
[Page 1]

Optimizations for NTRU

Jeffrey Hoffstein, Joseph Silverman

Abstract. In this note we describe a variety of methods that may be used to increase
the speed and efficiency of the NTRU public key cryptosystem.

1991 Mathematics Subject Classification: 94A60, 11T71.

1. An Overview of NTRU

The NTRU Public Key Cryptosystem is based on ring theory and relies for its
security on the difficulty of solving certain lattice problems. In this section we will
briefly review the properties of NTRU that are relevant to the topics in this paper.
For further details and a security analysis of NTRU, see [HPS,S1,S2].

A general formulation of the NTRU Public Key Cryptosystem uses a ring R
and two (relatively prime) ideals p and q in R. A rough outline of the key creation,
encryption, and decryption processes is as follows:
• Key Creation

Bob creates a public key h by choosing elements f, g ∈ R, computing the mod q
inverse f−1

q of f , and setting

h ≡ f−1
q ∗ g (mod q).

Bob’s private key is the element f . Bob also precomputes and stores the mod p
inverse f−1

p of f .
• Encryption

In order to encrypt a plaintext message m ∈ R using the public key h, Alice
selects a random element r ∈ R and forms the ciphertext

e ≡ r ∗ h + m (mod q).

• Decryption
In order to decrypt the ciphertext e using the private key f , Bob first computes

a ≡ f ∗ e (mod q).



2 J. Hoffstein, J.H. Silverman

He chooses a ∈ R to satisfy this congruence and to lie in a certain prespecified
subset Ra of R. He next does the mod p calculation

f−1
p ∗ a (mod p),

and the value he computes is equal to m modulo p.

Remark. In practice the elements f , g, r, and m are taken from certain large
prespecified subsets Rf , Rg, Rr, and Rm of R. These sets (and Ra) are chosen
large enough so that it is infeasible for an attacker to find f or g from h or to
find r or m from e, while at the same time they are chosen so that the decryption
process works.

The general NTRU cryptosystem described above makes no specification of the
ring R or its subsets Rf , Rg, Rm, Rr, Ra. A standard implemention of NTRU uses
the ring of convolution polynomials

R =
Z[X]

(XN − 1)
.

The sets Rf , Rg, Rm, Rr are sets of “small” polynomials, which means that their co-
efficients are chosen to be small, generally either binary {0, 1} or trinary {−1, 0, 1}
and possibly with a specified number of nonzero coefficients. A typical choice
for (p, q) is (3, 128), and in order for decryption to work properly it is necessary
that the coefficients of the polynomial

p ∗ r ∗ g + m ∗ f (1)

lie in an interval of length at most q. That is, the difference between the largest
coefficient and the smallest coefficient should not exceed q. In this case we will
say that the polynomial is narrow mod q. If p, q, and the sets Rf , Rg, Rm, Rr are
chosen appropriately, then the polyomial (1) will be narrow mod q for most choices
of f, g,m, r.

2. Guarding Against Chosen Ciphertext Attacks

There are various ways to construct adaptive chosen ciphertext attacks against the
NTRU cryptosystem, see for example [HS2,JJ]. Padding techniques of Fujisaki and
Okamoto [FO1,FO2] can be used to prevent such attacks. Further, if the NTRU
plaintext is not scrambled in some way, then there may be dictionary attacks
against part or all of the plaintext. An adaptation for NTRU of the Fujisaki-
Okamoto method with addded message scrambling works as follows (see [HS3] for
details).

Let M be Alice’s plaintext. She chooses a collection of random bits R and uses
an all-or-nothing transformation on the concatenation M‖R. For example, she
could split each of M and R into equal size pieces M = M1‖M2 and R = R1‖R2



Optimizations for NTRU 3

and then use hash functions H1 and H2 to compute

m1 = (M1‖R1)⊕H1(M2‖R2) and m2 = (M2‖R2)⊕H2(m1).

(Here ⊕ denotes bitwise exclusive or.) The NTRU plaintext m is set equal to
m = m1‖m2. The NTRU “random” element r is also computed using a hash
function

r = H3(M‖R).

(Of course, r is no longer random. We have moved the randomness into the plain-
text as the bit string R.)

Alice computes the ciphertext e ≡ r ∗ h + m (mod q) is as usual. When Bob
decrypts the message, he recovers the plaintext m, and then he inverts the all-
or-nothing transformation to recover M and R. However, before accepting the
plaintext M as valid, he recomputes r = H3(M‖R) and checks that e is acually
equal to r ∗ h + m (mod q). If this is not true, then he rejects the message.
This prevents Alice from sending Bob specially constructed ciphertexts e whose
decryption might allow her to deduce information about Bob’s private key.

It is important to note that Alice has no control over the “random” element r.
So if she sends Bob a purported ciphertext e, then the quantity r ∗ h that Bob
computes will be essentially a random element modulo q. If R/qR is sufficiently
large, there is little chance of choosing particular values for r and mounting an
adaptive attack.

The cost of guarding against chosen ciphertext attacks is that Bob needs to
reencrypt the message. (Both Bob and Alice also need to compute some hash func-
tions, but in practice, these take very little time.) Thus Bob needs to compute the
extra product r ∗ h mod q. However, Bob’s interest in computing this product is
simply to compare it with e −m. It may be possible to do this without comput-
ing the full product. For example, if NTRU is implemented with a convolution
polynomial ring R = Z[X]/(XN − 1), then Bob might compute only k coefficients
of r ∗ h and just compare those k coefficients to e−m. For an appropriate choice
of k, he can be fairly confident that if the k coefficients match, then all of the co-
efficients will match. The probability of any particular coefficient of r ∗h matching
the corresponding coefficient of e − m is approximately 1/q. For a typical value
such as q = 128, it would suffice to check (say) 12 coefficients to achieve a spoofing
probability of under 2−84.

3. Invertibility of f Modulo p

In practical situations, the most time consuming part of the NTRU encryption and
decryption processes is multiplication in the ring R. The NTRU encryption process
involves one product r∗h mod q, while decryption requires the computation of two
products f ∗ e mod q and f−1

p ∗ a mod p. Similarly, the most time consuming part
of the NTRU key creation process is the computation of the inverses f−1

p and f−1
q .



4 J. Hoffstein, J.H. Silverman

In order to speed both the key creation and the the decryption processes, the
user can choose the element f to have the form

f = 1 + p ∗ f1 with f1 ∈ R.

Notice that an f of this form has the property that f−1
p = 1, so it is not necessary

to compute the inverse modulo p, and the second multiplication in the decryption
process disappears.

Remark. It is important to verify that the specified set of elements of the form f =
1+p∗f1 provides the desired level of security. In practice, this means that one must
assume that an attacker can use his search methods on the set of f1’s. In particular,
the lattice search methods described in [HPS,S1,S2] can be easily modified to
search for the pair (f1, g), so one must analyze these alternative lattices.

Remark. In practice, the prime p is the “small” prime and the prime q is the
“large” prime (e.g., (p, q) = (2, 127) or (3, 128)). The performance gain using
f = 1+ p ∗ f1 comes from eliminating an inversion modulo p in key creation and a
multiplication modulo p in decryption, so this may not seem significant. However,
it may happen that operations modulo p are as costly as operations modulo q, even
if p is smaller than q. To take a specific example, if p = 3 and q = 128, then basic
operations modulo q are no more difficult on a computer than those modulo p. [In
terms of computational efficiency, the ideal situation would be to take p = 2 and
q = 128, but then e ≡ m (mod p), so the system becomes insecure. This is why
it is important that the ideals p and q be relatively prime in the ring R.]

Remark. If the coefficients of the polynomial

a = p ∗ g ∗ r + m ∗ f

lie in an interval of length greater than q, then the decryption process will not work
properly. For an appropriate choice of parameters, this will happen very rarely. If
we take f in the form f = 1 + p ∗ f1, then

a = m + p ∗ (g ∗ r + m ∗ f1),

so we see that coefficients that “wrap” (i.e., that lie outside the chosen mod q
interval) will each affect a single coefficient of the decryption. This means that
if a small amount of error correction is put into m, then it will be possible to
correct messages that have a small amount of wrapping. Although this cannot be
recommended for high security applications, since redundancy in m might open
some lines of statistical attacks on long transcripts of messages, it could be useful in
moderate security situations where one wants to virtually eliminate the possiblity
of a wrapping decryption failure.



Optimizations for NTRU 5

4. Taking p to be a Polynomial

If f is taken in the form f = 1 + p ∗ f1, then the polynomial

p ∗ r ∗ g + m ∗ f

that is being formed during the decryption process becomes

p ∗ (r ∗ g + m ∗ f1) + m, (2).

It is clear that as p becomes larger, there is more likelihood that the polynomial
will be too wide. On the other hand, there are many computational advantages to
taking q to be a power of 2, which would seem to force p to be at least 3.

However, as the description of NTRU makes clear, there is no particular reason
that p needs to be an integer. It could instead be a polynomial, as long as the
ideals generated by p and q are relatively prime in the ring R. Notice that this
condition on p and q is equivalent to requiring that the elements p, q, and XN − 1
generate the unit ideal in Z[X].

There is a second issue related to the practical matter of retrieving the plain-
text m. The plaintext polynomial m(X) needs to be small, say with binary or
trinary coefficients; yet the decryption process only recovers m(X) modulo p. In
other words, we recover the image of m(X) in the quotient ring

R
pR

=
Z[X]

(XN − 1, p)
.

For example, if m(X) has binary coefficients, then there are 2N possible values
for m(X), and we want to ensure that the map

{binary polynomials m(X)} −→ R/pR (3)

is injective. Even more than this, we need to know how to invert this map in order
to recover m.

We also want the coefficients of p to be very small, since we need the polyno-
mial (2) to be narrow. A natural candidate for p would be a polynomial of the
form p = Xk ± 1. Unfortunately, the elements

Xk ± 1 and XN − 1 and 128

are not relatively prime in the ring Z[X].
A second natural candidate is a polynomial of the form p = Xk ± Xj ± 1.

These polynomials usually satisfy the relative primality condition, but the quo-
tient R/pR will not be large enough and the reduction map (3) will not be injec-
tive. For example, if p = X2 + X + 1 and N is a large prime, then R/pR will have
approximately 1.618N elements. (Here 1.618 . . . is the golden ratio (1 +

√
5)/2.)

We thus turn to the polynomial

p = X + 2. (4)

(The polynomial X−2 works similarly, but is slightly less efficient.) We will assume
that N is odd and N ≥ 7. We begin by verifying that the polynomial p = X + 2



6 J. Hoffstein, J.H. Silverman

satisfies the relative primality condition. We write

XN − 1 = XN + 2N − 2N − 1 = (XN + 2N )− 128 · 2N−7 − 1. (5)

Notice that XN + 2N = (X + 2)u(X) with u(X) = XN−1 − 2XN−2 + · · ·+ 2N−1,
so we can rewrite (5) as

1 = (X + 2)u(X)− (XN − 1)− 128 · 2N−1.

This shows that the three elements X +2, XN −1, and 128 generate the unit ideal
in Z[X].

Next we consider the quotient ring R/pR when p = X + 2. An elementary
calculation shows that this ring has 2N + 1 elements. We will prove in Section 5
that the map (3) is injective and we will describe a fast algorithm for inverting
it. This suggests that taking p = X + 2 and q = 128 provides for an efficient im-
plementation of the NTRU public key cryptosystem. A standard security analysis
of the underlying lattice problem shows that N = 251 provides a security level
comparable to that given by RSA with 1024 bit keys.

5. Working With p Equal To X + 2

In this section we will prove that binary plaintext messages m(X) can be uniquely
recovered if they are known modulo X+2. We begin by proving that distinct m(X)
give distinct residue classes. For this section, we fix the notation

R =
Z[X]

(XN − 1)
, Rm = {binary polynomials in R}, p = p(X) = X + 2.

Proposition. (a) The evaluation map

R/p(X)R −→ Z/(2N + 1)Z, a(X) 7−→ a(−2),

is an isomorphism.
(b) The map

Rm −→ R/p(X)R

is one-to-one.

Proof. The evaluation map a(X) 7→ a(−2) gives an isomorphism Z[X]/(X+2) ∼= Z.
The element XN − 1 in the lefthand ring corresponds to the integer (−2)N − 1 =
−(2N + 1) in Z. (Note we are assuming that N is odd.) Hence the quotient of
Z[X]/(X +2) by the ideal (XN−1) (which is the same as R/p(X)R) is isomorphic
to the quotient of Z by 2N + 1. This proves (a).

Using the identification R/p(X)R ∼= Z/(2N + 1)Z from (a), we need to show
that if m(X) and m′(X) are binary polynomials satisfying

m(−2) ≡ m′(−2) (mod 2N + 1),



Optimizations for NTRU 7

then m(X) = m′(X). We first observe that if m(X) is a binary polynomial, then
the largest possible value of m(−2) is

1 + (−2)2 + (−2)4 + · · ·+ (−2)N−1 =
2N+1 − 1

3
,

and the smallest (i.e., most negative) possible value of m(−2) is

(−2)1 + (−2)3 + (−2)5 + · · ·+ (−2)N−2 = −2N − 2
3

.

The difference of these two limits is 2N − 1, so we see that the congruence class
of m(−2) modulo 2N + 1 determines exactly the value of m(−2). It remains to
show that different binary polynomials have different values at X = −2.

Suppose that m(X) and m′(X) are binary polynomials satisfying m(−2) =
m′(−2). Let A(X) = m(X) −m′(X) 6= 0 and suppose that A(X) 6= 0. Then we
can write

A(X) = aXk + bXk+1 + · · ·+ cXN−1 with a 6= 0.

We know that every coefficient of A(X) is −1, 0, or 1, so in particular a = ±1. On
the other hand, we also know that A(−2) = 0, so

0 = A(−2) ≡ a(−2)k (mod 2k+1),

which implies that 2 divides a. This contradiction shows that A(X) = 0, so m(X) =
m′(X), which concludes the proof of the proposition. ut

Theorem. Let N be an odd integer and let a(X) = a0 +a1X + · · ·+aN−1XN−1 ∈
Z[X] be a polynomial. The algorithm given below transforms a(X) into a polyno-
mial b(X) ∈ Z[X] with the following properties:
• deg b(X) ≤ N − 1.
• b(X) is a binary polynomial, that is, its coefficients are all 0 or 1 (with one

exception noted below).
• b(−2) ≡ a(−2) (mod 2N + 1).
The one exception occurs when

a(−2) ≡ 2N+1 + 2
3

(mod 2N + 1),

in which case one can take b(X) = 2 + X2 + X4 + · · · + XN−1. The algorithm
terminates after its main loop has been executed no more than 2N + 1 times.

Algorithm. In the following description, all indices on coefficients of a are treated
modulo N . Thus aN = a0, aN+1 = a1, etc.

replace each ai with its congruence class modulo 2N + 1.
set i = 0.
LOOP:
write ai = u + 2v with u = 0 or 1.
set ai = u, ai+1 = ai+1 + v, ai+2 = ai+2 + v.
set i = i + 1.



8 J. Hoffstein, J.H. Silverman

let w = min{bai/2c, ai+1}.
set ai = ai − 2w and ai+1 = ai+1 − w.
if i < N then go to LOOP.
if ai /∈ {0, 1} then go to LOOP.
if ai+1 /∈ {0, 1} and i < 2N then set i = i + 1 and go to LOOP.
if i < 2N then return the polynomial a(X).
else return the polynomial 2 + X2 + X4 + · · ·+ XN−1.

Proof. The algorithm has two main operations. In the first operation, three con-
secutive coefficients α, β, γ of a(X) are altered by the rule

Rule I : (α, β, γ) −→ (u, β + v, γ + v), where α = u + 2v.

In the second operation, two consecutive coefficients α, β are altered by the rule

Rule II : (α, β) −→ (α− 2w, β − w), where w = min{bα/2c, β}.

We first observe that these rules do not change the value of a(X) at X = −2, since
for Rule I we have

α · (−2)i + β · (−2)i+1 + γ · (−2)i+2

= (u + 2v) · (−2)i + β · (−2)i+1 + γ · (−2)i+2

= u · (−2)i + (β + v) · (−2)i+1 + (γ + v) · (−2)i+2

and for Rule II we have

α · (−2)i + β · (−2)i+1 = (α− 2w) · (−2)i + (β − w) · (−2)i+1.

Also note that both rules leave all coefficients positive.
The invariance of the value of a(−2) under the two substitution rules is not

quite true if i = N−2 or i = N−1, since then the indices on some of the coefficients
are reduced modulo N . For example, if i = N − 2, then Rule I changes the value
of a(−2) as follows:

α · (−2)N−2 + β · (−2)N−1 + γ · (−2)0

→ u · (−2)N−2 + (β + v) · (−2)N−1 + (γ + v) · (−2)0

= α · (−2)N−2 + β · (−2)N−1 + γ · (−2)0 + v(1 + 2N ).

Thus the value of a(−2) changes, but its congruence class modulo 2N + 1 does not
change.

Similarly, if i = N−1, then the following formulas show that both rules change
the value of a(−2) by a multiple of 2N + 1:

α · (−2)N−1 + β · (−2)0 + γ · (−2)1

−→ u · (−2)N−1 + (β + v) · (−2)0 + (γ + v) · (−2)1

= α · (−2)N−1 + β · (−2)0 + γ · (−2)1 − v(1 + 2N ).

α · (−2)N−1 + β · (−2)0 −→ (α− 2w) · (−2)N−1 + (β − w) · (−2)0

= α · (−2)N−1 + β · (−2)0 − w(1 + 2N ).



Optimizations for NTRU 9

We have now verified that repeated applications of Rules I and II do not change
the value of a(−2) mod 2N + 1, and they also leave all coefficients nonnegative. We
next study the effect of the rules on the coefficients.

Consider first Rule I as applied to three consecutive coefficients (α, β, γ) of a(X).
If α ∈ {0, 1}, then Rule I has no effect; and in any case after Rule I is applied, the
value of α will be either 0 or 1.

Next consider Rule II as applied to two consecutive coefficients (α, β) of a(X).
If α ∈ {0, 1}, then Rule II has no effect, since w = 0. In any case, after Rule II is
applied, we have either α ∈ {0, 1} or else β = 0, depending on which of α/2 and β
is smaller.

Now consider what happens on each iteration through the main loop of the
algorithm. We first apply Rule I to three consecutive coefficients (ai, ai+1, ai+2),
replacing them with coefficients (εi, a′i+1, a

′
i+2) satisfying εi ∈ {0, 1}, and then we

apply Rule II to the pair of consecutive coefficients (a′i+1, a
′
i+2). There are two

possible outcomes. We end up with either

(εi, a′′i+1, 0) or (εi, εi+1, a′′i+2),

with εi, εi+1 ∈ {0, 1}. In particular, the ith coefficient of a(X) becomes 0 or 1, and
at most the next two coefficients are altered. Thus after the main loop has been
iterated N times, every coefficient of a(X) will have been changed to 0 or 1, but
the first two coefficients a0 and a1 may have been subsequently changed to some
other value when we applied the two rules to aN−2 and aN−1. However, after the
rules have been applied to aN−1, at most one of a0 and a1 can be nonbinary.

So after N iterations of the main loop, we are in the situation where at most
one ai is nonbinary. We may also assume that the nonbinary coefficient satisfies
0 ≤ ai < 2N + 1, since it is always permissible to reduce the coefficients of a(X)
modulo 2N + 1. (In practice, the nonbinary value will be much smaller than 2N +1
if the original coefficients of a(X) were not too large.) Further, each additional pass
through the loop will leave at most one coefficient of a(X) nonbinary

Let (α, β, γ) be consecutive coefficients of a(X) with α the nonbinary coefficient.
As noted above, after applying the Rule I we get (ε, β′, γ′), and when we then apply
Rule II, we get either (ε, β′′, 0) or (ε, ε′, γ′′), whereε, ε′ ∈ {0, 1}. We are going to
estimate the size of β′′ and γ′′ and show that they are considerably smaller than α.

The application of Rule I says β′ = β+v and γ′ = γ+v, where α = ε+2v. Note
that v ≤ α/2. Now suppose that Rule II yields (ε, β′′, 0). This occurs if γ′ ≤ β′/2
and we have β′′ = β′ − 2γ′. Then

β′′ = β′ − 2γ′ ≤ β′ = β + v ≤ β + α/2 ≤ 1 + α/2, since β ∈ {0, 1}.

Similarly, if Rule II yields (ε, ε′, γ′′), then β′/2 ≤ γ′, we have γ′′ = γ′ − β′, and

γ′′ = γ′ − β′ ≤ γ′ = γ + v ≤ γ + α/2 ≤ 1 + α/2, since γ ∈ {0, 1}.

To recapitulate, we have shown that after N iterations of the main loop, there is
at most one nonbinary coefficient in a(X), call it A. Further, each subsequent iter-
ation of the main loop yields a polynomial with at most one nonbinary coefficient,



10 J. Hoffstein, J.H. Silverman

call it B, satisfying
0 ≤ B ≤ A/2 + 1.

We know that the initial nonbinary coefficient is at most 2N , so it takes at most
N + 1 iterations to ensure that the sole nonbinary coefficient is at most 2. (Notice
if A = 2, the bound for B is 2.)

Finally, we need to consider what happens if we obtain a polynomial with
with one coefficient equal to 2 and the other coefficients all binary. If we at the
effect of Rule I on this coefficient and the two subsequent coefficients, we find four
possibilities:

(2, 0, 0) → (0, 1, 1), (2, 0, 1) → (0, 1, 2), (2, 1, 0) → (0, 0, 0), (2, 1, 1) → (0, 0, 1).

Thus a(X) becomes binary unless three consecutive coefficients equal (2, 0, 1), in
which case they are permuted to (0, 1, 2). Thus repeated application of Rule I
will eventually eliminate the 2, unless the coefficients of a(X) following the 2 look
like 0, 1, 0, 1, 0 . . . , 0, 1, in which case after at most N iterations a(X) will become
the polynomial 2 + X2 + X4 + · · ·+ XN−1.

This completes the proof of the theorem except for the assertion that the value
of the exceptional polynomial at X = −2 satisfies

2 + 4 + 42 + · · ·+ 4(N−1)/2 ≡ 2N+1 + 2
3

(mod 2N + 1).

We leave the proof of this congruence, valid for all odd integers N , as an exercise
for the reader. ut

Remark. If the coefficients of a(X) are positive and small compared to 2N , then
a more careful analysis of the size of the coefficients shows that after the first N
iterations of the algorithm, the sole nonbinary coefficient A satisfies

A ≤ 2 max
0≤i<N

ai.

(The 2 can certainly be improved. We leave the proof of this formula to the reader.)
Hence except in the exceptional case, the main loop of the algorithm is actually
executed no more than

N + 1 + log2 max
i

ai

times.

6. Low Hamming Weight Products

In this section we briefly describe a method for speeding up the encryption and de-
cryption processes through the use of products of low Hamming weight polynomi-
als. For further details and a discussion of similar constructions for Diffie-Hellman
over GF(2n) and on Koblitz elliptic curves, see [HS1].



Optimizations for NTRU 11

The most time consuming part of NTRU encryption is computation of the
product r(X) ∗ h(X) mod q, and the most time consuming part of NTRU decryp-
tion is computation of the product f(X) ∗ e(X) mod q. The polynomials h(X)
and e(X) have coefficients that are more or less randomly distributed modulo q,
while one normally take r(X) and f(X) to have binary (i.e., 0 or 1) or trinary
(i.e., −1, 0, or 1) coefficients.

For concreteness, suppose that r(X) is a binary polynomial with d ones. Then
computation of the product r(X) ∗ h(X) mod q requires approximately dN oper-
ations, where one operation is an addition and a remainder modulo q. We further
require that the set of r(X) polynomials be sufficiently large so that an attacker
cannot find r(X) by an exhaustive search, and there is also a lattice norm require-
ment on the number of nonzero coefficients in r(X). The search space for r(X) has
essentially

(N−1
d−1

)

elements, since the rotation Xir(X) is really equivalent to r(X).
For information about the lattice norm requirement, see [HPS,S1,S2].

It is possible to significantly reduce the computational requirements by tak-
ing r(X) to be a product of polynomials with fewer ones. Thus suppose that we
write r(X) = r1(X)r2(X), where r1 and r2 are binary polynomials with d1 and d2
ones respectively. Then r(X) will have approximately d1d2 ones. (In practice, it
will have have a few twos and an occasional three mixed in with the ones, but that
will not affect matters very much.) Notice that the computation of the product

r(X) ∗ h(X) = r1(X) ∗
(

r2(X) ∗ h(X)
)

requires only (d1 + d2)N operations, so the computational complexity is propor-
tional to the sum of d1 and d2. On the other hand, the search space for the pair of
polynomials (r1, r2) has size approximately

(N−1
d1−1

)(N−1
d2−1

)

, so is proportional to the
product of the r1 search space and the r2 search space. (In practice, there may be
a meet-in-the-middle search that reduces the size of the search space, see [HS1] for
details.) Further, the number of nonzero coefficients in r1(X)r2(X) is essentially
the product d1d2. Thus one might say that using a product r = r1r2 requires
computation proportional to the sum d1 + d2 while giving security proportional
to the product d1d2. In rough terms, this explains why one obtains significant
performance gains without changing the level of security.

Similar remarks apply to the private key polynomial f(X); or, if f(X) is taken
in the form f(X) = 1 + p ∗ f ′(X), to the polynomial f ′(X). For example, one
might take f(X) to have the form

f(X) = 1 + p ∗ (f1(X) ∗ f2(X) + f3(X)),

where f1, f2, f3 are quite sparse binary polynomials. Further, to help reduce de-
cryption failures caused by coefficients in the polynomial (1) spreading further
than q, one might further choose f1, f2, f3 so that the polynomial f1 ∗ f2 + f3 is
purely binary, that is, has only 0 and 1 coefficients. In principle this will cut down
somewhat on the size of the search space, but in practice there does not appear
to be any way to determine if a triple (f1, f2, f3) is in the desired space without
actually computing at least part of the quantity f1f2+f3. Thus the effective search



12 J. Hoffstein, J.H. Silverman

space remains the collection of all triples (f1, f2, f3) having the specified number
of nonzero coefficients.

Acknowledgements. The authors would like to thank Jill Pipher for her assis-
tance, Eliane Jaulmes and Antoine Joux for their work on adaptive attacks against
NTRU, E. Fujisaki and T. Okamoto for correspondence related to their work on
protection against general adaptive attacks, and Rafal Nessel for his suggestions
and corrections to the original version of this paper.

References

[FO1] E. Fujisaki, T. Okamoto, Secure integration of asymmetric and symmetric
encryption schemes, Advances in Cryptology—CRYPTO ’99, Lecture Notes in Computer
Science 1666, Springer-Verlag, 1999, 537–554

[FO2] E. Fujisaki, T. Okamoto, How to Enhance the Security of Public-Key Encryp-
tion at Minimum Cost, IEICE Transactions on Fundamentals of Electronics, Commu-
nications and Computer Sciences, Vol.E83-A, No.1, Special Issue on Cryptography and
Information Security (January 2000)

[HPS] J. Hoffstein, J. Pipher, J.H. Silverman, NTRU: A new high speed public key
cryptosystem, in Algorithmic Number Theory (ANTS III), Portland, OR, June 1998,
Lecture Notes in Computer Science 1423 (J.P. Buhler, ed.), Springer-Verlag, Berlin, 1998,
267–288.

[HS1] J. Hoffstein, J.H. Silverman, Small Hamming Weight Products in Cryptography,
preprint, September 2000.

[HS2] J. Hoffstein, J.H. Silverman, Reaction Attacks Against the NTRU Public Key
Cryptosystem, NTRU Technical Report #015, August 1999, www.ntru.com

[HS3] J. Hoffstein, J.H. Silverman, Protecting NTRU Against Chosen Ciphertext and
Reaction Attacks, NTRU Technical Report #016, June 2000, www.ntru.com

[JJ] E. Jaulmes, A. Joux, A chosen-ciphertext attack against NTRU, in Proceedings
of CRYPTO 2000, Lecture Notes in Computer Science, Springer-Verlag.

[S1] J.H. Silverman, Estimated Breaking Times for NTRU Lattices, NTRU Technical
Report #012, <www.ntru.com>.

[S2] J.H. Silverman, Dimension-Reduced Lattices, Zero-Forced Lattices, and NTRU
Public Key Cryptosystem, NTRU Technical Report #013, <www.ntru.com>.

NTRU Cryptosystems, Inc., 5 Burlington Woods, Burlington, MA 01803, USA.
jhoffstein@ntru.com, jsilverman@ntru.com


