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§1 Introduction and Notation

As Don Schack mentioned in his plenary talk [SDS], Gerstenhaber [MG] observed
that if A is an associative algebra, then the Hochschild cohomology of A is a graded
commutative algebra with an additional structure, viz., that of a Lie algebra. The two
structures satisfy a compatibility condition (graded Poission structure). We agree to call
such structures G–algebras (Gerstenhaber–algebras). Schack pointed out that if A is a
smooth K-algebra, and we give the exterior algebra Λ∗H0(A,A)(H

1(A,A)) the Nijenhuis-
Schouten bracket, making it into a G-algebra, we have the classic theorem of Hochschild,
Kostant, and Rosenberg (§5): There is an isomorphism of G-algebras

Λ∗H0(A,A)(H
1(A,A))→ H∗(A,A).

If A is a filtered algebra over a commutative ring with unit R, i.e., there is a sequence
of R-submodules Fn−1(A) ⊂ Fn(A), we let

E0(A) = ⊕nFn(A)/Nn−1(A)

be the associated graded R-module (E0
n(A) = Fn(A)/Fn−1(A)). A is multiplicatively filtered

if Fp(A)Fq(A) ⊂ Fp+q(A). In this case, E0(A) is a graded algebra.
Under certain conditions, if A is multiplicatively filtered, there is a spectral sequence

(4.1), (5.3)
E2 = H∗(E0(A), E0(A)) =⇒ H∗(A,A).

In case E0(A) is smooth, Brylinski has identified the E2 term using the theorem of
Hochschild, Kostant, and Rosenberg and has given a natural interpretation of the dif-
ferential d2 in terms of a G-algebra structure on E0(A) (5.3.1) (the grading is slightly
different there so that one sees d1). We will review some related results concerning the
commutative case in §5. We will also look at the May spectral sequence (4.1.3) for multi-
plicatively filtered algebras where E0(A) is not necessarily commutative.

The main concern in this paper will not be with multiplicative structure in cohomology
or in the associated chain complexes, but with the construction of resolutions over A and
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HOMOLOGICAL PERTURBATION

its enveloping algebra Ae (3.1). It should be pointed out that for algebras over a field of
characteristic zero, a theory of multiplicative resolutions is worked out in [SS1], [SS2]. The
constructions we discuss involve what has come to be known as “homological perturbation
theory” [VG1], [RB], [LS], [JH1], [JH2], [GS], [GL], [GLS1], [GLS2], [HK], [HT],
[LL3].

We define the notion of a “model” for the May spectral sequence in (4.1) using no-
tions from homological perturbation theory. We believe that this concept is an important
computational technique in homological algebra and should prove useful in the context of
other spectral sequences as well. Indeed, we may say that the work of Gugenheim and
May in [GM] provides models for the Eilenberg-Moore spectral sequence and has provided
inspiration for the concept of spectral sequence model in this paper.

Although multiplicative results can be obtained through the use of the theory pre-
sented here, it involves the use of some of the more subtle results in [GL], [GLS1], [GLS1],
[HK] and this paper should provide an starting point for such a study.

Finally, it should be mentioned that there are some interesting and useful alternate
viewpoints that may be found in the series of papers by J. Huebschmann and the paper of
J. Huebschmann and T. Kadeishvili [JH1], [JH2], [JH3], [JH4], [HK].

In what follows, we will assume that we are working over a ground ring R which is
commutitave with unit. Much of what we will say about modules and algebras over R can
be done for differential graded modules and algebras. In this paper however, we will deal
only with Ext and Tor over ordinary algebras (possibly graded, but with zero differential).

§2 Some basic homological perturbation theory

Some of the main ideas of basic homological perturbation theory are reviewed
in this section.

One of the motivations for homological perturbation theory comes from the what we
call the Gugenheim principle [LL3]: if X is a resolution over an object A and the object
P is a perturbation of A, then there is a perturbation XP of X which is a resolution over
P . The statement is purposely vague with regard to which category the objects are in and
what is meant by a resolution. For example, in this paper, A and P are algebras and X
and XP are resolutions in the sense of classical homological algebra. One might however
think of A and P as fibrations and X and XP as models for their loop/path spaces [LS],
[VG2], [GLS1], [GLS2], [HK].

Thus, if P is an algebra over some ring R and there is a filtration on P and a resolution
X over the associated graded algebra E0(P ), we expect that there should be a resolution
over P which is obtained by some well-defined (perturbation) of X. One of the first
examples of this that one sees is in the theory of Lie algebras. The classic theorem of
Poincaré-Birkhoff-Witt states that over a field, for example, if the universal enveloping
algebra P = U(G) of a Lie algebra G is filtered by length of monomial generators, then
E0(P ) is the symmetric algebra, A = Sym(G) on the underlying vector space of G. It is
well-known that this also holds if the underlying R-module of G is projective over R. We
have a resolution of the ground ring R over A given by the Koszul complex A ⊗ ER[G],
where ER[G] is the exterior algebra on the underlying vector space of G. Of course, A =
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Sym(G) ∼= R[x1, . . . , xn], the polynomial algebra in n indeterminants {x1, . . . , xn}, where
n = dim(G). Although it is not often presented this way, the differential in the Chevalley-
Eilenberg complex [ChE] is a perturbation of this differential. When the ground ring is
understood, we will also write the exterior algebra ER[M ] on a module M over R as Λ(M).
Summarizing, we have

Theorem 2.1 [JK], [GH]. If A = Sym(V ) is the symmetric algebra on a projective
module V over R, then the complex (A⊗ Λ(V ), ∂) where

∂(v ⊗ v1 ∧ · · · ∧ vn) =
n∑
i=1

(−1)i−1vvi ⊗ v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vn

is a resolution of R over A. (As usual, a ̂ indicates that the corresponding term is
omitted).

and

Theorem 2.2 [ChE]. If G is a Lie algebra over R and G is projective as an R−module,
then the complex (U(G)⊗ Λ(G), ∂) where

∂(g ⊗ g1 ∧ · · · ∧ gn) =
n∑
i=1

(−1)i−1ggi ⊗ g1 ∧ · · · ∧ ĝi ∧ · · · ∧ gn

+
∑
j<k

(−1)j+kg ⊗ [gj , gk] ∧ g1 · · · ∧ ĝj ∧ · · · ∧ ĝk ∧ · · · ∧ gn

is a resolution of R over U(G).

If we think of the universal enveloping algebra as a perturbation of the symmetric
algebra, then the perturbation vanishes if the Lie algebra is trivial, i.e., abelian. In a
corresponding way, if the Lie algebra is abelian, i.e., all brackets [g, h] = 0, then the
perturbation in the second resolution above vanishes and it becomes the first resolution.
This actually fits into a hierarchy of perturbations involving formal groups, as we will see
below (§9).

More abstractly, we may say that homological perturbation theory is a body of
knowledge which deals with the transference of (differential) algebraic structure from one
object to another preserving (chain homotopy) equivalence.

Quite often, the transference of structure is to be made from one differential object to
another which is a strong deformation retraction of the first. This sort of transference
is the subject of several papers such as [KC], [VG1], [VG2], [GS], [LS], [GL], [GLS2],
[GLS1], [RB], [VG1], [JH2], [JH3], [JH4], [HK], [BL], [SH], to name a few.

A statement of the transference problem was formulated and investigated in [BL].
That statement is reviewed here. To begin, let (A, d) be a DG-module over R and let

(2.3) φ : A→ A,
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be a degree 1, R-linear map of graded R-modules. Suppose, in addition, that

φ2 = 0(2.4)
φdφ = φ.(2.5)

We call such a map φ a splitting homotopy. Note that a splitting homotopy give rise to a
splitting of A (as a DG-object)

A = im(π)⊕ ker(π)

where π = 1− (dφ+ φd). This is due to the fact that π is a degree 0 map and π2 = π as
easily follows from (2.3)-(2.4). All of this is in [BL].

We have the following transference problem [BL §2]:

(2.6) Transference Problem. Given a splitting homotopy φ : (A, d)→ (A, d) and a new
differential d′ : A→ A, find a splitting homotopy φ′ : (A, d′)→ (A, d′) such that im(π) ∼=R

im(π′), (isomorphic as R-modules ignoring differentials), where π = 1 − (dφ − φd), and
π′ = 1− (d′φ′ + φ′d′).

The transference problem may also be stated in terms of what we have called SDR–
data (Strong Deformation Retraction data) in several of the references above. In this
paper, we will shorten this to simply an “SDR”. Originally, such objects and maps were
said to form a contraction [EM1, §12].

We recall that if M is a DG-module over R and A and φ are given as above, except
that (2.4), and (2.5) are relaxed, then we say that

(M
∇−→←−
f

A,φ)

is an SDR (M is an SDR of A) if and only if ∇ and f are chain maps such that

f∇ = 1M , and ∇f = 1A − (dφ+ φd).

It was shown in [LS] that the additional conditions

φ2 = 0, φ∇ = 0, fφ = 0

could be assumed (if necessary, by replacing φ by a composition involving d and φ [LS]).
In this paper, whenever we consider an SDR, we will assume that all of these conditions
hold.

The map f above is called the projection, and the map ∇ is called the inclusion.
Strong deformation retractions are fairly common. It is not difficult to see that if

M and A are chain complexes, which are free as R-modules and f : A → M is an onto
map which induces an isomorphism in homology, then f may be “completed” to an SDR

(M
∇−→←−
f

A,φ). This situation is encountered in the Cartan Seminar ’54 [HC] for resolutions

which are compared with the bar construction [SM].
In terms of strong deformation retractions, the transference problem may be stated

[BL §2]:
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(2.7) Transference Problem (SDR version): Given an SDR

(M
∇−→←−
f

A,φ)

and a change t in the differential such that (d+ t)2 = 0, find a new SDR

((M,d′)
∇′−→←−
f ′

(A, d+ t), φ′).

The perturbation t of the original differential is called the initiator.

It is easy to see that the two versions of the transference problem are equivalent (set
M = im(π), where π = 1 − (dφ + φd), see [BL, §2] for more details). The point is
that an SDR is completly determined by the corresponding splitting homotopy. This was
noted in [BL] and first observed in [VG2] in the case that the differential on M is zero.
Thus the inclusion, the projection, and the new differential are determined by the splitting
homotopy. It should be pointed out however that there can be some surprises in this. For
example, it can turn out that when both M and A are algebras, one of f , and ∇ are maps
of DGA-algebras, but not the other [GMu], [GL], [GLS2].

There is a formal solution to the transference problem. This can be found in [WS],
[RB] and [VG1]. One forms the sequence of sums (for a geometric series involving tφ)

φn = 1− tφ+ · · ·+ (−tφ)n + . . . .

The formal solution is φ∞ = limn→∞φn and we also obtain formal solutions for the new
(limit) inclusion and projection. We have

Formal Solution 2.8. [VG1], [RB]: With the above hypotheses let

(2.8.1) Sn = t− tφt+ · · ·+ (−tφ)nt+ . . . .

The formal solution to the transference problem is

f∞ = f − fS∞φ, ∇∞ = ∇− φS∞∇(2.8.2)
∂∞ = dM + fS∞∇, φ∞ = φ− φS∞φ.

Note that we have used the sign convention from [BL] here which differs from the conven-
tion given in [VG1]. This really makes no difference if one simply replaces t by −t above.
We will switch back to the original convention in §8.

There are straightforward conditions that may be given to insure the convergence of
these series. For example, there may be decreasing filtrations of M and A so that f , ∇ and
φ are filtration preserving and such that tφ lowers filtration. Such conditions were given
and used in [VG1]. There are examples however where the series converge and where
such filtrations are not obvious (§9). The following theorem given in [BL] is a criterion
for the existance of a solution to the transference problem which does not require explicit
examination of the formal series above.
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Theorem 2.9 [BL §4]. If ν : A→ A is a splitting homotopy with respect to d and t is a
change in the differential on A (so that (d+ t)2 = 0), then if ν′ : A→ A is another degree
1 map such that

(1 + νt)ν′ = ν

νtν′ = ν′tν,

then

1. ν′ is a splitting homotopy with respect to the new differential ξ = d + t and is a
solution to the transference problem,

2. if (M
α−→←−
β

A, ν) is the SDR corresponding to the original splitting homotopy ν, then

we obtain a new SDR ((M,d′)
α′−→←−
β′

(A, ξ), ν′) where

d′ = dM + βtα− βξν′ξα
α′ = α− ν′ξα
β′ = β − βξν′

Before closing this section, a few remarks about other transference problems may be
in order. As we have already mentioned, one encounters strong deformation retractions
quite often in situations involving “small resolutions”, e.g. minimal resolutions of a module
over an algebra. A classic example is that of the Koszul resolution K = A⊗ER[u1, . . . , un]
related to the ideal I = (x1, . . . , xn) in the polynomial ring A = R[x1, . . . , xn]. Here A is
an augmented algebra over R and we may form the bar construction or standard resolution
B(A) for R over A (§3), [SM], [HC], [CE]. Now K is also a resolution of R over A and so,
by the comparison theorem, we have a chain homotopy equivalence K → B(A); however,
it can be seen that a map exists which is the inclusion for an SDR K −→←− B(A) [PM, §7].
Much more will be said about this kind of situation in (6.1). Here we want to mention
that it sometimes happens that we need to compare two resolutions neither of which is the
standard resolution. It becomes rarer to find strong deformation retractions in that case.
We always have two homotopy inverse chain maps by the comparison theorem however.
In fact, this situation can also arise even when the standard resolution is involved if the
other resolution is “too big”. There is a satisfactory theory for transference of a change
in differential from one side to another in these cases as well [HK]. It is observed ([HK],
[BL, §6]) that this can by done by using the mapping cylinder to reduce the problem to
the “one sided” transference problem above.

Another variation involves the preservation of algebraic properties. For example, if
one starts out with an SDR in which the differentials are (co)derivations and the chain
homotopy equivalences are (co)algebra maps, then one might ask for the maps in a solution
to the transference problem to be (co)derivations and (co)algebra maps. This is the sort
of problem addressed in [GLS1], [GLS2], [HK], [SH].
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Still another class of transference problems involve the situations encountered in
[GMu], [CW], and discussed in [BL2].

In this paper only the first kind of transference problem will be considered.

§3 Standard Resolutions, Twisting Cochains, and Twisted Tensor Products

The bar construction (standard complex) is briefly reviewed in this section.

3.1 The two–sided bar construction.

The bar construction [SM], [HC] is a functor of differential graded augmented algebras

ε : A→ R.

There is also a “two-sided” bar construction, as it is called in [PM], which is used to define
the Hochschild homology of an algebra. It is presented in the case that the differential in A
is zero in [CE] and more generally, one can find a definition in [GM]. We will briefly review
both constructions here and indicate some of the relations between them. We will adopt
the terminology “one sided bar construction” for the first and “two sided bar construction”
for the second.

In each case, we make use of the R-module Ā = coker(σ), where σ : R → A is the
unit for A. We define

B̄0(A) = R

B̄n(A) = ⊗nĀ.

The element of B0(A) corresponding to the identity element of R is denoted by [ ] and the
element a1 ⊗ · · · ⊗ an of Bn(A) is denoted by [a1| . . . |an].

We begin with the two sided bar construction which is defined for any R-algebra A.
It is useful to introduce the “enveloping algebra” Ae = A⊗Aop, (tensor product algebra)
where Aop is A with the opposite multiplication ◦ : Aop ⊗Aop → Aop given by a ◦ b = ba.
We have a standard augmentation

ε : Ae → A

ε(a⊗ b) = ab.

In a straightforward manner, we have a category isomorphism

AeM∼= AMA

of the category of left-Ae-modules and the category of A-bimodules [CE, §IX.3].
The two–sided bar construction is defined so that we obtain a resolution of A over

Ae. As an Ae-module, i.e., as an A-bimodule, the two sided bar construction is B(A,A) =
Ae ⊗R B̄(A) ∼= A⊗R B̄(A)⊗R A.

The augmentation ε : Ae → A, gives an augmentation εB(A,A) : B(A,A) → A by
simply taking εB(A,A) to be ε on B0(A,A) and zero elsewhere. The complex B(A,A) is
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defined in such a way that εB(A,A) is a map of DG-modules where A is given the zero
differential. In fact, define

σA : A→ B(A,A)
σA(a) = [ ]a,

then the conplex B(A,A) is defined so that we have an SDR

(A
σ−→←−
ε
B(A,A), s)

where

s : B(A,A)→ B(A,A)
s(a[a1| . . . |an]a′) = [a|a1| . . . |an]a′

i.e., s is a splitting homotopy, although it is not always stated that way. Of course, this
means that B(A,A) and A are chain homotopy equivalent (where A has zero differential)
and ε is a quasi-isomorphism, i.e., B(A,A) → A is a resolution. It is a remarkable fact
that the condition

s∂ + ∂s = 1B(A,A) − σε

completely defines the Ae-linear map ∂ by induction. If the reader is not familiar with
this well-known fact, he is encouraged to work out the first few terms (as done below). We
will not consider the case that A itself is a differential algebra in the examples presented
in this paper, but the theory presented will cover that case. A similar remark applies to
the one-sided bar construction presented below.

In general, when A is an ordinary algebra, i.e. dA = 0, (but A may be graded) we
have [SM], [HC], [CE]

∂(a[a1| . . . an]a′) = aa1[a2| . . . |an]∑
±[a1| . . . |aiai+1| . . . an]

± [a1| . . . an−1]an.

We are not concerned with the signs here; they follow from the recursive definition of ∂
above in the general case. The first few cases (for an ordinary ungraded algebra) are

∂(a[a1]a′) = a(a1[ ]− [ ]a1)a′

∂(a[a1|a2]a′) = a(a1[a2]− [a1a2] + [a1]a2)a′

∂(a[a1|a2|a3]a′) = a(a1[a2|a3]− [a1a2|a3] + [a1|a2a3]− [a1|a2]a3)a′.

3.2 The one–sided bar construction.

Now assume that A is an augmented (i.e., supplemented [CE]) algebra. This means
that there is given an algebra map

εR : A→ R
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so that εRσR = 1R (recall that σR is the unit of A). Form the R-module B(A) = A⊗RB̄(A)
and define R-module maps εB(A) and σ (similar to the two-sided case)

ε(a[a1| . . . |an]) =
{

0, n = 0
εR(a), n = 0

σ(r) = r[ ].

The one-sided bar construction as a complex gives an SDR

(R
σ−→←−
ε
B(A), s)

where the splitting homotopy s is given by

s : B(A)→ B(A)
s(a[a1| . . . |an]) = [a|a1| . . . |an].

Again, it is true that the differential ∂ in B(A) is completly determined recursively by the
equation [EM1,2], [HC], [PM]

s∂ + ∂s = 1B(A) − σε.

Since ε is a chain homotopy equivalence, we have that B(A) is a resolution of R over A.
Now note that R is an A-module via ε. In fact, we may use ε to make R into an

A-bimodule in the obvious way as well. Thus we may consider R as a left-Ae-module and
it is clear that, as differential graded modules,

B(A) ∼= B(A,A)⊗A R.

Thus, the one-sided bar construction is seen to be a special case of the two-sided bar con-
struction. It is pointed out in [CE §X.6] however that the two-sided bar construction can
be recovered from the one-sided bar construction by a straightforward tensor product in
some important cases, e.g., that of a group-ring A = R(G) with the usual augmentation,
and the universal enveloping algebra of a Lie algebra U(G) with the usual augmentation
([CE §XIII.5]). We will review these results here and examine the two-sided bar con-
struction for any augmented algebra from the viewpoint of twisted tensor products. This
process is well-known in topology and has some very useful applications in homological
algebra as well since it gives us a good way to model the two-sided bar construction. This
will be mentioned again in (§8).

To begin, we recall the theorem on the “inverse–process” from Cartan and Eilenberg
[CE §X.6.1]

Theorem 3.2.1: Given an augmented algebra ε : A → R. Suppose that there exists an
algebra map ς : A→ Ae such that

A
εR−−−−→ R

ς

y yσ
Ae

εA−−−−→ A
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commutes. Letting J = ker(εA), and I = ker(εR), suppose also that

J = Aeς(3.2.2)
Aeς is a projective right-A-module(3.2.3)

where Aeς is Ae as a left- Ae-module and is a right A-module via ς : A→ Ae. Then if

X → R ∈ RM

is a projective resolution, then

Aeς ⊗A X → A ∈ AeM

is a projective resolution.

Informally, this theorem says that under the stated hypotheses, we can obtain the two-
sided bar construction B(A,A) = A ⊗R B̄(A) ⊗R A from the one-sided bar construction
B(A) = A⊗R B̄(A) by appropriately tensoring another A onto the right of B(A). In any
case, we can “twist” A onto the right of B(A) to obtain B(A,A) as we will see in the next
section.

3.3 Twisting cochains and Twisted Tensor Products

If ε : C → R is a differential graded coalgebra with counit ε, (including the case that
C is an “ordinary” coalgebra, i.e., the differential in C is zero and/or C is concentrated in
degree 0), and A is a differential graded algebra with unit σ : R→ A, (including the case
that A is an ordinary algebra), then if the R-bimodule M = A ⊗ C has a differential d
which makes it into a differential A-module, and a differential C-module, i.e., the following
diagrams commute

A⊗M µ−−−−→ M

dA⊗1M+1A⊗dM
y ydM

A⊗M µ−−−−→ M

M
ρ−−−−→ M ⊗ C

dM

x xdM⊗1C+1M⊗dC

M
ρ−−−−→ M ⊗ C

where µ and ρ are the (obvious) module and comodule structures on M , then we simply
say that M is an A-C-module/comodule and write M ∈ AMC .

With the notation above, recall the convolution algebra structure on [C,A]R defined
in the usual way: if f, g : C → A, then fg : C → A is given by

C
fg−−−−→ A

4
y xm

C ⊗ C f⊗g−−−−→ A⊗A,

(m is the product in A and 4 is the coproduct in C).
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It is also useful to define the composites jA and iC

jA : A⊗ C 1A⊗ε−−−→ A⊗R ∼= A

iC : C ∼= R⊗ C σ⊗1C−−−→ C ⊗A.

Finally, for a map τ : C → A define τ̃ to be the composite

M
τ̃−−−−→ M

1A⊗4
y xm⊗1C

A⊗ C ⊗ C 1A⊗τ⊗1C−−−−−−→ A⊗A⊗ C.

Gugenheim’s theorem on twisting cochains is

Theorem 3.3.1 [VG1]: Suppose that M = A⊗R C ∈ AMC . Then

dM = d⊗ + τ̃

d2
M = Dτ + τ2 = 0

where τ is the composite
τ = jAdM iC .

Here Dτ is the differential in [C,A]R:

Dτ = dAτ + τdC ,

τ2 = ττ is the product of τ with itself in the convolution algebra structure on [C,A]R and
d⊗ = dA ⊗ 1C + 1A ⊗ dC is the tensor product differential.

By definition, an R-module map τ : C → A is called a twisting cochain if Dτ +τ2 = 0.
For a map τ : C → A, we put dτ = d⊗ + τ̃ . Gugenheim goes on to prove

Theorem 3.3.2 [VG1]: Suppose that τ : C → A is any R-module map, then the following
are equivalent

Dτ + τ2 = 0
d2
τ = 0.

and if one of these equivalent conditions hold, then (A⊗ C, dτ ) ∈ AMC .

Thus if τ is a twisting cochain, then we obtain a perturbation of the tensor product
differential on M = A⊗RC giving a new complex M ∈ AMC . We call any complex arising
in this way a twisted tensor product complex (see [EB]).

3.4 The Universal Twisting Cochain

We can obtain a differential ∂̄ on B̄(A) for an augmented algebra A by taking

(B̄(A), ∂̄) ∼= (R⊗A B(A), 1R ⊗A ∂).
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It is well-known that (B̄(A), ∂̄) is a differential graded coalgebra with counit σ

4[a1| . . . |an] =
∑
±[a1| . . . |ai]⊗ [ai| . . . |an]

σ(r) = [ ]r.

For example, in the case of an ordinary algebra, we have

4[ ] = [ ]⊗ [ ]

4[a1] = [ ]⊗ [a1] + [a1]⊗ [ ]

4[a1|a2] = [ ]⊗ [a1|a2] + [a1]⊗ [a2] + [a1|a2]⊗ [ ]

etc.
It is not difficult to see that the differential ∂ on B(A) gives this complex the structure

of an A-B̄(A)-module/comodule and so theorem (3.5) applies and we easily compute the
corresponding twisting cochain π to be

(3.4.1) π[a1| . . . |an] =
{

0, n > 0
a1 − ε(a1), n = 0.

We thus recover B(A) as a twisted tensor product complex as is well-known. For reasons
that we won’t go into here, we call π the universal twisting cochain [GMu], [HMS], [GL].

3.5 More Twisted Tensor Products

If τ : C → A is a twisting cochain, and N is an A-module, then we may form
the associated tensor product complex M = N ⊗R C where the differential is given by
dτ = d⊗ + τ̃ and τ̃ is the composite

M
τ̃−−−−→ M

1N⊗4
y xµ⊗1C

N ⊗ C ⊗ C 1N⊗τ⊗1C−−−−−−→ N ⊗A⊗ C
where µ : N ⊗ A → N is the (right) A-module structure on A. Obviously, this gives the
twisted tensor product of the previous section when N is taken to be A with the standard
A-module structure.

Dually, we have the associated twisted tensor product complex (M,dτ ) where M =
D ⊗A for and C-comodule D:

D ⊗A dτ−−−−→ D ⊗A

ρ

y x1D⊗m

D ⊗ C ⊗A 1D⊗τ⊗1A−−−−−−→ D ⊗A⊗A
where ρ : D → D ⊗ C is the comodule structure. Obviously, this gives the twisted tensor
product of the previous section when D is taken to be C with the standard C-comodule
structure.

We may apply these remarks to the universal twisting cochain π : B̄(A) → A and
the comodule B(A) over B̄(A) to obtain an associated twisted tensor product complex
B(A)⊗R A and we have the following

12
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Theorem 3.5.1: Let ε : A → R be an augmented algebra and π : B̄(A) → A be the
universal twisting cochain. The associated twisted tensor product complex B(A)⊗R A ∼=
A⊗R B̄(A)⊗R A is just the two-sided bar construction B(A,A).

The proof is an easy computation using the definitions. As a consequence, we may
think of the differential ∂ in the two-sided bar construction as a perturbation of the tensor
product 1A ⊗ ∂̄ ⊗ 1A where ∂̄ is the differential in the coalgebra B̄(A). By simply tracing
the composites involved, one can easily identify ξ in the following.

Theorem 3.5.2: With the hypotheses above, the differential ∂ in the two-sided bar con-
struction is a perturbation of the tensor product differential

(3.5.3) ∂ = 1A ⊗ ∂̄ ⊗ 1A + ξ

4. The May Spectral Sequence

We review an important concept in homological algebra in this section and discuss
some interesting results involving it.

4.1. The Spectral Sequence.

When A is augmented, there is a rather general spectral sequence which was intro-
duced by May in [PM, §4]. May’s interest in that paper is with Tor and Ext over A and
so he deals with the resolutions R⊗AB(A,A)⊗AM , for a left A-module M . The homology
of this complex is, of course TorA(R,M) [CE, §X.2] which is denoted by H∗(A;M).

Suppose that A is a multiplicatively filtered algebra (as in §1) and the filtration satisfies

(4.1.1) FnA = 0, if n ≥ 0, F−1A = ker(ε), ∩nFn(A) = 0

or

(4.1.2) FnA = 0, if n < 0, F0A = R, ∪nFnA = A.

Suppose that M is a filtered A-module or has the filtration given by Fn(M) = Fn(A)M .
Then there is a filtration of the bar construction resolution B = R⊗AB(A,A)⊗AM such
that in the resulting spectral sequence, one has

E1 = E0(B) ∼= R⊗E0(A) B(E0(A), E0(A))⊗E0(A) E
0(M).

Furthermore, May shows that the differential d1 corresponds to the differential in the bar
construction resolution involved in the isomorphism above and hence

Theorem 4.1.3. [PM, §4]: Let ε : A → R be an augmented algebra which is multi-
plicatively filtered and satisfies either (4.1.1) or (4.1.2). Suppose that M is a filtered left
A-module. There is a filtration of R ⊗A B(A,A) ⊗AM such that the associated spectral
sequence satisfies

E2 = H∗(E0(A);E0(M)) =⇒ H∗(A;M).

13
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We should point out that the cases of interest in [PM] are such that the inverse process
of Cartan and Eilenberg (3.2.1) is available, so that a two-sided version, i.e., a version for
Hochschild homology follows from (4.1.3); however, a version of the May spectral sequence
may be derived directly using the methods in [PM]. This was done independently for a
certain class of algebras in [JB] (see §5.3 below).

Generally, if A is a multiplicatively filtered algebra and there is an associated filtration
of the bar construction which gives rise to a spectral sequence and satisfies E0B = BE0,
we will call the spectral sequence a May spectral sequence for A (with respect to the
given filtration). In §8, for a given multiplicative filtration of A, we will define associated
transference problems ((8.1.3) and (8.1.8)). We will call any solutions to these particular
transference problems models of the corresponding May spectral sequence.

4.2. Certain Quadratic Algebras and the Complex of Priddy.

In [SP], Priddy looks at a class of (possibly graded) algebras over a field R which
have a presentation in terms of generators {ai} and relations {rj} where the rj are at most
quadratic in the ai (and at least linear, since he assumes that the relations are all of the
form

∑
i riai+

∑
j,k rj,kajak, so that Sridharan’s algebras (5.2) below are not considered).

If A is filtered by length of monomial (in the generators ai), then E0(A) has presentation
given by generators {bi} in bijective correspondence with {ai} and relations

∑
j,k rj,kbjbk.

Priddy is only concerned with Ext and Tor over A in [SP] and he identifies a class of
such algebras for which the May spectral sequence (4.1.3) collapses at E2: he defines A as
above to be a Koszul algebra if E0(A) satisfies the property that the cohomology algebra
TorE0(A)(R,R) [CE, §XI.7] is generated (as an algebra) by the elements corresponding
to the (indecomposable) elements {bi} of E0(A). The point is that, for such algebras, a
degree argument will show that the associated spectral sequence collapses.

A condition is given in [SP] which insures that A is a Koszul algebra, viz., the existance
of a Poincaré-Birkhoff-Witt (PBW) basis. We refer the interested reader to [SP] for the
details about this notion. It should also be noted that Koszul algebras play an important
rôle in Manin’s work [YM].

The identification of the differential d1 in the spectral sequence in [SP, §3] uses the
following observation. For convenience, write TorS(R,R) = H∗(S) for an augmented
algebra S → R. We have

Theorem 4.2.1. [SP, §3]: If A is a Koszul algebra, then there is an injective R-module
map

∇ : H∗(E0(A))→ B̄(A)

and a differential d : H∗(E0(A))→ H∗(E0(A)) such that

∂̄ ◦ ∇ = ∇ ◦ d.

The complex (H∗(E0(A)), d) is homology equivalent to B̄(A).

Priddy calls (H∗(E0(A)), d) the Koszul complex associated to the Koszul algebra A.
It has homology H∗(A).

14
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We note that the map ∇ is obtained as a composite

H∗(E0(A)) r∗−→ B̄(A)
i↘ ↗ j

B̄(E0(A))

for injections i, and j and, in fact, it is easy to see that i may be completed to an SDR

(H∗(E0(A))
i−→←−
p
B̄(A), ν).

Now since we are working over a field, there is a vector space isomorphism B̄(E0(A)) ∼=
B̄(A) and we let V denote this vector space. There are differentials ∂̄0 and ∂̄ on V
corresponding to (B̄(E0(A)), ∂̄) and (B̄(A), ∂̄) respectively. With this notation, we see
that there is an SDR

(4.2.2) ((H∗(E0(A)), 0)
i−→←−
p

(V, ∂̄0), ν).

and changing the differential ∂̄0 on V to ∂̄, we obtain a solution to the corresponding
transference problem (2.7) given by the Koszul complex. The main results of this paper
in §8 show that, for a more general class of filtered algebras (not just quadratic algebras
which are Koszul), we still have complexes which model the bar construction. There will
generally be more terms in the perturbation.

4.3. The Quillen-Jennings Theorem.

In conjunction with the following theorem which relates the group ring of a group to
the universal enveloping algebra of an associated Lie algebra, the May spectral sequence
gives us a spectral sequence for group cohomology as is well-known (e.g.,[LP, §7])

Let G be a group and p be a prime integer or 0. If p 6= 0, let G1 = G and more
generally, for i ≥ 1, let Gi be the subgroup of G generated by all elements of the form
(x1(. . . (xr−1, xr) . . . ))yp

s

where rps ≥ n [DQ]. {Gi} is the mod-p lower central series of G.
(See [SJ, §5]). If p = 0, let {Gi} be the lower central series of G. We may form the graded
Lie algebra gr(G) = ⊕nGn/Gn+1 and we may also form the associated graded algebra
E0(A) of the group ring A = ZZ/pZZ(G), filtered by powers of the augmentation ideal
(using the usual augmentation ZZ/pZZ(G) → ZZ/pZZ). Quillen’s generalization of Jennings’
theorem [SJ] is

Theorem 4.5.1. [DQ]:
U(gr(G))⊗ZZ K ∼= E0(A)

where, if p 6= 0, the left hand side denotes the mod-p universal enveloping algebra of gr(G)
[NJ] and K = ZZ/pZZ, while if p = 0, the left hand side denotes the ordinary universal
enveloping algebra of gr(G) and K = Q, the rational numbers.

(4.1.3) and (4.3.1) obviously imply the well-known
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Theorem 4.3.2: For any group G, there is a spectral sequence {Er} with

E2 = H∗(gr(G),K) =⇒ H∗(G,K)

where if p 6= 0, K = ZZ/pZZ and if p = 0, K = Q.

We note that by the inverse process (3.2.1) of Cartan–Eilenberg, we may easily convert
any such “one-sided” theorem for groups and Lie algebras into the corresponding “two-
sided” theorem, i.e., into the corresponding theorem for Hochschild (co)homology.

§5. Hochschild (Co)Homology of Various Classes of Algebras

Moving from very specific to rather general, the Hochschild (co)homology for algebras
of various kinds is considered in this section.

5.1. The Hochschild–Kostant–Rosenberg Theorem.

The Hochschild homologyH∗(A,M) of an algebraA with coefficients in anA-bimodule
M is by definition TorA

e

(M,A). By the results of the previous section, we have a resolution
B(A,A) → A of A over Ae and hence, we may calculate TorA

e

(M,A) as the homology
of the complex M ⊗Ae B(A,A) with the differential 1M ⊗ ∂. Similiar remarks apply
to the Hochschild cohomology H∗(A,M) = ExtAe(M,A). Of course, any Ae-projective
resolution of A will do for the computation of homology and cohomology. In certain cases,
this (co)homology is explicitly known. For example, consider one part of the theorem of
Hochschild, Kostant, and Rosenberg for certain kinds of commutative R-algebras (it has
been pointed out that the theorem holds under less restrictive conditions on R [JB]) :

Theorem 5.1.1 [HKR, p. 395]: Let R be a perfect field, and A a regular affine algebra
over R. The natural map

H1 = H1(A,A)→ H∗(A,A)

of Hochschild homology groups induces an isomorphism

EA(H1)→ H∗(A,A)

where EA(H1) = Λ(H1) is the exterior A-algebra built using alternating multilinear maps
on H1 over A.

Perhaps a few remarks are in order with regard to H1 in the theorem above. Since
A is commutative, the enveloping algebra Ae ∼= A ⊗ A as algebras and the augmentation
ε : Ae → A defined in §3 is just the multiplication map in A. In this case, it is well-
known that TorA⊗A1 (A,A) ∼= I/I2 where I is the augmentation ideal of Ae. Also, I/I2

is isomorphic to the Kähler differentials for A, i.e., the A-module generated by symbols
{a, da|a ∈ A} modulo the relations d(r) = 0, and d(ab) = a(db) + (da)b, for r ∈ R, and
a, b ∈ A. We will use this notation in (5.3.1) below.

It is also worth noting that a “one-sided” case of this theorem for a polynomial algebra
follows from the the well-known Koszul resolution for the maximal ideal (x1, . . . , xn) in the
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polynomial ring A = R[x1, . . . , xn] mentioned in §2. Using that resolution, it is immediate
that we have an isomorphism of homology

TorA∗ (R,R) ∼= ER[u1, . . . , un]

where
TorA1 (R,R) = R{u1, . . . , un}

is the free R-module generated by a set of elements {u1, . . . , un} corresponding to the
algebra generators {x1, . . . , xn}. Here we have used the usual augmentation ε : A → R
given by

ε(f) =
{

0, deg(f) > 0
f, deg(f) = 0.

In fact, what we have said about the polynomial algebra holds over R = ZZ, the ordinary
integers.

5.2 Sridharan’s Work on Algebras A with E0(A) Polynomial

Our exposition in this section follows that found in Kassel [CK]. We wish to point
out however, that Kassel goes on to investigate, not only Hochschild (co)homology, but
has interesting results on cyclic homology (also see [CK2].

As we have already remarked, the Poincaré–Birkoff–Witt theorem implies that if the
underlying R-module structure of a Lie algebra G is projective, then the associated graded
algebra E0(A) (with respect to length of monomial) of the universal enveloping algebra A
of G is isomorphic to the symmetric algebra Sym(G) of the underlying R-module of G.

More generally, suppose that G is a Lie algebra and f : G × G → R is a 2-cocycle on
G with coefficients in the trivial G-module R. Let

Uf (G) = T (G)/I

where I is the ideal generated by

{x⊗ y − y ⊗ x− [x, y]− σ(f(x, y))|x, y ∈ G}

where σ is the unit of the tensor algebra T (G) on the underlying R-module of G. We have

Theorem 5.2.1 [RS §3]: Suppose that A is a multiplicatively filtered algebra over R and
that Fn(A) = 0 for n < 0, F0(A) = R, and

⋃
n Fn(A) = A.

If E0(A) ∼= Sym(A) (the symmetric algebra on the underlying R-module structure of
A), then

A ∼= Uf (G)

where G is a Lie algebra and f : G × G → R is a 2-cocycle on G with coefficients in the
trivial G-module R.
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Now Sridharan goes on in [RS] to prove that there is a “perturbed” version of the
inverse process of Cartan and Eilenberg (3.2.1) for algebras A which satisfy the hypotheses
of the theorem above. To review, the natural quotient map q : T (G) → Uf (G) induces an
R-linear map if : G → Uf (G) with the following properties: let A = Uf (G) and A0 = U(G).
The map p : G → Uf (G)e defined by p(x) = if (x) ⊗ 1 + 1 ⊗ if (x) induces an R-algebra
map ℘ : A0 → A which makes A into a left A0-module which we denote by ℘A. With this
notation, we have

Theorem 5.2.2 [RS]: If G is free as an R-module and X → R is a projective resolution
of R over A0, then ℘A⊗A0X → A is a projective resolution of A over Ae (compare (3.2.1)).

Using the one-sided resolution (2.2) over A0 in (4.2.2) to play the role of X, we obtain
a two-sided resolution ℘A ⊗A0 X → A. The complex is isomorphic to A ⊗R Λ(G) ⊗R A
with differential given by [CK]

Theorem 5.2.3: Assume the hypotheses of (4.2.2) with X the resolution in (2.2). Then
the differential in A⊗R Λ(G)⊗R A is given by

∂(g ⊗ g1 ∧ · · · ∧gn ⊗ g′) =
n∑
i=1

(−1)i−1ggi ⊗ g1 ∧ · · · ∧ ĝi ∧ · · · ∧ gn ⊗ g′

−
n∑
i=1

(−1)i−1g ⊗ g1 ∧ · · · ∧ ĝi ∧ · · · ∧ gn ⊗ gig′

+
∑
j<k

(−1)j+kg ⊗ [gj , gk] ∧ g1 · · · ∧ ĝj ∧ · · · ∧ ĝk ∧ · · · ∧ gn.(5.2.4)

Note that is identical to the two-sided Chevalley-Eilenberg complex.

5.3. Some Generalizations of the Theorem of Hochschild, Kostant, and Rosenberg

Suppose that A is an algebra which admits a filtration such as in (5.2.1) except that we
only assume that the associated graded algebra E0(A) is commutative. In case E0(A) sat-
isfies the hypotheses of the HKR-theorem (5.1.1), we have H∗(E0(A), E0(A)) = Ω, where
we denote the exterior algebra generated by H1(A,A) by Ω. We recall that, in this case,
Brylinski independantly discovered a spectral sequence beginning with H∗(E0(A), E0(A))
and abutting toH∗(A,A). He gave an identification of the (E1, d1) term as we review: there
is a well-known construction of a Lie algebra structure { , } on E0(A) given by choosing a
representative u(x) ∈ Fn(A) for each homogeneous element x ∈ E0

n(A) = Fn(A)/Fn+1(A).
We the have {x, y} = u(xy − yx). In fact, (E0(A), { , }) is a Poisson algebra, but we
won’t go into that here (this fact plays an important rôle in deformation theory and its
application to quantum groups [VD]).

We also wish to point out that Brylinski goes on to discuss Poisson structures related
to manifolds and cyclic homology. We will not touch upon those topics in this paper. See
[JB] and [CK1,2] for more information about these things.

Using the Lie bracket defined above, we have
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Theorem 5.3.1 [JB]: If A is an algebra with filtration such that E0(A) is commutative,
then the associated spectral sequence {Er} satisfies

E1 = H∗(E0(A), E0(A)) = Ω

where Ω = EA((H1(S, S)) (5.1.1) and the differential corresponding to d1 is given by

δ(x0dx1 . . . dxn) =
n∑
i=1

(−1)i−1{x0, xi}dx1 . . . d̂xi . . . dxn

+
∑
j<k

(−1)j+kx0d{xj , xk}dx1 . . . d̂xj . . . d̂xk . . . dxn.(5.3.2)

In the theorem, we have identified H1(S, S) with Kähler differentials as mentioned
just after (5.1.1).

Kassel [CK, §7] observes that the spectral sequence collapses for the A of theorem
(5.2.1), i.e., for A such that E0(A) ∼= Sym(A) and then goes on to discuss the cyclic
homology of such algebras. We will only recall the result for Hochschild homology here.

Theorem 5.3.3. [CK, §7.4]: With the hypotheses of (5.3.1), assume in addition that
E0(A) ∼= Sym(A), (so that by (4.2.1) A ∼= Uf (G)), then the resolution A ⊗R Λ(G) ⊗R A
(5.2.4) gives rise to a complex L = A⊗R Λ(G)⊗RA⊗Ae A ∼= A⊗R Λ(G) (whose homology
is H∗(A,A), of course). We have that L is isomorphic to the complex defined by (5.3.2).
Consequently, the spectral sequence (5.3.1) collapses, in this case, at E2.

§6 Splitting Homotopies and Resolutions

This brief section gives a general recursive formula for a splitting homotopy on the
bar construction for a class of resolutions.

6.1. Resolutions Which Split Off From the Bar Construction.

Suppose that ε : A → R is an augmented algebra, X̄ is a free R-module, and X =
A ⊗R X̄ posesses a differential d : X → X and a map X → R which makes (X, d) into
a free A-module resolution of R. By the comparison theorem for resolutions, there exists
a chain homotopy equivalence B(A) → X. If this map is onto, then as we mentioned in

§2, we may complete to an SDR (X
∇−→←−
f

B(A), φ). In this section, we will be concerned

with examples where an SDR arises in a natural way from a given contracting homotopy
c : X → X. In fact, assume that X → R is a resolution in which we have an explicit
contracting homotopy c

(R
σ−→←−
ε
X, c).

The one-sided bar construction is an example. The Koszul resolution (§2) is another; the
contracting homotopy is given in [GH]. These sorts of resolutions are found in a more
general context in the Cartan Seminar [HC] and are called constructions.
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To begin, note that A-linear comparison maps ∇ : X → B(A) and f : B(A) → X
may be defined recursively, using the contracting homotopy c for X, and the standard
contracting homotopy s for B(A) as follows: ∇(x̄) = s∇dx̄, for x̄ ∈ X̄ and f(b̄) = cf∂b̄,
for b̄ ∈ B̄(A). May has pointed this out in [PM] and has given a straightforward and
useful criterion for when the resulting map is one-one. We have

Theorem 6.1.1. [PM, §7]: As above, let X = A⊗RX̄ → R be a free resolution of R over
A and let ∇ : X → B(A) be defined by ∇(x̄) = s∇dx̄, for x̄ ∈ X̄. If d(X̄n) ∩ X̄n−1 = 0,
then ∇ is one-one.

In general, both composites ∇f and f∇ are homotopic to the respective identity
maps and we may use the contracting homotopies to explicitly construct these homotopies;
however, we shall assume that we are in the case that f∇ = 1X . We still have the A-linear
chain homotopy φ : B(A)→ B(A) given recursively by φ(b̄) = s(∇f b̄− b̄−φ∂b̄). Now note
that s vanishes on B̄(A) and so this formula reduces to φ(b̄) = s(∇f b̄−φ∂b̄). In summary,
we will assume, in this section, that the recursive definitions

∇(x̄) = s∇dx̄, for x̄ ∈ X̄(6.1.2)
f(b̄) = cf∂b̄, for b̄ ∈ B̄(A)(6.1.3)
φ(b̄) = s(∇f b̄− φ∂b̄), for b̄ ∈ B̄(A)(6.1.4)

define maps such that ∇f = 1X so that we have an explicit splitting homotopy φ on the
bar construction. This situation is not unusual (see for example, [HC], [GM, appendix]).

In the following theorem we adopt the notation: if b̄ =
∑

[bi1 | . . . |bik ] ∈ B̄(A), then

[x1| . . . |xn : b̄] =
∑

[x1 . . . |xn|bi1 | . . . |bik ] ∈ B̄(A).

Lemma 6.1.5: Assuming the hypotheses above,

φ[b̄1| . . . |b̄k] =
k−1∑
i=0

(−1)i[b1| . . . |bi : s∇f [bi+1| . . . |bk]].

Proof: This is a straightforward induction using the recursive formula for φ.

In addition, we have

Lemma 6.1.6: Assuming the hypotheses above, if X is a finite resolution, i.e., X vanishes
above degree n for some n, then for all m > n

φ[b̄1| . . . |b̄m] = (−1)m−n[b1| . . . |bm−n : φ[bm−n+1| . . . |bm]].

Thus φ is completely determined by φ[b1], φ[b1|b2], . . . , φ[b1| . . . |bn]. The formula follows
from this.
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Proof: Since φ− s∇f − sφ∂ on B̄(A) and necessairly, f vanishes on elements of degree
greater than n, we have that for m > n, φ = −sφ∂ = −sφp, where p[b1| . . . |bm] =
b1[b2| . . . |bm].

For example, the Koszul resolution is a finite resolution as is the Tate resolution for
ZZ over the free abelian group ZZn. We will look at this in detail in §9.

§7 Some Complexes Related to Groups and Formal Groups

Groups with underlying set ZZn and group law a polynomial function ρ : ZZn×ZZn → ZZn

are known to be finitely generated torsion free nilpotent.
There is a class of solvable groups which have as underlying set ZZn and whose group

laws are convergent power series ρ : ZZn × ZZn → ZZn.
Similiar remarks apply to finite p-groups; although it seems a bit unusual to think of

them this way, they are of the form (ZZ/pZZ)n with a polynomial function ρ : (ZZ/pZZ)n ×
(ZZ/pZZ)n → (ZZ/pZZ)n.

More generally, one can consider a formal power series ρ over a ring R which formally
satisfies the associative law and formally satisfies the existence of an identity element [JS].
These systems are called formal groups and there are various cochain complexes which
can be associated to a formal group. We examine some of the relationships between these
complexes and the ideas presented in the previous sections.

7.1 Some Convergent Group Laws.

The class of finitely generated torsion-free solvable groups properly contains the class
of finitely generated torsion-free nilpotent groups. The latter class can be thought of as
consisting of (up to isomorphism) all groups of the form (ZZn, ρ), where ZZn denotes the
nth Cartesian product of the set of integers with itself and the group operation ρ is a
polynomial function, ρ : ZZn × ZZn → ZZn. It can be furthermore shown that, for such a
group, the function ρ can be taken to have the form

(7.1.1) ρ(x, y) = x+ y + b(x, y) +O(≥ 3)

where x, y ∈ ZZn, + denotes ordinary addition of n-tuples of integers, b(x, y) denotes the
homogeneous degree 2 term of ρ, and O(≥ 3) denotes the terms of degree ≥ 3 (some
polynomial function) [PH].

Another class of examples is given by choosing a matrix A ∈ GL(n,ZZ). If we consider
this as a group homomorphism

ZZ→ GL(n,ZZ)
1 7→ A,

we may form the semi-direct product ZZn×AZZ where the underlying set is just the ZZn×ZZ
and the operation is

(x, xn+1)(y, yn+1) = (x+Axn+1y, xn+1 + yn+1)
= (x, xn+1) + (y, yn+1) + ((Axn+1 − I)y, 0).
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We will only consider the cases for which B = log(A) exists. Then we may rewrite the
operation above as

(x, xn+1)(y, yn+1) = (x+ exn+1By, xn+1 + yn+1)
= (x, xn+1) + (y, yn+1) + (xn+1By, 0)

+ (
x2
n+1

2
B2y +

x3
n+1

3!
B3y + . . . , 0).

So we can obtain a convergent power series group law, ρ : ZZn+1 × ZZn+1 → ZZn+1, where

ρ(x, y) = x+ y + b(x, y) + ψ(x, y)(7.1.2)
b(x, y) = (xn+1By, 0)

ψ(x, y) = (
x2
n+1

2
B2y +

x3
n+1

3!
B3y + . . . , 0).

For example, the fundamental group G of the Klein bottle may be written this way: take
[−1] ∈ GL(1,ZZ) to form G = ZZ2 with operation

(x1, x2)(y1, y2) = (x1 + (−1)x2y1, x2 + y2)
= (x1 + cos(πx2)y1, x2 + y2)

= (x1 + y1, x2 + y2)− (
π2x2

2

2!
, 0) + (

π4x2
2

4!
, 0)− . . .

Another example which we will examine more closely is G = ZZ2 ×φ ZZ where

φ : ZZ→ SL(2,ZZ)

1 7→
(

0 −1
1 0

)
.

Working out the group law as above,

((x1, x2),m)((y1, y2), n) = ((x1, x2) + φ(m)(y1, y2),m+ n)

= ((x1, x2) +
(

0 −1
1 0

)m
(y1, y2),m+ n).

We are thinking of the usual action of a 2 × 2 matrix on an ordered pair of integers.

Thinking of
(

0 −1
1 0

)
as corresponding to i =

√
−1, we can obtain an isomorphic group

by defining the following operation on G × ZZ, where G is the group of Gaussian integers,
G = {a+ bi | a, b ∈ ZZ}:

(7.1.3) (g1,m)(g2, n) = (g1 + img2,m+ n).
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Now note that

in = e
π
2 in =

∞∑
0

(nπi)k

2kk!

=
∞∑
0

(nπ)2ki2k

22k(2k)!
+
∞∑
0

(nπ)2k+1i2k+1

22k+1(2k + 1)!

=
∞∑
0

(−1)k(n2π2)k

4k(2k)!
+
nπ

2i

∞∑
0

(−1)k(n2π2)k

4k(2k + 1)!
.

Thus, for a Gaussian integer y = y1 + y2i, we have

ix3 · y = ix3y1 + ix3y2i =

y1

∑ (−1)k(x2
3π

2)k

4k(2k)!
+
x3y1π

2
i
∑ (−1)k(x2

3π
2)k

4k(2k + 1)!

+ y2i
∑ (−1)k(x2

3π
2)k

4k(2k)!
− x3y2π

2

∑ (−1)k(x2
3π

2)k

4k(2k + 1)!
=

y1

∑ (−1)k(x2
3π

2)k

4k(2k)!
− x3y2π

2

∑ (−1)k(x2
3π

2)k

4k(2k + 1)!

+ {y2

∑ (−1)k(x2
3π

2)k

4k(2k)!
+
x3y1π

2

∑ (−1)k(x2
3π

2)k

4k(2k + 1)!
}i.

We therefore have

(x1 + x2i, x3)(y1 + y2i, y3) = ((x1 + x2i) + (y1 + y2i), x3 + y3)

+ {(−x3y2π

2
, 0) + (

x3y1π

2
i, 0)}

+O(≥ 3),

and so we obtain a group law ρ on the set ZZ3 by defining

ρ(x, y) = (x1, x2, x3) · (y1, y2, y3)

= (x1, x2, x3) + (y1, y2, y3) + (
−x3y2π

2
,
x3y1π

2
, 0) +O(≥ 3).(7.1.4)

7.2. Formal group laws.

Following [JS], we consider collections of n power series in 2n variables with coefficients
in some ring R, ρi ∈ R[[x1, . . . , xn, y1, . . . , yn]] = R[[X,Y ]], 1 ≤ i ≤ n which formally
satisfy the associative law, i.e., if ρ = (ρ1, . . . , ρn), then as formal power series, we have

ρ(ρ(X,Y ), Z) = ρ(X, ρ(Y, Z)).
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(We are substituting one power series in another). We also assume that 0̄ = (0, . . . , 0) is
the “identity”, i.e., that we have the formal identities:

ρ(Z, 0̄) = ρ(0̄, Z) = Z.

Under these conditions, it can be shown that a “formal inverse” exists. Furthermore,
because of the associative law, we have the following construction for a formal group ρ.
Let [ , ] be defined by

[ , ] : Rn ⊗Rn → Rn

[x, y] = b(x, y)− b(y, x)

where b(x, y) denotes the homogeneous degree 2 term of ρ. Then (Rn, [ , ]) is a Lie algebra
over R, i.e., the bracket is bilinear, skew-symmetric, and the Jacobi identity holds. We
will call this object the Lie algebra of ρ and write it as L(ρ).

7.3. Some Cochain Complexes Associated to Formal group laws.

There are several cochain complexes that may be associated to the group laws we have
been discussing. Some are related to the cogroup structure of the bialgebra associated to
the given formal group. In general, given a formal group law ρ, and an extension ring R̃
of R, we may form the complex

Ci(ρ; R̃) = R̃[[X1, . . . , Xi]]

(each Xj denotes n variables xi,1, . . . , xi,n). We give this complex a differential in analogy
with the (dual) bar-contruction differential (for cohomology)

δ(f)(X1, . . . , Xi+1) = f(X2, . . . , Xi+1)

+
∑
j

(−1)jf(X1, . . . , ρ(Xj , Xj+1), . . . , Xi+1)

+ (−1)i+1f(X1, . . . , Xi).

This is in analogy with the “functional bar construction cochains” of [SM].
Given some of the special group laws such as those corresponding to a nilpotent group,

which are actually polynomials, we can restrict the “cochains” above to only polynomials.
For group laws that are actually convergent power series, we might restrict to only cochains
which are themselves convergent power series. We will denote these other complexes by
C∗poly(ρ; R̃) and C∗∞(ρ; R̃) respectively. We will not examine the relationships between
these cochain complexes in this paper, but we would like to point out some rather subtle
points about them. Indeed, consider the case of the group law ρ = + on ZZ, i.e., the
ordinary integers under addition. One might think that polynomial cochains suffice to
compute the group cohomology, but an easy exercise gives that ordinary multiplication of
integers µ(x, y) = xy is a 2-cocycle in C∗poly(ρ; ZZ) and in fact it is an element of order 2 in
H2(C∗poly(ρ; ZZ)); but the group cohomology of the integers vanishes above degree 2! In order
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to capture the group cohomology of (ZZ,+), one needs to take polynomial functions which
take integers to integers for cochains. These are not just polynomials with ZZ coefficients,
but are integral linear combinations of binomial coefficient functions such as f(n) =

(
n
2

)
,

f(m,n) =
(
n
7

)(
m
3

)
, etc. (We might denote this complex by C∗binco(ρ; R̃)). The proof of this

fact is the first part of an induction showing, among other things, that the whole homotopy
category of nilpotent topological spaces can be built up out of “binomial k-invariants” over
the integers and follows from Ekedahl’s work [TE]. The case for finitely generated torsion-
free nilpotent groups using the machinery of [LS], [GL], (see especially [GL,§4.3]) was
announced, but not published [LL4]. There is, undoubtedly a strong connection between
these ideas and the complex of Grothendiek-Cartan [HC2] used in our work [LP] but we
will not investigate the connections here. The issue of group cohomology will be brought
up again in the sections below.

We will leave this section with a few remarks about products and higher order oper-
ations on the complexes above. First of all, the pointwise product of formal power series
gives rise to a product operation in C∗(ρ; R̃): given f(X1, . . . , Xi) and g(X1, . . . , Xj), take

fg(X1, . . . , Xi+j) = f(X1, . . . , Xi)g(X1, . . . , Xj).

This makes C∗(ρ; R̃) into a differential graded algebra. More can be done however. Fol-
lowing the recursive formulas given by Gugenheim and May [GM, appendix], we may
formally define a “cup-1” product and explicitly show that H∗(C∗(ρ; R̃)) is a graded com-
mutative algebra. One also has an action of the Steenrod algebra on the cohomology
by formally following the recursive construction in [PM2]. We will not encounter these
statements again in this paper until the last section and then only briefly.

§8 Perturbation Theorems for Resolutions Over Filtered Algebras

In this section, we present a derivation of resolutions for a class of filtered algebras by
the use of homological perturbation theory. These resolutions give rise to complexes which
can be thought of as giving models for the May spectral sequence (4.1.3). Throughout this
section, we assume that A is a multiplicatively filtered algebra.

8.1. Main Theorem.

Suppose that we have a resolutionX over E0(A). We wish to investigate the possibility
of altering X in some systematic way to obtain a resolution over A. If we have, for example,
an SDR, X −→←− B(E0(A)), then if we are working over a field, we may think of B(A) as
additively (i.e. as a vector space over R) isomorphic to B(E0(A)). We then have a
corresponding transference problem. We mentioned something like this in (4.2.2).

Now it is sometimes the case that we have found only a model X̄ of the reduced
bar construction B̄(A) for an augmented algebra A (so that H∗(X̄) is isomorphic to
TorA∗ (R,R)). When this is the case, we’d like to be able to alter an SDR X̄ −→←− B̄(A) to an
SDR A⊗R X̄ −→←− A⊗R B̄(A) and even to an SDR A⊗R X̄⊗RA −→←− A⊗R B̄(A)⊗RA. We
have formal solutions to each of these transference problems using the basic homological
perturbation theory of §2:
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Theorem 8.1.3: Suppose that, as R-modules, A and E0(A) are isomorphic (for example
R is a field). Suppose also that A is an augmented algebra. Let V denote the underlying
R-module structure of B̄(A) which is isomorphic as an R-module to B̄(E0(A)). Let ∂̄0

and ∂̄ denote the differentials on V corresponding to the bar construction differentials in
the one-sided bar constructions B(E0(A)) and B(A) respectively. Assume that we have
an SDR

((X̄, d)
∇−→←−
f

(V, ∂̄0), φ)

for some complex X̄. Then, we have the tensor product SDR [EM2, (3.1)], [LS, (2.5)]

((A⊗R X̄, 1A ⊗ d)
1A⊗∇−→←−
1⊗Af

(A⊗R V, 1A ⊗ ∂̄0), 1⊗A φ).

Changing the differential on 1A⊗V to ∂ = 1A⊗ ∂̄+ π̃ (see (3.4.1) and the notation before
(3.3.1)), and letting X = A⊗R X̄, we have a formal solution of the transference problem

((X, d′)
∇′−→←−
f ′

(V, ∂), φ′)

given by equations (2.8). If the sequence (2.8) converges, or if there exists a splitting
homotopy φ′ as in (2.9), which is, in addition, A-linear, then we obtain a resolution (X, d′)
of R over A which splits off from the one-sided bar construction B(A) (3.2).

Proof: Let ∇0 = 1⊗A∇, f0 = 1⊗A f , φ0 = 1⊗Aφ, and d0 = 1A⊗dX̄ . The perturbation
t = ∂ − 1A ⊗ ∂0 is A-linear as are ∇0,f0,φ0, and d0 so that we obtain A-linear maps using
the perturbation formulae:

∂∞ = 1A ⊗ dX̄ + φ0t∇0 + f0(tφ0)t∇0 + . . .(8.1.4)
∇∞ = ∇0 + φ0t∇0 + φ0(tφ0)t∇0 + . . .(8.1.5)
f∞ = f0 + ftφ0 + f(tφ0)tφ0 + . . .(8.1.6)
φ∞ = φ0 + φ0tφ0 + φ0(tφ0)tφ0 + . . .(8.1.7)

There are several useful variations of (8.1.3) and we mention a few here. Indeed, if we
encounter the hypotheses of (8.1.3), and we are not concerned with a resolution, but just
want to model the reduced bar construction, we could either carry out the perturbation
of (8.1.3) and then tensor the resulting complex with R over A to reduce it or we could
simply use the SDR (8.1.1) and the initiator ∂̄0− ∂̄, where ∂̄ correspond to the differential
on V corresponding to the differential in B̄(A).

If we had a model of the reduced bar construction of A which, as above, is an SDR

(X̄
∇−→←−
f

B̄(A), φ) and we wanted a resolution over A, then we could proceed as in (8.1.3)

above using the initiator t = ∂ − 1A ⊗ ∂̄ to obtain a (formal) solution to the transference
problem.

We may also use this method to model the two-sided bar construction to obtain
Hochschild (co)homology. Although the process is completly analogous to that of (8.1.3),
we state it seperately. We may think of this as a “perturbed inverse process” (compare
(3.2.1) and (5.2.2)).

26



LAMBE

Theorem 8.1.8: Suppose that, as R-modules, A and E0(A) are isomorphic (for example
R is a field). Let V denote the underlying R-module structure of B̄(A) which is isomorphic
as an R-module to B̄(E0(A)). Let ∂̄0 and ∂̄ denote the differentials on V corresponding to
the bar construction differentials in the one-sided bar constructions B(E0(A)) and B(A)
respectively. Assume that we have an SDR

((X̄, d)
∇−→←−
f

(V, ∂̄0), φ)

for some complex X̄. Then, we have the tensor product SDR

((A⊗R X̄ ⊗R A, 1A ⊗ d⊗R A)
1A⊗∇⊗RA−−→←−−
1⊗Af⊗RA

(A⊗R V ⊗R A, 1A ⊗ ∂̄0 ⊗R A), 1⊗A φ⊗R A).

Changing the differential on A⊗R V ⊗R A to

∂ = 1A ⊗ ∂̄ ⊗ 1A
+ [(m⊗ 1)(1⊗ π ⊗ 1)(1⊗4)]⊗ 1
+ (1⊗ 1⊗m)(1⊗ 1⊗m)(1⊗ 1⊗ π ⊗ 1)(1⊗4⊗ 1)

(see (3.5.3)), and letting X = A⊗R X̄ ⊗R A, we have a formal solution of the transference
problem

((X, d′)
∇′−→←−
f ′

(V, ∂), φ′)

given by equations (2.8). If the sequence (2.8) converges, or if there exists a splitting
homotopy φ′ as in (2.9), which is, in addition, Ae-linear, then we obtain a resolution
(X, d′) of A over A which splits off of the one-sided bar construction B(A) (3.2).

§9. Applications to Group Laws

Small models for torsion-free nilpotent groups have had a long history which we may
think of as beginning with Mal’cev [AM]. The first result on a small model for the co-
homology of a finitely torsion-free nilpotent group G that we are aware of is the result of
Nomizu which we will interpret here in our algebraic context. We go on to review how the
methods of §8 were applied to calculate explicit resolutions of ZZ over the integral group
ring A of a finitely generated nilpotent group. By the inverse process of Cartan and Eilen-
berg, corresponding results hold for resolutions of A over Ae for Hochschild (co)homlogy.
We give the computation of a resolution for the one-parameter family of nilpotent groups
presented at this conference. This example points to an important difference between ho-
mological perturbation methods for computing resolutions as opposed to the usual methods
of calculating minimal resolutions via linear (or, using Groebner bases, certain kinds of
non-linear) algebra, viz., we obtain closed formulae for the resolution in terms of the given
parameter.

9.1. Models of B̄(G) for G Finitely Generated Torsion-Free Nilpotent

Let G be written in the form (ZZn, ρ) as in (7.1.1). We then have a corresponding Lie
algebra LIR = L(ρ) over the extension ring IR of ZZ. Nomizu gives
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Theorem 9.2.1. [KN]: There is an isomorphism of cohomology algebras

Ext∗U (IR, IR) ∼= Ext∗IR(G)(IR, IR).

where U = U(LIR) is the universal enveloping algebra of LIR.

Note that the Ext on the left in the theorem is usually written simply as H∗(LIR) and
is called the Lie algebra cohomology of L and Ext on the right in the theorem is usually
simply written as H∗(G; IR) and is called the group cohomology of G. (see (4.3)).

A generalization of Nomizu’s theorem was given in [LP] which gave the result for
subrings of Q ⊂ IR. The result over Q may also be found in [PP] and [DS]. Using these
results, and the observations in (4.3), we may also translate the results of [LP] into the
context of the present paper:

Theorem 9.2.2. [LP]: For certain subrings Z̃Z of Q depending on the torsion-free nilpo-
tent group G, the May spectral sequence for groups (4.3.2) collapses and the associated
Chevalley-Eilenberg complex derived from (2.2) for the Lie algebra LIR computes the group

cohomology of G with coefficients in Z̃Z.

Much of the homological perturbation theory as applied to resolutions in this paper
came about from trying to understand a proper generalization of (9.2.2) over the integers
and, has already been mentioned, was inspired by work of Gugenheim and May. A much
more general theorem was discovered with Stasheff in [LS]. It concerns a certain class of
nilpotent topological spaces. Again, that paper was motivated by (9.2.2) and the author’s
earlier attempts in [LL1] and [LL2]. We will not review the results of those papers here.
We wish to point out however that the last two contain some explicit computations and
the simplicial methods used in [LS] (inspired by Gugenheim’s work in [VG1]) give rise to
a proof of the convergence of the perturbation in the formal solution to the transference
problem in (8.3.1) for the case of A = ZZ(G) (the group ring over the integers) and R = ZZ.

The computer algebra system Scratchpad was used in [LL3] to experiment with the
computations involved in generating resolutions of ZZ over the integral group rings of finitely
generated torsion-free nilpotent groups using homological perturbation. The idea is a
straightforward variation of (8.1.3) and we will review it below.

9.3. The Exterior Algebra SDR.

We begin with an explicit and well-known resolution of ZZ over the group ring A =
ZZ[t−1, t] of the free abelian group on one generator t over ZZ [EM2, III.14], [HC]. First,
we establish a notation to be used throughout the remainder of the paper. Let

[t]n =
tn − 1
t− 1

Note that [t]n =
∑n−1
i=0 t

i ∈ A.
A has augmentation ε and unit σ, both algebra maps over ZZ, given by

ε(tn) = 1
σ(n) = nt0 = n1.

We have
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Theorem 9.3.1: Let A = ZZ[t−1, t] be the integral group ring of the free abelian group
on one generator t. Define an A-linear map d : A⊗A E[u]→ A⊗A E[u] of degree −1 and
a ZZ linear map ϕ : A⊗A E[u]→ A⊗A E[u] of degree +1 by

d(tn) = 0
d(u) = t− 1
ϕ(tn) = [t]nu
ϕ(tnu) = 0.

Then (A ⊗A E[u], d) is an A-free resolution of ZZ and extending the augmentation ε and
unit σ to (A⊗AE[u], d) in the obvoius way (σ(n) = n⊗ 1, and ε(u) = 0), we have an SDR
[EM2]

(ZZ
σ−→←−
ε

(A⊗A E[u], d), ϕ).

Proof: The identity dϕ+ ϕd = 1− σε is easily verified.

As already mentioned, one can tensor strong deformation retractions to produce an
SDR

(ZZ
σ−→←−
ε
A⊗ZZ E[u1, . . . , un], ϕ)

where A = ZZ[t−1
n , . . . , t−1

1 , t1, . . . , tn] is the integral group ring of the free abelian group on
n-generators t1, . . . , tn. We have

Theorem 9.3.2: With the above notation, we have an SDR

(A⊗ZZ E[u1, . . . , un]
∇−→←−
f

B(A), φ).

Proof: The formulae (6.1.2)-(6.1.4) produce the desired maps and the identity f∇ = 1
is easily verified.

In fact, it was precisely the methods given in (9.3.1) and (9.3.2) that were used to
implement the strong deformation retractions in [LL3]. Furthermore, the method used in
[LL3] to solve the transference problem for the resolutions involved there were a variation
on (8.1.3) and they agree with the straightforward application given by (8.1.3).

We now present the SDR of (9.3.2) explicitly in the three dimensional case obtained
by simply expanding the formulae we have presented so far.

Lemma 9.3.3: For n = 3, and A = ZZ[t−1
3 , t−1

2 , t−1
1 , t1, t2, t3], the SDR

(A⊗ZZ E[u1, u2, u3]
∇−→←−
f

B(A), φ)
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in (9.3.2) is given as follows: The differential d (a derivation of the exterior algebra) and
contracting homotopy ϕ on A⊗ZZ E[u1, u2, u3] are given by

d(p) = 0, for p ∈ A
d(ui) = ti − 1

ϕ(ti1ti2ti3) = [i1]t1u1 + ti11 [i2]t2u2 + ti11 t
i2
2 [i3]t3u3

ϕ(ti1ti2ti3u2) = ti11 [t2]i2u2u1 + ti11 t
i2
2 [i3]t3u3u1

ϕ(ti1ti2ti3u2) = ti11 t
i2
2 [i3]t3u3u2

ϕ(ti1ti2ti3u3) = 0

ϕ(ti1ti2ti3u1u2) = ti11 t
i2
2 [i3]t3u1u2u3

ϕ(ti1ti2ti3u1u3) = 0
ϕ(ti1ti2ti3u2u3) = 0

ϕ(ti1ti2ti3u1u2u3) = 0.

The inclusion (which is related to the well-known “shuffle product”) is given by

∇(ui) = [ti]
∇(uiuj) = [ti|tj ]− [tj |ti]

∇(u1u2u3) = [t1|t2|t3]− [t1|t3|t2]− [t2|t1|t3]
+ [t2|t3|t1] + [t3|t1|t2]− [t3|t2|t1].

The projection is given by

f([ti1ti2ti3 ]) = ti11 t
i2
2 [i3]t3u3 + ti11 [i2]t2u2 + [i1]t1u1

f([ti1ti2ti3 |tj1tj2tj3 ]) = −ti1+j1
1 ti22 [j2]t2 [i3]t3u2u3 − ti11 [j1]t1t

i2
2 [i3]t3u1u3

− ti11 [j1]t1 [i2]t2u1u2

f([ti1ti2ti3 |tj1tj2tj3 |tk1tk2tk3 ] = −ti1+j1
1 [k1]t1t

i2
2 [j2]t2 [i3]t3u1u2u3.

Finally, we will not give the homotopy φ here but note that it can be worked out using
(6.1.5), (6.1.6) and the above formulae.

9.4. A One Parameter Family of Nilpotent Groups.

Consider the set of matrices

Uq(ZZ3) =


 1 x q−1z

0 1 y
0 0 1

 | x, y, z ∈ ZZ

 .

For a fixed q ∈ ZZ, these matrices form a nilpotent group and it is known that an arbitrary
rank 3 torsion free nilpotent group is isomorphic to one of the groups Uq(ZZ3) for some q.
Using the results of §8 and §9, we have
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Theorem 9.4.1: A resolution of ZZ over ZZ(Uq(ZZ3)) is given by the complex

(ZZ(Uq(ZZ3))⊗ZZ EZZ[u1, u2, u3], d)

where

d(ui) = ti − 1
d(u1u2) = (−t1t2[q]t3)u3 + (t1 − 1)u2 − (t2 − 1)u1

d(u1u3) = (t1 − 1)u3 − (t3 − 1)u1

d(u2u3) = t2 − 1)u3 − (t3 − 1)u2

d(u1u2u3) = (t1 − 1)u2u3 − (t2 − 1)u1u3 + (t3 − 1)u1u2.

More generally, the same sort of argument applies to any finitely generated torsion-free
nilpotent group and we have

Theorem 9.4.2 [LS, (4.1)]: For any finitely generated torsion-free nilpotent group G, we
have an isomorphism G ∼= (ZZn, ρ) where ρ is a polynomial function (7.1.1). Let A = ZZ(G)
be the augmented group ring over ZZ. If we consider the transference problem of (8.1.3)
for the SDR (9.3.2), then the formal solution (2.8.2) converges. In fact, in this case tφ is
nilpotent in any fixed degree. The formal solution is also a solution in the sense of (2.9).

A few remarks are in order here. First of all, the proof in [LS] is given only for the
reduced complexes. One can use that result to obtain an SDR

(E[u1, . . . , un]
∇∞−→←−
f∞

B̄(A), φ∞)

and then form the tensor product SDR by simply tensoring A onto the left of these objects
and maps. We may then use the initiator t = ∂ − 1A ⊗ ∂̄ on A ⊗R B̄(A). Note that this
initiator is precisely the twisted tensor product perturbation π̃ (3.3.1) for the universal
twisting cochain (3.4.1). The formal solution for this transference problem converges using
a straightforward filtration on the bar construction. We will not go into the details here,
but we point out that this variation on (8.1.3) was exactly the method used in [LL3] for
the upper uni-triangular matrix groups over ZZ and that the direct method of (8.1.3) gives
precisely the same solutions.

By the inverse process of Cartan and Eilenberg, we may obtain a two-sided resolution
by a straightforward tensor product (the hypotheses of (3.2.1) are satisfied for a group
ring [CE]). On the other hand, we could use the two-sided perturbation theorem (8.1.8)
directly on the exterior algebra contraction. We will not present these results here, but the
interested reader should be able to produce these resolutions using the methods we have
presented so far.

Before leaving this section, we want to mention an application to other nilpotent
groups. Let Γ[y1, . . . , yn] be the divided power algebra in n indeterminants over ZZ/pZZ.
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Let G1 be the cyclic group ZZ/pZZ written multiplicatively and let Gn be the product of G
with itself n times. Let A0 = ZZ/pZZ(Gn). Let P be any finite p-group, R = ZZ/pZZ, and
A = R(G). By (4.5.1), there is an n such that E0(A) = A. Using the SDR

(A⊗R Γ[y1, . . . , yn]⊗R E[x1, . . . , xn]
∇−→←−
f

B(A), φ)

given by Eilenberg and MacLane [EM2] to set up the transference problem (8.1.3) for P ,
we obtain a result analogous to (9.4.2). This case is covered by the result in [LS]. It would
be interesting to have a comparison of these results with the results given by Huebschmann
for certain classes of finite p-groups [JH2],[JH3].

All of these results may be thought of as giving models for the May spectral sequence
(4.1.3) and as extensions of Priddy’s complex (4.2.1) to the case where the relations in the
algebra are not necessairly quadratic (also see (9.5.2) and the remark following it).

9.5. Power Series Group Law.

Consider again the example given in (7.1.3). We worked out a convergent power series
group law on ZZ3 in (7.1.4). We noted that

ρ(x, y) = x+ y + τ(x, y)

where τ is a convergent power seires (see (7.1.4). Thus, G = (ZZ3, ρ) is a perturbation
of the free abelian group on 3 generators. Using the theory in §8 which gives a formal
solution to the perturbation problem and the explicit SDR above, we have

Theorem 9.5.1: Let G be the solvable group defined by the convergent power series
group law (7.1.4). Consider the transference problem in (8.1.3) using the SDR in (9.3.3).
There is a solution to the transference problem which gives rise to the resolution of ZZ over
the group ring ZZ(G), given by the complex

(ZZ(G)⊗ZZ EZZ[u1, u2, u3], d)

where

d(ui) = ti − 1
d(u1u2) = (t1 − 1)u2 − (t2 − 1)u1

d(u1u3) = (t2 − 1)u3 + u2 + t3u1

d(u2u3) = −(t−1
1 − 1)u3 − t3u2 − t−1

1 u1

d(u1u2u3) = (t2 − 1)u2u3 − (t−1
1 − 1)u1u3 − (t1 − t3)u1u2.

Proof: The proof is actually quite straightforward and consists of finding an inverse of
1 − tφ for the initiator of (8.1.3) using the SDR of (9.3.3) and the form of the group law
given by (7.1.3). Remarkably, the inverse can be found rather quickly and the solution
shows that tφ is, in fact, nilpotent.

32



LAMBE

More than a few comments are in order, but we will limit the discussion in this paper
to two observations. First, in retrospect, a filtration of the bar construction can be found
for which one can show that the map tφ from the formal solution is nilpotent in each
degree so that the differential for the resolution we have presented is the one given by the
formal solution. Second, there is a theorem of Mostow that says that the cohomology of
a solvable group (such as the one in (9.5.1)) with coefficients in the real numbers IR, is
isomorphic to the cohomology of the associated real Lie algebra [GMo]. If one were to
actually write the (convergent) formal power series group law in (9.5.1) as in (7.1.4), then
the Lie algebra of Mostow’s theorem is given by the homogeneous degree 2 term (which
is necessairly over IR even though the whole function takes integers to integers). Now the
formal solution (2.8.1) written out for the initiator using the form (7.1.4) has the first
term of the perturbation for the differential given by the Chevalley-Eilenberg differential
(2.2). We thus have proven that, in this case, if the “perturbation is continued”, then
we get a descent of Mostow’s theorem to the integers. These observations are related to
the following general observation: if t is the formal perturbation corresponding to a formal
group law (as in our example above), then ftφ is a perturbation of the Chevalley-Eilenberg
differential. This fact follows from the observation that ∇ is just given by shuffles and f
is essentially just the classical Alexander-Whitney map [SM, §VIII.8], [CE, §IX.7].

In summary, if ρ is a formal power series group law (7.2) over a subring R of the
complex numbers C and we allow infinite sums in the group ring in (9.3.1), i.e. work
in the completion, then the formulae for the maps ∇, f , and φ that result from (9.3.2)
allow straightforward extensions to maps in the completed case and we may formally apply
the formal perturbation formulae (2.8.2) using the formal initiator given (in analogy with
(8.1.3)) by the formal group law. We have that generally,

d∞ = ft∇+ ftφt∇+ f(tφ)2t∇+ . . .

= (dCE + . . . ) + . . .

where dCE is the Chevalley-Eilenberg differential for the corresponding Lie algebra.
It also appears that the first part of the higher terms are related to the formal higher

order product structure such as is found in the differentials occuring in [GM].
Similiar remarks apply to the case of formal groups over ZZ/pZZ using the SDR (9.4.3).

The analysis of this situation will be done elsewhere.

Dept. Math., Stats., and Comp. Sci., Univ. IL. at Chicago
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