
UPDATING RELATIONAL DATABASES

THROUGH VIEWS

a dissertation

submitted to the department of computer science

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

By

Arthur Michael Keller

June 1995

c Copyright 1995 by Arthur Michael Keller

All Rights Reserved

ii

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Gio C.M. Wiederhold
(Medicine and Computer Science)

(Principal Advisor)

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Je�rey D. Ullman
(Computer Science)

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Christos H. Papadimitriou
(Computer Science and
Operations Research)

Approved for the University Committee on Graduate

Studies:

Dean of Graduate Studies

iii

To Barbara,

Marty,

and Paul

iv

Abstract

We consider the problem of updating databases through views composed of selections,

projections, and joins applied to Boyce-Codd Normal Form relations. The updates

are expressed against the view and they must be translated into updates expressed

against the database. We present and justify �ve criteria that these translations must

satisfy. For each type of view update (insert, delete, replace), we provide a list of

templates for translation into database updates that satisfy the �ve criteria. We show

that there cannot be any other translations that satisfy the �ve criteria. A translator

can be chosen at view de�nition time by asking the de�ner of the view a series of

questions based on the view de�nition and database schema. We conclude that it is

practical to update relational databases through views for a large class of views by

choosing a view update translator at view de�nition time.

v

Acknowledgements

I would like to thank Gio Wiederhold for his patience, advice, support, friendship,

and leadership. Voy Wiederhold is my \local Jewish mother" while I was writing the

thesis. Carolyn Tajnai was my \local Jewish mother" before that. I learned about the

use of proofs in research from Je� Ullman. Mario Schkolnik of IBM introduced me

to the problem while I was an Academic Associate for him at the San Jose Research

Laboratory. Pat Selinger was originally on my thesis committee until our interests

diverged; I hope to work with her again in the future. Christos Papadimitriou pro-

vided perspective from his work on view updates and complexity. Gio Wiederhold,

Je� Ullman, Mark Linton, Don Knuth, and Walter Murray served on my orals com-

mittee.

Brent Hailpern and Jim Celoni, S.J., put up with me for an o�cemate until I got

my own tiny o�ce. Denny Brown taught me many things about lecturing.

This thesis was formatted using the TEX document formatter developed by Donald

E. Knuth and maintained by Dave Fuchs using the LaTEX macro package developed

by Leslie Lamport with enhancements for Stanford theses by Howard Trickey and

Gabi Kuper. This thesis was printed on the Imagen 8/300 using software developed

by Arthur Samuel and on the Xerox Dover. I extensively used the SAIL computer

running the WAITS operating system, which only continues to run through the e�orts

of Marty Frost and Joe Weening.

Students and sta� of the KBMS and System/U projects were very helpful. I

bene�ted greatly from discussions with Jim Davidson. Shel Finkelstein was very

helpful during the early stages. I worked on the related problems of incomplete

information with Marianne Winslett Wilkins. Since her retirement, I miss the help

I used to get from Jayne Pickering. However, Ariadne Johnson has also been of

invaluable assistance.

vi

I learned a lot about computing from Howard Givner at Brooklyn College. I took

my �rst computer course thirteen years ago from Sylvia Schwartz at Stuyvesant High

School, New York City.

There are many people who made my time at Stanford enjoyable and productive.

It would be impossible to list all of them. I shall mention a few of the more important

ones: Doug Appelt, Richard Beigel, Joan Feigenbaum, Ruth Ferziger, Sheryl Flieder,

John Gilbert, Ralph Gorin, Amy Lansky, Richard Manuck, Peter Rathmann, Betty

Scott, Laurie Sinclair, Maureen Tjan, John Van Natta, Dave Wall, and Don Woods.

Some of the research presented here was previously published [Keller 82, 84b, 85a,

85b].

This research could not have been possible without the funding that I received to

undertake it. These sources include a National Science Foundation Graduate Fellow-

ship; contract S941478 of the IBM San Jose Research Laboratory; contract 9083403

(S-1 Project, Prof. Gio Wiederhold, Principal Investigator) from Lawrence Livermore

Laboratory of the Department of Energy; contracts N39-80-G-0132, N39-82-C-0250,

and N39-84-C-0211 (the Knowledge Base Management Systems Project, Prof. Gio

Wiederhold, Principal Investigator) from the Defense Advanced Research Projects

Agency; grant AFOSR-80-0212 (Universal Relations Project, Prof. Je� Ullman, Prin-

cipal Investigator) from the Air Force O�ce of Scienti�c Research, both of the United

States Department of Defense; grants IST-79-21977 (TEX Project, Prof. Donald

Knuth, Principal Investigator) and MCS-82-03404 (Universal Relations Project, Prof.

Je� Ullman, Principal Investigator) from the National Science Foundation; and the

Computer Science Dept. And it goes without saying that \The views and conclusions

contained in this document are those of the author and should not be interpreted as

representative of the o�cial policies of DARPA or the US Government."

vii

Contents

Abstract v

Acknowledgements vi

1 Overview and Introduction 1

1.1 View Update Translation : 2

1.2 Motivation : 5

1.2.1 Motivation for Treatment of Joins : : : : : : : : : : : : : : : : 6

2 Previous Work 10

2.1 Dayal and Bernstein : 10

2.2 Bancilhon and Spyratos : 11

2.3 Cosmadakis and Papadimitriou : 11

2.4 Davidson : 12

2.5 Others : 13

3 Complementary and Independent Views 14

3.1 De�nitions : 17

3.2 Monotonic Functions : 18

3.3 Conversion to Coordinates : 21

3.4 Uniqueness of Independent, Complementary Mappings : : : : : : : : 22

3.5 Conclusion : 23

4 Update Semantics 24

4.1 Direct Relation Updates : 24

4.2 View Updates : 25

viii

4.2.1 Translations vs. translators : : : : : : : : : : : : : : : : : : : 26

4.3 Faithfulness criteria : 27

4.4 Exactness of Translation : 32

5 Single Relation Updates 33

5.1 Selections : 33

5.1.1 Class of Selection Views : 34

5.1.2 Translation of Update Requests : : : : : : : : : : : : : : : : : 36

5.1.3 Translations of Insertion Requests : : : : : : : : : : : : : : : : 36

5.1.4 Translations of Deletion Requests : : : : : : : : : : : : : : : : 39

5.1.5 Translations of Replacement Requests : : : : : : : : : : : : : 41

5.2 Projections : 47

5.2.1 Attribute Independence : 48

5.2.2 Case I. Projected attributes include key : : : : : : : : : : : : 50

5.2.3 Adapting Criterion 1 When the Key is not Included in the View 53

5.2.4 Case II. Projected attributes are disjoint from key : : : : : : : 54

5.2.5 Case III. Projected attributes include only partial key : : : : : 57

5.2.6 About the three cases : 61

5.3 Selections and Projections : 62

5.3.1 Translation of Insertion Requests : : : : : : : : : : : : : : : : 63

5.3.2 Translation of Deletion Requests : : : : : : : : : : : : : : : : 65

5.3.3 Translation of Replacement Requests : : : : : : : : : : : : : : 67

5.4 Conclusion : 73

6 Updating Views Involving Joins 75

6.1 Views Consisting of Selections, Projections, and Joins : : : : : : : : : 75

6.2 Requirements for Joins : 77

6.3 Updating Join Views : 78

6.4 Combining Joins with Selections and Projections : : : : : : : : : : : 81

6.5 Conclusion : 83

7 Statically De�ned Views 85

7.1 Choosing An Update Translator : 85

7.1.1 Dialog at View De�nition: Deletion : : : : : : : : : : : : : : : 86

ix

7.1.2 Dialog at View De�nition: Insertion : : : : : : : : : : : : : : : 87

7.1.3 Dialog at View De�nition: Replacement : : : : : : : : : : : : 88

7.2 Relationship with Database Design Process : : : : : : : : : : : : : : : 90

8 Dynamically De�ned Views 91

8.1 Some Di�erences Between Dynamic and Static Views : : : : : : : : : 91

8.2 Using Additional Semantics : 92

8.3 Disambiguating Dialog : 93

8.4 Protection and Authority Constraints : : : : : : : : : : : : : : : : : : 94

8.5 Other Constraints : 94

8.6 Future Work on Dynamic Views : 94

9 Null Values 95

10 Limitations of the Approach 97

10.1 Class of Views : 97

10.1.1 Join Restrictions : 97

10.1.2 Projection Restrictions : 98

10.1.3 Selection Restrictions : 98

10.2 Other Knowledge : 99

10.3 Knowledge Requirements : 100

10.4 Other types of views : 100

11 Future Directions 102

12 Conclusion 103

References 106

x

Chapter 1

Overview and Introduction

We will consider the problem of updating relational databases through views.

When a shared database is designed, we consider a variety of requirements. For

each class of users, we devise a model database design that satis�es the needs of

the class. We then combine these individual model database designs into a global

integrated database design, which is then implemented [El Masri 79]. However, the

resultant database is much too complex for the average user. We need to provide

an interface to the user based on the database design developed for his class. We

can de�ne a view which maps from the underlying global database to a much more

manageable portion that the user is interested in. This view is strongly related to the

data model originally de�ned for the class, but will include material learned during

the integration process.

The user can query the database through this view to obtain the data desired.

The user's query is composed with the view de�nition to obtain a query that can

be applied to the underlying database. This process is called query modi�cation

[Stonebraker 75].

Updates, however, currently need to be speci�ed against the underlying database

rather than against the view. This considerably reduces the e�ectiveness of views, as

they can be used only for queries.

Since in our model, the view is only an uninstantiated window onto the database

[Chamberlin 75], any updates speci�ed against the database view must be translated

into updates against the underlying database.1 The updated database state then

1This is the classical notion of a database view. If the view is an instantiated relation, we call it

1

2 CHAPTER 1. OVERVIEW AND INTRODUCTION

induces a new view state, and it is desired that the new view state corresponds to

performing the user-speci�ed update directly on the original view state, were that

possible. This is described by the following diagram.

V (DB)
U

����!U(V (DB))
?
= V (DB0)x??????

V

wwww�T
x??????
V

DB
T (U)

�������!T (U)(DB) = DB0

The user speci�es update U against the view of the database, V (DB). The view

update translator T supplies the database update T (U), which results in DB0 when

applied to the database. The new view state is V (DB0). This translation has no side

e�ects in the view if V (DB0) = U(V (DB)), that is, if the view has changed precisely

in accordance with the user's request.

Given a view de�nition, the question of choosing a view update translator arises.

This requires understanding the ways in which individual view update requests may

be satis�ed by database updates. Any particular view update request may result in

a view state that does not correspond to any database state. Such a view update

request may not be translated without relaxing the constraint which precludes view

side e�ects. Otherwise, the update request is rejected by the view update translator.

If we are lucky, there will be precisely one way to perform the database update that

results in the desired view update. Since the view is many-to-one, the new view

state may correspond to many database states. Of these database states, we would

like to choose one that is \as close as possible," under some measure, to the original

database state. That is, we would like to minimize the e�ect of the view update on

the database.

1.1 View Update Translation

We need to de�ne a few terms to explain the process of translation of view updates

into database updates [Ullman 82a, Maier 83]. A domain is a (�nite) set. A relation

schema is an ordered (or tagged) set of domains and a set of constraints that tuples in

the relation must satisfy. A functional dependency or key dependency is an example

a snapshot instead.

1.1. VIEW UPDATE TRANSLATION 3

of such a constraint. A tuple is an ordered (or tagged) set of values, each one from its

respective domain. The extension of a relation is the set of tuples in the relation. A

database schema is a set of relation schemata indexed by relation name. A database

extension is a set of relation extensions, one for each relation in the database schema.

A database view de�nition is a mapping whose domain is the set of all relation

extensions for a given database schema. The range of a database view de�nition is also

a set of relation extensions for a schema speci�c to the view de�nition. The mapping

from the domain database to each relation in the range of the view is de�ned by a

type of database query. The view extension is the extension of the database which is

the range of the view for a particular extension of the database which is the domain

of the view.

The primitive update operations on databases and views are deletion, insertion,

and replacement. A deletion is the removal of a single tuple from a relation. An

insertion is the addition of a single tuple into a relation. A replacement is the com-

bination of a deletion and an insertion into the same relation performed as a single

atomic action so that it does not require an intermediate consistent state between the

deletion and insertion steps. An update is a deletion, an insertion, or a replacement.

A database update may be directly applied against the database, provided it

satis�es the constraints on the database. A view update is merely an update that

is described against the view, but it must be translated into a sequence of database

updates in order for it to be executed. There may be several candidate sequences

of database updates corresponding to one view update. We call these sequences of

database updates the translations of the view update request.

We say that a translation is valid if it performs the view update as requested. For

updates through select and project views, we will require that the new view extension

be precisely the result of performing the view update on the old view extension, were

the view to be an ordinary relation. For updates through views that include joins, it

may not be possible to perform the view update without additional changes to the

view. These view side e�ects are as a result of functional dependencies that require

that changes in the view tuples requested are consistent with the remainder of the

database.

Requiring that a translation be valid is not su�cient for our purposes|it is only

a �rst step. We de�ne 5 additional criteria (in Chapter 3) we require the translations

4 CHAPTER 1. OVERVIEW AND INTRODUCTION

to satisfy. We use the criteria to obtain only the simplest (or minimal) view update

translations.

A view update translator is a mapping from view update requests into translations

of these view update requests. A translator takes the user's view update requests and

translates them into database update requests, which will then be processed by the

database system. Thus, a view update translation facility is a useful adjunct to a

database system which has a view de�nition facility. The lack of a view update

translation facility means that users must specifying updates directly against the

database rather than through views. Often users must act indirectly and submit

changes through specialists authorized by the database administrator.

We shall provide several (classes of) view update translators. We do not claim that

these are the only view update translators possible. Rather, we show that, for each

view update request, all possible distinct translations of that view update request

into sequences of database update requests that satisfy our 5 criteria are obtained

from these view update translators.

We can obtain other view update translators from the translators we de�ne. One

translator can be obtained from another by rejecting some updates and translating

the others. Given two translators, there are translators that use some translations

from translator and some from the other. Using these two translator transformations,

from the view update translations we de�ne, we can generate the complete set of view

update translators whose translations that satisfy our 5 criteria.

In order that the view update facility may choose among these alternatives at view

update time, we propose that the database adminstrator (DBA) provide additional

semantics during view de�nition time. These additional semantics permit the view

update facility to choose one of these translators.

With select, project, and join views, we can trace each view tuple to one or more

database tuples. We call these database tuples the corresponding underlying tuples.

The corresponding underlying tuple to a view tuple for a selection view is the database

tuple with the matching values. The corresponding underlying tuples for a view tuple

for a projection view are the database tuples whose projections match the view tuple.

The corresponding underlying tuples for a view tuple for a join view are the database

tuples from each relation that join to form the view tuple; they are also projections

of the view tuple. For views formed by a combination of selections, projections,

1.2. MOTIVATION 5

and joins, the corresponding underlying tuples are traced individually across the

operators from the view down to the database relations through the intermediate

views (although these intermediate views may not actually exist).2

We have considered single query views in this work. This results in a single

relation. For multiple relations presented to the user, multiple view queries can

be de�ned. We call the mixture of individual view queries and database relations

presented to the user a window. We leave consideration of the di�erences between

queries against windows for future work.

1.2 Motivation

We will now motivate the problem being addressed by showing via a simple example

the issues which have to be resolved for e�ective updating through views.

Let us consider the relation EMP which contains each employee's number, name,

location, and whether the employee is a member of the company baseball team. The

company has two locations: New York and San Francisco. Baseball team members

must be employees.

The personnel manager, Susan, in New York has the following view de�nition:

View P:

Select *

From EMP

Where Location="New York"

She requests the deletion of employee #17 from her view. A reasonable translation

of this request is to delete the employee record from the underlying database. Thus,

we have translated a view deletion into a database deletion. If the employee was a

member of the baseball team, he has been removed from that membership as well.

The baseball team manager, Frank, has the following view de�nition:

2The notion of corresponding underlying tuples needs the notion of monotonicity, which holds
for select, project, and join views.

6 CHAPTER 1. OVERVIEW AND INTRODUCTION

View B:

Select *

From EMP

Where Baseball="Yes"

He requests deletion of employee #14 from his view. It is unreasonable to delete

the employee tuple from the underlying database (unless you believe that baseball is

all-important). A reasonable translation of this view deletion request is to replace

the Baseball attribute of the underlying database tuple with a \No." Thus, we have

translated a view deletion into a database replacement.

One might argue that the Frank's view deletion request should have been a re-

placement. However, this would mean requesting the replacement of a tuple in the

view with a view tuple that did not appear in the view. Then Frank's request would

not be valid in the view, as the replacement tuple could not possibly be a view tuple.

In addition, Frank would have to make a distinction between deletion and replacement

that he could not discern by looking at the e�ects through his view.

It is possible to translate the Susan's request by moving employee #17 to Cali-

fornia. We doubt that the California manager would be pleased by such an imple-

mentation. Rather, such a request should be issued by someone authorized to access

the entire relation (as a replacement request); that person would access a view which

permits seeing the e�ects of that request.

We see that a view deletion request is sometimes best translated into a database

deletion request and at other times into a database replacement request. As we

shall see, similar alternatives arise for insertion and replacement. We suggest that

additional semantics be used to choose among the various alternatives, and this will

be discussed in Chapter 7.

1.2.1 Motivation for Treatment of Joins

A further level of ambiguity arises when views are constructed using join operations.

Consider the following relations, where employee is the key of the ED relation and

department is the key of the DM relation, the EDM view is formed by the natural join

between the ED and DM relations, and the EM view is also formed by the natural

join between the ED and DM relations, but the department attribute is removed by

1.2. MOTIVATION 7

a projection.

ED relation DM relation

employee department department manager

Joe Art Art Sally

Sarah Art Books Sally

George Music Music Ira

Fred Music

EDM view

employee department manager

Joe Art Sally

Sarah Art Sally

George Music Ira

Fred Music Ira

EM view

employee manager

Joe Sally

Sarah Sally

George Ira

Fred Ira

Let us consider the request to replace hGeorge, Music, Irai in view EDM by

hGeorge, Music, Edoi. This request requires replacing hMusic, Irai in relation ED

with hMusic, Edoi. This necessarily has the side e�ect of changing hFred, Music, Irai

to hFred, Music, Edoi, as a result of the functional dependency. If we refuse to permit

the side e�ect, we cannot accept the update. The presence of the join attribute in

the view update request makes the user's intention clear: the user wishes to change

the manager of the Music department for George. It would be reasonable to ask the

user to con�rm that the intention to also change the manager of other employees in

the Music department and in particular, Fred. This a�ects the user interface and not

the algorithms for view update translation, so the con�rmation is beyond the scope

of this dissertation.

Let us consider some insertion requests and their consequences. Consider the

request to insert hRita, Sallyi into view EM. Is the desired department Art or Books?

Consider the request to insert hRita, Irai into view EM. We can assume that the

8 CHAPTER 1. OVERVIEW AND INTRODUCTION

department is Music, but this is not necessarily so. Consider the request to insert

hRita, Borisi into view EM. We have no idea what department to use, since Boris is

not already a manager.

Let us consider some replacement requests and their consequences. Consider the

request to replace hGeorge, Irai in view EM by hGeorge, Sallyi. Should George

be moved into the Art or the Books department, or should Sally become the man-

ager of Music as well as Art and Books? The latter has the side e�ect of changing

Fred's manager as well. Consider the request to replace hGeorge, Irai in the view by

hGeorge, Borisi. We could make Boris the manager of the Music department, which

would have the side e�ect of changing Fred's department, or we could move George

into a new department and make Boris its manager, but we would have no idea what

to call this new department.

When the join attributes are removed from the view via projections, the view

update problem becomes data dependent. Our algorithms are data independent; we

decide what to do in advance without consideration of the data, although the data

are used to determine whether the update will succeed or fail.

We require that the view have a key which is a key or foreign key of every relation

mentioned in the view. This is because deletion from the view is translated as deletion

from the \root" relation (this will be explained in detail in Chapter 6).

Consider the following example, which involves a query graph with two roots.

We have three relations, emp, proj, and equip, containing information on employees,

projects, and equipment, respectively. There is a reference connection from the proj

attribute of the emp relation to the name attribute of the proj relation, and also

a reference connection from the proj attribute of the equip relation to the name

attribute of the proj relation. The view is de�ned by the following:

DEFINE VIEW user-view AS

SELECT hattributesi FROM emp, proj, equip

WHERE (emp.proj=proj.name) AND (proj.name=equip.proj)

This view de�nition can be described by the query graph (see Chapter 6) in the

following diagram. Each node represents a relation, and each directed edge represents

a join from the many-to-one direction.

1.2. MOTIVATION 9

emp equip

� �

proj

Suppose that we wanted to delete the view tuple asserting that employee Smith from

the Parts project has a personal computer at his disposal. We could either delete

the record of the employee or of the personal computer. If we delete the Smith

tuple in emp, not only will the desired view tuple disappear but also all other view

tuples mentioning Smith|an undesirable and arbitrary side e�ect. Similarly, deleting

the personal computer tuple in equip will cause all tuples mentioning that personal

computer to be disappear. Deleting both the employee and equipment tuples could be

done (and is suggested by symmetry), but this will cause any view tuple that mentions

either Smith or the personal computer to be removed|an even more undesirable side

e�ect. This is why updating views that involve joins not corresponding to a rooted

tree should be avoided.

Chapter 2

Previous Work

This chapter is a summary of related published work by others. Our work is most

closely related to that of Umeshwar Dayal [78, 79, 82].

2.1 Dayal and Bernstein

Dayal and Bernstein [78, 79, 82] provide some algorithms for translating a restricted

class of view updates. They formalize the notion of a correct translation, but it is

more restrictive than our �ve criteria.1 In particular, they do not permit side e�ects

in the view. The provide some algorithms for translation of view operations into like

database operations (e.g., insertions into insertions). They do show how to determine

when there is a functionally determining source or clean source, which is a set of

tuples that determine the relevant view tuples but do not a�ect other view tuples.

That concept is necessary only when view side e�ects are proscribed.

Dayal and Bernstein allow select, project, and join views, and do not require join

attributes to appear in the view. They generate one translation for each update. We

enumerate all possible acceptable translations and show how to choose the desired

one. Some of their translations do not satisfy our criteria as they perform unnecessary

operations.2 Since they do not support alternative translations, they do not permit

1For example, their notion of the rectangle rule is slightly more restrictive than our related
Criterion 1, which eliminates database side e�ects.

2The request to replace hNewton, Physics, Aristotlei in view EDM (of [Dayal 82]) by
hNewton, Math, Euclidi will result in deletion of hPhysics, Aristotlei from relation DM.

10

2.2. BANCILHON AND SPYRATOS 11

the semantic distinctions that we used in the baseball team manager example in

contrast with the New York manager example.

2.2 Bancilhon and Spyratos

Bancilhon and Spyratos [79, 81] show how the concept of a constant complement is

relevant to the view update problem. Two views are complementary if given the state

of each view, there is a unique corresponding database state. If a complementary view

is held constant, there is at most one translation of any given view update. The key

phrase is \at most one." In general, some updates that could be translated reasonably

do not preserve any complement [Keller 85b]. We will discuss complements further

in Chapter 4.

The ambiguity inherent in the view update problem is partially captured by the

existence of multiple minimal complements. For each complement, there is a unique

view update translator. Bancilhon and Spyratos also prohibit view side e�ects and

their work cannot be extended to handle view side e�ects. Given a view, they do

not show how the set of minimal complements can be enumerated. And they do not

show how to construct the view update translator given the view and a complement.

While this body of work is inspirational, it is far from practical.

2.3 Cosmadakis and Papadimitriou

Cosmadakis and Papadimitriou [84] base their work on Bancilhon and Spyratos [81].

Their work primarily involves analysis and not general algorithms for view update

translation. They show how di�cult it is to use complements. For example, they show

that �nding a minimal complement of a given view is NP-complete. They adopt a

universal relation assumption [Ullman 82b]; their views are essentially projections of

a given relation. The implication of their work is that an approach di�erent than

constant complements is needed.

12 CHAPTER 2. PREVIOUS WORK

2.4 Davidson

Jim Davidson [81, 83] addresses the related problem of updating databases through

natural language. He generates dynamically de�ned views based on user interaction.

He handles project and join views. His joins are more restrictive than ours, as he only

allows chains and we allow trees; however, his projections are less restrictive than ours

as he does not require join attributes to appear in the view, but this introduces data

dependencies.

His approach involves generating alternatives on the y and choosing among them

by various heuristics. The list of alternatives he generates is data dependent; conse-

quently, the translation he chooses is data dependent. The following example illus-

trates the problem. Consider the following relations, where employee is the key of

the ED relation and department is the key of the DM relation, and them EM view

is formed by the natural join between the ED and DM relations with department

removed by a projection.3

ED relation DM relation

employee department department manager

Joe Art Art Sally

Sarah Art Books Sally

George Music Music Ira

Fred Music Sports Keith

Sam Sports

EM view

employee manager

Joe Sally

Sarah Sally

George Ira

Fred Ira

Sam Keith

The request to change George's manager from Ira to Keith results in changing

George's department from Music to Sports. The alternative of changing the manager

of the Music department from Ira to Keith is rejected because of the potential for

3Note that our work does not handle this case because the join attribute has been removed.

2.5. OTHERS 13

side e�ects. The request to change George's manager from Ira to Suzanne results in

changing the manager of the Music department from Ira to Suzanne. This method

is chosen even though it has the side e�ect of changing Fred's manager from Ira to

Suzanne because Suzanne is not already a manager, so we cannot move George to

Suzanne's department (she does not have one yet).

Davidson's heuristics appear useful for extending our work to handle universal re-

lations. We propose that future work consider an algorithmic approach that does not

depend on the database state which is motivated by some of the heuristics Davidson

uses.

2.5 Others

Carlson [79] ignored replacement requests by claiming that they can be decomposed

into a sequence of insertions and deletions. We believe that replacement requests

are di�erent as they do not require a consistent database state between the deletions

and insertions. Furtado [79] proposed handling the union operator for de�ning views

and claimed that insertions, deletions, and replacements speci�ed against a view

de�ned by a union should be applied to each of the underlying relations merged. The

union operator is useful for distributed databases where a relation is partitioned over

several sites. In this case, an insertion must occur at only one site and not, as Furtado

suggests, all sites.

Chapter 3

Complementary and Independent

Views

One way to express a limitation of e�ects of view updates on the database is through

the concept of constant complements [Bancilhon 81]. Two views are complementary

if given the state of each view, there is a unique corresponding database state. In-

tuitively, this means that the two views are su�cient to reconstruct the database.

Bancilhon and Spyratos have observed that by choosing a complementary view and

holding it constant, that there is at most one way to translate any update on the

given view. They have also shown that if a view is not empty or the identity, then

it has multiple minimal complements. A complement is minimal if no view provid-

ing less information is also complementary. Providing more information does not

adversely a�ect complementarity; therefore, the issue is only interesting when we

consider minimal complements.

We observe that choosing a constant complement may cause the view update

translator to reject requests that have translations, although none of those transla-

tions keep the complement constant. We de�ne two views as independent when any

pair of view states corresponds to a database state. When independent views are

complementary, it is always possible to hold the state of one view constant while

generating any possible state of the other view. Thus, choosing an independent com-

plement, if one exists, permits all updates expressed against the view to be translated

to updates expressed against the database. The question then arises whether a view

has multiple independent complements. To answer this question, we de�ne a view as

14

15

monotonic if it preserves inclusion (recall that the domain and range of a view is a

�nite power set). Informally, a view is monotonic if adding tuples to the database

does not remove any tuples from the view, although it could augment the view. There

are non-monotonic views that have multiple independent complements. However, a

monotonic view has at most one complement that is independent and monotonic.

The following diagram illustrates two database mappings f and g.

F g

G #! � � � �

� � � � �

f � � �

� � �

� � �

Each � represents one database state. The domain D is represented by the �'s located

in the main quadrant of the diagram (the lower right from the double lines). The

function f maps database states of D into database states in F (the left column)

by moving across the row. Similarly, the function g maps database states of D into

database states in G (the top row) by moving up along the column. The equivalence

classes of D induced by f (D=f) are the rows of D. And the equivalence classes of

D induced by g (D=g) are the columns of D. We can take the intersection of an

equivalence class of D=f and one from D=g; this is represented by one box of the

diagram. The two mappings f and g are complementary if, given a database state in

F and one inG, there is at most one database state inD that maps into both database

states (by their respective mappings). That means each box of the diagram has at

most one � in it. This particular diagram illustrates two complementary functions.

Updating the database D through the user view f involves changing view states

from some database in F to another (in F). If the mapping g is to be held con-

stant, then the new database state is found by moving along the same column (for

the same image in G) from the original row to the desired row. If the mapping to be

held constant g is complementary to f , then there is at most one candidate resultant

database in D that maps to the same database in G (by g) and maps to the new

database in F (by f). When the box (intersection of the view and complement equiv-

alence classes) is empty, the view update request cannot be performed exactly while

16 CHAPTER 3. COMPLEMENTARY AND INDEPENDENT VIEWS

preserving the complement|the request is rejected; when the intersection contains

exactly one database, the view update request has a unique translation that preserves

the complement.

The following diagram illustrates two independent functions. Each box in D in

the diagram contains at least one �.

F g

G #! � � � �

� � � � �

f � � � � � � �

� � � � � � �

� � � � � � �

Again, updating the database D through the user view f involves changing view

states from some database in F to another (in F). If the mapping g is to be held

constant, then the new database state is found by moving along the same column (for

the same image in G) from the original row to the desired row. If the mapping to

be held constant g is independent of f , then there is at least one candidate resultant

database in D that maps to the same database in G (by g) and maps to the new

database in F (by f). When the box (intersection of the view and complement

equivalence classes) contains exactly one database, the view update request has a

unique translation that preserves the complement; when the intersection contains

more than one database, the view update request has several candidate translations

that preserve the complement|the request is ambiguous.

Holding a view complement constant means that whenever the view update is

translatable, that translation is unique. If the view held constant is independent (from

the user view), then all view update requests can be translated, perhaps ambiguously.

If the view that is held constant is both complementary to and independent of the

user view, then all view update requests are unambiguously translatable into database

update requests. When the views are constrained to be monotonic, if a view has a

independent complement, it is unique.

We will now proceed to a formal treatment of the results we have stated informally.

3.1. DEFINITIONS 17

3.1 De�nitions

It is assumed that the reader is familiar with database theory [Ullman 82a] and set

theory [Halmos 60].

For the purpose of this exposition, a database is a �nite power set.

De�nition. Let f and g be two functions whose domain is D. (Here we are not

concerned with the range of f and g, but only with the equivalence classes induced

on D by f and g.) Then f and g are independent mappings if

[�x; y][((�d�1 2 D)(f(d�1) = x))�((�d�2 2 D)(g(d�2) = y))�

((�d 2 D)(f(d) = x�g(d) = y))]:

The notion of independence we use here is di�erent from Rissanen's notion of in-

dependence [Rissanen 77]. His notion stated that two components were independent

when the original database could be obtained from them by lossless joins that pre-

served all dependencies. Our de�nition relates to the ability to change the selected

range value of one mapping while keeping the range value of the other mapping con-

stant. This de�nition is useful for the problem of view updates, where it is important

to consider whether an update speci�ed through a view may be done without a�ecting

another view.

De�nition [Bancilhon 81]. Let f and g be two functions whose domain is D. Then

f and g are complementary mappings if

[�x; y 2 D][(x�y)�f(x) = f(y)�g(x)�g(y)]:

De�nition. Two functions (mappings) f and g with the domain D are equivalent if

they induce the same equivalence class on D. (That is D=f = D=g. Recall that D=f

is de�ned as follows: �d 2 D; �d0 2 D, d and d0 are in the same member of D=f i�

f(d) = f(d0).)

We observe that independence and complementarity are di�erent properties. In-

dependence means that function can generate all values of its range while another

function has a speci�c range value. Complementarity means that there is at most

one element of the domain that simultaneously results in any pair of range values,

one from each of two functions. We can give another characterization of these two

18 CHAPTER 3. COMPLEMENTARY AND INDEPENDENT VIEWS

concepts. Each function f generates a set of equivalence classes D=f . Given two

functions f and g we can take the intersection of equivalence classes of D=f with

equivalence classes of D=g. If all of these intersections have at most one (domain)

element in them, the two functions are complementary. If all of these intersections

have at least one (domain) element in them, the two functions are independent.

De�nition. Let f and g be complementary and independent functions whose domain

is D, and let h be an arbitrary function whose domain is also D. Let the range of f be

F and the range of g is G. Since f and g are complementary and independent, there

is a one-to-one correspondence between F � G and D; that is, d 2 D corresponds

to a� b where a = f(d) and b = g(d). Then the coordinatization of h over f and g

is the function h0 whose domain is F � G such that h(d) = h0(f(d); g(d)). (We note

that h is equivalent to some h�0 i� h0 is.)

One question is when is there a unique (up to equivalence) complementary and

independent function g for a function f . For example, let f(x; y) = x and g(x; y) = y.

It is clear that these are independent and complementary. The function g0(x; y) =

2y is independent and complementary to f but also equivalent to g. However, the

function g00(x; y) = x+ y is independent and complementary to f but not equivalent

to g. Since our domain of interest is relational databases, and the mappings of interest

are relational views consisting of combinations of select, project, join, and union, we

will use a property of these mappings.

3.2 Monotonic Functions

De�nition. An n-ary function f whose domain is a �nite power set is monotonic if

(�i)(R�i � S�i)�f(R�1; : : : ; R�n) � f(S�1; : : : ; S�n). (Select, project, join, and

union of relations are monotonic functions. The set di�erence operator, however, is

not monotonic.)1 The composition of monotonic functions is monotonic.

We will now explore some features of complementary, independent, and monotonic

functions. We shall require not only that the domain of each function is a �nite

power set but also that the range be a �nite power set as well. This is reasonable

since the select, project, and join operators all result in power sets. Let f and g be

1The main property of �nite power sets we use is that they are complete lattices [Birkho� 67].

3.2. MONOTONIC FUNCTIONS 19

complementary, independent, and monotonic functions whose domain isD and ranges

are F and G (all �nite power sets), respectively. Since f and g are complementary

and independent, there is a one-to-one correspondence between G and the elements

of any equivalence classes generated by f . Let G0 be the equivalence class of f that

contains the empty relation. Using the one-to-one correspondence, we can de�ne

g0 : D�G0 as g0(d) = b where g(b) = g(d) and f(b) = ;. (Essentially, we have chosen

from each equivalence class generated by g the element that maps to the empty set

by f .) Similarly, f 0 : D�F 0 is de�ned by f 0(d) = a where f(a) = f(d) and g(a) = ;.

Let us de�ne the coordinatization function c : F 0 �G0�D as c(f 0(d); g0(d)) = d. Since

f and g are complementary, c is a function. Since f and g are independent, c is total.

We will now explore some properties of c. First, c(a; ;) = a (and similarly, c(;; b) = b)

since a 2 F 0 implies f 0(a) = a and g0(a) = ;.

Lemma 3.1 Let f : F 0�F be a monotonic function. Then f(;) = ;.

Proof: Let f(;) = a, and let f(d) = ;. (Both F and F 0 must contain the empty

set.) Since ; � d and f is monotonic, a � ;. Therefore, a = ;.

Lemma 3.2 F 0 is closed under containment.

Proof: Let a�1 be a member of F 0 and a�2 be a subset of a�1. Now g(a�1) = ;

since a�1 2 F 0. Since g is monotonic, g(a�2) = ;. Therefore, a�2 is in F 0.

Corollary 3.1 F 0 is closed under intersection.

Lemma 3.3 Let f : F 0�F be a monotonic function. If d 2 F 0 and f(d) = f e g, a

singleton, then d is a singleton.

Proof: Suppose not. Then there exist d�1; d�2 2 d such that d�1�d�2. By our

previous lemma, both f d�1 g and f d�2 g are elements of F 0. Let f(f d�1 g) = a�1

and f(f d�2 g) = a�2. We note that a�1�a�2 since f is bijective on F 0�F . But the

monotonicity of f implies that a�1�a�2 � f e g. Therefore, f e g is not a singleton.

Lemma 3.4 Let f : F 0�F be a monotonic function. If d 2 F 0 and f(d) = a, then

jdj � jaj.

20 CHAPTER 3. COMPLEMENTARY AND INDEPENDENT VIEWS

Proof: Let S be the power set of d. Since F 0 is closed under containment, S � F 0.

For all s in S, f(s) is in F and f(s) � a. Furthermore, since f is bijective on F 0�F ,

all the f(s)'s are distinct. Then a has as many subsets as d, so a must be at least as

big as d.

Lemma 3.5 Let F and G be �nite power sets. Then F 0 (and also G0) is a �nite

power set.

Proof: Since F and G are �nite power sets, their cardinalities are powers of two.

Let jF j = 2m and jGj = 2n. Then F (G) contains exactly m (n) singletons. Since

there is a one-to-one correspondence between D and F �G, jDj = 2m+n. Because D

is a �nite power set, D contains exactly m + n singletons. Let S�F (S�G) be the

singletons in F 0 (G0) that map into singletons in F (G). We note that jS�F j = m

and jS�Gj = n since each singleton of F is mapped into by a unique singleton of F 0

(and consequently S�F). Since f : F 0�F is a bijection, jF 0j = 2m. Now, suppose

that F 0 is not the power set generated by S�F . Since jS�F j = m, the power set of

S�F is of size 2m. As F 0 is the same size as the power set generated by S�F and

they are unequal, there must be some element a in F 0 that is not in the power set of

S�F . That set a in F 0 is then not the union of some singletons in S�F . Then there

is some element a�0 2 a not in S�F , and f a�0 g is a singleton that is not in S�F .

Therefore, F 0 has more than m singletons. Let us now show that F 0�G0 = f ; g.

Everything in F 0 is mapped to ; by g, while the only set in G0 mapped to ; by g

is ;. Therefore, the singletons in F 0 and G0 are disjoint. But F 0 has more than m

singletons while G0 has at least n singletons. This contradicts the fact that D has

precisely m+ n singletons.

Lemma 3.6 Let F , F 0, G, and G0 be �nite power sets, and let f : F 0�F be a mono-

tonic function. If d 2 F 0 and f(d) = a, then jdj = jaj.

Proof: We have already shown that jdj � jaj. Let s�i = f s 2 F 0 j jsj = i g. Let

t�i = f t 2 F j jtj = i g. Since F and F 0 are power sets of size 2n, js�ij = jt�ij =
�
n

i

�
.

By induction on jdj we will show that jdj = jaj. For jdj = 1, s�1 is the set of singletons

in F 0. Since jdj � jaj, only singletons (elements of s�1) may map into the t�1. But

since js�1j = jt�1j =
�
n

i

�
, all elements of s�1 must map into elements of t�1. For

3.3. CONVERSION TO COORDINATES 21

the induction step, assume that all elements of s�i map into elements of t�i for

1�i < j�n. We will show that all elements of s�j map into elements of t�j. Since

jdj � jaj, the elements of F 0 that map into elements of t�j must be elements of s�i

for 1�i�j. But by the induction hypothesis, none of these can be elements of s�i

for 1�i < j. Therefore only elements of s�j can map into elements of t�j. But

js�jj = jt�jj =
�
n

j

�
. Therefore all elements of s�j map into elements of t�j.

Theorem 3.1 Let the domain D be a �nite power set. Then F 0 and F are isomorphic

(preserving monotonicity) under f .

Proof: The preceding lemma (jdj = jaj) showed that the singletons of F and

D are in one-to-one correspondence. Let d = f a�1; : : : ; a�k g. We will show that

f(f a�1; : : : ; a�k g) = f f(a�1); : : : ; f(a�k) g. Suppose not. Then there is some

f(a�i) (1�i�k), say f(a�1), not in f(d). (From jdj = jf(d)j, we know that some

of the a�i (1�i�k) are missing and there are other singletons added.) By de�nition,

f a�1 g � d. But since f is monotonic, this implies f(f a�1 g) � f(d).

Corollary 3.2 f 0 is monotonic.

3.3 Conversion to Coordinates

Lemma 3.7 Let the domain D be a �nite power set, and let f and g be monotonic,

independent, and complementary. Then all the singletons of D are members of F 0 or

G0.

Proof: Let 2m (2n) be the size of F (G). Then jF 0j = 2m and jG0j = 2n. Since F 0

(G0) is a power set, there are m (n) singletons in F 0 (G0). Also, jDj = 2m+n. Since D

is a power set, there are m+ n singletons in D. We know that F 0�G0 = f ; g. Then

all of the singletons of D are members of F 0 or G0.

Corollary 3.3 For all d 2 D, there exist a 2 F 0 and b 2 G0 such that d = a�b.

Theorem 3.2 Let the domain D be a �nite power set. For c as the function for con-

verting to coordinates de�ned above, c(a; b) = a�b. (That is, f and g are monotonic,

independent, and complementary.)

22 CHAPTER 3. COMPLEMENTARY AND INDEPENDENT VIEWS

Proof: We observe that the theorem holds of c(a; ;) = a and c(;; b) = b. We

measure a counterexample c(a; b) = a0�b0 where a�a0 or b�b0 and a0 2 F 0 and b0 2 G0

by the sum of the cardinalities of a and b (jaj + jbj). We perform an induction on

this measure. Assume that c(a; b) = a�b for all a and b such that jaj + jbj < n. Let

c(a; b) = a0�b0 with a�a0 or b�b0 and jaj+ jbj = n. It is not possible that a0 � a and

b0 � b. (Otherwise either a0�b0 = a�b|assumed false|or ja0�b0j < ja�bj, which by

our induction hypothesis implies c(a0; b0) = a0�b0.) Without loss of generality, assume

that a0 � a�;. Let e 2 a0 � a. Then f e g � a0�b0, so f 0(f e g) � f 0(a0�b0) = a. Since

e 2 a0, f e g 2 F 0 and f 0(f e g) = f e g. Since e 2 a0 � a, f 0e =2 a, a contradiction.

Let us consider the consequence of the preceding theorem and lemmata. Let the

B be the basis set of the domain D. (That is D is the power set of B.) Also, let

B�f be the basis set of F 0 and B�g be the basis set of G0. Then B = B�f�B�g.

Theorem 3.3 Let the domain D be a �nite power set. Conversion to coordinates

preserves monotonicity. That is, let f and g be monotonic, complementary, and

independent functions with domain D and ranges F and G respectively (all �nite

power sets), and let h be a function with domain D, and let h0 be the conversion to

coordinates of h over f and g [that is, h0(f(d); g(d)) = h(d)]. Then h is monotonic

i� h0 is.

Proof: \If." We note that h is the composition of f , g, and h0. Therefore, if h0

is monotonic, then h is also.

\Only if." We note that h0 is the composition of h and c. If h is monotonic, then

h0 is also since c is monotonic.

3.4 Uniqueness of Independent, Complementary

Mappings

Our question now becomes when does a mapping have a unique (up to equivalence)

monotonic, complementary, independent mapping. For domains of �nite sets, such

mappings are unique.

3.5. CONCLUSION 23

Theorem 3.4 Let f , g, and h be monotonic mappings on a domain D, a �nite power

set, such that the ranges are all �nite power sets, and f and g are independent and

complementary, as are f and h. Then g and h are equivalent.

Proof: Let f 0, g0, and h0 be the conversion to coordinates of f , g, and h, respec-

tively, over f and g. Let F be the range of f and G be the range of g. Assume that g

and h are not equivalent (and consequently, g0 and h0). Then there exists some a 2 F

and b�0 2 G such that g0(a; b�0) = g0(;; b�0) but h0(a; b�0) 6= h0(;; b�0). Since

conversion to coordinates preserves monotonicity, h0(;; b�0) � h0(a; b�0). Choose

b�1 such that h0(a; b�1) = h0(;; b�0). (Such a b�1 must exist since f 0 and h0

are independent.) Since f 0 and h0 are complementary, h0(a; b�1) 6= h0(;; b�1).

Since coordinatization preserves monotonicity, h0(;; b�1) � h0(a; b�1). Now we have

h0(;; b�1) � h0(a; b�1) = h0(;; b�0) � h0(a; b�0). We can choose b�i+ 1 such that

h0(a; b�i+ 1) = h0(;; b�i). This de�nes an in�nite sequence of sets, each of which is

a proper subset of the previous one. This is not possible when the domain is �nite

sets. Thus, we have arrived at a contradiction.

3.5 Conclusion

We have considered the relationship between independent and complementary map-

pings. We have studied the issue on databases on �nite domains with monotonic

mappings. We have shown that given one mapping, there is at most one other map-

ping that is independent and complementary to it. The domains and ranges are all

�nite power sets. An intersection mapping intersects each domain element with a

�xed set (called the intersection set) to produce the result. Given a pair of map-

pings that are monotonic, independent, and complementary, the two mappings are

equivalent to intersection mappings where the intersection sets are a partition of the

generator of the power set. Because our views are monotonic mappings, these results

show some shortcomings of the concepts of complementary views.

Chapter 4

Update Semantics

A user accessing a database through a view should not be concerned that operations

expressed against the view must be translated into operations expressed against the

database. Rather, the user should be able to treat the view the way a user would

treat a stored database relation. The view is essentially the complete representation

of the user's world. Queries are well understood for both databases and views, so we

need not consider them further. We use the same three operators to update through

a view as we use for updating an ordinary database: insert, delete, and replace. The

semantics of these operators on a view is de�ned based on the semantics of these

operators on an ordinary database.

4.1 Direct Relation Updates

In order to understand what an update expressed against a view should mean, we

need to understand what an update expressed directly against the database means.

We use the same three operators for view updates as for database updates: insert,

delete, and replace. An insertion supplies a completely speci�ed tuple to be added

to a relation. The insertion can proceed only if it does not violate any constraints on

the database. In particular, if there is a functional dependency de�ned, there must

not already be a tuple whose key matches the key of the tuple to be inserted. We

speci�cally do not permit insertion of a tuple that matches exactly an existing tuple

in that relation; we say that the update is rejected rather than it having no e�ect.

The result of the insertion is the union of the original relation and the tuple to be

24

4.2. VIEW UPDATES 25

inserted.

A deletion supplies a completely speci�ed tuple to be removed from a relation.

That tuple must exist in the relation to be removed. The result of the deletion is the

set di�erence of the original relation minus the tuple to be removed. As a shorthand, a

deletion may specify a condition for testing completely speci�ed tuples to be deleted.

The e�ect is as if each of these tuples were deleted individually.

A replacement supplies an existing completely speci�ed tuple and its completely

speci�ed replacement. The replaced tuple must already exist and the replacement

tuple must not already exist. If the tuple to be replaced has the same key as the

replacement tuple, the replacement cannot violate a functional dependency in that

relation. It may, however, violate other constraints, if there are any. If the tuple to

be replaced has a di�erent key from the replacement tuple, there must not already

be a tuple in that relation with a key matching the replacement tuple, as that would

violate the functional dependency. A request to replace a tuple with itself is not

speci�cally rejected; rather it is a valid operation that has no e�ect. The result of

the replacement is the removal of the tuple to be replaced and the addition of the

replacement tuple. Note that a deletion followed by an insertion is not the same as

a replacement: The former requires an intermediate consistent state that the latter

does not.

4.2 View Updates

We use the same three operations for view updates as for database updates: insert,

delete, and replace. The user treats the view as if it were an ordinary relation, al-

though it is not necessarily in Boyce-Codd Normal Form. Consequently, when the

user requests an insertion, deletion, or replacement, the view should change corre-

spondingly.

In a projection view where the key of the relation does not appear in the view, the

question of handling duplicates arises. Two database tuples may be mapped by the

view into the same view tuple. If duplicates appear in the view (i.e., duplicates are

not removed during the projection), then how does a change to one view tuple a�ect

the other matching view tuples? Since the view tuples in question are identical, if one

view tuple satis�es the selection clause for an update, they all will. Consequently,

26 CHAPTER 4. UPDATE SEMANTICS

the request to delete one of a set of duplicate view tuples will result in deletion of the

entire set of view tuples with the attendant changes occurring to the corresponding

underlying database tuples. If duplicates do not appear in the view (i.e., duplicates

are removed during the projection), then how does a change to the view tuple a�ect

the corresponding underlying (database) tuples? If a view tuple is to be deleted, that

view tuple must no longer appear in the view. This may require multiple changes to

the database in order to accomplish the removal of the view tuple, corresponding to

the duplicate view tuples that were collapsed into one view tuple. Since a change to

a view tuple a�ects all identical view tuples equally, the e�ect on the database will

not depend on whether duplicates are removed from the view. Note that most of the

time we will not allow database keys to be removed from the view by projections, so

this problem will not ordinarily arise.1

4.2.1 Translations vs. translators

A view update translation is a sequence of database updates that implement a view

update request. There may be several view update translations for a given view

update request.

A view update translator is a mapping from view update requests into translations

of these view update requests. A translator would take the user's view update requests

and translate them into database update requests, which could then be processed by

the database system. Thus, a view update translation facility would be a useful

adjunct to a database system which has a view de�nition facility.

We shall provide a list of view update translators grouped into broad classes. We

do not claim that these are the only view update translators possible. Rather, we

show that, for each view update request, all possible translations of that view update

request into sequences of database update requests that satisfy our 5 criteria are

obtained from these view update translators.

We can obtain other view update translators from the translators we de�ne. One

translator can be obtained from another by rejecting some updates and translating

the others. Given two translators, there are translators that use some translations

from translator and some from the other. Using these two translator transformations,

1We do cover projections in which complete keys do not appear in Sections 5.2.3 through 5.2.6.

4.3. FAITHFULNESS CRITERIA 27

from the view update translations we de�ne, we can generate the complete set of view

update translators whose translations that satisfy our 5 criteria.

In order that the facility for handling view updates may choose among these

alternatives at view update time, we propose that the database adminstrator (DBA)

provide additional semantics during view de�nition time. These additional semantics

permit the view update facility to choose one of these translators.

4.3 Faithfulness criteria

A translation of a particular view update request is characterized by three sets consist-

ing of the insertions, deletions, and replacements applied to the underlying database.

The insertions and deletions are each described by a set containing the a�ected tu-

ples. The replacements are described by a set of ordered pairs of old and new tuples.

These sets all contain the exact tuples, specifying all attributes. We will consider

two translations equivalent if they have the same e�ect on the database. In practice,

the equivalence can result from converting a pair of an insertion and a deletion into

a replacement, or from swapping the replacement tuples from a pair of replace op-

erations. Formally, let the set of removed tuples be the union of the set of deleted

tuples and the set of replaced tuples; similarly, the set of added tuples is the union

of the set of inserted tuples and the set of replacement tuples. Then two translations

are equivalent if their respective added and removed sets are equal. Recall that the

translations are valid when the implement the request exactly (without additional

changes to the view).

All of the candidate update translations are to satisfy the following 5 criteria in

addition to being valid.

1. \No database side e�ects." The only database tuples a�ected have keys that

match their respective values in the tuples mentioned in the view update request.

(This is part of the rectangle rule [Dayal 78, 79, 82]). Note that this requires the key

of each relation a�ected to appear in the view. In particular, this means that if the

key of a tuple changes, the old and new keys must appear in the respective positions

of the view update request.

2. \Only `one step' changes." Each database tuple is a�ected by at most one

step of the translation for any single view update request. Speci�cally, a translation

28 CHAPTER 4. UPDATE SEMANTICS

cannot replace an inserted tuple, or delete a replaced tuple, or replace a tuple twice

in succession. This rule implies that there is no ordering imposed on the individual

database updates that translate a view update.

3. \Minimal change: no unnecessary changes." There is no valid translation that

implements the request by performing only a proper subset of the database requests.

(Note that we are concerned with the set of database operations; a deletion is not

simpler than a replacement that replaces the same tuple since the replacement is a

single request.)

4. \Minimal change: replacements cannot be simpli�ed." Consider two alter-

native database replacement requests where both specify replacing the same tuple.

A database replacement that does not involve changing the key is simpler than one

where the key changes. A database replacement that changes a proper subset of the

attributes changed by another database replacement is simpler.

5. \Minimal change: no delete-insert pairs." We do not allow candidate trans-

lations to include both deletions and insertions on any one relation, as they may be

converted into replacements, which we consider simpler. Thus candidate translations

may contain either deletions or insertions for any relation, but not both, in addition

to replacements. A translation may, however, contain an insertion into one relation

and a deletion from another relation.

Let us consider the implications of these �ve criteria. Criterion 1 (no database side

e�ects) requires that any change to the database a�ect only tuples that are relevant

to the view update. This requirement is not as stringent as maintaining a constant

complement. Both requirements are intended to eliminate unintended e�ects on other

users. The constant complement method takes a �xed notion of some other user and

prevents any actions through our view from a�ecting the other user, which is contrary

to the concept of a shared database and precludes some reasonable updates or update

translators.

Criterion 2 (only `one step' changes) eliminates two types of anomalies. We do

not want a tuple to be replaced by two separate tuples; it would have disappeared

after the �rst of these replacements. We also do not want a tuple to undergo multiple

separate changes, as these could be combined into a single change. For example, we

do not want a tuple to be replaced only to be deleted in its new form. Rather, the

original tuple should be deleted.

4.3. FAITHFULNESS CRITERIA 29

Criteria 3, 4, and 5 require that the updates be minimal. This takes three forms:

we do not do any unnecessary operations, the operations we do perform are the

simplest ones possible, and we never do in two steps what can be done in one. The

only operation we can simplify is a replacement operation, and it is simpli�ed by not

changing the key, or by changing fewer attributes. We consider a one-step replacement

operation simpler than a two-step deletion-insertion pair. This allows us to get at the

essence of the necessary changes.

The purpose of our �ve criteria is to permit all possible changes, but only in

their simplest forms. If changing a particular attribute value is su�cient, we want

to consider that in preference to changing that attribute in addition to others. It

is certainly possible to translate a view update request by performing additional

changes to the database, but there are endless possibilities for such elaboration. If we

are to achieve our goal of characterizing the possibilities, we must restrict ourselves

to the simplest ones, which capture the essence of the changes in the more elaborate

translations.

Based on the de�nitions of added and removed sets above, one translation is at

least as simple as another if its added and removed sets are subsets of those of the

other translation.

Theorem 4.1 For every given view update request and for every valid translation,

there is (at least one) translation at least as simple that satis�es the 5 criteria.

Proof: Let us de�ne a lattice of view update translations that implement the

desired view update. Criteria 3 and 4 clearly de�ne part of the ordering on the

lattice.

For each translation that does not satisfy Criterion 2, there must be a pair of

database operations a�ecting the same database tuple. We will create a directed

graph where each operation is a node and there are edges between operations that

a�ect a database tuple created by a previous operation. We want to transform the

graph to remove all edges. Edges emanate from insert and replace operations and

terminate at delete and replace operations. Since the translation is described as a

sequence of operations, no node can have out-degree greater than one, nor may the

graph have a cycle. If either of these events occur, the translation has no ordering of

the operations that represents a valid sequence for the database.

30 CHAPTER 4. UPDATE SEMANTICS

Insert t�1

?

Replace t�1 by t�2

?

Delete t�2

Graph of Operations on Tuples

We consider each of the leaf nodes. For leaf nodes that are delete operations, we

repeatedly delete the node we are at and then visit its parent node until we reach a

root node. For leaf nodes that are replace operations, we repeatedly collapse the node

we are at with its parent node until we reach a root node. We collapse the operation

\replace t�2 by t�3" preceded by \replace t�1 by t�2" by substituting for these and

the edge separating them the operation \replace t�1 by t�3." Similarly, we collapse

the operation \replace t�2 by t�3" preceded by \insert t�2" by substituting for these

and the edge separating them the operation \insert t�3." The resulting graph has

no edges and satis�es Criterion 2; it still performs the desired view update because it

ends up with the same database state as the original translation when it starts with

the same database state.

For each translation that does not satisfy Criterion 1, we change all replacements

that violate Criterion 1 to their respective delete-insert pairs. (This will temporarily

violate Criterion 5.) For the other cases, we remove all steps of the translation that do

not involve tuples with keys that match their respective values (same attribute names)

4.3. FAITHFULNESS CRITERIA 31

in the view update request. The resulting translation clearly satis�es Criterion 1, but

we must show that it still performs the desired change to the view. Since select,

project, and join views are monotonic, the only database tuples that a�ect the view

tuples to be changed are the corresponding underlying tuples. But those are the ones

with keys matching the values in the view update request.

For each translation that includes a deletion and an insertion operation in the

same relation, we replace all such pairs by a replacement of the deleted tuple by the

inserted tuple. Such a translation now satis�es Criterion 5 and still implements the

desired view update.

We observe that the lattice de�ne is sound (the partial order is well de�ned). Since

there are only a �nite number of operations and attributes, the lattice must be �nite.

Therefore, there must be one or more \least" elements. Such a least element satis�es

all �ve criteria.

Theorem 4.2 The �ve criteria are independent.

Proof: We shall give examples of views where all but one criterion are satis�ed.

Criterion 1. The view selects tuples on relation AB with odd numbers for compo-

nent an in domain A where A�B. View update is insert ha1, b1i. Database update

consists of replace ha2, b1i by ha1, b1i. This a�ects ha2, b1i, which violates Crite-

rion 1 but not the others.

Criterion 2. View is identity view on relation AB where A�B. View update is

replace ha1, b1i by ha1, b3i. Database update consists of replace ha1, b1i by ha1, b2i

and replace ha1, b2i by ha1, b3i. This satis�es all criteria but 2.

Criterion 3. View is join of relation AB with relation BC, where A�B and B�C.

Deletion of view (ABC) tuple ha1, b1, c1i can be accomplished by deletion of ha1, b1i

alone. Adding the deletion of hb1, c1i results in a translation that satis�es all criteria

but 3.

Criterion 4. View is projection of relation ABC where A�BC and only attributes

A and B appear in the view. Replacement of view tuple ha1, b1i by ha1, b2i can be

done by replacing database tuple ha1, b1, c1i by ha1, b2, c1i. Replacing database

tuple ha1, b1, c1i by ha1, b2, c2i satis�es all criteria but 4.

Criterion 5. View is projection of relation ABC where A�BC and only attributes

A and B appear in the view. Replacement of view tuple ha1, b1i by ha1, b2i can

32 CHAPTER 4. UPDATE SEMANTICS

be done by replacing database tuple ha1, b1, c1i by ha1, b2, c1i. Deleting database

tuple ha1, b1, c1i and inserting database tuple ha1, b2, c2i satis�es all criteria but

5.

Thus, each criterion can be violated without violating the others.

4.4 Exactness of Translation

One measure of a view update translation is whether the view update request is

performed exactly (i.e., with no view side e�ects). In the diagram, the question is

whether the diagram commutes; is U(V (DB)) = V (DB0)?

V (DB)
U

����!U(V (DB))
?
= V (DB0)x??????

V

wwww�T
x??????
V

DB
T (U)

�������!T (U)(DB) = DB0

We shall not allow view side e�ects in select and project views, as it is possible

to translate view updates for these views without side e�ects and still satisfy our 5

criteria. However, we are forced to allow side e�ects in join views for some updates.

For example, consider the following relations AB and BC and view ABC (the natural

join of AB and BC), where A�B and B�C.

AB BC ABC

A B B C A B C

a1 b1 b1 c1 a1 b1 c1

a2 b1 a2 b1 c1

If we request that view tuple ha1; b1; c1i be replaced by ha1; b1; c3i, the translation

must include replacing hb1; c1i by hb1; c3i as a consequence of the view de�nition. This

necessarily has the side e�ect of replacing the view tuple ha2; b1; c1i by ha2; b1; c3i. The

actual e�ect on the view is the result of decomposing the user's request into a series

of requests, each con�ned to the attributes of a single underlying BCNF relation.

The views side e�ects permitted in join views are always to maintain functional

dependencies. These functional dependencies in the database are visible in the view

4.4. EXACTNESS OF TRANSLATION 33

and must be maintained there as well. When a view update request (replacement

as well as insertion) is presented that would violate a functional dependency, the

conicting tuples must be changed in accordance with the functional dependencies if

the update is to be accepted.

Chapter 5

Single Relation Updates

We will consider updates to views consisting of selections and projections of a single

relation in Boyce-Codd Normal Form (BCNF). In particular, note that these views

do not have joins. We will consider joins in the next chapter.

5.1 Selections

Let us consider the relation EMP which contains each employee's number, name, lo-

cation, and whether the employee is a member of the company baseball team. The

company has two locations: New York and San Francisco. Baseball team members

must be employees.

The personnel manager, Susan, in New York has the following view de�nition:

View P:

Select *

From EMP

Where Location="New York"

She requests the deletion of employee #17 from her view. A reasonable translation

of this request is to delete the employee record from the underlying database. Thus,

we have translated a view deletion into a database deletion. If the employee was a

member of the baseball team, he has been removed from that also.

The baseball team manager, Frank, has the following view de�nition:

34

5.1. SELECTIONS 35

View B:

Select *

From EMP

Where Baseball="Yes"

He requests deletion of employee #14 from his view. It is unreasonable to delete

the employee tuple from the underlying database (unless you believe that baseball is

all-important). A reasonable translation of this view deletion request is to replace

the Baseball attribute of the underlying database tuple with a \No." Thus, we have

translated a view deletion into a database replacement.

One might argue that the Frank's view deletion request should have been a re-

placement. However, this would mean requesting the replacement of a tuple in the

view with a view tuple that did not appear in the view. Then Frank's request would

not be valid in the view, as the replacement tuple could not possibly be a view tuple.

In addition, Frank would have to make a distinction between deletion and replacement

that he could not discern by looking at the e�ects through his view.

It is possible to translate the Susan's request by moving employee #17 to Califor-

nia. We doubt that the California manager would be pleased by such an implemen-

tation. Rather, such a request should be issued by someone authorized to access the

entire relation (as a replacement request): someone who can see the e�ects of that

request.

We see that a view deletion request is sometimes best translated into a database

deletion request and at other times into a database replacement request. As we

shall see, similar alternatives arise for insertion and replacement. We suggest that

additional semantics be used to choose among the various alternatives, and this will

be discussed in Chapter 7.

5.1.1 Class of Selection Views

We will �rst consider views consisting of selections of a single Boyce-Codd Nor-

mal Form relation. We will then consider the projection views and selection-and-

projection views.

We will deal with select and project views on a single relation with a single key

dependency. Let R be the set of attributes in the relation R, and let K be the set

36 CHAPTER 5. SINGLE RELATION UPDATES

of attributes in the key. We will assume that the functional dependency K�R is the

only consistency constraint on R. Observe that since the relation may only have a

key constraint, the database has already undergone normalization.

Let us �rst consider the selection condition. The selection condition is a conjunc-

tion of terms of the form A 2 s (or equivalently, A =2 e), where s and e are sets of

constants in the domain of A. (Note that s�e is equal to the domain of A.) We call the

values in s selecting values, and the values in e excluding values. For non-selecting

attributes the set of selecting values is the entire domain and the set of excluding

values is the empty set. We call the attributes appearing in the selection condition

selecting attributes. If the selection condition is \true" (i.e., an empty conjunction),

the set of selecting attributes is empty, the sets of selecting values are the entire do-

mains, and the sets of excluding values are empty. This type of selection condition

allows attributes to be treated independently in view updates.

We will de�ne a class of view update translators with certain desirable properties.

We then enumerate the members of this class. We will also give some completeness

results.

We handle only single view tuple update requests of the following forms: (1) Insert

a single, fully de�ned tuple. (2) Delete a single tuple by supplying its key. (3) Replace

a key by supplying the values of all attributes of the original and replacement view

tuples.

The requested view updates must be valid as speci�ed on the view, otherwise they

are rejected before ever being considered by the view update translator. That is, the

view update request would be valid if the view were an ordinary relation, with only

the constraints visible in the view required to hold (in this case, the FD must hold if

the key appears in the view). Note that we use the term \update" to mean insertion,

deletion, or replacement, while we use \replace" to refer to the operation of removing

a tuple from the view (or database) and substituting another for it.

While the only constraint we will consider is a single key dependency, we do allow

additional constraints to be imposed on the view or on the database. We attempt

to translate the request ignoring the additional constraints and then test whether

the translation satis�es those constraints. If not, we reject the request and make no

change to the database. Inter-relation constraints, such as inclusion dependencies,

are examples of constraints that are amenable to such treatment and can easily be

5.1. SELECTIONS 37

tested [Keller 81].

5.1.2 Translation of Update Requests

We will consider the general case of translating update requests on a selection view

into updates to the underlying database. We will deal with single tuple insertions

�rst. We will follow that with single tuple deletions. Finally, we will deal with single

tuple replacements.

With selection views, we can compare expressing the update against the view with

expressing the update against the underlying database. Any single tuple request that

is valid against the database is also valid against the view if all tuples a�ected satisfy

the selection criteria. Performing the same request directly against the database

is one of the possible translations of the request when expressed against the view.

However, there can be other translations of such view updates. Furthermore, there

are valid view update requests (for which translations to database updates exist) that

are not valid when expressed against the database. For example, consider the view

update request to insert a view tuple that has the same key as a database tuple that

does not appear in the view. This view update request is valid and can be translated

by replacing that database tuple which does not appear in the view with the view

tuple to be inserted; inserting the view tuple directly into the database is not a valid

database request. However, the situation is not this simple when considering more

complex views.

5.1.3 Translations of Insertion Requests

The request is to insert a single fully speci�ed view tuple. The new view tuple must be

a valid view tuple|satisfy the selection condition|and not conict with any existing

view tuple. We would like algorithms that de�ne translations of view updates into

database updates that satisfy the �ve criteria for acceptable translations that we

speci�ed earlier. Algorithm S-I-1 handles the case where the new view tuple does not

have the same key as an existing database tuple, while algorithm S-I-2 handles the

case where the new view tuple matches the key of a database tuple.

Algorithm S-I-1: If the new view tuple does not conict with (i.e., does not have

the same key as) any existing database tuple, then insert the desired tuple into the

38 CHAPTER 5. SINGLE RELATION UPDATES

database else reject the update request.

Lemma 5.1 The updates generated by Algorithm S-I-1 satisfy the �ve criteria for

candidate update translations.

Proof: (1) The only tuple a�ected is the inserted view tuple. (2) There is only one

database request. (3) The only database request is an insertion, so clearly doing less

could not implement the view update request. (4) There are no database replacement

requests. (5) There are no database deletion requests.

We observe that this update preserves the following complement:

Select *

From R

Where NOT (<condition>)

Algorithm S-I-2: If there is a database tuple whose key matches that of the new

view tuple, then replace that database tuple with the new view tuple (in the database)

else reject the update request.

Note that the database tuple with the matching key did not appear in the view.

This requires that the selection condition must depend in part on attributes that are

not part of the key.

Lemma 5.2 The updates generated by Algorithm S-I-2 satisfy the �ve criteria for

candidate update translations.

Proof: (1) The only tuples a�ected are the inserted view tuple and the replaced

database tuple, both with the same key value. (2) There is only one database request.

(3) The only database request is a single replacement, so clearly doing less could

not implement the view update request. (4) There is a single database replacement

request, and it changes only those attributes that di�er between the old database

tuple and the new view tuple. No replacement could be simpler because there are no

other candidate tuples for replacement with the same key. (5) There are no database

deletion requests.

In the case where the replacement changes a single attribute value (for attribute

A) which is mentioned in a selection term that excludes a single value, such as

Baseball 6="No", (possibly in conjunction with other selection terms), this update

translator generates one translation that preserves the following complement:

5.1. SELECTIONS 39

Select *-A

From R

Where True

For some views, such as those with a selecting attribute with more than one

excluded value, there is no complement that this translator will always hold constant.

If it is desired to maintain a constant complement, some view update requests that

could be translated must be rejected.

Theorem 5.1 The set of update translations that satisfy the �ve criteria for can-

didate update translations for individual view insertions are precisely those that are

generated by Algorithms S-I-1 and S-I-2.

Proof: The two previous lemmata show that the translations generated by the

two algorithms satisfy the �ve criteria.

We will now show that there are no other translations satisfying the �ve criteria.

We �rst observe that every view update valid in the view can be translated by either

Algorithm S-I-1 or by Algorithm S-I-2. Because the view is monotonic|a view is

monotonic if view formation preserves inclusion (i.e., A � B�v(A) � v(B))|a view

insertion cannot be translated solely by database deletions. Therefore, any set of

database updates implementing the view insertion request must contain at least one

insertion or replacement. Precisely one of these requests must refer to the new view

tuple (by Criterion 2). If it is a replacement, the replacement tuple must be the

new view tuple as no subsequent database request can a�ect that tuple in this view

update request. That request is generated by Algorithm S-I-2, as the replaced tuple

must have a matching key (by Criterion 1). If it is an insertion, the tuple inserted

must be the new view tuple as no subsequent database request can a�ect that tuple

in this view update request. That request is generated by Algorithm S-I-1. However,

by Criterion 5, the translation may not separately request deletion of a conicting

database tuple|the one replaced in Algorithm S-I-2. Such a sequence would be

simpli�ed to the acceptable translation from Algorithm S-I-2.

Recall that a view update translator is a mapping from view update requests into

translations of these view update requests. A translator would take the user's view

update requests and translate them into database update requests, which could then

be processed by the database system. Algorithms S-I-1 and S-I-2 de�ne view update

40 CHAPTER 5. SINGLE RELATION UPDATES

translators that handle mutually exclusive sets of view updates. We could de�ne a

new view update translator that translates each view update by the algorithm of the

two that can handle it. This combination translator has the translations of the two

original algorithms. Such a combination algorithm, unlike Algorithms S-I-1 and S-I-2,

does not have a counterpart in the deletion case, as we will see.

5.1.4 Translations of Deletion Requests

The request is to delete a single fully speci�ed view tuple. The deleted view tuple

must be a valid view tuple. Algorithm S-D-1 deletes the underlying database tuple

while algorithm S-D-2 replaces it. Algorithms S-D-1 and S-D-2 are the analogs of

algorithms S-I-1 and S-I-2, respectively.

Algorithm S-D-1: Delete the underlying database tuple.

Lemma 5.3 The updates generated by Algorithm S-D-1 satisfy the �ve criteria for

candidate update translations.

Proof: (1) The only tuple a�ected is the deleted view tuple. (2) There is only one

database request. (3) The only database request is an deletion, so clearly doing less

could not implement the view update request. (4) There are no database replacement

requests. (5) There are no database insertion requests.

We observe that this update also preserves the following complement:

Select *

From R

Where NOT (<condition>)

Algorithm S-D-2: Replace the value of one non-key attribute mentioned in the

selection condition with a value that does not satisfy (is excluded by) the selection

condition. If the only attributes appearing in the selection condition are part of the

key, this algorithm is not applicable (it would violate Criterion 1).

Note that the replacement database tuple does not appear in the view.

Lemma 5.4 The updates generated by Algorithm S-D-2 satisfy the �ve criteria for

candidate update translations.

5.1. SELECTIONS 41

Proof: (1) The only tuples a�ected are the deleted view tuple and the replacement

database tuple (whose key matches that of the deleted view tuple). (2) There is only

one database request. (3) The only database request is a single replacement, so clearly

doing less could not implement the view update request. (4) The key is not changed.

There is a single database replacement request, and it changes only those attributes

that di�er between the old database tuple and the new view tuple. No replacement

could be simpler because there is only one (non-key) attribute is changed. (5) There

are no database insertion requests.

The form of the selection condition (conjunction of attribute selecting conditions)

implies that it is su�cient to change only one attribute value to cause the tuple

to disappear from the view. Translation Criterion 3 implies that we do not change

more than one attribute value if changing one value is su�cient and the key does

not change. In the case where the replacement changes a single attribute value (for

attribute A) which is mentioned in a selection term that excludes a single value, such

as Baseball6="No", (possibly in conjunction with other selection terms), this update

translator preserves the following complement:

Select *-A

From R

Where True

For some other views, Algorithm S-D-2 does not preserve any complement. If it is

desired to preserve a complement, some of the view updates that would otherwise be

accepted must be rejected.

There is an important di�erence between Algorithms S-I-2 and S-D-2. When

translating an insertion into a replacement, the new tuple is known. When translating

a deletion into a replacement, it is the old tuple that is known; thus, which attribute

should be changed and what value it should be given may not be constrained by the

view update request and the selection condition.

Theorem 5.2 The set of update translations that satisfy the �ve criteria for can-

didate update translations for individual view deletions are precisely those that are

generated by Algorithms S-D-1 and S-D-2.

Proof: The two previous lemmata show that the translations generated by the

two algorithms satisfy the �ve criteria.

42 CHAPTER 5. SINGLE RELATION UPDATES

We will now show that there are no other translations satisfying the �ve criteria.

We �rst observe that every view update valid in the view can be translated by Al-

gorithm S-D-1 and sometimes by Algorithm S-D-2. Because the view is monotonic,

a view deletion cannot be translated solely by database insertions. Therefore, any

set of database updates implementing the view deletion request must contain at least

one deletion or replacement. Precisely one of these requests must refer to the deleted

view tuple. If it is a replacement, the replaced tuple must be the deleted view tuple,

as no preceding database request can a�ect that tuple in this view update request

by Criterion 2. That request is generated by Algorithm S-D-2, and the replacement

tuple has a matching key if possible (by Criteria 1 and 4). If it is a deletion, the

tuple deleted must be the deleted view tuple as no preceding database request can

a�ect that tuple in this view update request. That request is generated by Algorithm

S-D-1.

Algorithms S-I-1 and S-I-2 can be applied at mutually exclusive database states.

That is, a database state has at least one valid translation generated by Algorithm

S-I-1 or S-I-2 but not both. Thus, we could de�ne an Algorithm S-I-1�2 that in-

cludes the translations of both Algorithms S-I-1 and S-I-2. Unlike Algorithms S-I-1

and S-I-2, Algorithms S-D-1 and S-D-2 are alternatives sometimes applicable to the

same database state. Consequently, there is no algorithm for deletion that can be

constructed along the lines of Algorithm S-I-1�2. Note that Algorithm S-D-1 can

always be applied while Algorithm S-D-2 can only sometimes be applied.

5.1.5 Translations of Replacement Requests

The request is to replace one single fully speci�ed view tuple with another. Both view

tuples must satisfy the selection condition. The new view tuple must not conict with

any view tuple other than the one it replaces. There are �ve algorithms. Algorithm

S-R-1 handles the case where the key does not change. The other four algorithms

handle the case where the key does change. There are two options for how the old

tuple gets removed; these correspond to the two deletion algorithms. There are also

two options for how the new tuple gets added; these correspond to the two insertion

algorithms. All four combinations of these two options are possible.

Algorithm S-R-1: If the key does not change, then perform the replacement on the

5.1. SELECTIONS 43

database else reject the update request

Note that if the key does not change, there is no possibility of a conict with any

tuple not appearing in the view.

Lemma 5.5 The updates generated by Algorithm S-R-1 satisfy the �ve criteria for

candidate update translations.

Proof: (1) The only tuples a�ected are the replaced and replacement view tuple.

(2) There is only one database request. (3) The only database request is a single

replacement, so clearly doing less could not implement the view update request. (4)

There is a single database replacement request, and it changes only those attributes

that di�er between the old view tuple and the new view tuple. No replacement could

be simpler because there are no other candidate tuples for replacement with the same

key. (5) There are neither database insertion nor database deletion requests.

We observe that this update preserves the following complement:

Select *

From R

Where NOT (<condition>)

Algorithm S-R-2: If the key changes, but there is no database tuple whose key

matches that of the new view tuple, then perform the speci�ed replacement on the

database directly. Otherwise, reject the request.

Algorithm S-R-2 will not allow changes to database tuples not appearing in the

view.

Lemma 5.6 The updates generated by Algorithm S-R-2 satisfy the �ve criteria for

candidate update translations.

Proof: (1) The only tuples a�ected are the replaced view tuple and the replace-

ment view tuple. (2) There is only one database request. (3) The only database

request is a single replacement, so clearly doing less could not implement the view

update request. (4) There is a single database replacement request, and it changes

only those attributes that di�er between the old database tuple and the new view

tuple. No replacement could be simpler because there are no candidate tuples for re-

placement with the same key. (It is possible to use a di�erent replacement tuple with

44 CHAPTER 5. SINGLE RELATION UPDATES

the same key, but that would require an additional database request, as we will see

in Algorithm S-R-4.) (5) There are neither database insertion nor database deletion

requests.

Algorithm S-R-3: If the key changes and there is a database tuple whose key

matches that of the new view tuple, then replace that database tuple with the new

view tuple (in the database) and delete the replaced view tuple from the database.

Otherwise, reject the update request.

Algorithm S-R-3 changes a database tuple that does not appear in the view. If

we consider the view replacement as a view deletion and a view insertion, then the

dichotomy between Algorithms S-I-1 and S-I-2 parallels that between Algorithms

S-R-2 and S-R-3 (respectively).

Lemma 5.7 The updates generated by Algorithm S-R-3 satisfy the �ve criteria for

candidate update translations.

Proof: (1) The database update is the deletion of the original view tuple and

the replacement of a database tuple not appearing in the view with the new view

tuple. (2) The three changed database tuples are all distinct. (3) All three tuples

must be involved in the database update for the update to be translated. This is

because the replaced view tuple must not appear in the view (so it must not appear

in the database), the replacement view tuple must appear in the view (so it must

now appear in the database), and the conicting database tuple cannot be in the

database along with the replacement view tuple (so something must be done to it

also). At least two requests are necessary to a�ect three tuples, and there are exactly

two requests. (4) The single database replacement request does not change the key. It

can only be simpli�ed by changing fewer attributes. However, there are no alternative

replaced or replacement tuples with the same key. Therefore, the replacement cannot

be simpli�ed. (5) There are no database insertion requests.

Algorithms S-R-2 and R-3 assume that no tuple remains in the database with a

key matching that of the replaced view tuple. However, it is possible to replace (in

the database) the replaced view tuple with a tuple with a matching key that does not

satisfy the selection criteria. This parallels the dichotomy of Algorithms S-D-1 and

S-D-2 for deletion. We obtain two algorithms using the same conditions of Algorithms

S-R-2 and S-R-3, respectively.

5.1. SELECTIONS 45

Algorithm S-R-4: If the key changes, but there is no database tuple whose key

matches that of the new view tuple, then replace (in the database) the replaced view

tuple by changing one non-key attribute mentioned in the selection condition with a

value that does not satisfy (is excluded by) the selection condition. Note that this

algorithm is not applicable (it would violate Criterion 1) when the only attributes

appearing in the selection condition are part of the key. Also, insert the replacement

view tuple into the database. Otherwise, reject the update request.

Lemma 5.8 The updates generated by Algorithm S-R-4 satisfy the �ve criteria for

candidate update translations.

Proof: (1) The only tuples a�ected are the replaced view tuple, a new database

tuple with a matching key, and the replacement view tuple. (2) The replacement

view tuple (the inserted database tuple) does not match the two tuples mentioned

in the database replacement. (3) Neither request is su�cient by itself. (4) The only

database replacement request changes only a single non-key attribute. (5) There are

no database deletion requests.

Algorithm S-R-5: If the key changes and there is a database tuple whose key

matches that of the new view tuple, then replace that database tuple with the new

view tuple (in the database). Also, replace (in the database) the replaced view tuple

by changing one non-key attribute mentioned in the selection condition with a value

that does not satisfy (is excluded by) the selection condition. Note that this algorithm

is not applicable (it would violate Criterion 1) when the only attributes appearing in

the selection condition are part of the key. Otherwise, reject the update request.

Lemma 5.9 The updates generated by Algorithm S-R-5 satisfy the �ve criteria for

candidate update translations.

Proof: (1) There four tuples a�ected in the database update. The original view

tuple is replaced by a database tuple with a matching key. The replacement view tuple

replaces a database tuple with a matching key. (2) The four database tuples are clearly

distinct. (3) Each of the replacements is needed: one removes the replaced view tuple,

the other inserts the replacement view tuple. (4) Both database replacements do not

change the key. The database replacement that inserts the new view tuple can only be

46 CHAPTER 5. SINGLE RELATION UPDATES

Delete Delete replaced Replace (in database)

tuple replaced view tuple

Insert (cf. algorithm S-D-1) (cf. algorithm S-D-2)

No conict Algorithm class S-R-2 Algorithm class S-R-3

for replacement

view tuple One replacement Replace old view tuple

(cf. algorithm S-I-1) Insert new view tuple

There is a Algorithm class S-R-4 Algorithm class S-R-5

database tuple

whose key matches Delete old view tuple Replace both old and

the replacement Replace new new view tuples

view tuple view tuple

(cf. algorithm class S-I-2)

How algorithms for replacement when the key changes

are related to deletion and insertion algorithms

simpli�ed by changing fewer attributes. However, there are no alternative replaced

or replacement tuples with the same key. Therefore, that replacement cannot be

simpli�ed. The other database replacement request changes only a single non-key

attribute. (5) There are neither database deletions nor database insertions.

Algorithm S-R-1 is the only one possible when the replacement does not change the

key. When the view replacement changes the key, we have two options for handling the

replaced view tuple corresponding to Algorithms S-D-1 and S-D-2, and two situations

involving the replacement view tuple corresponding to Algorithms S-I-1 and S-I-2.

The four replacement algorithms for use when the key changes are described by the

table.

Theorem 5.3 The set of update translations that satisfy the �ve criteria for candi-

date update translations for individual view replacements are precisely those that are

generated by Algorithms S-R-1, S-R-2, S-R-3, S-R-4, and S-R-5.

Proof: The �ve previous lemmata show that the translations generated by the

�ve algorithms satisfy the �ve criteria.

5.1. SELECTIONS 47

We will now show that there are no other translations satisfying the �ve criteria.

We consider the three exclusive cases based on the enabling conditions for Algorithm

S-R-1, for Algorithms S-R-2 and S-R-4, and for Algorithms S-R-3 and S-R-5.

Case 1. The key does not change. (Algorithm S-R-1.)

The view update requests replacement of one tuple by another. The replaced

tuple must have been in the database and the replacement tuple must now be in the

database. Since the two tuples have the same key, the replaced tuple must no longer

be in the database. We have already seen that the only database operations that

remove a tuple from the database are delete and replace.

If the operation is replace (the tuple to be removed by something else), the request

where the replacement tuple is the new view tuple is strictly simpler than all other

possible replacements. In that case, the database replacement must be precisely the

requested view replacement. No other operations are possible (in addition) as the

database replacement is su�cient. This is the translation generated by Algorithm

S-R-1.

If the operation is delete, we consider how the new view tuple appeared in the

database. A new tuple can only appear in a database by insertion or replacement.

If it was by insertion, this insertion and (previous) deletion are together su�cient,

and the two are equivalent to (and not as simple as, by Criterion 5) the replacement

generated by Algorithm S-R-1. On the other hand, if the new view tuple got into

the database by replacement, an argument similar to that in the previous paragraph

will show that the replaced database tuple must have been the replaced view tuple.

With the precondition (of this paragraph) that this tuple was deleted (rather than

replaced), we have a contradiction by Criterion 2.

Case 2. The key changes, but there is no (existing) database tuple whose key

matches that of the new view tuple. (Algorithms S-R-2 and S-R-4.)

Let us consider what happens to the replaced view in the database. It can either

be deleted or replaced. If it is deleted, we consider how the replacement view tuple

got in the database. It could have been inserted or it could be a replacement. If that

tuple was inserted, then the deletion and insertion are equivalent to (not as simple

as) the replacement generated by Algorithm S-R-2. If it is a replacement, it must

have replaced a database tuple with a di�ering key. By Criterion 1, the database

tuple replaced must be the view tuple replaced. With the assumption that this tuple

48 CHAPTER 5. SINGLE RELATION UPDATES

was deleted (rather than replaced), we have a contradiction by Criterion 2.

Alternatively, the replaced view tuple is replaced in the database. The replacement

database tuple can have a matching or non-matching key. If a non-matching key, by

Criterion 1, the replacement database tuple must be the replacement view tuple

resulting in Algorithm S-R-2. If the database replacement does not change the key,

the simplest replacements change only one attribute, as in Algorithm S-R-4. In this

case, we must also consider how the replacement view tuple got in the database.

Again, it could have been inserted or it could be a replacement. If that tuple was

inserted, then the replacement and insert is as generated by Algorithm S-R-4. If it

is a replacement, it must have replaced a database tuple with a di�ering key. By

Criterion 1, the database tuple replaced must be the view tuple replaced. However,

we assumed that the original view tuple was replaced by a tuple with a matching key.

Consequently, we have a contradiction by Criterion 2.

Case 3. The key changes, and there was a database tuple (that did not appear

in the view) whose key matches that of the new view tuple. (Algorithms S-R-3 and

S-R-5.)

Criterion 1 states that a�ected tuples must have keys that match the tuples men-

tioned in the view update. The two tuples with the key of the replacement view tuple

are the matching database tuple that did not appear in the view and the view tuple

itself. There is the possibility that there is a new database tuple (not appearing in the

view) whose key matches that of the replaced view tuple. Thus, we have exactly three

or four tuples a�ected by the translation of the view update. If only three tuples are

a�ected, the combination of insertions, deletions, and replacements is equivalent to

(and not as simple as) the translations generated by Algorithm S-R-3. If four tuples

are a�ected, this extra tuple must be a replacement rather than an insertion (which

would be an extraneous operation). It must be a replacement of the replaced view

tuple and only one attribute may change as a consequent of Criterion 4.

5.2 Projections

We will deal with projection views on a single relation with a single key dependency.

Let A be the set of attributes in the relation R, K be the set of attributes in the

key, and P be the set of attributes appearing in the view. We will assume that the

5.2. PROJECTIONS 49

functional dependency K�A is the only consistency constraint on R.

Observe that since the relation may only have a key constraint, the database is in

Boyce-Codd Normal Form. We have already dealt with selections. This work di�ers

from prior work on projections [Cosmadakis 83], in that we consider algorithms for

translation of view updates. Later in this chapter, we will consider select and project

views. In the next chapter, we will consider joins and select, project, and join views.

Each view selects attributes P in the relation R, but no selection is performed. In

SQL, this would be written as follows:

Select P

From R

The where clause, were there one, is \true."

We call the attributes appearing in the view the projected attributes, while those

not appearing in the view are projected out. We require that all the attributes of the

key must appear in the view (none may be projected out). Any or all of the selecting

attributes may be projected out, except for those in the key. This means that the

key of the database is the key of the view.

5.2.1 Attribute Independence

Let us de�ne a requirement for the constraints imposed on the database. This re-

quirement will allow attributes of a relation to be updated independently of other

attributes, which is useful for updates in the through projections.

We will require the condition attribute independence. The attributes of a relation

are independently if, given a tuple whose values are arbitrarily chosen from their

respective domains, there exists some database extension containing that tuple which

satis�es the required constraints.

This condition is similar to, but stronger than, the proscription against Explicit

Functional Dependencies (EFD) [Cosmadakis 83]. Exclusion of a single combination

of attribute values violates attribute independence while not being an EFD.

Let us consider an example of a relation that does not exhibit attribute indepen-

dence. (This particular relation does so by having EFDs.)

50 CHAPTER 5. SINGLE RELATION UPDATES

Order Relation

Item Unit Price Quantity Total Price

I U Q T

(We will use � for FD and
e

� for EFD.)

Now IUQ�T , but also UQ
e

� T , UT
e

� Q, and TQ
e

� U . The explicit functional

dependency is U � Q = T . The last three mean that we do not have attribute

independence. The e�ect is that we cannot update the value of U in one tuple

without also updating the value of Q or T (or both).

By requiring attribute independence, we allow any attribute to be changed in-

dependently of any other attribute. We suggest that the database be reorganized

to accomplish attribute independence. If an EFD holds, remove attributes until the

EFD doesn't hold. Then put the removed attributes in a view as non-updatable at-

tributes whose values are computed based on functions. The removed attribute can

be regenerated as derived data [Wiederhold 83].

Attribute independence allows the attributes appearing in the view to be changed

according to the view update with minimal consideration of the values of the other

attributes. When there is an EFD, the view update mechanismmay have to compute

the value of some attribute not appearing the view based on values that do appear

in the view. As an EFD can be arbitrarily complex, the view update mechanism

must provide for the description of the EFD in a programming language with the

power of a Turing machine. When attribute independence does not hold, but neither

does an EFD, particular combinations of attribute values may be proscribed, and the

replacement of some value in some view tuple may require some change to some value

not appearing in the view because the combination is not permitted. The choice of

this other new value is also of arbitrary complexity. When attribute independence

does not hold (but neither do EFDs), we will choose to decide the update indepen-

dently of these additional constraints, but then validate that the choice satis�es all

the constraints. If it does not, we will reject the view update, and not attempt to

determine more complex alternatives that would satisfy all the constraints.

5.2.2 Case I. Projected attributes include key

We will consider single tuple view updates where the view is a projection of a BCNF

relation, R, that includes the key of the relation. Let the key of the relation be

5.2. PROJECTIONS 51

represented by X (for one or more attributes). The non-key attributes appearing

in the view will be represented by Y , while the non-key attributes not appearing

in the view will be represented by Z. The relation has the functional dependency

X�Y Z. The view is of attributes XY and view updates must satisfy the functional

dependency X�Y if Y is non-empty. This view has a minimal complement XZ.

Our update algorithms do not necessarily hold this complement constant; when the

complement is not held constant, the view update would otherwise have to be rejected.

We will now consider deletion of a single view tuple.

Algorithm P-I-D: Delete the database tuple whose key matches the key of the view

tuple to be deleted. (That is, perform the deletion request speci�ed against the view

directly on the database.)

Lemma 5.10 The updates generated by Algorithm P-I-D satisfy the �ve criteria for

candidate update translations.

Proof: (1) The only tuple a�ected is the deleted view tuple. (2) There is only one

database request. (3) The only database request is an deletion, so clearly doing less

could not implement the view update request. (4) There are no database replacement

requests. (5) There are no database insertion requests.

Theorem 5.4 The set of update translations that satisfy the �ve criteria for can-

didate update translations for individual view deletions are precisely those that are

generated by Algorithm P-I-D.

Proof: The previous lemma shows that the translations generated by Algorithm

P-I-D satisfy the �ve criteria. We need to show that no other translations satisfy

these �ve criteria.

We �rst observe that any database update request that implements the view up-

date request must include a deletion or replacement. This is because a database

insertion cannot cause a deletion from a monotonic view. The functional dependency

forces there to be only one database tuple with a key matching the view tuple. Crite-

rion 1 requires that this be the only tuple a�ected by the view update. Let us consider

the sole database operation that a�ected this tuple. If it is a deletion, then by Crite-

rion 3, the translation is that generated by Algorithm P-I-D. If is a replacement, we

52 CHAPTER 5. SINGLE RELATION UPDATES

consider whether the key has changed. If it has, this violates Criterion 1. If it has

not, the view tuple still appears in the view as the key matches. Consequently, this is

not a valid view update translation as it does not perform the deletion completely.

We will now consider insertion of a single view tuple.

Algorithm class P-I-I: Insert a database tuple whose attributes match those of the

view tuple to be inserted. The other attributes may be chosen arbitrarily from their

respective domains.

Lemma 5.11 The updates generated by Algorithm class P-I-I satisfy the �ve criteria

for candidate update translations.

Proof: (1) The only tuple a�ected is the inserted view tuple. (2) There is only one

database request. (3) The only database request is an insertion, so clearly doing less

could not implement the view update request. (4) There are no database replacement

requests. (5) There are no database deletion requests.

Theorem 5.5 The set of update translations that satisfy the �ve criteria for can-

didate update translations for individual view insertions are precisely those that are

generated by Algorithm class P-I-I.

Proof: The previous lemma shows that the translations generated by Algorithm

class P-I-I satisfy the �ve criteria. We need to show that no other translations satisfy

these �ve criteria.

We �rst observe that any database update request that implements the view

update request must include an insertion or replacement. This is because a database

deletion cannot cause an insertion into a projection view. The functional dependency

forces there to be only one database tuple with a key matching the view tuple to

be inserted. Criterion 1 requires that this be the only tuple a�ected by the view

update. Let us consider the sole database operation that a�ects this tuple. If it is an

insertion, then by Criterion 3, the translation is that generated by Algorithm class

P-I-I. If is a replacement, we consider whether the key has changed. If it has, this

violates Criterion 1. If it has not, the view tuple insertion was invalid as it would

violate a functional dependency.

We will now consider replacement of a single view tuple.

5.2. PROJECTIONS 53

Algorithm P-I-R: Replace the database tuple whose key matches key of view tuple

replaced by changing attributes that change in view tuple as speci�ed, and keeping

other attributes constant.

Lemma 5.12 The updates generated by Algorithm P-I-R satisfy the �ve criteria for

candidate update translations.

Proof: (1) The only tuples a�ected are the replaced view tuple and the replace-

ment view tuple. (2) There is only one database request. (3) There is only one

database request, so clearly doing less could not implement the view update request.

(4) The single database replacement request changes the key only if the key in the

view tuple changes. Other attributes are changed only in the database tuple if they

change in the view tuple. Thus fewer attributes cannot be changed. (5) There are

neither database deletion nor database insertion requests.

Theorem 5.6 The set of update translations that satisfy the �ve criteria for candi-

date update translations for individual view replacements are precisely those that are

generated by Algorithm P-I-R.

Proof: The previous lemma shows that the translations generated by Algorithm

P-I-R satisfy the �ve criteria. We need to show that no other translations satisfy

these �ve criteria.

We �rst observe that the original view tuple must disappear from the view and

the new view tuple must now appear in the view. We will �rst consider the case

where the key of the view tuple does not change. This requires a deletion and an

insertion, although one of both of these may be substituted by a replacement. Let us

�rst consider the case where the original view tuple was removed by a replacement.

Since it is possible to replace the original view tuple (in the database) with the new

view tuple that has a matching key, the replacement database tuple must contain the

replacement view tuple. By Criterion 4, this replacement must be the one generated

by Algorithm P-I-R. A similar argument will show that if the replacement tuple was

inserted by a replacement operation, the replaced tuple must have been the database

tuple containing the original view tuple. The �nal alternative is the pair of a deletion

and an insertion, which is equivalent to (and, by Criterion 5, can be simpli�ed to)

the replacement operation generated by Algorithm P-I-R.

54 CHAPTER 5. SINGLE RELATION UPDATES

Now, let us consider the case where the key of the view tuple changes. The replaced

view tuple corresponds with a database tuple that must be deleted or replaced. Again,

we will consider the case where it is replaced. If it is replaced by a tuple with the

same key, then the view tuple was not properly replaced, as another tuple with the

same key has appeared in its stead. Thus the replacement database tuple must have

a di�erent key. That key must be the key of the replacement view tuple, by Criterion

1. The attributes changed must be precisely those changed in the view tuple, by

Criterion 4. This is the view update generated by Algorithm P-I-R. We can use the

same argument if the replacement view tuple corresponded to a database tuple that

was inserted by a replacement operation. The �nal alternative is a pair of database

deletion and insertion operations. This is equivalent to (and, by Criterion 5, can be

simpli�ed to) the replacement generated by Criterion 4.

There is one di�erence between the deletion-insertion pair and the replacement: In

the deletion-insertion case, arbitrary attribute values may be used for the attributes

not appearing in the view. In the replacement case, the values are taken from the

original database tuple. However, since the deletion-insertion pair can be simpli�ed

to the replacement, not reusing the attributes would violate Criteria 4 and 5.

Note that each view tuple corresponds to a unique database tuple. These are

clearly unique ways to perform the update. Delete and Insert do not preserve any

complement. Replace preserves a complement i� key does not change.

5.2.3 Adapting Criterion 1 When the Key is not Included

in the View

For Cases II and III, where the key is not included in the view, we have to adapt

Criterion 1, which requires that the database tuples a�ected must match the key

of some view tuple mentioned in the view update. For these two cases, we will

require that the database tuples a�ected must match all attributes of some view

tuple mentioned in the view update. With this revised criterion, called Criterion 10,

we will be able to discuss the two remaining cases.

5.2. PROJECTIONS 55

5.2.4 Case II. Projected attributes are disjoint from key

We will consider single tuple view updates where the view is a projection of a BCNF

relation, R, that does not include the key of the relation. Let the key of the relation

be represented by X (for one or more attributes). The non-key attributes appearing

in the view will be represented by Y , while the non-key attributes not appearing in

the view will be represented by Z. Note that X and Y may not be empty, while

Z may be empty. The relation has the functional dependency X�Y Z. The view is

of attributes Y and view updates do not need to satisfy any functional dependency.

(Translations need to satisfy the FD X�Y Z, however.) The only complement to this

view in SP is XY Z (the identity view). Our update algorithms do not hold this

complement constant; when the complement is not held constant, all view updates

would otherwise have to be rejected.

We will now consider deletion of a single view tuple.

Algorithm P-II-D: Delete all database tuples which match the view tuple to be

deleted in all attributes appearing in the view. (That is, perform the deletion request

speci�ed against the view directly on the database.)

Lemma 5.13 The updates generated by Algorithm P-II-D satisfy the �ve criteria for

candidate update translations.

Proof: (10) All database tuples a�ected match the view tuple to be deleted. (2)

There are only deletion requests, each mentioning a unique database tuple. (3) If

any database deletion request were not done, the view tuple to be deleted would still

appear in the view. (4) There are no database replacement requests. (5) There are

no database insertion requests.

Theorem 5.7 The set of update translations that satisfy the �ve criteria for can-

didate update translations for individual view deletions are precisely those that are

generated by Algorithm P-II-D.

Proof: The previous lemma shows that the translations generated by Algorithm

P-II-D satisfy the �ve criteria. We need to show that no other translations satisfy

these �ve criteria.

56 CHAPTER 5. SINGLE RELATION UPDATES

We �rst observe that any database update request that implements the view

update request must include a deletion or replacement. This is because a database

insertion cannot cause a deletion from a monotonic view. Criterion 10 requires that

only database tuples exactly matching the a�ected view tuples may be updates. This

is the set of database tuples deleted by Algorithm P-II-D. None of these tuples may

appear in the database after the update, lest the view tuple to be deleted still appear

in the view. For each of these database tuples, let us consider the sole database

operation that a�ected this tuple. If it is a deletion, then by Criterion 3, this part

of the translation is that generated by Algorithm P-II-D. If is a replacement, then

by Criterion 10, the new database tuple must have the same attribute values of an

a�ected view tuple. However, that would imply that the new database tuple would

cause the view tuple to be deleted to still appear in the view. Therefore a database

replacement cannot be part of this view update translation. Additional deletions

are unnecessary and proscribed by Criterion 3. Thus, the only valid view update

translation satisfying our criteria deletes all matching database tuples from the view,

as generated by Algorithm P-II-D.

We will now consider insertion of a single view tuple.

Algorithm class P-II-I: Insert a database tuple whose attributes match those of

the view tuple to be inserted. The other attributes may be chosen arbitrarily from

their respective domains, except that the new key is unique.

Lemma 5.14 The updates generated by Algorithm class P-II-I satisfy the �ve criteria

for candidate update translations.

Proof: (10) The only tuple a�ected is the inserted view tuple. (2) There is

only one database request. (3) The only database request is an insertion, so clearly

doing less could not implement the view update request. (4) There are no database

replacement requests. (5) There are no database deletion requests.

Theorem 5.8 The set of update translations that satisfy the �ve criteria for can-

didate update translations for individual view insertions are precisely those that are

generated by Algorithm class P-II-I.

5.2. PROJECTIONS 57

Proof: The previous lemma shows that the translations generated by Algorithm

class P-II-I satisfy the �ve criteria. We need to show that no other translations satisfy

these �ve criteria.

We �rst observe that any database update request that implements the view

update request must include an insertion or replacement. This is because a database

deletion cannot cause an insertion into a projection view. A database replacement

would a�ect a database tuple which does not match the attribute values of an a�ected

view tuple. (If there were a database tuple that matched the view tuple to be inserted,

the view tuple could not be inserted as it would already be there.) Therefore, the

view tuple insertion must be implemented by at least one database insertion. We

observe that the view tuple to be inserted does not match any existing view tuple.

This implies that the key of this new tuple must not match any existing tuple, as it

would violate the key (functional) dependency. Therefore, the tuple must be inserted

with a unique key, but all other attributes may be arbitrarily chosen.

We will now consider replacement of a single view tuple.

Algorithm class P-II-R: Replace all database tuples which exactly match all at-

tributes of the view tuple replaced by changing attributes that change in view tuple as

speci�ed, and keeping other attributes constant. Some but not all of the replacements

may be deletions instead, provided that there is at least one replacement generating

the desired replacement view tuple.

Lemma 5.15 The updates generated by Algorithm class P-II-R satisfy the �ve cri-

teria for candidate update translations.

Proof: (10) The only tuples a�ected are the database tuples matching the replaced

view tuple and the replacement view tuple. (2) Each database request a�ects a

di�erent original database tuple. (3) If not all the replacements or deletions were

done, the original view tuple (to be replaced) would still appear in the view. (4)

None of the database tuples have their key changed. Other attributes are changed

only in the database tuple if they change in the view tuple. Thus fewer attributes

cannot be changed. (5) There are no database insertion requests.

Theorem 5.9 The set of update translations that satisfy the �ve criteria for candi-

date update translations for individual view replacements are precisely those that are

generated by Algorithm class P-II-R.

58 CHAPTER 5. SINGLE RELATION UPDATES

Proof: The previous lemma shows that the translations generated by Algorithm

class P-II-R satisfy the �ve criteria. We need to show that no other translations

satisfy these �ve criteria.

We �rst observe that the original view tuple must disappear from the view and

the new view tuple must now appear in the view. This requires that all database

tuples matching the replaced view tuple must disappear from the database, and a

database tuple matching the replacement view tuple must be added to the database.

We can consider how the database tuples to be removed actually got removed (by

either deletion or replacement), and how the database tuple(s) to be added to the

database (by either insertion or replacement). If the database tuple(s) to be added

were replacement tuples, they must be replacement tuples of database tuples to be

deleted, by Criterion 10. Also by Criterion 10, if the database tuples to be removed

were replaced, the replacement tuples must be the replacement tuples to be added.

Thus, the other tuples to be removed must have been deleted, and the other tuples

to be added must have been inserted. We only need one insertion (by Criterion 3),

and can be combined with a deletion to make a replacement, as required by Criterion

5 and as generated by Algorithm class P-II-R. Therefore, all translations satisfying

our �ve criteria were generated by Algorithm class P-II-R.

5.2.5 Case III. Projected attributes include only partial key

We will consider single tuple view updates where the view is a projection of a BCNF

relation, R, that overlaps the key of the relation. Let the part of the key of the relation

appearing in the view be represented by X (for one or more attributes), while the

part of the key of the relation not appearing in the view be represented by W . The

non-key attributes appearing in the view will be represented by Y , while the non-key

attributes not appearing in the view will be represented by Z. Note that W and X

may not be empty, while either or both of Y and Z may be empty. The relation has

the functional dependencyWX�Y Z. The view is of attributes XY and view updates

do not need to satisfy any functional dependency. (Translations need to satisfy the

FD WX�Y Z, however.) The only complement to this view in SP is WXYZ (the

identity view). Our update algorithms do not hold this complement constant; when

the complement is not held constant, all view updates would otherwise have to be

rejected.

5.2. PROJECTIONS 59

We will now consider deletion of a single view tuple.

Algorithm P-III-D: Delete all database tuples which match the view tuple to be

deleted in all attributes appearing in the view. (That is, perform the deletion request

speci�ed against the view directly on the database.)

Lemma 5.16 The updates generated by Algorithm P-III-D satisfy the �ve criteria

for candidate update translations.

Proof: (10) All database tuples a�ected match the view tuple to be deleted. (2)

There are only deletion requests, each mentioning a unique database tuple. (3) If

any database deletion request were not done, the view tuple to be deleted would still

appear in the view. (4) There are no database replacement requests. (5) There are

no database insertion requests.

Theorem 5.10 The set of update translations that satisfy the �ve criteria for can-

didate update translations for individual view deletions are precisely those that are

generated by Algorithm P-III-D.

Proof: The previous lemma shows that the translations generated by Algorithm

P-III-D satisfy the �ve criteria. We need to show that no other translations satisfy

these �ve criteria.

We �rst observe that any database update request that implements the view

update request must include a deletion or replacement. This is because a database

insertion cannot cause a deletion from a monotonic view. Criterion 10 requires that

only database tuples exactly matching the a�ected view tuples may be updates. This

is the set of database tuples deleted by Algorithm P-III-D. None of these tuples may

appear in the database after the update, lest the view tuple to be deleted still appear

in the view. For each of these database tuples, let us consider the sole database

operation that a�ected this tuple. If it is a deletion, then by Criterion 3, this part

of the translation is that generated by Algorithm P-III-D. If is a replacement, then

by Criterion 10, the new database tuple must have the same attribute values of an

a�ected view tuple. However, that would imply that the new database tuple would

cause the view tuple to be deleted to still appear in the view. Therefore a database

replacement cannot be part of this view update translation. Additional deletions

60 CHAPTER 5. SINGLE RELATION UPDATES

are unnecessary and proscribed by Criterion 3. Thus, the only valid view update

translation satisfying our criteria deletes all matching database tuples from the view,

as generated by Algorithm P-III-D.

We will now consider insertion of a single view tuple.

Algorithm class P-III-I: Insert a database tuple whose attributes match those of

the view tuple to be inserted. The other attributes may be chosen arbitrarily from

their respective domains, except that the remainder of the key must be chosen so that

the new key is unique.

Lemma 5.17 The updates generated by Algorithm class P-III-I satisfy the �ve cri-

teria for candidate update translations.

Proof: (10) The only tuple a�ected is the inserted view tuple. (2) There is

only one database request. (3) The only database request is an insertion, so clearly

doing less could not implement the view update request. (4) There are no database

replacement requests. (5) There are no database deletion requests.

Theorem 5.11 The set of update translations that satisfy the �ve criteria for can-

didate update translations for individual view insertions are precisely those that are

generated by Algorithm class P-III-I.

Proof: The previous lemma shows that the translations generated by Algorithm

class P-III-I satisfy the �ve criteria. We need to show that no other translations

satisfy these �ve criteria.

We �rst observe that any database update request that implements the view

update request must include an insertion or replacement. This is because a database

deletion cannot cause an insertion into a projection view. A database replacement

would a�ect a database tuple which does not match the attribute values of an a�ected

view tuple. (If there were a database tuple that matched the view tuple to be inserted,

the view tuple could not be inserted as it would already be there.) Therefore, the

view tuple insertion must be implemented by at least one database insertion. We

observe that the view tuple to be inserted does not match any existing view tuple.

This implies that the key of this new tuple must not match any existing tuple, as it

5.2. PROJECTIONS 61

would violate the key (functional) dependency. Therefore, the tuple must be inserted

with a unique key, but all other attributes may be arbitrarily chosen.

We will now consider replacement of a single view tuple.

Algorithm class P-III-R: Replace all database tuples which exactly match all

attributes of the view tuple replaced by changing attributes that change in view

tuple as speci�ed, and keeping other attributes constant. Some but not all of the

replacementsmay be deletions instead, provided that there is at least one replacement

generating the desired replacement view tuple. If the partial key of the view tuple

changes, an FD conict may arise between some new (replacement) database tuple

and an existing database tuple. In this case, we make an arbitrary change to some

attribute of the part of the key not appearing in the view to avoid the FD conict.

Lemma 5.18 The updates generated by Algorithm P-III-R satisfy the �ve criteria

for candidate update translations.

Proof: (10) The only tuples a�ected are the database tuples matching the replaced

view tuple and the replacement view tuple. (2) Each database request a�ects a

di�erent original database tuple. (3) If not all the replacements or deletions were

done, the original view tuple (to be replaced) would still appear in the view. (4)

Database tuples have their key changed only if due to an FD conict, in which case,

either the key must be changed or the conicting tuple must be updated. The latter

alternative violates Criterion I0. Other attributes are changed only in the database

tuple if they change in the view tuple. Thus fewer attributes cannot be changed. (5)

There are no database insertion requests.

Theorem 5.12 The set of update translations that satisfy the �ve criteria for candi-

date update translations for individual view replacements are precisely those that are

generated by Algorithm P-III-R.

Proof: The previous lemma shows that the translations generated by Algorithm

P-III-R satisfy the �ve criteria. We need to show that no other translations satisfy

these �ve criteria.

We �rst observe that the original view tuple must disappear from the view and

the new view tuple must now appear in the view. This requires that all database

62 CHAPTER 5. SINGLE RELATION UPDATES

tuples matching the replaced view tuple must disappear from the database, and a

database tuple matching the replacement view tuple must be added to the database.

We can consider how the database tuples to be removed actually got removed (by

either deletion or replacement), and how the database tuple(s) to be added to the

database (by either insertion or replacement). If the database tuple(s) to be added

were replacement tuples, they must be replacement tuples of database tuples to be

deleted, by Criterion 10. Also by Criterion 10, if the database tuples to be removed

were replaced, the replacement tuples must be the replacement tuples to be added.

Thus, the other tuples to be removed must have been deleted, and the other tuples to

be added must have been inserted. We only need one insertion (by Criterion 3), and

can be combined with a deletion to make a replacement, as required by Criterion 5

and as generated by Algorithm P-III-R. Therefore, all translations satisfying our �ve

criteria were generated by Algorithm P-III-R.

Case III is very similar to Case II. Algorithm P-III-D is exactly the same as

Algorithm P-II-D. Algorithm class P-III-I is changed from Algorithm class P-II-I only

in that a smaller portion of the key is available to generate a unique key. Algorithm

P-III-R has an additional consideration not found in Algorithm class P-II-R: the

possibility of an FD conict, which requires changing the key.

5.2.6 About the three cases

Case I|projection includes key|is a good problem with a clear solution. As we

have seen, the other cases, where the projection does not include the entire key,

involve generation of (partial) keys on insertion, a rather undesirable property. We

have included these latter two cases for completeness, but recommend against using

these algorithms. Rather, we recommend that the view always contain the key, which

permits straightforward translations of view updates.

This work on project operations is part of work on select-project-join views. Our

model for joins requires that the key be present in a root relation. The joins are all

extension joins cascading from the root, and all the join attributes must be present

in the view (see the next chapter). Therefore, all the keys to each BCNF relation

appears in the view. Consequently, Case I su�ces.

5.3. SELECTIONS AND PROJECTIONS 63

Operation Key appears Key does not appear Partial key appears
(Case I) (Case II) (Case III)

Delete Delete matching DB
tuple

Delete all matching
DB tuples

Delete all matching
DB tuples

Insert Extend view tuple
with arbitrary values
and insert into DB

Extend view tuple
with arbitrary values
and unique key and
insert into DB

Extend view tuple
with arbitrary values
so key is unique and
insert into DB

Replace Change matching
DB tuple as speci�ed
in view update

Change at least one
matching DB tuple
as speci�ed in view
update, can delete
others if desired

Change at least
one matching DB
tuple as speci�ed
in view update,
changing part of
key not appearing
in the view if FD
conict arises from
changing part of key
appearing in view,
can delete others if
desired

Summary of Algorithms for Projections

5.3 Selections and Projections

We will deal with select/project views on a single relation with a single key depen-

dency. Let R be the set of attributes in the relation R, and let K be the set of

attributes in the key. We will assume that the functional dependency K�R is the

only consistency constraint on R. Observe that since the relation may only have a

key constraint, the database has already undergone normalization.

Let us �rst consider the selection condition. The selection condition is a (possibly

empty) conjunction of terms of the form A 2 s (or equivalently, A =2 e), where s

(and e) is a set of constants in the domain of A. We call the values in s selecting

values, and the values in e excluding values. For non-selecting attributes the set of

selecting values is the entire domain and the set of excluding values is the empty

set. We call the attributes appearing in the selection condition selecting attributes.

If the selection condition is \true" (i.e., an empty conjunction), the set of selecting

attributes is empty, the sets of selecting values are the entire domains, and the sets

64 CHAPTER 5. SINGLE RELATION UPDATES

of excluding values are empty. This type of selection condition allows attributes to

be treated independently in view updates.

We call the attributes appearing in the view the projected attributes, while those

not appearing in the view are projected out. We require that all the attributes of the

key must appear in the view (none may be projected out). Any or all of the selecting

attributes may be projected out, except for those in the key. This means that the

key of the database is the key of the view.

5.3.1 Translation of Insertion Requests

The request is to insert a single, fully-speci�ed view tuple. The new view tuple

must be a valid view tuple|it must satisfy the selection condition|and not conict

with any existing view tuple. That is, there must not already be a tuple in the

view with the key of the view tuple to be inserted. The extend-insert algorithms are

subroutines of Algorithms classes I-1 and I-2, which are the algorithms that translate

view insertions.

The algorithms for select/project views are combinations of the algorithms for

select views and for project views. Algorithm class I-1 is the combination of algorithm

S-I-1 and algorithm class P-I-I. Algorithm class I-2 is the combination of algorithm

S-I-2 and algorithm class P-I-I. The former handles insertions where there is no key

conict in the database, the latter handles insertions where there is a key conict.

Algorithm class extend-insert: The new database tuple is formed by taking the

attributes from the new view tuple as supplied. For remaining attributes, the values

are chosen arbitrarily from their respective sets of selecting values (which is the do-

main for non-selecting attributes). Each combination of values represents a di�erent

algorithm from this class. There is a unique extend-insert algorithm i� each attribute

projected out has set of selecting values that is a singleton (has only one element).

Algorithm class I-1: If the new view tuple does not conict with (have the same

key as) any existing database tuple, then insert the tuple obtained by one of the

extend-insert algorithms, else reject the update request. There is an algorithm in

class I-1 for each extend-insert algorithm.

Lemma 5.19 The updates generated by Algorithm class I-1 satisfy the �ve criteria

for candidate update translations.

5.3. SELECTIONS AND PROJECTIONS 65

Proof: (1) The only tuple a�ected is the inserted view tuple. (2) There is only one

database request. (3) The only database request is an insertion, so clearly doing less

could not implement the view update request. (4) There are no database replacement

requests. (5) There are no database deletion requests.

Algorithm class I-2: If the new view tuple has a key matching that of an existing

database tuple, then change the attributes in the database tuple to match the new

view tuple and change all attributes in the database tuple with excluding values to

arbitrary selecting values. There is an algorithm in class I-2 for every combination of

one selecting value from zero or more selecting attributes other than the key.

Lemma 5.20 The updates generated by Algorithm class I-2 satisfy the �ve criteria

for candidate update translations.

Proof: (1) The only tuples a�ected are the inserted view tuple and the replaced

database tuple, both with the same key value. (2) There is only one database request.

(3) The only database request is a single replacement, so clearly doing less could

not implement the view update request. (4) There is a single database replacement

request, and it changes only those attributes that di�er between the old database

tuple and the new view tuple. No replacement could be simpler because there are no

other candidate tuples for replacement with the same key. (5) There are no database

deletion requests.

Theorem 5.13 The set of update translations that satisfy the 5 criteria for candi-

date update translations for individual view insertions are precisely those in algorithm

classes I-1 and I-2.

Proof: The two previous lemmata show that the translations generated by the

two algorithms satisfy the �ve criteria.

We will now show that there are no other translations satisfying the �ve criteria.

We �rst observe that every view update valid in the view can be translated by either

Algorithm class I-1 or by Algorithm class I-2. Because the view is monotonic|a view

is monotonic if view formation preserves inclusion (i.e., A � B�v(A) � v(B))|an

view insertion cannot be translated solely by database deletions. Therefore, any set

of database updates implementing the view insertion request must contain at least

66 CHAPTER 5. SINGLE RELATION UPDATES

one insertion or replacement. Precisely one of these requests must refer to the new

view tuple. If it is a replacement, the replacement tuple must be the new view

tuple as no subsequent database request can a�ect that tuple in this view update

request. That request is generated by Algorithm class I-2, as the replaced tuple must

have a matching key. If it is an insertion, the tuple inserted must be the new view

tuple as no subsequent database request can a�ect that tuple in this view update

request. That request is generated by Algorithm class I-1. However, by Criterion 5,

the translation may not separately request deletion of a conicting database tuple|

the one replaced in Algorithm class I-2. Such a sequence would be simpli�ed to the

acceptable translation from Algorithm class I-2.

Let us consider when these translations may be used. There may be several trans-

lations in algorithm class I-1 that may be applicable at the same time (although only

one should be chosen). Similarly for algorithm class I-2. However, the translations in

algorithm class I-1 apply to a disjoint set of database states from the translations in

algorithm class I-2. In particular, a database state has at least one valid translation

from algorithm class I-1 or from algorithm class I-2 but not both. Note that there are

translators which are formed by combinations of translations of algorithms in classes

I-1 and I-2, including those which can translate all legal view update requests.

5.3.2 Translation of Deletion Requests

The request is to delete a single, fully-speci�ed view tuple. The deleted view tuple

must currently be in the view.

The algorithms for select/project views are combinations of the algorithms for

select views and for project views. Algorithm class D-1 is the combination of algorithm

S-D-1 and algorithm class P-I-D. Algorithm class D-2 is the combination of algorithm

S-D-2 and algorithm class P-I-D. Once again, algorithm classes D-1 and D-2 are the

analogs of algorithm classes I-1 and I-2, respectively.

Algorithm class D-1: Delete the database tuple whose key matches that of the

view tuple to be deleted. There is only one algorithm in class D-1 for each view

update request.

Lemma 5.21 The updates generated by Algorithm class D-1 satisfy the �ve criteria

for candidate update translations.

5.3. SELECTIONS AND PROJECTIONS 67

Proof: (1) The only tuple a�ected is the deleted view tuple. (2) There is only one

database request. (3) The only database request is an deletion, so clearly doing less

could not implement the view update request. (4) There are no database replacement

requests. (5) There are no database insertion requests.

Algorithm class D-2: Replace the database tuple whose key matches that of the

view tuple to be deleted, changing one non-key selecting attribute to an arbitrary

excluded value. There is an algorithm in class D-2 for every non-key excluding value.

Of course, there is no algorithm in class D-2 if the selection condition is \true" (i.e.,

there is no select clause) or if the set of selecting attributes is a subset of the key.

Lemma 5.22 The updates generated by Algorithm class D-2 satisfy the �ve criteria

for candidate update translations.

Proof: (1) The only tuples a�ected are the deleted view tuple and the replacement

database tuple (whose key matches that of the deleted view tuple). (2) There is only

one database request. (3) The only database request is a single replacement, so clearly

doing less could not implement the view update request. (4) The key is not changed.

There is a single database replacement request, and it changes only those attributes

that di�er between the old database tuple and the new view tuple. No replacement

could be simpler because there are only one (non-key) attribute is changed. (5) There

are no database insertion requests.

Theorem 5.14 The set of update translations that satisfy the 5 criteria for candi-

date update translations for individual view deletions are precisely those in algorithm

classes D-1 and D-2.

Proof: The two previous lemmata show that the translations generated by the

two algorithms satisfy the �ve criteria.

We will now show that there are no other translations satisfying the �ve criteria.

We �rst observe that every view update valid in the view can be translated Algorithm

class D-1 and sometimes by Algorithm class D-2. Because the view is monotonic, a

view deletion cannot be translated solely by database insertions. Therefore, any set

of database updates implementing the view deletion request must contain at least

one deletion or replacement. Precisely one of these requests must refer to the deleted

68 CHAPTER 5. SINGLE RELATION UPDATES

view tuple. If it is a replacement, the replaced tuple must be the deleted view tuple,

as no preceding database request can a�ect that tuple in this view update request by

Criterion 2. That request is generated by Algorithm class D-2, and the replacement

tuple has a matching key if possible. If it is an deletion, the tuple deleted must be

the deleted view tuple as no preceding database request can a�ect that tuple in this

view update request. That request is generated by Algorithm class D-1.

Let us consider when these translations may be used. The single algorithm in

class D-1 is always applicable. The algorithms in class D-2 are applicable when they

exist. One can consider algorithm class D-1 to be the inverse of algorithm class I-1,

and algorithm class D-2 to be the inverse of algorithm class I-2. We note that these

inverses are not perfect, which is why the insertion and deletion of the same tuple

(or vice versa) is not necessary. Furthermore, there is no analog for deletion of an

translator that combines algorithms from classes I-1 and I-2.

5.3.3 Translation of Replacement Requests

The request is to replace a single, fully-speci�ed view tuple with another. The replaced

view tuple must currently be in the view, and the replacement view tuple must

currently not be in the view. Both tuples must satisfy the selection condition. It

must be possible to do the replacement in the view; that is, if there is a tuple in the

view whose key matches that of the replacement tuple, it must be the replaced tuple.

Algorithm extend-replace: Replace the database tuple changing the attributes

appearing in the view to match those in the new view tuple. When used in algorithm

classes R-1 and R-2, this will mean changing only those attributes that change in

the view tuple replacement. This is similar to algorithm class I-2, except that the

replaced database tuple does appear in the view. There is only one extend-replace

algorithm.

Algorithm class R-1: If the key does not change in the view tuple replacement,

then perform algorithm extend-replace changing only those attributes that change in

the view tuple replacement. Otherwise, reject the update request.

Lemma 5.23 The updates generated by Algorithm class R-1 satisfy the �ve criteria

for candidate update translations.

5.3. SELECTIONS AND PROJECTIONS 69

Proof: (1) The only tuples a�ected are the replaced and replacement view tuple.

(2) There is only one database request. (3) The only database request is a single

replacement, so clearly doing less could not implement the view update request. (4)

There is a single database replacement request, and it changes only those attributes

that di�er between the old view tuple and the new view tuple. No replacement could

be simpler because there are no other candidate tuples for replacement with the same

key. (5) There are neither database insertion nor database deletion requests.

Note that if the key does not change, there is no possibility of a conict with any

tuple not appearing in the view.

Algorithms R-2 through R-5 handle the case where the key changes in the view

update request, and are summarized in the chart.

Algorithm class R-2: Perform algorithm extend-replace if the key changes in the

view tuple replacement and there is no tuple in the database whose key matches that

of the replacement view tuple. Otherwise, reject the update request.

Lemma 5.24 The updates generated by Algorithm class R-2 satisfy the �ve criteria

for candidate update translations.

Proof: (1) The only tuples a�ected are the replaced view tuple and the replace-

ment view tuple. (2) There is only one database request. (3) The only database

request is a single replacement, so clearly doing less could not implement the view

update request. (4) There is a single database replacement request, and it changes

only those attributes that di�er between the old database tuple and the new view

tuple. No replacement could be simpler because there are no candidate tuples for

replacement with the same key. (It is possible to use a di�erent replacement tuple

with the same key, but that would require an additional database request, as we will

see in Algorithm class R-4.) (5) There are neither database insertion nor database

deletion requests.

Algorithm class R-2 will not allow changes to database tuples not appearing in

the view.

Algorithm class R-3: If the key changes in the view tuple replacement and there is

a tuple in the database whose key matches that of the replacement view tuple, then

70 CHAPTER 5. SINGLE RELATION UPDATES

perform an algorithm of class I-2 (on the new view tuple) and delete the database

tuple whose key matches that of the replaced view tuple. Otherwise, reject the update

request.

Lemma 5.25 The updates generated by Algorithm class R-3 satisfy the �ve criteria

for candidate update translations.

Proof: (1) The database update is the deletion of the original view tuple and

the replacement of a database tuple not appearing in the view with the new view

tuple. (2) The three changed database tuples are all distinct. (3) All three tuples

must be involved in the database update for the update to be translated. This is

because the replaced view tuple must not appear in the view (so it must not appear

in the database), the replacement view tuple must appear in the view (so it must

now appear in the database), and the conicting database tuple cannot be in the

database along with the replacement view tuple (so something must be done to it

also). At least two requests are necessary to a�ect three tuples, and there are exactly

two requests. (4) The single database replacement request does not change the key. It

can only be simpli�ed by changing fewer attributes. However, there are no alternative

replaced or replacement tuples with the same key. Therefore, the replacement cannot

be simpli�ed. (5) There are no database insertion requests.

Algorithm class R-3 changes a database tuple that does not appear in the view

(because otherwise the view tuple replacement is not valid). If we consider the view

replacement as a view deletion and a view insertion, then the dichotomy between

Algorithm classes I-1 and I-2 parallels that between Algorithm classes R-2 and R-3

(respectively).

Algorithm classes R-2 and R-3 assume that no tuple remains in the database with

a key matching that of the replaced view tuple. However, it is possible to replace (in

the database) the replaced view tuple with a tuple with a matching key that does not

satisfy the selection criteria. This parallels the dichotomy of Algorithm classes D-1

and D-2 for deletion. We obtain two algorithm classes using the same conditions of

Algorithm classes R-2 and R-3, respectively.

Algorithm class R-4: If the key changes in the view tuple replacement and there

is no tuple in the database whose key matches that of the replacement view tuple,

5.3. SELECTIONS AND PROJECTIONS 71

Delete Delete replaced Replace (in database)

tuple replaced view tuple

Insert (cf. algorithm D-1) (cf. algorithm D-2)

No conict Algorithm class R-2 Algorithm class R-3

for replacement

view tuple One replacement Replace old view tuple

(cf. algorithm I-1) Insert new view tuple

There is a Algorithm class R-4 Algorithm class R-5

database tuple

whose key matches Delete old view tuple Replace both old and

the replacement Replace new new view tuples

view tuple view tuple

(cf. algorithm class I-2)

How algorithms for replacement when the key changes

are related to deletion and insertion algorithms

perform an algorithm from class D-2 (for the replaced view tuple) and an algorithm

from class I-1 (for the replacement view tuple). (That is, the replaced view tuple

will be changed to not appear in the view and the replacement view tuple will be

inserted.) Otherwise, reject the update request.

Lemma 5.26 The updates generated by Algorithm class R-4 satisfy the �ve criteria

for candidate update translations.

Proof: (1) The only tuples a�ected are the replaced view tuple, a new database

tuple with a matching key, and the replacement view tuple. (2) The replacement

view tuple (the inserted database tuple) does not match the two tuples mentioned

in the database replacement. (3) Neither request is su�cient by itself. (4) The only

database replacement request changes only a single non-key attribute. (5) There are

no database deletion requests.

Algorithm class R-5: If the key changes in the view tuple replacement and there is

a tuple in the database whose key matches that of the replacement view tuple, then

perform an algorithm from class D-2 (for the replaced view tuple) and an algorithm

72 CHAPTER 5. SINGLE RELATION UPDATES

from class I-2 (for the replacement view tuple). (That is, the replaced view tuple will

be changed to not appear in the view and the replacement view tuple will be obtained

by replacing some database tuple that did not appear in the view.) Otherwise, reject

the update request.

Lemma 5.27 The updates generated by Algorithm class R-5 satisfy the �ve criteria

for candidate update translations.

Proof: (1) There four tuples a�ected in the database update. The original view

tuple is replaced by a database tuple with a matching key. The replacement view tuple

replaces a database tuple with a matching key. (2) The four database tuples are clearly

distinct. (3) Each of the replacements is needed: one removes the replaced view tuple,

the other inserts the replacement view tuple. (4) Both database replacements do not

change the key. The database replacement that inserts the new view tuple can only be

simpli�ed by changing fewer attributes. However, there are no alternative replaced

or replacement tuples with the same key. Therefore, that replacement cannot be

simpli�ed. The other database replacement request changes only a single non-key

attribute. (5) There are neither database deletions nor database insertions.

Algorithm class R-1 is the only one possible when the replacement does not change

the key. When the view replacement does change the key, we have two options for

handling the replaced view tuple corresponding to Algorithm classes D-1 and D-2,

and two situations involving the replacement view tuple corresponding to Algorithm

classes I-1 and I-2. The four replacement algorithm classes are described by the table.

Theorem 5.15 The set of update translations that satisfy the �ve criteria for candi-

date update translations for individual view replacements are precisely those that are

generated by Algorithm classes R-1, R-2, R-3, R-4, and R-5.

Proof: The �ve previous lemmata show that the translations generated by the

�ve algorithms satisfy the �ve criteria.

We will now show that there are no other translations satisfying the �ve criteria.

We consider the three exclusive cases based on the enabling conditions for Algorithm

class R-1, for Algorithm classes R-2 and R-4, and for Algorithm classes R-3 and R-5.

Case 1. The key does not change. (Algorithm class R-1.)

5.3. SELECTIONS AND PROJECTIONS 73

The view update requests replacement of one tuple by another. The replaced

tuple must have been in the database and the replacement tuple must now be in the

database. Since the two tuples have the same key, the replaced tuple must no longer

be in the database. We have already seen that the only database operations that

remove a tuple from the database are delete and replace.

If the operation is replace (the tuple to be removed by something else), the request

where the replacement tuple is the new view tuple is strictly simpler than all other

possible replacements. In that case, the database replacement must be precisely the

requested view replacement. No other operations are possible (in addition) as the

database replacement is su�cient. This is the translation generated by Algorithm

class R-1.

If the operation is delete, we consider how the new view tuple appeared in the

database. A new tuple can only appear in a database by insertion or replacement.

If it was by insertion, this insertion and (previous) deletion are together su�cient,

and the two are equivalent to (and not as simple as, by Criterion 5) the replacement

generated by Algorithm class R-1. On the other hand, if the new view tuple got into

the database by replacement, an argument similar to that in the previous paragraph

will show that the replaced database tuple must have been the replaced view tuple.

With the precondition (of this paragraph) that this tuple was deleted (rather than

replaced), we have a contradiction by Criterion 2.

Case 2. The key changes, but there is no (existing) database tuple whose key

matches that of the new view tuple. (Algorithm classes R-2 and R-4.)

Let us consider what happens to the replaced view in the database. It can either

be deleted or replaced. If it is deleted, we consider how the replacement view tuple

got in the database. It could have been inserted or it could be a replacement. If that

tuple was inserted, then the deletion and insertion are equivalent to (not as simple

as) the replacement generated by Algorithm class R-2. If it is a replacement, it must

have replaced a database tuple with a di�ering key. By Criterion 1, the database

tuple replaced must be the view tuple replaced. With the assumption that this tuple

was deleted (rather than replaced), we have a contradiction by Criterion 2.

Alternatively, the replaced view tuple is replaced in the database. The replacement

database tuple can have a matching or non-matching key. If a non-matching key,

by Criterion 1, the replacement database tuple must be the replacement view tuple

74 CHAPTER 5. SINGLE RELATION UPDATES

resulting in Algorithm class R-2. If the database replacement does not change the key,

the simplest replacements change only one attribute, as in Algorithm class R-4. In

this case, we must also consider how the replacement view tuple got in the database.

Again, it could have been inserted or it could be a replacement. If that tuple was

inserted, then the replacement and insert is as generated by Algorithm class R-4. If

it is a replacement, it must have replaced a database tuple with a di�ering key. By

Criterion 1, the database tuple replaced must be the view tuple replaced. However,

we assumed that the original view tuple was replaced by a tuple with a matching key.

Consequently, we have a contradiction by Criterion 2.

Case 3. The key changes, and there was a database tuple (that did not appear

in the view) whose key matches that of the new view tuple. (Algorithms classes R-3

and R-5.)

Criterion 1 states that a�ected tuples must have keys that match the tuples men-

tioned in the view update. The two tuples with the key of the replacement view tuple

are the matching database tuple that did not appear in the view and the view tuple

itself. There is the possibility that there is a new database tuple (not appearing in

the view) whose key matches that of the replaced view tuple. Thus, we have exactly

three or four tuples a�ected by the translation of the view update. If only three tuples

are a�ected, the combination of insertions, deletions, and replacements is equivalent

to (and not as simple as) the translations generated by Algorithm class R-3. If four

tuples are a�ected, this extra tuple must be a replacement rather than an insertion

(which would be an extraneous operation). It must be a replacement of the replaced

view tuple and only one attribute may change as a consequent of Criterion 4.

5.4 Conclusion

We have devised �ve criteria for acceptable view update translations. We have enu-

merated a complete list of translators that satisfy these �ve criteria for a large class

of select/project views on Boyce-Codd Normal Form relations. Our techniques take

into account the possibility that an object the user has requested to be deleted should

actually be transformed into an object the user does not know about, and the pos-

sibility that an object the user wants inserted may refer to an existing object the

user has just become aware of. Thus an object can be deleted by \destroying" it or

5.4. CONCLUSION 75

converting it into another, unrecognizable object.

With a complete list of alternative translations, we have circumscribed the search

space for a translator for view updates (into database updates). Additional seman-

tics is needed to choose the desired translator. Collecting, coding, and using such

additional semantics is beyond the scope of this paper.

We handle this large class of select/project views on Boyce-Codd normal form

relations. That is, there is a single consistency constraint: a key dependency (or

functional dependency). The selection condition is the (possibly empty) conjunction

of terms, each of the form attribute 2 set . The projection may remove any attributes

mentioned in the selection condition, except that the key of the relation must appear

in the view.

Chapter 6

Updating Views Involving Joins

6.1 Views Consisting of Selections, Projections,

and Joins

We will now consider views de�ned using joins as well as selections and projections.

We de�ne a query to be in Select-Project-Join Normal Form (or SPJNF) when it

does the selections �rst, the projections next, and the joins last. Note in particular

that this implies that the join attributes must appear in the view.

Theorem 6.1 Any relational query where no projection removes a join attribute and

the selection conditions are conjunctions of the form \attribute in set of constants"

can be converted into an equivalent (results in the same answer) relational query that

is in SPJNF.

Proof: Create a directed query graph where each operator and base relation is

represented by a node. The edges are directed toward the operators that use them as

arguments. Selections and projections have in-degree one. Joins have in-degree two.

We shall describe a series of transformations of the graph into one for SPJNF.

Move selection closer to base relation swapping with projection. This transfor-

mation does not a�ect the result as the selection condition can safely ignore the

additional attributes and the same attributes appear in the result.

Compose selection conditions of two adjacent selection nodes by anding them.

This transformation does not a�ect the result as the tuple ow through the graph

has and semantics.

76

6.1. VIEWS CONSISTING OF SELECTIONS, PROJECTIONS, AND JOINS 77

Relation ABC

6

Select AB

Relation BDE

6

Select BE

�
�
�
�
�
�
���

@
@
@
@
@
@
@@I

Join on B

Query Graph

Compose projection lists of two adjacent projection nodes by discarding the one

closer to the base relation. The list of attributes emanating from the closer node is a

(not necessarily proper) superset of the list of attributes emanating from the farther

node. The only attributes appearing out of the pair are those that appear from the

farther node.

A join followed by a projection can be replaced by two projections followed by a

join where the attributes emanating from each new projection is the intersection of

the list entering the old join and the list emanating from the original projection. Since

the original projection did not exclude the join attributes, the join is still possible after

the new projections. Note that we can discard an identity projection node collapsing

78 CHAPTER 6. UPDATING VIEWS INVOLVING JOINS

CXD x

�

AB a b

Reference Connection

the paths through it.

A join followed by a selection can be replaced by two selections followed by a join.

The two selections list the conditions for the attributes entering the respective branch

of the join. Since the two selection conditions are e�ectively anded together by the

join, the original condition must be conjunction.

The result of applying these transformations as often as possible is a query graph

in SPJNF.

A view in SPJNF is the composition of a view consisting of joins with some number

of select and project views (each on the individual relations), any of which may be

the identity. We shall show how to update through the join view and then prove that

composing the views works as expected.

6.2 Requirements for Joins

There are two requirements for joins. First, each join must be an extension join with

an inclusion dependency. Second, the combination of joins must have a particular

pattern.

Each join must be along a reference connection. A reference connection [El-Masri

79, 80, Wiederhold 83] is the combination of an extension join [Honeyman 80] and

an inclusion dependency [Casanova 82]. In an extension join, the join attributes are

the key of one of the relations. In the �gure, the join attributes are X in relation

CXD and A in relation AB. Notice that A is the key for relation AB. In addition,

we require that for each value X in CXD, there is a corresponding tuple in AB with

a matching A value.

We can obtain a query graph by constructing a graph where each node corresponds

to a relation in the view and each edge corresponds to a join in the view de�nition

6.3. UPDATING JOIN VIEWS 79

[Finkelstein 82]. The edges have directions as shown in the �gure (in the many-to-one

direction). We shall require that the join views correspond to a query graph that is

a tree where all edges are directed away from a single root and each node refers to a

unique relation.1 Note that the key of the root is the key of the entire view.

We will call the class of views in SPJNF where the joins satisfy the two require-

ments of this section (reference connection and rooted tree), the projections do not

remove any key, and the selection conditions are conjunctions of the formA 2 s where

s is a set of constants in the domain for attribute A.

6.3 Updating Join Views

In this section, we consider the problem of updating join views. Each relation of the

join view corresponds to an underlying relation of the database or a select and project

view of such a relation. Of course, the SP views could be the identity view (i.e., no

selection or projection). Let us �rst consider how to delete a tuple from the join

view where the SP views are identity views, and then extend our results to handle

SP views that are not the identity.

Algorithm class SPJ-D: Delete the tuple from the root relation (or SP view) only

using one of the algorithm of classes D-1 or D-2.

Theorem 6.2 Algorithm class SPJ-D is the only algorithm that satis�es the �ve

criteria that deletes a tuple from join views of the type speci�ed when the SP views

are identity views.

Proof: For indentity views, the translation is to delete the corresponding under-

lying tuple from the root relation. We will �rst show that this translation performs

the deletion without any view side e�ects and satisfy the �ve criteria. We will then

show that there are no other such translations.

This translation performs the deletion and satis�es the �ve criteria. Deleting a

join view tuple can be accomplished by deleting one of the joined tuples. (1) The only

tuple a�ected matches the projection of the join view tuple. (2) There is only one

database request. (3) The only database request is an deletion, so clearly doing less

1We can relax this constraint to allow rooted DAGs if we relax the �ve criteria somewhat.

80 CHAPTER 6. UPDATING VIEWS INVOLVING JOINS

could not implement the view update request. (4) There are no database replacement

requests. (5) There are no database insertion requests. Since the key of the root

relation functionally determines the view, the only view tuple that can be a�ected by

deleting the root tuple is the view tuple we want to delete.

Deleting a tuple from a join view can only be performed by deleting one or more of

the tuples joined together to form the view tuple. Deleting the root tuple is su�cient.

Not deleting the root tuple, but deleting any other of the corresponding underlying

tuples would violate the inclusion dependency and has the potential for side e�ects.

Deleting tuples in addition to the root tuple would violate Criterion 3. Thus, we must

delete precisely the root corresponding underlying tuple.

We next consider inserting a tuple into the join view. This involves inserting the

various projections of the new join view tuple into the individual relations.

Algorithm class SPJ-I: Take the projections of the join view to the attributes listed

in each SP view. On each projection (or SP view) there are three cases:

Case 1: The projection exists in the SP view in the exact projected form. If this

is the root SP view, reject the update as it violates an FD in the view. Otherwise,

we need do nothing with this SP view.

Case 2: The projection does not match the key of any tuple in the SP view.

Perform an SP view insertion using the projection of the new join view tuple.

Case 3: There is already a tuple in the SP view with a key matching that of the

projection, but the other values do not match. Replace (in the SP view) the existing

SP view tuple by the projection of the new join view tuple. We may reject the update

request if we do not wish to perform a replacement in the SP view.

If any of the SP view operations fail, the entire view update request fails and is

undone.

Theorem 6.3 Algorithm class SPJ-I is the only algorithm that satis�es the �ve cri-

teria that inserts a tuple from join views of the type speci�ed when the SP views are

identity views.

Proof: The desired view tuple can only appear in the view if the projections of

that view tuple appear in the underlying relations. We will consider each case and

show why the action taken is the only possible. In Case 1 doing anything else would

6.3. UPDATING JOIN VIEWS 81

violate Criterion 3 as they are unnecessary. In Case 2 the only operations that can

cause the desired database tuple (the projection of the view tuple) to appear in the

database are insertion and replacement. We have speci�ed insertion of that tuple. If

any other database tuple is replaced, it would violate Criterion 1. In Case 3 insertion

and replacement are again the only options. Insertion is impossible because of the

conicting tuple. Replacement of any other tuple would violate Criterion 1 Therefore,

only the operation speci�ed in Case 3 above is permitted.

We next consider replacing an individual tuple in the join view.

Algorithm class SPJ-R: Perform a recursive (pre-order [Knuth 73]) search on query

graph tree. (We shall ignore the retracing steps that occur when leaf nodes are

reached.) We are initially in State R at root relation.

State R (replacing): Compare projection (to this SP view) of old join view tuple

with new join view tuple.

Case R-1: Projections match exactly. Move to next relation down. Go to State

R.

Case R-2: Projections di�er but keys match. Perform SP view replacement.

Move to next relation down. Go to State I.

Case R-3: Projections di�er and keys di�er. This can only happen in root. (For

every relation but the root relation, they only ways we get back to State R|Cases

R-1 and I-1|require that the keys match.) Perform SP view replacement. Move to

next relation down. Go to State I.

State I (inserting): Compare projection (to this SP view) of old view tuple with

new view tuple.

Case I-1: Keys match. Go to State R (staying in this relation).

Case I-2: Keys di�er, new key not in SP view. Insert tuple into SP view. Move

to next relation down. Go to State I.

Case I-3: Keys di�er, new projection in SP view. Move to next relation down.

Go to State I.

Case I-4: Keys di�er, new key in SP view but conicting data. Perform SP view

replacement. Move to next relation down. Go to State I.

Theorem 6.4 Algorithm class SPJ-R is the only algorithm that satis�es the �ve

criteria that replaces a tuple from join views of the type speci�ed when the SP views

82 CHAPTER 6. UPDATING VIEWS INVOLVING JOINS

are identity views.

Proof: The view tuple to be replaced can only disappear from the view if at least

one of the corresponding underlying tuples have been changed. The replacement

view tuple can only appear in the view if its projections appear in all of the relations

appearing in the view. For join views (the SP views are identity views), the insertions

and replacements speci�ed above are performed as speci�ed on the database. This

means that algorithm class SPJ-R consists of precisely one algorithm.

The �rst database operation that is performed replaces a corresponding underlying

tuple. This causes the original view tuple to disappear.

We need to show that the algorithm implements the view update request. We

observe that as long as each database request succeeds, we do not leave a relation

until it contains a projection of the view tuple. Thus, showing that the algorithm

implements the view update request is reduced to showing that the each database

request succeeds. We insert only when there is no tuple in the database with a match-

ing key. We replace only when there is a tuple in the database with a matching key.

Since the only constraint in each relation is a functional dependency, the insertions

and replacements must succeed.

We need to show that the algorithm satis�es the �ve criteria. (1) The only

database tuples a�ected are projections of the view tuple. (2) There is only one

database request per relation. (3) The only relations that change are those which do

not already contain projections of the view tuple. Clearly, each of these must have at

least one update. (4) The replacements change precisely those attributes that change

in the view. The key of a database tuple changes only in the root relation when the

key of the view tuple changes. (5) There are no database deletions.

6.4 Combining Joins with Selections and Projec-

tions

We need to combine select and project view algorithms with join view algorithms to

get select, project, and join view algorithms. Fortunately, the natural composition

works correctly.

6.4. COMBINING JOINS WITH SELECTIONS AND PROJECTIONS 83

For a given select, project, and join view, the set of view update translations

(translators) is the obtained from cartesian product of the sets of the view update

translations (translators) for each select and project view. We use one of the algo-

rithms SPJ-D, SPJ-I, and SPJ-R as appropriate. Each algorithm describes how to use

select and project view algorithms. This notion is captured in the following theorems.

Lemma 6.1 Let U�1 and U�2 be a set of view update requests on the select and

project views in sets V�1 and V�2 respectively, where there is at most one view

update request on each view and each underlying relation is referenced in only one of

the views in V�1 or V�2 but not both. Let T�1 (T�2) contain one translation for

each view update request in U�1 (U�2). Let the sets T�1 and T�2 each collectively

satisfy the �ve criteria for view update translation. Then T = T�1�T�2 collectively

satis�es the �ve criteria for the view update requests U = U�1�U�2 on the views in

V = V�1�V�2.

Proof: Since the same database tuples are a�ected, Criterion 1 will continue to

hold. Since there is at most one request per relation, Criteria 2, 4, and 5 will continue

to hold.

Suppose that T�1 and T�2 individually satisfy Criterion 3 but T does not. Then

there is a valid translation, T 0, for the U that is a proper subset of T . Then there is

some individual update translation, say T�1, whose translation satis�es Criterion 3

but which is not a subset of T . The only database updates in T which a�ect V�1 are

in T�1. Then T�T�1 is a proper subset of T�1 that translates the same update.

Thus, T�1 does not satisfy Criterion 3.

A similar argument can be used to show that Criterion 3 is satis�ed for the con-

verse.

Theorem 6.5 The translation of a update on a SPJNF0 view consists of the union

of a series of translations for the constituent SP views.

Proof: The algorithm classes SPJ-D, SPJ-I, and SPJ-R each perform at most

one operation per constituent SP view. Therefore, the union of the translations on

the SP views satisfy all �ve criteria.

If there were another algorithm that satis�ed the �ve criteria, it would have to

change the SP views in the same manner as SPJ-D, SPJ-I, or SPJ-R (depending on

84 CHAPTER 6. UPDATING VIEWS INVOLVING JOINS

the operation). Otherwise, there would be additional algorithms for join views. (Note

that making additional changes to the SP views would have as a consequence mak-

ing additional database changes, and that would violate Criterion 3.) The previous

theorem shows that the translations of the updates on the SP views must use the

algorithms we have described earlier.

The following three theorems are a consequence of the preceding theorem and the

corresponding join-only view theorems.

Theorem 6.6 Algorithm class SPJ-D consists of the only algorithms that satis�es

the �ve criteria that deletes a tuple from select, project, and join views of the type

speci�ed.

Theorem 6.7 Algorithm class SPJ-I consists of the only algorithms that satis�es

the �ve criteria that inserts a tuple from select, project, and join views of the type

speci�ed.

Theorem 6.8 Algorithm class SPJ-R consists of the only algorithms that satis�es

the �ve criteria that replaces a tuple from select, project, and join views of the type

speci�ed.

6.5 Conclusion

We have applied the �ve criteria used earlier for acceptable view update translations

on select and project views to select, project, and join views. We have enumerated a

complete list of translations that satisfy these �ve criteria for a large class of select,

project, and join views on Boyce-Codd Normal Form relations. Our techniques take

into account the possibility that an object the user has requested to be deleted should

actually be transformed into an object the user does not know about, and the possi-

bility that an object the user wants inserted may refer to an existing object the user

has becomes aware of through the very same action. Thus an object can be deleted

by \destroying" it or converting it into another, unrecognizable object.

With a complete list of alternative translations, we have circumscribed the search

space for a translator for view updates (into database updates). Additional seman-

tics are needed to choose the desired translator. Collecting, coding, and using such

additional semantics are discussed in the next chapter.

6.5. CONCLUSION 85

We handle now this large class of select, project, and join views on Boyce-Codd

Normal Form relations. We require that there is a single consistency constraint on

each relation in the view: a key dependency (or functional dependency). The selection

condition is the (possibly empty) conjunction of terms, each of the form attribute 2

set . The projection may remove any attributes mentioned in the selection condition,

except that the key of the relation must appear in the view. The views are described

in Select-Project-Join Normal Form, which requires that all the join attributes appear

in the view, the joins are extension joins with inclusion dependencies, and the joins

can be represented as a tree in a directed query graph.

Chapter 7

Statically De�ned Views

7.1 Choosing An Update Translator

We propose that the semantics necessary for disambiguating view update translation

be obtained at view de�nition time. The semantics are used to choose a view update

translator. Once a translator is chosen, users may specify updates through the view,

which the translator converts into database updates without any disambiguating di-

alog.

In the discussion that follows, we will assume that the view is de�ned by a database

administrator (DBA) who will also provide the necessary semantics to choose a trans-

lator. While this is the simplest case for the use of a view de�nition facility, it is clear

that this system could be used by any user with the wherewithal to de�ne a view,

either for the user's own use or for the use of other, perhaps less knowledgeable users.

We regard the e�ort of collecting the semantics at view de�nition time to be amortized

by utilizing them for many view updates.

The candidate translators can be organized into a tree, where each node of the tree

represents a decision to be made. The semantics are merely the sequence of decisions

made by the DBA in a walk of this tree guided by the view de�nition facility. The

view de�nition facility presents questions to the DBA, each time supplying several

options, based on the view de�nition, the database schema, and the answers to the

previous questions. Note that the tree of translators is di�erent from the query graph

representing the view. Furthermore, the tree of translators is merely a pedagogical

device; it does not actually exist within the view de�nition facility.

86

7.1. CHOOSING AN UPDATE TRANSLATOR 87

Choosing a translator does not use any information about the transactions that

will be performed against the view. This is because the translator chosen will take as

input individual view tuple updates and translate them into sets of database updates.

Any information that would be contained in the nature of the transactions performed

that is useful for determining how to translate the update is captured at the view

de�nition dialog. Since the set of transactions is not necessarily available at view

de�nition time, does not contain all the information needed for choosing a view update

translator, and at best provides information that is already provided by the dialog, we

have chosen to use the dialog instead. The dialog is described in subsequent sections.

7.1.1 Dialog at View De�nition: Deletion

Using the query graph that de�nes the view, we consider the selections and projections

applied to the root relation. This is because deleting from a select, project, and join

view can be accomplished by deleting from the select and project view corresponding

to the root relation. If there is no selection on the root relation, there is no alternative

to deleting the projection of the view tuple from the underlying relation (i.e., the tuple

with the same key as the view tuple). If there is a selection on the root relation, we

may alternatively replace the corresponding underlying tuple in the root relation by

changing a selecting attribute to an excluding value.

Algorithm DBA-D: We �rst ask the DBA whether view tuple deletions are permit-

ted. If there are selecting attributes in the root relation that are not part of the key,

we then ask the DBA whether a deletion of a view tuple is to result in deletion of the

corresponding root tuple (New York manager example) or its replacement (baseball

team manager example). If the DBA chooses deletion, we know how to translate view

tuple deletions. Otherwise, of the selecting attributes in the root relation that are

not part of the key, we ask the DBA to choose which one of them is to be replaced

(unless, of course, there is only one). In a menu-driven system, the attributes that

have only one excluding value should be highlighted, since they are more likely to be

desired. Once the selecting attribute to be changed is chosen, we need to decide which

excluding value to use for that selecting attribute. We then ask the DBA to choose

an excluding value for the chosen selecting attribute (unless there is only one). The

resultant view update translation replaces the corresponding underlying tuple from

the root relation by changing the chosen selecting attribute with the chosen excluding

88 CHAPTER 7. STATICALLY DEFINED VIEWS

value. This view update translation does not have any side e�ects in the view and

only a�ects one database tuple.

7.1.2 Dialog at View De�nition: Insertion

Inserting into a selection, project, and join (SPJ) view involves ensuring that the

projections of the view tuple appear in each of the relations so that they may be

joined together to form the view tuple. The SPJ view can be decomposed into a join

view of a series of select and project (SP) views formed by taking the selections and

projections of the query graph using them to de�ne a view on each relation. The

following algorithm decomposes a SPJ view tuple insertion into a series of operations

on these SP views.

Insert into SPJ view: Take the projections of the join view to the attributes listed

in each SP view. On each projection (or SP view) there are three cases:

Case 1: The projection exists in the SP view in the exact projected form. If

this is the root SP view, reject the view update as it violates an FD in the view.

Otherwise, we need do nothing with this SP view.

Case 2: The projection does not match the key of any tuple in the SP view.

Perform an SP view insertion using the projection of the new join view tuple.

Case 3: There is already a tuple in the SP view with a key matching that of the

projection, but the other values do not match. Replace (in the SP view) the existing

SP view tuple by the projection of the new join view tuple. We may reject the update

request if we do not wish to perform a replacement in the SP view.

If any of the SP view operations fail, the entire view update request fails and is

undone.

Algorithm DBA-I: We �rst ask the DBA whether view tuple insertions are per-

mitted. We proceed if they are permitted. At view de�nition time, we perform a

depth-�rst search (in preorder) of the query graph and determine how to perform

view tuple insertions. For each relation, we must determine what to do in Cases 2

and 3 above.

We then ask whether any modi�cations may be permitted in this relation. If not,

then when updates require changes to this relation, they will be rejected. We then

ask whether an insertion is permitted that will cause a new tuple to be inserted into

7.1. CHOOSING AN UPDATE TRANSLATOR 89

the database. This is one of the two possibilities of Case 2, and it arises in View P

above. For each attribute in this relation that does not appear in the view, we need to

ask the DBA for the selecting value to use (unless there is only one). When inserting

a tuple into the database, we take the projection of the view tuple to this relation

and extend it with these values chosen.

Next, we ask whether inserting a view tuple can result in a change to a database

tuple that does not satisfy the selection condition (as arises in the baseball team

manager example). This is the other possibility of Case 2. We change the database

tuple whose key matches the corresponding attributes of the view tuple so that its

values match those of the view tuple. If there are selecting attributes in this relation

that do not appear in the view, we will have to change every excluding value in the

database tuple to a selecting value. If we have obtained a list of values according

to the preceding paragraph, those will su�ce here; otherwise, we ask the DBA to

choose a selecting value to use for each selecting attribute in this relation that does

not appear in the view (unless there is only one selecting value). The implementor of

a view update facility may o�er the option of allowing the DBA to indicate that the

view update is to be rejected if a particular non-appearing selecting attribute does

not already have a selecting value in lieu of giving a selecting value to change it to;

this is only meaningful when there are multiple selecting attributes, at least one of

which does not appear in the view.

Finally, we ask whether inserting a view tuple can result in a change to a database

tuple that does satisfy the selection condition (Case 3). Such a change results in a

side e�ect when the database tuple is one of the corresponding underlying tuples for

some other view tuple. Then the change requested will a�ect those other view tuples

that share this corresponding underlying tuple. If permitted, the translation is to

change the database tuple so that it matches the projection of the view tuple to that

relation.

7.1.3 Dialog at View De�nition: Replacement

Replacing in a SPJ view can be decomposed into a series of replacements and inser-

tions in select, project views on the underlying relations. The following algorithm

describes this process.

Replace into SPJ view: Perform depth-�rst search on query graph tree. We are

90 CHAPTER 7. STATICALLY DEFINED VIEWS

initially in State R at root relation.

State R (replacing): Compare projection (to this SP view) of old join view tuple

with new join view tuple.

Case R-1: Projections match exactly. Move to next relation down. Go to State

R.

Case R-2: Projections di�er but keys match. Perform SP view replacement if

allowed. Move to next relation down. Go to State I.

Case R-3: Projections di�er and keys di�er. This can only happen in root.

Perform SP view replacement if allowed. Move to next relation down. Go to State I.

State I (inserting): Compare projection (to this SP view) of old view tuple with

new view tuple.

Case I-1: Keys match. Go to State R (staying in this relation).

Case I-2: Keys di�er, new key not in SP view. SP view insert tuple. Move to

next relation down. Go to State I.

Case I-3: Keys di�er, new projection in SP view. Move to next relation down.

Go to State I.

Case I-4: Keys di�er, new key in SP view but conicting data. SP view replace

if desired, else reject request. Move to next relation down. Go to State I.

Cases R-1, I-1, and I-3 require no action. Case I-2 can use the same algorithm as

Case 2 from the previous section. Cases R-2 and I-4 can use the same algorithm as

Case 3 from the previous section.

Case R-3 is more complicated. There are two alternative ways to remove the old

database tuple based on the two alternatives for deleting a view tuple (delete and

replace). There are two alternative ways to insert the new database tuple, depending

on whether there is already a conicting database tuple there. In the case when the

old database tuple is to be deleted and the new one is inserted, a replacement is

performed instead.

Algorithm DBA-R: We �rst ask the DBA whether view tuple replacements are

permitted. Note that replacements may be permitted even when insertions or dele-

tions are not permitted. When insertions or deletions are permitted, we would like

replacements to be handled similarly. Thus the questions necessary for determining

how to replace view tuples are the ones necessary for determining how to delete and

insert view tuples. Note that if questions were omitted because the DBA decided not

7.2. RELATIONSHIP WITH DATABASE DESIGN PROCESS 91

to permit the operation for insertion or deletion (e.g., Case 2 for insertion), the DBA

may be given the opportunity to decide on a more liberal answer for replacement.

For example, it is reasonable to allow side e�ects on replacements (when the intent

is clear) and not permit side e�ects on insertions (when the intent is not clear).

7.2 Relationship with Database Design Process

View de�nition may occur as part of the database design process or it may occur

much later. The process of de�ning a view and choosing a view update translator

requires some information that was available during the database design process and

should be captured at that time. These involve functional and inclusion dependencies.

Collection of this type of information is one of the objectives of the structural model

[Wiederhold 83].

Since we require all relations to be in Boyce-Codd Normal Form, functional depen-

dencies are key dependencies: There is a key for each relation. Commercial relational

database systems have some support for keys [Astrahan 76] and could enforce the

uniqueness constraint.

Inclusion dependencies are, however, not usually captured or enforced by commer-

cial relational database systems. In earlier work, we have shown how such constraints

can be enforced incrementally [Keller 81]. Note that our algorithms will work if the

inclusion dependencies are not enforced with two exceptions. The �rst exception is

that dangling join tuples|tuples that participate in an outer join but not an inner

join|that do not appear in the view may cause updates to fail unexpectedly. The

dangling join tuple is treated similarly to a tuple that did not appear because it did

not satisfy a selection clause. The second exception is that it is no longer necessary to

delete the root tuple when deleting a view tuple. Deleting the root tuple cannot have

any side e�ects in the view, while deleting any other supporting underlying tuple may

potentially cause the deletion of additional view tuples. Therefore, it is still desirable

to use the \delete at the root" algorithms.

Chapter 8

Dynamically De�ned Views

In this chapter, we will explore using our approach for dynamically generated views,

such as universal relations [Sciore 80, Ullman 82b] or by access through natural lan-

guage [Davidson 81, 83, Salveter 84a, 84b]. We shall not be interested in how the view

de�nition is obtained, but only in that there is no expert who can choose the desired

translator when given the view de�nition. The dynamic view update mechanismmust

choose the view update translator itself.

8.1 Some Di�erences Between Dynamic and Static

Views

Static views are tailored to speci�c classes of users and are used for many queries

and updates; dynamic views are generated on the y based on user interaction. For

a static view, it is feasible to invest time during view de�nition to choose a translator

for the potentially numerous view updates that will be requested through that view.

For a dynamic view, the number of updates through any view de�nition is usually

much smaller. The identical view may be de�ned repeatedly in the same or di�erent

session, but it is unlikely that the database system will maintain a long history to

correlate these views.

A user of a dynamic view has more exibility than a user of a static view. Consider

the baseball team manager from Chapter 5. To remove a player from the team, he

has no choice but to request the deletion of the player from his view. With a dynamic

92

8.2. USING ADDITIONAL SEMANTICS 93

view, the manager could explicitly request changing the player's status from a member

of the team to a non-member. If the baseball team manager requests deletion of an

employee, the database system can expect that the request is to delete the employee

from the employee relation. For a user who acts in multiple roles (e.g., if the baseball

team manager also worked for personnel), these roles would correspond to separate

views.

We suggest that select and project view updates be translated by using the same

database operation as the view operation requested. For example, a view deletion

should be translated as a database deletion rather than a database replacement.

These algorithms are I-1 (for insertion), D-1 (for deletion), and R-1 and R-2 (for

replacement). This will signi�cantly reduce the ambiguities. The join view algorithm

from Chapter 6 may be used in conjunction with these select and project algorithms.

8.2 Using Additional Semantics

We could attempt to capture additional semantic information global to the database.

For example, based on the selection condition, we might be able to determine the

nature of the view update translator desired. Let us explore some of the di�erences

between the baseball manager's view (B) and the personnel manager's view (P) in

Chapter 5.

View P:

Select *

From EMP

Where Location="New York"

View B:

Select *

From EMP

Where Baseball="Yes"

When the personnel manager requests deletion of employee #17, we could con-

ceivably move the employee to San Francisco. But the semantics of location makes

that decision a little more di�cult. Rather than two locations, there are potentially

numerous locations to transfer \�red" employees to.1

1That is one way to �re an employee: transfer her to a location you know she would not go to.

94 CHAPTER 8. DYNAMICALLY DEFINED VIEWS

The semantics of the baseball �eld can be elaborated into the position of the

player. The domain would be pitcher, catcher, �rst baseman, second baseman, : : : ,

and \none of the above." Then View B would select not none of the above. Getting

rid of a third baseman could mean changing his position into \none of the above" or

deleting him from the employee relation altogether.

We make several observations about the di�erences. It is more reasonable to trans-

late a deletion update against a view that excludes a single value into a replacement

(to the excluded value) than for a view that excludes many values (or selects a single

value). This is a heuristic based on syntax. Some attributes may be more mutable

than others: whether someone is a member of the baseball team is perhaps of less

consequence than whether someone works at the New York o�ce. This is a semantic

consideration.

There may be other examples of syntactic and semantic considerations that fa-

cilitate view update translation for dynamic views. We suggest, however, than ap-

proaches that involve heuristics choose simple view update translators that are as

independent of the state of the database as possible.2 Such considerations and ap-

proaches are generally beyond the scope of this work.

8.3 Disambiguating Dialog

There is the option of engaging in a clarifying dialog with the user when a request is

ambiguous. This approach was used for queries in the Rendezvous system [Codd 78],

but the users of the system found the dialog to be tedious. View updates would be

yet more tedious because of the inherent ambiguities. We have avoided this option

for static views by having all of the decisions made by at view de�nition time. There

also is the problem that a disambiguating dialog may involve parts of the database

with which a user is not familiar. For example, a request to change the manager of an

employee results in the need to determine in which department the employee winds

up. The user may not know anything about departments, but only about employees

and managers.

2Consider the discussion of Davidson's approach in Chapter 2.

8.4. PROTECTION AND AUTHORITY CONSTRAINTS 95

8.4 Protection and Authority Constraints

We may use protection and authorization checking to choose between the various

alternative translators. In the baseball example, the baseball manager may only be

allowed to change the baseball attribute. The translation of the request to delete a

member of the team by deleting the employee record will fail by violating the database

protection system. The translation that changes the baseball attribute, however, will

succeed.

8.5 Other Constraints

Other constraints may be used to disambiguate view update translation in a manner

similar to protection and authority constraints of the previous section. Note, however,

that explicit functional dependencies are not amenable to such treatment, as they

require changing more attributes than our algorithms specify.

8.6 Future Work on Dynamic Views

Universal relations [Ullman 82b] are a good framework for dealing with the problem

of updating through dynamically de�ned views. If the views satisfy our requirements,

we have shown how to enumerate all possible translations of a view update request.

We can use this result to generate alternatives from which a heuristic approach can

choose. In future work, we will consider choosing the desired translation for universal

relation views.

Chapter 9

Null Values

Incomplete information is endemic to shared databases. No one user supplies the

complete body of information, and it arrives in a piecemeal fashion. The problem of

incomplete information is particularly clear for updating through select and project

views.

When updating through project views, the attributes that do not appear in the

view cannot be maintained by the user. The view update facility can supply some

values by, for example, retaining existing values during a view tuple replacement. In

the case of insertion of a new view tuple, the attributes omitted from the view may

not have any value. Such nulls will in general represent no constraints on the values

assumed.

When updating through selection views, there are two types of constraints that

may arise. If the deletion of a view tuple is translated as a replacement, AlgorithmD-2

speci�es that an excluding value be chosen. The alternative is to use a set null [Lipski

79] that lists the excluding values. When inserting a view tuple, if a selecting attribute

does not appear in the view, Algorithm I-1 speci�es that a selecting value be chosen.

The alternative is to use a set null that lists the selecting values.

Set nulls arise naturally in view updates, but cause problems for other views.

One view may have a selection condition that depends on an attribute into which set

nulls are introduced by another view. The potential for tuples which possibly satisfy

the selection condition now arises. The question of how to update through views

that are based on incomplete information databases is beyond the scope of this work.

Updating incomplete information databases without views is in itself an important

96

97

and di�cult problem [Keller 84a, 85c].

Chapter 10

Limitations of the Approach

This chapter discusses the limitations of our approach. The primary limitation is on

the categories of views we support. A weakness is the inability to make use of certain

information that a view update facility could make use of, but ours does not. Finally,

we will discuss the knowledge we do require and how necessary it is.

10.1 Class of Views

We handle a class of select, project, and join views. We have restrictions on the

selections, projections, and the joins.

10.1.1 Join Restrictions

There are several restrictions on joins. The join attributes may not be removed from

the view via projections. The query graph must be rooted. The query graph must

be a tree. The joins must be reference connections.

The most severe restriction on joins is that join attribute may not be removed from

the view via projections. This is a consequence of Select, Project, and Join Normal

Form (SPJNF). We discussed the importance of this restriction in Section 1.2.1.

Briey, when the join attributes are removed from the view via projections, the view

update problem becomes data dependent. Our algorithms are data independent; we

decide what to do in advance without consideration of the data, although the data

are used to determine whether the update will succeed or fail.

98

10.1. CLASS OF VIEWS 99

The query graph must have a root so that deletions are unambiguous. This is

because deletion may only occur at the root, as a consequence of Criterion 3. This is

also discussed in Section 1.2.1.

The third limitation restricts the query graph to being a tree. The algorithms

can be adapted to allow rooted directed acyclic graphs (rooted DAGs), however this

would imply the potential for more than one view update request on an individual

SP view (the select and project expression for an individual relation). This would

invalidate our proof that our translations satisfy the 5 criteria. Thus, we would need

another standard for acceptable translations.

The last limitation is that the joins must be reference connections. Recall that a

reference connection involves an extension joins with an inclusion dependency. The

requirement for the extension join boils down to a many-to-one connection. Joins

that are many-to-many su�er from the same problem as do multiple roots. Further-

more, many-to-many joins occur infrequently in database structures [Ceri 83]. The

inclusion dependency is used for several reasons. It explains why Criterion 3 requires

deletion at a root. It eliminates dangling tuples|tuples that participate in an outer

join but not an inner join|that can cause view side e�ects during view insertion (the

dangling tuples may suddenly appear). And it describes well the semantic integrity

of the database. The algorithms we have presented can easily be adapted if inclu-

sion dependencies are not enforced, but there may be surprising (to the user of the

view) e�ects when the inclusion dependency is violated (i.e., when there are dangling

tuples).

10.1.2 Projection Restrictions

The only restriction on projections is that the key of each relation may not be removed.

This implies that join attributes may not be removed, by a requirement on joins. We

illustrated at great length in Chapter 5 the unsatisfactory algorithms that we are

forced to use when the keys are projected out of the view.

10.1.3 Selection Restrictions

The selection condition is a conjunction of terms of the form A 2 s (or equivalently,

A =2 e), where s (and e) is a set of constants in the domain of A. We do not allow

100 CHAPTER 10. LIMITATIONS OF THE APPROACH

disjunctions. We do not allow comparisons between two attributes.

10.2. OTHER KNOWLEDGE 101

There are two problems that arise from disjunctions. Disjunctions between terms

referring to di�erent relations would prevent the view from being expressed in SPJNF

(because joins imply the conjunction of the selection clauses for each relation). Dis-

junctions between terms referring to the same relation would require more complex

translation algorithms. For example, when deletion of a view tuple is translated into

replacement of a corresponding underlying (database) tuple, we know that at most

one attribute must be changed. If the selection condition contained a disjunction,

it might require changing more than one selecting attribute to accomplish the view

deletion, namely the attributes that appeared in the disjunction.

There are several types of comparisons between two attributes. An equality com-

parison between two attributes of two di�erent relations is a join, not a selection;

it is allowed. An equality comparison between two attributes of the same relation

would result in more complex translation algorithms.1 These would not require more

than one attribute to be changed to invalidate the selection clause (if it were a con-

junction). Non-equality comparisons can involve arbitrarily complex computations

to determine the values of attributes that need to be changed to satisfy the selection

condition. It is possible to imbed an undecidable problem in a selection condition,

although fortunately not in SQL.

10.2 Other Knowledge

There are other kinds of knowledge we could use but do not. We could use the user's

view update request rather than tuple-by-tuple e�ects on the view. Consider the

following example.

ED relation DM relation

employee department department manager

Joe Art Art Sally

Sarah Art Books Sally

George Music Music Ira

Fred Music

EDM view

1An equality comparison between two attributes of the same relation could not be a join because
each relation is only allowed to appear once in the query graph.

102 CHAPTER 10. LIMITATIONS OF THE APPROACH

employee department manager

Joe Art Sally

Sarah Art Sally

George Music Ira

Fred Music Ira

If the update request is to change the manager of everyone in the Music depart-

ment from Ira to James, this will involve two replacements: hGeorge, Music, Irai to

hGeorge, Music, Jamesi, and hFred, Music, Irai to hFred, Music, Jamesi. The lat-

ter will naturally occur as a side e�ect of the former; the view update facility may

ask whether this side e�ect is desired when presented with the �rst replacement if it

does not realize the second request is also coming. Consideration of this problem is

a topic for future study.

Authorization and other structural knowledge can be useful for disambiguating

view updates for dynamically de�ned views. This is another avenue for future study.

On the other hand, there is no need to use additional knowledge that will not improve

the results.

10.3 Knowledge Requirements

To determine a view update translator, we require two types of knowledge. The �rst

is global to the database, such as keys. We expect that this information has been

captured at database design time. The second is obtained in the dialog with the view

de�ner (or DBA). We could attempt to get as much of this knowledge as possible from

a knowledge base, but we have chosen to ask a series of directed questions instead.

Such a knowledge base has been considered for distributed databases [Apers 84]. We

leave the question of how to use a knowledge base to choose a view update translator

as open for further work.

10.4 Other types of views

SPJ views provide a clear connection between the view and the underlying data.

Views involving some other operators, such as aggregation, have inherent problems

for updating through. Consider an employee relation that contains employee and

10.4. OTHER TYPES OF VIEWS 103

department names. The view lists department names and number of employees for

each department.

SELECT Dept, Number(Emp)

FROM Emp

GROUP BY Dept

If we decrement the number of employees for a department, the view update facility

has know way of knowing which employee to delete from the employee relation. This

is an example of the problems that arise when there is no key in the view or when

the key in the view is not the key or foreign key of the database relations appearing

in the view.

Chapter 11

Future Directions

Most of the future directions have already been mentioned earlier. Consequently, this

chapter will be a brief recapitulation.

It may be useful to explore relaxing the constraints on acceptable views. Perhaps

the removal of join attributes can be handled by imposing additional constraints on

acceptable view updates translations. More complex selection conditions are also

worthy of consideration.

The interaction of view updates and null values needs considerable study. Chap-

ter 9 identi�es some of the issues.

Handling dynamically de�ned views is an interesting problem. In further work,

we will explore updating through a universal relation interface. In such a situation, it

would probably be best to reduce the number of alternatives by translating insertions

as insertions, deletions as deletions, and replacements as replacements. Authorization

checking can also be used to eliminate alternatives. We propose that future work

consider an algorithmic approach that does not depend on the database state which

is motivated by some of the heuristics Davidson uses.

Another topic for further consideration is how additional knowledge can be used

to shorten or eliminate the dialog at view de�nition time. Such an approach would

also facilitate the use of dynamic views.

The nature of the user interface has not been directly addressed. In particular,

when the view de�nition facility discovers that a view side e�ect is required, how

should the user con�rm that the side e�ect is desired?

104

Chapter 12

Conclusion

We have devised �ve criteria for acceptable view update translations. We have enu-

merated a complete list of translations that satisfy these �ve criteria for a large class

of select, project, and join views on Boyce-Codd Normal Form relations. Our tech-

niques take into account the possibility that an object the user has requested to be

deleted should actually be transformed into an object the user does not know about,

and the possibility that an object the user wants inserted may refer to an existing

object the user has becomes aware of through the very same action. Thus an object

can be deleted by \destroying" it or converting it into another, unrecognizable object.

With a complete list of alternative translations, we have circumscribed the search

space for a translator for view updates (into database updates). Additional semantics

are needed to choose the desired translator.

We handle this large class of select, project, and join views on Boyce-Codd Nor-

mal Form relations. We require that there is a single consistency constraint on

each relation in the view: a key dependency (or functional dependency). The se-

lection condition is the (possibly empty) conjunction of terms, each of the form

attribute 2 set of constants . The projection may remove any attributes mentioned

in the selection condition, except that the key of the relation must appear in the view.

The views are described in Select-Project-Join Normal Form, which requires that all

the join attributes appear in the view, the joins are extension joins with inclusion

dependencies, and the joins can be represented as a tree in a directed query graph.

We have also described a sequence of questions that can choose a valid view update

translator for a large class of select, project, and join views. The class of translators we

105

106 CHAPTER 12. CONCLUSION

choose from are based on the algorithm templates that generate all possible transla-

tions that satisfy �ve criteria for view update translation. The database administrator

de�nes the view and answers the questions to choose a translator, whose de�nition

should be stored along with the view de�nition. Later, users may request insertions,

deletions, and replacements through the view, and these will be translated by the

chosen translator into database updates without any disambiguating dialog. Side ef-

fects may result from some insertions and replacements if permitted by the database

administrator; it may be desirable to have the user con�rm such side e�ects, especially

for insertions.

We do not claim that all possible translators are subject to being chosen by our

questions. The set of candidate view update translators is quite large; we have

bounded this set by enumerating the set of all view update translations. Some of

the translators chosen here will translate all updates that have translations satisfy-

ing our criteria; others will reject some updates because they were proscribed by the

answers by the database administrator (DBA) to the questions asked by the view

de�nition facility. These translators are simple; in fact, they were used to generate

the enumeration of translations.

The process of de�ning a view and choosing a translator has been described here

as being performed by the DBA. While this is the simplest case for the use of such a

system, it is clear that this system could be used by any user with the wherewithal to

de�ne a view. The distinction to make is that such a dialog would be most e�ective for

static views that are de�ned once and used repeatedly. For dynamic views, de�ned by

natural language dialog or universal relation interfaces, the overhead of answering the

questions would not be amortized over performing many view updates. Heuristics and

user pro�les could be used to determine the answers we need to choose a translator

[Davidson 81].

Querying and updating through a view reduces the security and protection prob-

lem, but does not eliminate it. Clearly, a view circumscribes the collection of data a

user is permitted to access. The question of how to give each manager access to the

data for that department can be addressed either by a parameterizing the view to

only show that department's data or by parameterized protection scheme that allows

access only to tuples containing data for that department. Using both may seem

redundant but need not be. A parameterized view will make fewer demands on the

107

database and the security system. A security system could have a large loophole if it

gave special consideration to queries and updates speci�ed through views. Of course,

an e�ective security system is needed when a view de�nition facility and an ad hoc

query facility is made available to users.

With views and queries described non-procedurally, relational databases are an

e�ective tool for productivity [Codd 82]. We have shown how to describe view update

translators non-procedurally by answering a sequence of questions based on the view

de�nition and the database structure. This has the potential to dramatically increase

the productivity of views, and consequently, relational databases.

We have considered single query views in this work. This results in a single

relation. For multiple relations presented to the user, multiple view queries can

be de�ned. We call the mixture of individual view queries and database relations

presented to the user a window. We leave consideration of the di�erences between

queries against windows for future work.

References

[Apers 84] P.M.G. Apers and Gio Wiederhold, \How to Survive a Network

Partition," submitted for publication, April 1984.

[Astrahan 76] M. M. Astrahan, et al., \System R: Relational Approach to Database

Management," Trans. on Database Systems, 1, 2, ACM, June 1976.

[Bancilhon 79] F. Bancilhon, \Supporting View Updates in Relational Data Bases,"

in Data Base Architecture, Bracchi and Nijssen, eds., North Holland, June 1979.

[Bancilhon 81] F. Bancilhon and N. Spyratos, \Update Semantics of Relational

Views," in Trans. on Database Systems, ACM, 6, 4, December 1981.

[Birkho� 67] Garrett Birkho�, Lattice Theory, American Mathematical Society,

Providence, RI, Colloquium Publications, Volume 25, 1967.

[Carlson 79] C. Robert Carlson and Adarsh K. Arora, \The Updatability of

Relational Views Based on Functional Dependencies," Third International

Computer Software and Applications Conference, IEEE Computer Society,

Chicago, IL, November 1979.

[Casanova 82] Marco Casanova, Ronald Fagin, and Christos Papadimitriou,

\Inclusion Dependencies and Their Interaction with Functional Dependencies,"

Proc. of the ACM Symp. on Princ. of Database Systems, Los Angeles, March

1982.

[Ceri 83] S. Ceri, S. Navathe, and G. Wiederhold, \Distribution Design of Logical

Database Schema," in Trans. on Software Eng., SE-9:4, IEEE, July 1983.

[Chamberlin 75] D. D. Chamberlin, J. N. Gray, I. L. Traiger, \Views, Authorization,

and Locking, in a Relational Data Base System," Proc. National Computer

Conference, AFIPS, 1975.

[Codd 78] E.F. Codd, \How About Recently? (English Dialogue with Relational

108

109

Databases Using RENDEZVOUS Version 1)," in Databases, Shneidermann (ed.),

Academic Press, NY, August 1978.

[Codd 82] E.F. Codd, \Relational Database: A Practical Foundation for

Productivity," Comm. Assoc. Comput. Mach., 25:2, Feb. 1982. The 1981 ACM

Turing Award Lecture, delivered at ACM, Los Angeles CA, Nov. 9, 1981.

[Cosmadakis 83] Stavros S. Cosmadakis and Christos H. Papadimitriou, \Updates

of Relational Views," Proc. of the ACM Symp. on Princ. of Database Systems,

(Atlanta, Georgia), March 1983.

[Cosmadakis 84] Stavros S. Cosmadakis and Christos H. Papadimitriou, \Updates of

Relational Views," in Journal of the Assoc. Comput. Mach., 31:4, October 1984.

[Davidson 81] Jim Davidson and S. Jerrold Kaplan, \Natural Language Access to

Databases: Interpretation of Update Requests," Proc. 7th Int. Joint Conf. on

Arti�cial Intelligence, Vancouver, B.C., August 1981.

[Davidson 83] James E. Davidson, \Interpreting Natural Language Database

Updates," Stanford University, Computer Science Dept., Ph.D. dissertation,

December 1983.

[Dayal 78] U. Dayal and P. A. Bernstein, \On the Updatability of Relational Views,"

Proc. Fourth VLDB Conf., IEEE Computer Society, Berlin, West Germany,

October 1978.

[Dayal 79] UmeshwarDayal, Schema-Mapping Problems in Database systems, Aiken

Computation Laboratory, Harvard University, TR-11-79, Ph.D. dissertation,

August 1979.

[Dayal 82] U. Dayal and P. A. Bernstein, \On the Correct Translation of Update

Operations on Relational Views," ACM Trans. on Database Systems, 7:3,

September 1982.

[El-Masri 79] Ramez El-Masri and Gio Wiederhold, \Data Models Integration using

the Structural Model," Proc. of the 1979 SIGMOD Conference, ACM SIGMOD,

Boston, June 1979.

[El-Masri 80] Ramez El-Masri, On the Design, Use, and Integration of Data Models,

Ph.D. dissertation, Stanford University, 1980.

[Finkelstein 82] Sheldon Finkelstein, \Common Expression Analysis in Database

Applications," Proc. Int. Conf. on Management of Data, ACM SIGMOD,

Orlando, FL, June 1982.

110 CHAPTER 12. CONCLUSION

[Furtado 79] A. L. Furtado, K. C. Sevcik, and C. S. Dos Santos, \Permitting

Updates Through Views of Data Bases," Inform. Systems, 4:4, Pergamon Press,

Great Britain, 1979.

[Halmos 60] Paul R. Halmos, Naive Set Theory, Springer-Verlag, New York, 1960.

[Honeyman 80] Peter Honeyman, \Extension Joins," Proc. Int. Conf. on Very Large

Data Bases, Montreal, 1980.

[Keller 81] Arthur Keller and Gio Wiederhold, \Validation of Updates Against

the Structural Database Model," Proc. Symposium Reliability in Distributed

Software and Database Systems, IEEE Computer Society, Pittsburgh, PA, July

1981.

[Keller 82] Arthur M. Keller, \Updates to Relational Databases Through Views

Involving Joins," in Improving Database Usability and Responsiveness, Peter

Scheuermann, ed., Academic Press, New York, 1982.

[Keller 84a] Arthur Keller and Marianne Winslett Wilkins, \Approaches for

Updating Databases With Incomplete Information and Nulls," in IEEE

COMPDEC Computer Data Engineering Conference, (Los Angeles), April 1984.

[Keller 84b] Arthur M. Keller and Je�rey D. Ullman, \On Complementary and

Independent Mappings on Databases," 1984 ACM SIGMOD Int. Conf. on

Management of Data, Boston, June 1984.

[Keller 85a] Arthur M. Keller, \Choosing a View Update Translator by Dialog at

View De�nition Time," submitted for publication.

[Keller 85b] Arthur M. Keller, \A Reasonable View Update Translator That

Preserves No Complement," submitted for publication.

[Keller 85c] Arthur Keller and Marianne Winslett Wilkins, \On the Use of an

Extended Relational Model to Handle Changing Incomplete Information," to

appear in Trans. on Software Eng., IEEE.

[Knuth 73] Donald E. Knuth, The Art of Computer Programming, Volume 1,

Fundamental Algorithms, Addison-Wesley, Reading, MA, second edition, 1973.

[Lipski 79] Witold Lipski, Jr., \On Semantic Issues Connected with Incomplete

Information Databases," in ACM Trans. on Database Systems, 4:3, September

1979.

[Maier 83] D. Maier, Theory of Relational Databases, Computer Science Press,

Rockville, MD, 1983.

111

[Masunaga 83] Y. Masunaga, \A Relational Database View Update Translation

Mechanism," IBM, San Jose Reserach Laboratory, Report RJ3742, 1983.

[Rissanen 77] Jorma Rissanen, \Independent Components of Relations," ACM

Trans. on Database Systems, 2:4, December 1977.

[Salveter 84a] Sharon Salveter, \A Transportable Natural Language Database

Update System," Proc. of the ACM Symp. on Princ. of Database Systems,

(Waterloo, Ontario, Canada), April 1984.

[Salveter 84b] Sharon Salveter, \Supporting Natural Language Database Update by

Modeling Real World Actions," in Proc. of the First Int. Workshop on Expert

Database Systems, Larry Kirschberg (ed.), (Kiawah Island, SC), October 1984,

Institute of Information Management, Technology and Policy, College of Business

Administration, University of South Carolina, Columbia, SC 29208.

[Sciore 80] Edward Sciore, The Universal Instance Assumption and Database

Design, Ph.D. dissertation, Princeton University, October 1980.

[Stonebraker 75] Michael Stonebraker, \Implementation of Integrity Constraints

and Views by Query Modi�cation," Proc. of the 1975 SIGMOD Conference, ACM

SIGMOD, San Jose, June 1975.

[Ullman 82a] Je�rey D. Ullman, Principles of Database Systems, Computer Science

Press, Potomac, MD, second edition, 1982.

[Ullman 82b] Je�rey D. Ullman, \The U.R. Strikes Back," in Proc. of the ACM

Symp. on Princ. of Database Systems, Los Angeles, March 1982.

[Wiederhold 83] Gio Wiederhold, Database Design, McGraw-Hill, Second edition,

1983.

