
Efficient Commit Protocols for the Tree of
Processes Model of Distributed Transactions

C. Mohan, B. Lindsay

IBM San Jose Research Laboratory
San Jose, CA 95193

ABSTRACT: This paper describes two efficient distributed transaction commit protocols, the
Presumed Abort (PA) and Presumed Commit (PC) protocols, which have been implemented in
the distributed data base system R* [DSI-ILM82, LHMWY83]. PA and PC are extensions of
the well-known two-phase (2P) commit protocol [Gray78, Lamp80, LSGGL80]. PA is
optimized for read-only transactions and a class of multi-site update transactions, and PC is
optimized for other classes of multi-site update transactions. The optimizations result in reduced
inter-site message traffic and log writes, and, consequently, a better response time for such
transactions. We derive the new protocols in a step-wise fashion by modifying the 2P protocol.

I N T R O D U C T I O N

In a distributed data base system, the actions of a transaction (an atomic unit of consistency
and recovery [Gray81]) may occur at more than one site. Our model of a transaction, unlike
that of some other researchers' [RBFGH80, Ston79], permits multiple data manipulation and
definition statements to constitute a single transaction. When a transaction execution starts, the
whole transaction need not be already specified and made known to the system. A distributed
transaction commit protocol is required in order to insure either that all the effects of the
transaction persist or that none of the effects persist, despite site or communication link
failures and loss of messages. In other words, a commit protocol is needed to guarantee the
uniform commitment of distributed transaction executions.

Guaranteeing uniformity requires that certain facilities exist in the distributed data base
system. We assume that each process of a transaction is able to provisionally perform the
actions of the transaction in such a way that they can be undone if the transaction is or
needs to be aborted. Also, each data base of the distributed data base system has a log which

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. TO copy
otherwise, or to republish, requires a fee and/or specific permission,

© 1983 ACM 0-89791-110-5/83/008/0076 $00.75

76

is used to recoverably record the state changes of the transaction during the execution of the
commit protocol and the transactlon's changes to the data base (the UNDO/REDO log
[GMBLL81, HaRe82]). The log records are written sequentially in a file which is kept in
stable (non-volatile) storage [Lamp80].

When a log record is written, the write can be done synchronously or asynchronously. In the
former case, which is also called forcing a log record, that log record and all preceding ones
are immediately moved from the virtual memory buffers to stable storage. The log writer is
not allowed to continue execution until this operation is completed. This means that if the site
crashes (assuming that a crash results in the loss of the contents of the virtual memory) after
the force-write has completed, then the forced record and the ones preceding it would have
survived the crash and would be available for reading from the stable storage when the site
recovers.

On the other hand, in the asynchronous case, the record gets written to the buffer storage and
is allowed to migrate to the stable storage later on (due to a subsequent force or when a log
page buffer fills up). The writer is allowed to continue execution before the migration takes
place. This means that if the site crashes after the log write, then the record may not be
available for reading when it recovers. An important point to note is that a synchronous write
increases the response time of the writer compared to an asynchronous write. Hereafter, we
refer to the latter as simply a write and the former as a force-write.

Several commit protocols have been proposed in the literature, and some have been
implemented [Borr81, Gray78, HaSh80, Lamp80, LSGGL80, MoSF83, Skee81, Skee82]. These
are variations of what has come to be known as the two-phase (2P) commit protocol. These
protocols differ in the number of messages sent, the time for completion of the commit
processing, the level of parallelism permitted during the commit processing, the number of state
transitions that the protocols go through, the time required for recovery once a site becomes
operational after a failure, the number of log records written, and the number of those log
records that are written synchronously to stable storage. In general, these numbers are
expressed as a function of the number of sites or processes involved in the execution of the
distributed transaction.

Some of the desirable characteristics for a commit protocol are: (1) Guaranteed transaction
atomicity always, (2) ability to "forget" outcome of commit processing after a while, (3)
requirement of minimal overhead in terms of log writes and message sending, (4) optimized
performance in the no-failure case, and (5) exploitation of read-only transactions.

While other researchers have concentrated primarily on improving the reliability characteristics
of the commit protocols without being too much concerned about the performance aspects, here
we concentrate on the latter, especially the logging and communication performance during
no-failure situations. While describing the two-phase protocol and the other protocols, we will
carefully point out when and what type of log records are written. The discussions of commit
protocols in the literature are very vague, if there is any mention at all, about this crucial
(for correctness and performance) aspect of the protocols.

The rest of this paper is organized as follows. First, we give a careful presentation of the
two-phase (2P) protocol. Next, we derive two new protocols, namely Presumed Abort (PA)

77

and Presumed Commit (PC), from 2P in a step-wise fashion. We conclude by comparing the
performance and discussing the trade-offs involved in choosing between PA and PC. We also
point out how our protocols have been extended to the contexts in which the transaction
execution tree could have more than two levels, as in R* [DSHLM82, HSBDL82, LI-I]VIVJY83]
and ENCOMPASS [Bor rg l] .

T H E T W O - P H A S E (2 P) C O M M I T P R O T O C O L

In 2P, the model of a distributed transaction execution is such that there is one process,
called the coordinator, which is connected to the user application and a set of other processes,
called the subordinates. During the execution of the commit protocol the subordinates
communicate only with the coordinator, not among themselves. Transactions are assumed to
have globally unique names. The processes are assumed to have globally unique names (which
also indicate the locations of the corresponding processes: the processes do not migrate f rom
site to site). 2 All the processes together accomplish the function of a distributed transaction.

2P U N D E R N O R M A L O P E R A T I O N

First, we describe the protocol without considering failures. When the user decides to commit
a transaction, the coordinator, which receives a commit-transaction command from the user,
initiates the first phase of the commit protocol by sending, in parallel, PREPARE messages to
the subordinates to determine whether they are willing to commit the transaction. ~ Each
subordinate that is willing to let the transaction be committed first force-writes a prepare log
record and then sends a YES VOTE to the coordinator and waits for the final decision
(commit /abor t) f rom the coordinator. The process is then said to be in the prepared state.
Each subordinate that wants to have the transaction aborted force-writes an abort record and
sends a NO VOTE to the coordinator. Since a NO VOTE acts like a veto, the subordinate
knows that the transaction will definitely be aborted by the coordinator. Hence the subordinate
does not need to get any more information f rom the coordinator. Therefore, the subordinate
aborts the transaction, releases its locks and "forgets" it (i.e., no information about this
transaction is retained in virtual storage).

After the coordinator receives the votes f rom all its subordinates, it initiates the second phase
of the protocol. If all the votes were YES VOTEs, then the coordinator moves to the
committing state, force-writes a commit record, and sends COMMIT messages to all the
subordinates. The completion of the force-write takes the transaction to its commit point. Once
this point is passed the user can be told that the transaction has been committed. If the
coordinator had received even one NO VOTE then it moves to the aborting state, force-writes
an abort record and sends ABORT messages to (only) all the subordinates that are in the
prepared state. Each subordinate, after receiving a COMMIT message moves to the committing

2 For ease of exposition, we assume that each site participating in a distributed transaction has only one process
of that transaction. However, the protocols presented here have been successfully implemented in R*
[DSHLM82, HSBDL82, LHMWY83], where this assumption is relaxed to permit more than one such process per
site.

3 In cases where the user or the coordinator wants to abort the transaction, the latter sends an ABORT message
to each of the subordinates. If a transaction gets resubmitted after being aborted it is given a new name.

78

state, force-writes a commit record, sends an acknowledgement (ACK) message to the
coordinator, and then commits the transaction and "forgets" it. Each subordinate, after
receiving an ABORT message moves to the aborting state, force-writes an abort record, sends
an ACK message to the coordinator, and then aborts the transaction and "forgets" it. The
coordinator, after receiving the .4CK messages from all the subordinates that were sent a
message in the second phase (remember that subordinates who voted NO don't get any
ABORT messages in the second phase), writes an end record and "forgets" the transaction.

By requiring the subordinates to send ACKs, the coordinator makes sure that all the
subordinates are aware of the final outcome. By forcing their commit~abort records before
sending the A CKs the subordinates make sure that they will never be required (while
recovering from a processor failure) to ask the coordinator about the final outcome after
having acknowledged a COMMIT/ABORT message. The general principle on which the
protocols described in this paper are based is that if a subordinate acknowledges the receipt of
any particular message, then it should make sure (by forcing a log record with the information
in that message before sending the .4CK) that it will never ask the coordinator about that
piece of information. If this principle is not adhered to, transaction atomicity may not be
guaranteed.

The log records at each site contain the type (prepare, end, etc.) of the record, the identity of
the process that writes the record, the name of the transaction, the identity of the coordinator
and the names of the locks held by the writer in the case of prepare records and the identities
of the subordinates in the case of the commit~abort records written by the coordinator.

To summarize, for a committing transaction, during the execution of the protocol, each
subordinate writes 2 records (prepare and commit, both of which are forced) and sends 2
messages (YES VOTE and A CIO. The coordinator sends 2 messages (PREPARE and COMMIT)
to each subordinate and writes 2 records (commit, which is forced, and end, which is not).

2P AND FAILURES

Let us now consider site and communication link failures. We assume that at each active site
a recovery process exists ~).nd that it processes all messages from recovery processes at other
sites and handles all the transactions that were executing the commit protocol at the time of
the last failure of the site. We assume that as part of recovery from a crash, the recovery
process at the recovering site reads the log on stable storage and accumulates in virtual
storage information relating to transactions that were executing the commit protocol at the
time of the crash. 4 It is this information in virtual storage that is used to answer queries from
other sites about transactions which had their coordinators at this site and to send unsolicited
information to other sites which had subordinates for transactions that had their coordinators
at this site. Having the information in virtual storage allows remote site inquiries to be
answered qulcldy, There will be no need to consult the log to answer the queries,

4 The extent of the log that has to be read on restart can be controlled by taking "checkpoints" during normal
opemt/on [GMBLL81, HaKe82]. The log is scanned forward starting from the last checkpoint before the crash
until the end of the log.

79

When the recovery process finds that it is in the prepared state for a particular transaction it
periodically tries to contact the coordinator site to find out how the transaction should be
resolved. When the coordinator site resolves a transaction and lets this site know the final
outcome, the recovery process takes the steps outlined before (for a subordinate when it
receives an A B O R T / C O M M I T message). If the recovery process finds that a transaction was
executing at the time of the crash and that no commit protocol log record had been written,
then the recovery process neither knows nor cares whether it is dealing with a subordinate or
the coordinator of the transaction. It aborts that transaction by "undoing" its actions, if any,
using the U N D O log records, writing an abort record and "forgetting" it. 5 If the recovery
process finds a transaction in the committing (respectively, aborting) state, it periodically tries
to send the C O M M I T (ABORT) to all the subordinates that have not acknowledged and awaits
their A CKs. Once all the A CKs are received, the recovery process writes the end record and
"forgets" the transaction.

In addition to the workload that the recovery process accumulates by reading the log during
restart, it may be handed some transactions during normal operation by local coordinator and
subordinate processes which notice some link or remote site failures during the oommit
protocol (see [LHMWY83] for information relating to how and when such failures are
noticed). We assume that all failed sites ultimately recover.

If the coordinator process notices the failure of a subordinate while waiting for the latter to
send its vote, then the former aborts the transaction by taking the previously outlined steps. If
the failure occurs when the coordinator is waiting to get a n A CK, then the coordinator hands
the transaction over to the recovery process.

If a subordinate notices the failure of the coordinator before the former had voted yes and
gotten into the prepared state, then it aborts the transaction (This is called the unilateral abort
feature). On the other hand, if the failure occurs after th~ subordinate has gone into the
prepared state, then the subordinate hands the transaction over to the recovery process.

When a recovery process receives an inquiry message f rom a prepared subordinate site, it
looks at its information in virtual storage. If it has information which says that the transaction
is in the aborting or committing state, then it sends the appropriate response. The natural
question that arises is what action should be taken if no information is found in virtual
storage about the transaction. Let us see when such a situation could arise. Since both
COMMITs and ABORTs are being acknowledged, the fact that the inquiry is being made
means that the inquirer had not received and processed a C O M M I T / A B O R T before the
inquiree "forgot" the transaction. Such a situation comes about when: (1) the inquiree sends
out PREPARE messages, (2) it crashes before receiving all the votes and deciding to
commit /abor t , and (3) on restart, it aborts the transaction and does not inform any of the
subordinates. As mentioned before, on restart, the inquiree cannot tell whether it is a
coordinator or subordinate, since no commit protocol log records exist for the transaction.

5 It should be clear now why a subordinate cannot send a F/~ VOTE first and then write a prepare record, and
why a coordinator cannot send COMMIT messages first and then write the commit record. If such actions were
permitted then a failure after the message sending but before the log write may result in the wrong action
(some sites might have committed and others may abort) being taken at restart.

80

Given this fact, the correct response to an inquiry in the no informat ion case is an ABORT
message.

T H E P R E S U M E D A B O R T (P A) P R O T O C O L

In the last section we noticed that in the absence of any information about a transaction, the
recovery process orders an inquiring subordinate to abort. A careful examination of this
scenario reveals the fact that it is safe for a coordinator to forget a transaction immediately
after it makes the decision to abort it (e.g., by receiving a NO VOTE) and writes an abort
record. 6 This means that the abort record need not be forced (both by the coordinator and
each of the subordinates), and no A CKs need to be sent (by the subordinates) for ABORTs.
Furthermore, the coordinator need not record the names of the subordinates in the abort
record or write an end record after an abort record. Also, if the coordinator notices the failure
of a subordinate while attempting to send an ABORT to it, the coordinator does not need to
hand the transaction over to the recovery process. It will let the subordinate find out about
the abort when the recovery process of the subordinate's site sends an inquiry message. Note
that the changes that we have made so far to the 2P protocol have not changed the
performance (in terms of log writes and message sending) of the protocol with respect to
committing transactions.

Let us now consider completely or partially read-only transactions and see how we can take
advantage of them. A transaction is partially read-only if some processes of the transaction do
not perform any updates to the data base, while the others do. A transaction is (completely)
read-only if no process performs any updates. We do not need to know before the transaction
starts whether it is read-only or not. 7 If a subordinate receives a PREPARE message and it
finds that it has not done any updates (i.e. no U N D O / R E D O log records have been written),
then it sends a REdD VOTE, releases its locks, and "forgets" the transaction. The subordinate
writes no log records. As far as it is concerned, it does not matter whether the transaction
ultimately gets aborted or committed. So the subordinate, who is now known to the
coordinator to be read-only, does not need to be sent a COMMIT/ABORT message by the
coordinator.

There will not be a second phase of the protocol if the coordinator is read-only and gets only
READ VOTEs. In this case the coordinator, just like the subordinates, writes no log records
for the transaction. On the other hand, if the coordinator or one of the subordinates votes
YES and none of the others vote NO, then the coordinator behaves as in 2P. But note that it

is sufficient for the coordinator to include in the commit record only the identities of those
subordinates (if any) that voted YES (Only those processes will be in the prepared state and
hence only they will be sent COMMIT messages). If the coordinator or one of the
subordinates votes NO then the coordinator behaves as described earlier in this section.

6 Remember that in 2P the coordinator (during normal execution) "forgets" an abort only after it is sure that
all the subordinates are aware of the abort decision.

7 If the program contains conditional statements, the same program during different executions may be either
read-only or update depending on the input parameters and the data base state.

81

To summarize, for a (completely) read-oniy transaction, neither the coordinator nor any of the
subordinates writes any log records, but each one of the subordinates sends 1 message (READ
VOTE) and the coordinator sends 1 message (PREPARE) to each subordinate.

For a committing partially read-only transaction, the coordinator sends 2 messages (PREPARE
and COMMIT) to update subordinates and 1 message (PREPARE) to the others, and it writes
2 records (commit, which is forced, and end, which is not) if there is at least one update
subordinate and only 1 record (commit, which is forced), otherwise. A read-only subordinate
behaves just like the one in a completely read-only transaction, and an update subordinate
behaves like a subordinate of a committing transaction in 2P.

By making the above changes to 2P, we have generated the Presumed Abort (PA) protocol.
The name arises from the fact that in the no information case the transaction is presumed to
have aborted and hence the recovery process's response to an inquiry is an ABORT message.
Figure 1 shows the state transitions and log writes performed by the coordinator and
subordinate processes following PA.

T H E P R E S U M E D C O M M I T (PC) P R O T O C O L

Since most transactions a r e expected to commit, it is only natural to wonder if, by requiring
ACKs to ABORT messages, commits could be made cheaper by eliminating the ACKs to
COMMIT messages. A simplistic idea that comes to mind is to require that ABORTs be

Coordinator Subordinate

I read-o~lly) | (read

I I:> ID~LE. "°rr"r~u* {::::> COMMITTING ~ 1~r~o~*
~:>IDLE t ~ PREPARED

State Changes and Log Writes
for Presumed Abort

The names in italics on the arcs of the state-transition diagrams indicate the types of log
records written. An * next to the record type means that the record is forced to stable
storage. No log records are written during some transitions. In such cases, information in
parenthesis indicate under what circumstances such transitions take place. IDLE is the initial
and final state for each process.

Figure 1

82

acknowledged, while COM~I1Ts need not be, and also that abort records be forced while
commit records need not be by the subordinates. The consequences are that in the no
informat ion case, the recovery process responds with a COMMIT message when a subordinate
inquires. However, there is a problem with this approach.

Consider the situation when a coordinator has sent the PREPARE messages, one subordinate
has gone into the prepared state, and before the coordinator is able to collect all the votes
and make a decision, the coordinator crashes. Note that so far the coordinator would not have
written any commit protocol log records. When the crashed coordinator's site recovers, its
recovery process will abort this transaction and "forget" it without informing anyone, since no
information is available about the subordinates. When the recovery process of the prepared
subordinate's site then inquires the coordinator's site, its recovery process would respond with
a COMMIT s message, causing an unacceptable inconsistency.

The way out of this problem is for the coordinator to record the names of the subordinates
safely before any of them could get into the prepared state. Then, when the coordinator site
aborts on recovery from a crash that occurred after the sending of the PREPARE messages,
the restart process will know whom to inform (and get A CIgs) about the abort. These
modifications give us the Presumed Commit (PC) protocol. The name arises from the fact that
in the no information case the transaction is presumed to have committed and hence the
response to an inquiry is a COMMIT message.

In PC, the coordinator behaves as in PA except: (1) at the start of the first phase (i.e.,
before sending the PREPARE messages) it force-writes a collecting record, which contains the
names of all the subordinates, and moves into the collecting state; (2) it force-writes both
commit and abort records; (3) it requires ACICs only for ABORTs and not for COMMITs; (4)
it writes an end record only after an abort record (if the abort is done after a collecting record
is written) and not after a commit record; (5) only when in the aborting state may it (on
noticing a subordinate's failure) hand over the transaction to the restart process; and (6) in
the case of a (completely) read-only transaction, it would not write any records at the end of
the first phase in PA, but in PC it would write a commit record and then "forget" the
transaction.

The subordinates behave as in PA except that now they force-write only abort records and not
commit records, and they ACI¢ only ABORTs and not COMMITs. On restart, if the recovery
process finds, for a particular transaction, a collecting record and no other records following it,
then it force-writes an abort record, informs all the subordinates, gets A CKs from them, writes
the end record, and "forgets" the transaction. In the no informat ion case, the recovery process
responds to an inquiry with a COMMIT message.

To summarize, for a (completely) read-only transaction, the coordinator writes 2 records
(collecting, which is forced, and commit, which is not) and sends 1 message (PREPARE) to

8 Note that as far as the recovery process is concerned, this situation is the same as when a coordinator, after
force writing a commit record (which n o w will not contain the names of the subordinates), tries to inform a
prepared subordinate, finds it has crashed, and therefore "forgets" the transaction (i.e., does not hand it to the
recovery process). Later on, when the subordinate inquires, the recovery process would find no information and
hence would respond with a COMMIT message.

83

each subordinate. The subordinates write no log records, but each one of the subordinates
sends 1 message (RF.dD VOTE).

For a committing partially read-only transaction, the coordinator sends 2 messages (PREPARE
and COMMIT) to update subordinates and 1 message (PREPARE) to the others, and it writes
2 records (collecting and commit, both of which are forced). A read-only subordinate behaves
just like the one in a completely read-only transaction and an update subordinate sends 1
message (YES VOTE) and writes 2 records (prepare, which is forced, and commit, which is
not).

Figure 2 shows the state transitions and log writes performed by the coordinator and
subordinate processes following PC.

DISCUSSION

In the table of Figure 3 we summarize the performance of 2P, PA, and PC with respect to
committing update and read-oniy transactions. Note that as far as 2P is concerned all
transactions appear to be completely update transactions and that under all circumstances PA
is better than 2P. It is obvious that PA performs better than PC in the case of (completely)
read only transactions (saving the coordinator 2 log writes, including a force) and in the case
of partially read only transactions in which only the coordinator does any updates (saving the

C o o r d i n a t o r S u b o r d i n a t e

¢ m

~ eo~Hnge I abo~
IDLE [=:> COLLECTING - ' ~ " ABORTING

I eomm4S fb~us-en~) J ~w; E I=>- PREPARED

abe~le

State Changes and Log Writes
for PrEsumed Commit

The names in italics on the arcs of the state-transition diagrams indicate the types of log
records written. An * next to the record type means that the record is forced to stable
storage. No log records are written during some transitions. In such cases, information in
parenthesis indicate under what circumstances such transitions take place. IDLE is the initial
and final state for each process.

Figure 2

84

P1"ocess
T~jpe

Protocol

!Standard
~.p

P r e s u m e d
A b o r t

P r e s u m e d
Commit

Coordinafor

U
Yes US

2 . I . - . 2

U R
No US

2 , 1 , 1 , 2 1 .1 .1 0 . 0 . 1

Subordinafe

2 , 2 , 1 . 2 2 , 2 , 1 2 , 1 , 1

US RS

2 . 2 . 2 -

2 , 2 , 2 . 0 , 0 , 1

2 , 1 , 1 0 , 0 , 1

U - Update Transaction
R - Read-Only Transaction

RS - Read-Only Subordinate
US - Update Subordinate

m,n,o,p - m Records Written, n of Them Forced
o For a Coordinator: # of Messages Sent to Each RS

For a Subordinate: # of Messages Sent to
Coordinator

p # of Messages Sent to Each US

Figure 3: Comparison of Log I/O & Messages for Committing Transactions With 2P, PA and
PC

coordinator a force-write). In both cases, PA and PC require the same number of messages to
be sent. In the case of a transaction with only one update subordinate, PA and PC are equal
in terms of log writes, but PA requires an extra message (ACK sent by the update
subordinate). For a transaction with n > 1 update subordinates, both PA and PC require the
same number of records to be written, but PA will force n-1 times when PC will not. These
correspond to the forcing of the commit records by the subordinates. In addition, PA will send
n extra messages (ACKs).

Depending on the transaction mix that is expected to be run against a particular distributed
data base, the choice between PA and PC can be made. It should also be noted that the
choice could be made on a transaction-by-transaction basis (instead of on a system-wide basis)
at the time of the start of the first phase by the coordinator. 9 At the time of starting a
transaction, the user could give a hint (not a guarantee) that it is likely to be read-only, in
which case PA could be chosen; otherwise, PC could be chosen.

85

E X T E N S I O N S

In the distributed data base systems R* [DSHLM82, HSBDL82, LHMWY83] and ENCOMPASS
[Borr81], a distributed transaction execution is carried out by a multi-level (not just a
two-level) tree of processes. Our protocols are easily extended to this model. Non-root,
non-leaf nodes act as coordinators as well as subordinates, while leaf nodes act only as
subordinates, and the root node acts only as coordinator. Each process communicates directly
with only its immediate neighbors in the tree, i.e. father and sons. In fact, a process would
not even know about the existence of its non-neighbor processes.

The root coordinator and leaf subordinates act the same way as before. On receiving a
PREPARE, each non-root coordinator instead of sending its vote immediately has to solicit the
votes of its subordinates and decide on the vote for the subtree for which it is the root, and
then send this vote to its coordinator. This decision is similar to what the root coordinator
does when it has all the votes. If the vote is a NO VOTE, then it has to abort its prepared
subordinates. Each non-root coordinator has to also propagate a COMMIT/ABORT received
from its coordinator to its subordinates, possibly after sending an A CK to its coordinator. The
details of these extensions are easily derived. These extended protocols are the ones that have
been implemented and are operational in R*.

R should be pointed out that our commit protocols are blocking [Skee81] in that they require
a prepared process that has noticed the failure of its coordinator to wait until it can
reestablish communication with its coordinator's site to determine the final outcome (commit or
abort) of the commit processing for that transaction. In [MoSF83] we have proposed an
approach to dealing with this problem in the context of the Highly Available Systems project
in our Laboratory.

A C K N O W L E D G E M E N T

We would like to convey our thanks to Guy Lohman for his detailed editorial comments.

R E F E R E N C E S

Borr81 Borr, A. "Transaction
Transaction Processing",
September 1981.

Monitoring in ENCOMPASS: Reliable Distributed
Proc. International Conference on Very Large Data Bases,

Coop82 Cooper, E. "Analysis of Distributed Commit Protocols", Proc. SIGMOD Int. Conf.
on Management of Data, June 1982.

9 If this approach is taken (as we have done in R*), then the coordinator should include the name of the
protocol chosen in the PKEPARE message, and all processes should include this n a m e in the first commi t
protocol log record that each one writes. The name should also be included in the inquiry messages sent by
restart processes and this information is used by a recovery process in responding to an inquiry in the no
information case.

86

DSHLM82

GMBLLS1

Gray78

Gray81

HaRe82

HaSh80

HSBDL82

Lamp80

LHMWY83

LSGGL80

MoSF83

Daniels, D., Selinger, P., Haas, L., Lindsay, B., Mohan, C., Walker, A., Wilms, P.
"An Introduction to Distributed Query Compilation in R*", Prec. Second
International Symposium on Distributed Data Bases, Berlin, September 1982. Also
IBM Research Report ILJ3497.

Gray, J., McJones, P., Biasgen, M., Lindsay, B., Lorie, R., Price, T., Putzolu, F.,
Traiger, I. "The Recovery Manager of the System R Database Manager", ACM
Computing Surveys, Vol. 13, No. 2, June 1981.

Gray, J. "Notes on Data Base Operating Systems", In Operating Systems - A n
Advanced Course, Lecture Notes in Computer Science, Volume 60, Sprlnger-Verlag,
1978.

Gray, J. "The Transaction Concept: Virtues and Limitations", Prec. Seventh Int.
Conf. on Very Large Data Bases, October 1981.

Harder, T., Reuter, A. "Principles of Transaction Oriented Database Recovery
A Taxonomy", Technical Report 50/82, University of KaJserslautern, W.
Germany, April 1982.

Hammer, M., Shipman, D. "Reliability Mechanisms for SDD-I", ACM Transactions
on Data Base Systems, December 1980.

Haas, L.M., Selinger, P.G., Bertino, E., Daniels, D., Lindsay, B., Lehman, G.,
Masunaga, Y., Mohan, C., Ng, P., Wilms, P., Yost, R. "R*: A Research Project
on Distributed Relational DBMS", Database Engineering, Volume 5, Number 2,
December 1982. Also IBM Research Report RJ3653, October 1982.

Lampson, B. "Atomic Transactions", Chapter 11 in Distributed Systems
Architecture and Implementation, B. Lampson (Ed.), lecture Notes in Computer
Science Vol. 100, Springer Veralg, 1980.

Lindsay, B., Haas, L., Mohan, C., Wilms, P., Yost, R. "Computation and
Communication in R*: A Distributed Database Manager", To Appear in Prec. 9th
ACM Symposium on Operating Systems Principles, Bretton Woods, October 1983.
Also IBM Research Report RJ3740, January 1983.

Lindsay, B., Selinger, P., Galtieri, C., Gray, J., Lorie, R., Putzolu, F., Traiger, I.,
Wade, B. "Single and Multi-Site Recovery Facilities", In Distributed Data Bases,
Edited by I.W. Draffan and F. Peele, Cambridge University Press, 1980. Also
Available as "Notes on Distributed Databases", IBM Research Report RJ2571,
San Jose, July 1979.

Mohan, C., Strong, R., Finkelstein, S. "Method for Distributed Transaction
Commit and Recovery Using Byzantine Agreement Within Clusters of
Processors", Prec. 2nd ACM SIGACT/SIGOPS Symposium on Principles of Distributed
Computing, Montreal, Canada, August 1983. Also IBM Research Report RJ3882,
June 1983.

87

RBFGH80

Skee81

Skee82

Ston79

Rothnie, J.B., Bemstein, P.A., Fox, S., Goodman, N., Hammer, M., Landers, T.,
Reeve, C., Shipman, D., Wong, E. "Introduction to a System for Distributed
Databases (SDD-1)", ACM Transactions on Database Systems, Vol. 5, No. 1, March
1980.

Skeen, D. "Nonblocking Commit Protocols", Proc. ACM/SIGMOD International
Conference on Management of Data, Ann Arbor, Michigan, 1981, pp. 133-142.

Skeen, D. "A Quorum-Based Commit Protocol", Proc. 6th Berkeley Workshop on
Distributed Data Management and Computer Networks, May 1982, pp. 69-90.

Stonebraker, M. "Concurrency Control and Consistency of Multiple Copies of
Data in Distributed INGRES", IEEE Transactions on Software Engineering, Vol. 5,
No. 3, May 1979.

88

