
Quantum Cryptography Without Bell's Theoremand Without EPRCharles H. BennettIBM Research Division, T. J. Watson Research CenterYorktown Heights, NY 10598, USA.Gilles BrassardD�epartement IRO, Universit�e de Montr�eal, C.P. 6128, succursale \A"Montr�eal (Qu�ebec), Canada H3C 3J7N. David MerminLaboratory of Atomic and Solid State Physics, Cornell UniversityIthaca, NY 14853 { 2501, USAMarch 6, 1995Ekert has described how Einstein{Podolsky{Rosen (EPR) pairs can gen-erate identical random numbers in remote places, with the violation of Bell'sinequality certifying the absence of eavesdropping. We show that Bell inequali-ties are not needed for such an EPR procedure, point out that the non{localityof an EPR scheme that suggests its security is also a potential source of insecu-rity, and prove a general security theorem that closes this and other loopholes.We note that the EPR scheme is, in fact, equivalent to the single particle keydistribution scheme of Bennett and Brassard.In a striking \practical application" of Einstein{Podolsky{Rosen [1] (EPR) cor-relations and Bell's theorem [2], Ekert [3], elaborating a suggestion of Deutsch [4],has described a quantum key distribution scheme in which two separated observersperform measurements on a sequence of EPR{correlated pairs of particles in order togenerate identical random numbers. By a statistical test that con�rms the expectedviolation of Bell's inequality, they are able to verify that the EPR pairs were notsubjected to eavesdropping by a third party.We show here, however, that neither Bell's inequality nor EPR{correlated statesare an essential part of the generation and certi�cation of such a shared randomsecret. We �rst demonstrate the security against eavesdropping of a simpler butconceptually equivalent version of Ekert's procedure, which uses only the perfect EPRcorrelations both to construct the shared random number and to test for listening in.



Ekert conjectured, but did not prove, that his scheme was also secure against a moresophisticated attack|replacement of the true EPR source by a fake source designedto imitate correct EPR statistics while leaking information to an adversary. Weprove that such a source cannot exist for our scheme, and generalize this proof tocover all known attacks allowed by the laws of quantum mechanics. Finally, we showthat our simpler realization of Ekert's EPR scheme is equivalent to the original keydistribution scheme of Bennett and Brassard [5] (BB84), which uses ordinary singleparticle states instead of EPR pairs, and we prove an analogous security theorem forthe BB84 procedure.Because they rely on a Bell inequality to certify the absence of eavesdropping,each of Ekert's two observers must choose randomly among three coplanar axes fortheir random spin measurements on the separated particles (0�, 45�, and 90� for oneof them and 45�, 90�, and 135� for the other). In our simpli�ed EPR scheme, theobservers, whom we call Albert and Boris, each choose randomly between 0� and90�, which we take to de�ne the x{axis (!) and z{axis ("). After a series of EPRpairs have been prepared and measured, Albert and Boris announce to each other(and to any adversary, Nathan, who may be listening) which axes they used, but notthe results of the measurements. They then agree to discard all instances in whichthey happened to measure along di�erent axes, as well as instances in which measure-ments failed because of imperfect quantum e�ciency of the detectors. The remaininginstances, in which both observers successfully measured the same spin component,ought to be perfectly correlated, if the measurements indeed have been performedon singlet states. To verify that this is so, Albert and Boris publicly compare theirmeasurement results on a su�ciently large random subset (more than half) of theundiscarded instances. If Albert and Boris �nd that this tested subset is indeed per-fectly correlated, they can infer that the remaining untested subset is probably alsoperfectly correlated, and therefore a suitable source of the shared random numberthey require.Ekert shows that if an adversary attempted to eavesdrop by performing arbitraryStern{Gerlach measurements on one or both of the particles on their way from theEPR source to the legitimate observers, then the linear combination of correlationcoe�cients appearing in the Clauser{Horne{Shimony{Holt [6] version of Bell's in-equality could have no more than half the value it has in the undisturbed singletstate. The analogous bound for our scheme, corresponding to Ekert's Eqs. (5) and(7), is � 1 � S = Z �(na; nb)dnadnb((na � x)(nb � x) + (na � z)(nb � z)) � 1; (1)as opposed to the value (�1)+(�1) = �2 that S has in the undisturbed singlet state.It might appear that the ultimate security of these procedures lies in the fact thatthe EPR e�ect permits two unimpeachably random numbers each to make Heisen-berg's \transition from the possible to the actual" in two far-apart places and yet beborn as identical twins. Since prior to their miraculous twin birth the numbers donot exist at all, Nathan is in the hopeless position of trying to intercept non-existent2



information. This, however, is too super�cial a view. The real worry for Albert andBoris is that the very magic of the mechanism that suggests they are secure mightform the basis for a more sophisticated attack. For if the numbers can miraculouslyappear to each of them in their remote stations, how can they be sure that Nathan hasnot substituted for the EPR source a device that produces three particles, cunninglycorrelated so as to allow information to be brought into existence in three remoteplaces, thereby depositing with Nathan some or all of the information Albert andBoris acquire? We shall now prove that such espionage is impossible.Suppose Nathan deceptively sends Albert and Boris pairs he has prepared himself,entangled with systems available to him for subsequent measurements of his own. 1The most general entangled state Nathan can prepare is of the formj�i = j""ijAi+ j##ijBi+ j"#ijCi+ j#"ijDi: (2)where j""i, j##i, j"#i, and j#"i are a complete orthonormal set of spin states for thepairs being sent to Albert and Boris, and jAi, jBi, jCi, and jDi are Nathan's choicesfor states of his system, which he does not even have to decide how to measure untilafter Albert and Boris have gone public.Even the complete freedom to design an arbitrary entangled state does Nathan nogood. If his tampering is to escape detection, the state j�i must be an eigenstate of�az�bz with eigenvalue �1, because any pair has a chance of both members being mea-sured along the z{axis, and then being included in the test set. To escape detectionwith the z test data, Nathan's source is therefore restricted to states of the formj�i = j"#ijCi+ j#"ijDi:But by the same token any pair might instead be measured along the x{axis by bothobservers, so j�i must also be an eigenstate of �ax�bx with eigenvalue �1. This furtherrestricts j�i to be of the form j�i = (j"#i � j#"i)jCi:Thus the only faked source sure of passing Albert's and Boris' tests is one in whichNathan's system is entirely uncorrelated with the EPR particles, so that a subsequentmeasurement on it tells him nothing.So although the EPR e�ect does not in itself guarantee the security of the scheme,EPR magic cannot be re�ned to the point where it undermines that security. Indeed,the EPR e�ect is not needed at all for key distribution, for the simpli�ed EPR schemeis equivalent to the original scheme of Bennett and Brassard[5], which employs onlyone{particle states.In the BB84 scheme, a user Alice prepares particles in a random sequence of thefour states j "i, j #i, j i, and j!i, and sends them to another user Bob, who, like1 Such source substitution includes as a special cases the direct Stern{Gerlach measurementson the particles after their emission from an EPR source already discussed, as well as indirectmeasurements [7][8] in which Nathan causes one or both of the EPR particles to interact coherentlywith an auxiliary quantum system, to be measured afterward.3



Boris, subjects them randomly to measurements of �z or �x. Alice and Bob proceedjust as Albert and Boris did, publicly announcing in each instance whether Alice sentz{ or x{ eigenstates (but not which variety) and whether Bob measured z{ or x{ spincomponents (but not the results of his measurements). They discard instances inwhich Bob measured �x when Alice sent him j"i or j#i, or measured �z in instanceswhen Alice sent j i or j!i, and they test a random subset of the remaining data,on which they ought to agree if there were no eavesdropping. The only di�erencebetween the two schemes is that Alice's random data is chosen by her, while Albert'soriginates in the random behavior of an EPR particle when he measures it. If Alicewished, however, she could make her four{way random choice by producing an EPRpair herself and measuring one particle along a random axis (x{ or z{), letting theother particle, now in a known random one of the four states, pass to Bob. Theresulting modi�ed BB84 scheme is exactly as strong as the original, since there is noway to tell outside Alice's laboratory which scheme she actually uses.The security of the BB84 scheme can also be demonstrated directly. The publictest in BB84 certi�es that the any interaction of an eavesdropper with the particle intransit to Bob has left undisturbed any of the four states that Alice might have sent:j"i, j#i, j i, and j!i. But any measurement which fails to disturb non{orthogonalstates also yields no information about them. For let the eavesdropper's interactionwith the quantum transmission be described by a unitary operator U in the productspace of the quantum transmission and the eavesdropper's measuring apparatus. Letjui and jvi be two non{orthogonal quantum transmissions, such as j"i, j!i, and letjai be the eavesdropper's initial quantum state. To evade detection of eavesdroppingby Bob, U must leave both jui and jvi undisturbed so thatU(juijai) = juija0i and U(jvijai) = jvija00i; (3)where ja0i and ja00i are two other normalized quantum states of the eavesdropper.But since U is unitary,hujvi = hajhujvijai = ha0jhujvija00i = hujviha0ja00i: (4)Since hujvi 6= 0, it follows that ha0ja00i = 1, which for normalized states requires thatja0i = ja00i. So the eavesdropper is left in the same state ja0i after having interactedwith jui or jvi or indeed any linear combination, such as the other two standardtransmissions j #i and j  i. Just as in the EPR security theorem, the only attackthat can avoid detection is the one that yields no information.Thus the apparent di�erences between the EPR and BB84 schemes are super�cial.We have disposed of an apparent weakness of the EPR scheme not shared by BB84| its susceptibility to source substitution. An apparent weakness of the BB84 schemenot shared by EPR is the fact that the information sought by the eavesdropper existsat the time of eavesdropping, whereas in the EPR scheme it is only created later.But the existence or non{existence of the information at the moment of espionageis irrelevant. In neither EPR nor BB84 can the adversary attempt merely to readthe information. In the EPR case, the adversary's only hope is to create information4



that Albert and Boris will read and accept as legitimate without realizing that itis now possessed by the adversary as well. We have shown this to be impossible,because anything but a true singlet, uncorrelated with the adversary, will reveal thetampering through deviations from the expected EPR statistics. In the BB84 case,the information does exist, and an adversary can even learn part of it, but, becauseit is encoded in nonorthogonal states, the adversary can only extract it at the costof once again disturbing the expected correlations, tipping o� Alice and Bob to thepresence of an eavesdropper.So far we have treated the individual quantum transmissions (ie launching andmeasuring a single particle or EPR pair) as independent events whose results arecombined classically by the legitimate participants for purposes of testing and keygeneration, and can also only be combined classically by an adversary for purposesof eavesdropping. But Wiesner, in the seminal paper [9] that originated the use ofnon-orthogonal states such as j "i and j !i for cryptographic purposes, raised thepossibility of a very powerful adversary whose apparatus interacts coherently withthe entire sequence of transmissions, treating them all as a single quantum statein the product space of all the individual experiments and performing an arbitraryindirect measurement on the entire sequence. Our proofs of security of the EPR andBB84 schemes are easily generalized to cover even such an attack. In the EPR case,the only state of N pairs of particles that gives correct EPR statistics for each pair isone whose projection into the 4N{dimensional Hilbert space of all pairs is a productof singlets, so any substitute source except an uninformative product of singlets risksdetection. In the single{particle scheme, the existence of a set of 2N non{orthogonalstates (e.g. states with some j "i particles and some j !i particles), none of whichis supposed to be disturbed by the eavesdropper, and which together span the entire2N dimensional Hilbert space of N particles, guarantees that the eavesdropper alsofails to learn anything about any N{particle state.Turning to more practical matters of cryptography, in any of these schemes, theeavesdropper has a signi�cant chance of learning a small amount of the key withoutdetection, e.g. by eavesdropping on just a few particles, none of which might happento fall into the tested subset. A more useful version of the BB84 scheme which hasrecently been implemented experimentally [10] replaces the simple subset test by moresophisticated error{correction and hashing techniques. This allows Alice and Bob toarrive at a highly secret key even when their raw data has been compromised byeavesdropping at the statistical margin of detectability or by other sources of leakage(e.g. the use instead of single{photon states of low{intensity coherent or incoherentlight pulses, which can sometimes be split by an adversary), and even when the datahas been signi�cantly corrupted by eavesdropping and noisy detectors.Gilles Brassard is supported in part by the Natural Sciences and EngineeringResearch Council of Canada. David Mermin is supported by the National ScienceFoundation, Grant No. PHY 9022796, and has bene�ted from many conversationswith Oreste Piccioni about EPR roulette and the relevance or irrelevance of Bell'stheorem. 5
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