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ABSTRACT: This paper describes two efficient distributed transaction commit protocols, the 
Presumed Abort (PA) and Presumed Commit (PC) protocols, which have been implemented in 
the distributed data base system R* [DSI-ILM82, LHMWY83]. PA and PC are extensions of 
the well-known two-phase (2P) commit protocol [Gray78, Lamp80, LSGGL80 ]. PA is 
optimized for read-only transactions and a class of multi-site update transactions, and PC is 
optimized for other classes of multi-site update transactions. The optimizations result in reduced 
inter-site message traffic and log writes, and, consequently, a better response time for such 
transactions. We derive the new protocols in a step-wise fashion by modifying the 2P protocol. 

I N T R O D U C T I O N  

In a distributed data base system, the actions of a transaction (an atomic unit of consistency 
and recovery [Gray81 ]) may occur at more than one site. Our model of a transaction, unlike 
that of some other researchers' [RBFGH80, Ston79], permits multiple data manipulation and 
definition statements to constitute a single transaction. When a transaction execution starts, the 
whole transaction need not be already specified and made known to the system. A distributed 
transaction commit protocol is required in order to insure either that all the effects of the 
transaction persist or that none of the effects persist, despite site or communication link 
failures and loss of messages. In other words, a commit protocol is needed to guarantee the 
uniform commitment of distributed transaction executions. 

Guaranteeing uniformity requires that certain facilities exist in the distributed data base 
system. We assume that each process of a transaction is able to provisionally perform the 
actions of the transaction in such a way that they can be undone if the transaction is or 
needs to be aborted. Also, each data base of the distributed data base system has a log which 
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is used to recoverably record the state changes of the transaction during the execution of the 
commit protocol and the transactlon's changes to the data base (the UNDO/REDO log 
[GMBLL81, HaRe82]). The log records are written sequentially in a file which is kept in 
stable (non-volatile) storage [Lamp80]. 

When a log record is written, the write can be done synchronously or asynchronously. In the 
former case, which is also called forcing a log record, that log record and all preceding ones 
are immediately moved from the virtual memory buffers to stable storage. The log writer is 
not allowed to continue execution until this operation is completed. This means that if the site 
crashes (assuming that a crash results in the loss of the contents of the virtual memory) after 
the force-write has completed, then the forced record and the ones preceding it would have 
survived the crash and would be available for reading from the stable storage when the site 
recovers. 

On the other hand, in the asynchronous case, the record gets written to the buffer storage and 
is allowed to migrate to the stable storage later on (due to a subsequent force or when a log 
page buffer fills up). The writer is allowed to continue execution before the migration takes 
place. This means that if the site crashes after the log write, then the record may not be 
available for reading when it recovers. An important point to note is that a synchronous write 
increases the response time of the writer compared to an asynchronous write. Hereafter, we 
refer to the latter as simply a write and the former as a force-write. 

Several commit protocols have been proposed in the literature, and some have been 
implemented [Borr81, Gray78, HaSh80, Lamp80, LSGGL80, MoSF83, Skee81, Skee82]. These 
are variations of what has come to be known as the two-phase (2P) commit protocol. These 
protocols differ in the number of messages sent, the time for completion of the commit 
processing, the level of parallelism permitted during the commit processing, the number of state 
transitions that the protocols go through, the time required for recovery once a site becomes 
operational after a failure, the number of log records written, and the number of those log 
records that are written synchronously to stable storage. In general, these numbers are 
expressed as a function of the number of sites or processes involved in the execution of the 
distributed transaction. 

Some of the desirable characteristics for a commit protocol are: (1) Guaranteed transaction 
atomicity always, (2) ability to "forget" outcome of commit processing after a while, (3) 
requirement of minimal overhead in terms of log writes and message sending, (4) optimized 
performance in the no-failure case, and (5) exploitation of read-only transactions. 

While other researchers have concentrated primarily on improving the reliability characteristics 
of the commit protocols without being too much concerned about the performance aspects, here 
we concentrate on the latter, especially the logging and communication performance during 
no-failure situations. While describing the two-phase protocol and the other protocols, we will 
carefully point out when and what type of log records are written. The discussions of commit 
protocols in the literature are very vague, if there is any mention at all, about this crucial 
(for correctness and performance) aspect of the protocols. 

The rest of this paper is organized as follows. First, we give a careful presentation of the 
two-phase (2P) protocol. Next, we derive two new protocols, namely Presumed Abort (PA) 
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and Presumed Commit  (PC), from 2P in a step-wise fashion. We conclude by  comparing the 
performance and discussing the trade-offs involved in choosing between PA and PC. We also 
point out how our protocols have been extended to the contexts in which the transaction 
execution tree could have more than two levels, as in R* [DSHLM82, HSBDL82, LI-I]VIVJY83 ] 
and ENCOMPASS [Bor rg l ] .  

T H E  T W O - P H A S E  ( 2 P )  C O M M I T  P R O T O C O L  

In 2P, the model of a distributed transaction execution is such that there is one process, 
called the coordinator, which is connected to the user application and a set of other processes, 
called the subordinates. During the execution of the commit  protocol the subordinates 
communicate only with the coordinator, not among themselves. Transactions are assumed to 
have globally unique names. The processes are assumed to have globally unique names (which 
also indicate the locations of the corresponding processes: the processes do not migrate f rom 
site to site). 2 All the processes together accomplish the function of a distributed transaction. 

2P U N D E R  N O R M A L  O P E R A T I O N  

First, we describe the protocol without considering failures. When the user decides to commit  
a transaction, the coordinator, which receives a commit-transaction command from the user, 
initiates the first phase of the commit  protocol by sending, in parallel, PREPARE messages to 
the subordinates to determine whether they are willing to commit  the transaction. ~ Each 
subordinate that is willing to let the transaction be committed first force-writes a prepare log 
record and then sends a YES VOTE to the coordinator and waits for the final decision 
(commit /abor t )  f rom the coordinator. The process is then said to be in the prepared state. 
Each subordinate that wants to have the transaction aborted force-writes an abort record and 
sends a NO VOTE to the coordinator. Since a NO VOTE acts like a veto, the subordinate 
knows that the transaction will definitely be aborted by the coordinator. Hence the subordinate 
does not need to get any more information f rom the coordinator. Therefore, the subordinate 
aborts the transaction, releases its locks and "forgets" it (i.e., no information about this 
transaction is retained in virtual storage). 

After the coordinator receives the votes f rom all its subordinates, it initiates the second phase 
of the protocol. If all the votes were YES VOTEs, then the coordinator moves to the 
committing state, force-writes a commit record, and sends COMMIT messages to all the 
subordinates. The completion of the force-write takes the transaction to its commit point. Once 
this point is passed the user can be told that the transaction has been committed. If the 
coordinator had received even one NO VOTE then it moves to the aborting state, force-writes 
an abort record and sends ABORT messages to (only) all the subordinates that are in the 
prepared state. Each subordinate, after receiving a COMMIT message moves to the committing 

2 For ease of exposition, we assume that each site participating in a distributed transaction has only one process 
of that transaction. However, the protocols presented here have been successfully implemented in R* 
[DSHLM82, HSBDL82, LHMWY83 ], where this assumption is relaxed to permit more than one such process per 
site. 

3 In cases where the user or the coordinator wants to abort the transaction, the latter sends an ABORT message 
to each of the subordinates. If a transaction gets resubmitted after being aborted it is given a new name. 
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state, force-writes a commit record, sends an acknowledgement (ACK) message to the 
coordinator, and then commits the transaction and "forgets" it. Each subordinate, after 
receiving an ABORT message moves to the aborting state, force-writes an abort record, sends 
an ACK message to the coordinator, and then aborts the transaction and "forgets" it. The 
coordinator, after receiving the .4CK messages from all the subordinates that were sent a 
message in the second phase (remember that subordinates who voted NO don't get any 
ABORT messages in the second phase), writes an end record and "forgets" the transaction. 

By requiring the subordinates to send ACKs, the coordinator makes sure that all the 
subordinates are aware of the final outcome. By forcing their commit~abort records before 
sending the A CKs the subordinates make sure that they will never be required (while 
recovering from a processor failure) to ask the coordinator about the final outcome after 
having acknowledged a COMMIT/ABORT message. The general principle on which the 
protocols described in this paper are based is that if a subordinate acknowledges the receipt of 
any particular message, then it should make sure (by forcing a log record with the information 
in that message before sending the .4CK) that it will never ask the coordinator about that 
piece of information. If this principle is not adhered to, transaction atomicity may not be 
guaranteed. 

The log records at each site contain the type (prepare, end, etc.) of the record, the identity of 
the process that writes the record, the name of the transaction, the identity of the coordinator 
and the names of the locks held by the writer in the case of prepare records and the identities 
of the subordinates in the case of the commit~abort records written by the coordinator. 

To summarize, for a committing transaction, during the execution of the protocol, each 
subordinate writes 2 records (prepare and commit, both of which are forced) and sends 2 
messages (YES VOTE and A CIO. The coordinator sends 2 messages (PREPARE and COMMIT) 
to each subordinate and writes 2 records (commit, which is forced, and end, which is not). 

2P AND FAILURES 

Let us now consider site and communication link failures. We assume that at each active site 
a recovery process exists ~).nd that it processes all messages from recovery processes at other 
sites and handles all the transactions that were executing the commit protocol at the time of 
the last failure of the site. We assume that as part of recovery from a crash, the recovery 
process at the recovering site reads the log on stable storage and accumulates in virtual 
storage information relating to transactions that were executing the commit protocol at the 
time of the crash. 4 It is this information in virtual storage that is used to answer queries from 
other sites about transactions which had their coordinators at this site and to send unsolicited 
information to other sites which had subordinates for transactions that had their coordinators 
at this site. Having the information in virtual storage allows remote site inquiries to be 
answered qulcldy, There will be no need to consult the log to answer the queries, 

4 The extent of the log that has to be read on restart can be controlled by taking "checkpoints" during normal 
opemt/on [GMBLL81, HaKe82]. The log is scanned forward starting from the last checkpoint before the crash 
until the end of the log. 
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When the recovery process finds that it is in the prepared state for a particular transaction it 
periodically tries to contact the coordinator site to find out how the transaction should be 
resolved. When the coordinator site resolves a transaction and lets this site know the final 
outcome, the recovery process takes the steps outlined before (for a subordinate when it 
receives an A B O R T / C O M M I T  message). If the recovery process finds that a transaction was 
executing at the time of the crash and that no commit  protocol log record had been written, 
then the recovery process neither knows nor cares whether it is dealing with a subordinate or 
the coordinator of the transaction. It  aborts that transaction by "undoing" its actions, if any, 
using the U N D O  log records, writing an abort record and "forgetting" it. 5 If the recovery 
process finds a transaction in the committing (respectively, aborting ) state, it periodically tries 
to send the C O M M I T  (ABORT)  to all the subordinates that have not acknowledged and awaits 
their A CKs. Once all the A CKs are received, the recovery process writes the end record and 
"forgets" the transaction. 

In addition to the workload that the recovery process accumulates by  reading the log during 
restart, it may  be handed some transactions during normal operation by local coordinator and 
subordinate processes which notice some link or remote site failures during the oommit  
protocol (see [LHMWY83]  for information relating to how and when such failures are 
noticed). We assume that all failed sites ultimately recover. 

If the coordinator process notices the failure of a subordinate while waiting for the latter to 
send its vote, then the former aborts the transaction by taking the previously outlined steps. If 
the failure occurs when the coordinator is waiting to get a n  A CK, then the coordinator hands 
the transaction over to the recovery process. 

If a subordinate notices the failure of the coordinator before the former had voted yes and 
gotten into the prepared state, then it aborts the transaction (This is called the unilateral abort  
feature). On the other hand, if the failure occurs after th~ subordinate has gone into the 
prepared state, then the subordinate hands the transaction over to the recovery process. 

When a recovery process receives an inquiry message f rom a prepared subordinate site, it 
looks at its information in virtual storage. If it has information which says that the transaction 
is in the aborting or committing state, then it sends the appropriate response. The natural 
question that arises is what  action should be taken if no information is found in virtual 
storage about the transaction. Let us see when such a situation could arise. Since both 
COMMITs and ABORTs are being acknowledged, the fact that the inquiry is being made 
means that the inquirer had not received and processed a C O M M I T / A B O R T  before the 
inquiree "forgot" the transaction. Such a situation comes about when: (1) the inquiree sends 
out PREPARE messages, (2) it crashes before receiving all the votes and deciding to 
commit /abor t ,  and (3) on restart, it aborts the transaction and does not inform any of the 
subordinates. As mentioned before, on restart, the inquiree cannot tell whether it is a 
coordinator or subordinate, since no commit  protocol log records exist for the transaction. 

5 It should be clear now why a subordinate cannot send a F/~ VOTE first and then write a prepare record, and 
why a coordinator cannot send COMMIT messages first and then write the commit record. If such actions were 
permitted then a failure after the message sending but before the log write may result in the wrong action 
(some sites might have committed and others may abort) being taken at restart. 
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Given this fact, the correct response to an inquiry in the no informat ion case is an ABORT 
message. 

T H E  P R E S U M E D  A B O R T  ( P A )  P R O T O C O L  

In the last section we noticed that in the absence of any information about a transaction, the 
recovery process orders an inquiring subordinate to abort. A careful examination of this 
scenario reveals the fact that it is safe for a coordinator to forget a transaction immediately 
after it makes the decision to abort  it (e.g., by  receiving a NO VOTE) and writes an abort 
record. 6 This means that the abort record need not be forced (both by the coordinator and 
each of the subordinates), and no A CKs need to be sent (by the subordinates) for ABORTs. 
Furthermore, the coordinator need not record the names of the subordinates in the abort 
record or write an end record after an abort record. Also, if the coordinator notices the failure 
of a subordinate while attempting to send an ABORT to it, the coordinator does not need to 
hand the transaction over to the recovery process. It will let the subordinate find out about 
the abort  when the recovery process of the subordinate's site sends an inquiry message. Note 
that the changes that we have made so far to the 2P protocol have not changed the 
performance (in terms of log writes and message sending) of the protocol with respect to 
committing transactions. 

Let us now consider completely or partially read-only transactions and see how we can take 
advantage of them. A transaction is partially read-only if some processes of the transaction do 
not perform any updates to the data base, while the others do. A transaction is (completely) 
read-only if no process performs any updates. We do not need to know before the transaction 
starts whether it is read-only or not. 7 If a subordinate receives a PREPARE message and it 
finds that it has not done any updates (i.e. no U N D O / R E D O  log records have been written), 
then it sends a REdD VOTE, releases its locks, and "forgets" the transaction. The subordinate 
writes no log records. As far as it is concerned, it does not matter  whether the transaction 
ultimately gets aborted or committed. So the subordinate, who is now known to the 
coordinator to be read-only, does not need to be sent a COMMIT/ABORT message by the 
coordinator. 

There will not be a second phase of the protocol if the coordinator is read-only and gets only 
READ VOTEs. In this case the coordinator, just like the subordinates, writes no log records 
for the transaction. On the other hand, if the coordinator or one of the subordinates votes 
YES and none of the others vote NO, then the coordinator behaves as in 2P. But note that it 

is sufficient for the coordinator to include in the commit record only the identities of those 
subordinates (if any) that voted YES (Only those processes will be in the prepared state and 
hence only they will be sent COMMIT messages). If the coordinator or one of the 
subordinates votes NO then the coordinator behaves as described earlier in this section. 

6 Remember that in 2P the coordinator (during normal execution) "forgets" an abort only after it is sure that 
all the subordinates are aware of the abort decision. 

7 If the program contains conditional statements, the same program during different executions may be either 
read-only or update depending on the input parameters and the data base state. 
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To summarize, for a (completely) read-oniy transaction, neither the coordinator nor any of the 
subordinates writes any log records, but each one of the subordinates sends 1 message (READ 
VOTE) and the coordinator sends 1 message (PREPARE) to each subordinate. 

For a committing partially read-only transaction, the coordinator sends 2 messages (PREPARE 
and COMMIT) to update subordinates and 1 message (PREPARE) to the others, and it writes 
2 records (commit, which is forced, and end, which is not) if there is at least one update 
subordinate and only 1 record (commit, which is forced), otherwise. A read-only subordinate 
behaves just like the one in a completely read-only transaction, and an update subordinate 
behaves like a subordinate of a committing transaction in 2P. 

By making the above changes to 2P, we have generated the Presumed Abort (PA) protocol. 
The name arises from the fact that in the no information case the transaction is presumed to 
have aborted and hence the recovery process's response to an inquiry is an ABORT message. 
Figure 1 shows the state transitions and log writes performed by the coordinator and 
subordinate processes following PA. 

T H E  P R E S U M E D  C O M M I T  (PC)  P R O T O C O L  

Since most transactions a r e  expected to commit, it is only natural to wonder if, by requiring 
ACKs to ABORT messages, commits could be made cheaper by eliminating the ACKs to 
COMMIT messages. A simplistic idea that comes to mind is to require that ABORTs be 

Coordinator Subordinate 

I read-o~lly) | (read 

I I:> ID~LE. "°rr"r~u* {::::> COMMITTING ~ 1~r~o~* 
~:>IDLE t ~  PREPARED 

State Changes and Log Writes 
for Presumed Abort 

The names in italics on the arcs of the state-transition diagrams indicate the types of log 
records written. An * next to the record type means that the record is forced to stable 
storage. No log records are written during some transitions. In such cases, information in 
parenthesis indicate under what circumstances such transitions take place. IDLE is the initial 
and final state for each process. 

Figure 1 
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acknowledged, while COM~I1Ts need not be, and also that abort records be forced while 
commit records need not be by the subordinates. The consequences are that in the no 
informat ion case, the recovery process responds with a COMMIT message when a subordinate 
inquires. However, there is a problem with this approach. 

Consider the situation when a coordinator has sent the PREPARE messages, one subordinate 
has gone into the prepared state, and before the coordinator is able to collect all the votes 
and make a decision, the coordinator crashes. Note that so far the coordinator would not have 
written any commit protocol log records. When the crashed coordinator's site recovers, its 
recovery process will abort this transaction and "forget" it without informing anyone, since no 
information is available about the subordinates. When the recovery process of the prepared 
subordinate's site then inquires the coordinator's site, its recovery process would respond with 
a COMMIT s message, causing an unacceptable inconsistency. 

The way out of this problem is for the coordinator to record the names of the subordinates 
safely before any of them could get into the prepared state. Then, when the coordinator site 
aborts on recovery from a crash that occurred after the sending of the PREPARE messages, 
the restart process will know whom to inform (and get A CIgs) about the abort. These 
modifications give us the Presumed Commit (PC) protocol. The name arises from the fact that 
in the no information case the transaction is presumed to have committed and hence the 
response to an inquiry is a COMMIT message. 

In PC, the coordinator behaves as in PA except: (1) at the start of the first phase (i.e., 
before sending the PREPARE messages) it force-writes a collecting record, which contains the 
names of all the subordinates, and moves into the collecting state; (2) it force-writes both 
commit and abort records; (3) it requires ACICs only for ABORTs and not for COMMITs; (4) 
it writes an end record only after an abort record (if the abort is done after a collecting record 
is written) and not after a commit record; (5) only when in the aborting state may it (on 
noticing a subordinate's failure) hand over the transaction to the restart process; and (6) in 
the case of a (completely) read-only transaction, it would not write any records at the end of 
the first phase in PA, but in PC it would write a commit record and then "forget" the 
transaction. 

The subordinates behave as in PA except that now they force-write only abort records and not 
commit records, and they ACI¢ only ABORTs and not COMMITs. On restart, if the recovery 
process finds, for a particular transaction, a collecting record and no other records following it, 
then it force-writes an abort record, informs all the subordinates, gets A CKs from them, writes 
the end record, and "forgets" the transaction. In the no informat ion case, the recovery process 
responds to an inquiry with a COMMIT message. 

To summarize, for a (completely) read-only transaction, the coordinator writes 2 records 
(collecting, which is forced, and commit, which is not) and sends 1 message (PREPARE) to 

8 Note that  as far as the recovery process is concerned, this situation is the  same as when  a coordinator, after 
force writing a commit record (which n o w  will not  contain the  names  of the subordinates),  tries to inform a 
prepared subordinate, finds it has crashed, and therefore "forgets" the transaction (i.e., does not  hand it to the 
recovery process). Later on, when  the subordinate inquires, the recovery process would find no information and 
hence would respond with a COMMIT message. 
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each subordinate. The subordinates write no log records, but each one of the subordinates 
sends 1 message (RF.dD VOTE). 

For a committing partially read-only transaction, the coordinator sends 2 messages (PREPARE 
and COMMIT) to update subordinates and 1 message (PREPARE) to the others, and it writes 
2 records (collecting and commit, both of which are forced). A read-only subordinate behaves 
just like the one in a completely read-only transaction and an update subordinate sends 1 
message (YES VOTE) and writes 2 records (prepare, which is forced, and commit, which is 
not). 

Figure 2 shows the state transitions and log writes performed by the coordinator and 
subordinate processes following PC. 

DISCUSSION 

In the table of Figure 3 we summarize the performance of 2P, PA, and PC with respect to 
committing update and read-oniy transactions. Note that as far as 2P is concerned all 
transactions appear to be completely update transactions and that under all circumstances PA 
is better than 2P. It is obvious that PA performs better than PC in the case of (completely) 
read only transactions (saving the coordinator 2 log writes, including a force) and in the case 
of partially read only transactions in which only the coordinator does any updates (saving the 

C o o r d i n a t o r  S u b o r d i n a t e  

¢ m  

~ eo~Hnge I abo~ 
IDLE [=:> COLLECTING - ' ~ "  ABORTING 

I eomm4S fb~us-en~) J ~w; E I=>- PREPARED 

abe~le 

State Changes and Log Writes 
for PrEsumed Commit 

The names in italics on the arcs of the state-transition diagrams indicate the types of log 
records written. An * next to the record type means that the record is forced to stable 
storage. No log records are written during some transitions. In such cases, information in 
parenthesis indicate under what circumstances such transitions take place. IDLE is the initial 
and final state for each process. 

Figure 2 
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P1"ocess 
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Protocol 

!Standard 
~.p 

P r e s u m e d  
A b o r t  

P r e s u m e d  
Commit 

Coordinafor 

U 
Yes US 

2 .  I . - . 2  

U R 
No US 

2 , 1 , 1 , 2  1 .1 .1  0 . 0 . 1  

Subordinafe 

2 , 2 , 1 . 2  2 , 2 , 1  2 , 1 , 1  

US RS 

2 . 2 . 2  - 

2 , 2 , 2 . 0 , 0 , 1  

2 , 1 , 1  0 , 0 , 1  

U - Update Transaction 
R - Read-Only Transaction 

RS - Read-Only Subordinate 
US - Update Subordinate 

m,n,o,p - m Records Written, n of Them Forced 
o For a Coordinator: # of Messages Sent to Each RS 

For a Subordinate: # of Messages Sent to 
Coordinator 

p # of Messages Sent to Each US 

Figure 3: Comparison of Log I/O & Messages for Committing Transactions With 2P, PA and 
PC 

coordinator a force-write). In both cases, PA and PC require the same number of messages to 
be sent. In the case of a transaction with only one update subordinate, PA and PC are equal 
in terms of log writes, but PA requires an extra message (ACK sent by the update 
subordinate). For a transaction with n > 1 update subordinates, both PA and PC require the 
same number of records to be written, but PA will force n-1 times when PC will not. These 
correspond to the forcing of the commit records by the subordinates. In addition, PA will send 
n extra messages (ACKs). 

Depending on the transaction mix that is expected to be run against a particular distributed 
data base, the choice between PA and PC can be made. It should also be noted that the 
choice could be made on a transaction-by-transaction basis (instead of on a system-wide basis) 
at the time of the start of the first phase by the coordinator. 9 At the time of starting a 
transaction, the user could give a hint (not a guarantee) that it is likely to be read-only, in 
which case PA could be chosen; otherwise, PC could be chosen. 
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E X T E N S I O N S  

In the distributed data base systems R* [DSHLM82, HSBDL82, LHMWY83 ] and ENCOMPASS 
[Borr81], a distributed transaction execution is carried out by a multi-level (not just a 
two-level) tree of processes. Our protocols are easily extended to this model. Non-root, 
non-leaf nodes act as coordinators as well as subordinates, while leaf nodes act only as 
subordinates, and the root node acts only as coordinator. Each process communicates directly 
with only its immediate neighbors in the tree, i.e. father and sons. In fact, a process would 
not even know about the existence of its non-neighbor processes. 

The root coordinator and leaf subordinates act the same way as before. On receiving a 
PREPARE, each non-root coordinator instead of sending its vote immediately has to solicit the 
votes of its subordinates and decide on the vote for the subtree for which it is the root, and 
then send this vote to its coordinator. This decision is similar to what the root coordinator 
does when it has all the votes. If the vote is a NO VOTE, then it has to abort its prepared 
subordinates. Each non-root coordinator has to also propagate a COMMIT/ABORT received 
from its coordinator to its subordinates, possibly after sending an A CK to its coordinator. The 
details of these extensions are easily derived. These extended protocols are the ones that have 
been implemented and are operational in R*. 

R should be pointed out that our commit protocols are blocking [Skee81 ] in that they require 
a prepared process that has noticed the failure of its coordinator to wait until it can 
reestablish communication with its coordinator's site to determine the final outcome (commit or 
abort) of the commit processing for that transaction. In [MoSF83] we have proposed an 
approach to dealing with this problem in the context of the Highly Available Systems project 
in our Laboratory. 
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