this 

averaging method is negligibly low. 

 

An effort was made to derive a weighted average method, but the simple average was determined to be 

the best metric for the six cases.  

 

The quest for greater precision in the damage calculation is justified but somewhat academic. 

Uncertainties in S-N curves, stress concentration factors, mean stress, load sequence, thermal and 

corrosion environments, natural frequencies, damping and other variables must also be considered.  
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APPENDIX A 

 

Dirlik Method 

The Dirlik histogram formula N(S) for stress cycles ranges is 

)S(p)S(N p                                                                                                   (A-1) 

 

The function  p(S)  is 
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The coefficients and variables are                      
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The Dirlik cumulative damage is  
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APPENDIX B 

 

 

Zhao & Baker Method 

The probability density function )Z(p  for stress cycles amplitude is 

     2/ZexpZw1ZexpZw)Z(p 21  
                                       (B-1)                                                                                                                                                                                        

where 

  S/SZ                                                                                                             (B-2) 

 

 

The weighting factor w is 
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The Weibull parameters are    
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The Zhao & Baker cumulative damage is 
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APPENDIX C 
 

Rod, Applied Force and Response 

 

 

 

 

 

 

 

 

Figure C-1. 

 

Consider a thin, fixed-free rod subjected to an applied force at the free end. 

 

Table C-1.  Sample Rod Properties, Aluminum 

Length L = 84 inch 

Diameter D = 1 inch 

Area A = 0.785 inch^2 

Area Moment of Inertia I = 0.0491 inch^4 

Elastic Modulus E = 1.0e+07 lbf/in^2 

Mass Density   = 0.1 lbm/in^3 

Speed of Sound in 

Material 
c = 1.96e+05 in/sec 

Viscous Damping Ratio   = 




2 modefor  0.02

1 modefor  0.05
 

 

 

,A,E  

L 

F(t) 
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Figure C-2. 

 

Force PSD, 1580 lbf RMS, 600 seconds 

Frequency (Hz) Force (lbf
2
/Hz) 

10 1000 

2500 1000 

 

 
The level in Table C-1 was increase by a factor of 12 dB for the case of stainless steel in order to induce a 

non-trivial cumulative damage index. 

The one and two-mode stress responses for the nominal force input are shown in Figures C-2 and C-3, 

respectively.  The stress level are calculated the rod’s fixed boundary per Reference 9. 
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Figure C-3. 
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Figure C-4. 
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Figure C-5. 

 

The length of the rod was increased to 115 inches for the tri-modal case in Figure C-5.   The damping for 

the third mode was set at 0.0156. 
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