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We derive a Newton method for computing the best rank-(r1, r2, r3) ap-
proximation of a given J ×K × L tensor A. The problem is formulated as
an approximation problem on a product of Grassmann manifolds. Incorpo-
rating the manifold structure into Newton’s method ensures that all iterates
generated by the algorithm are points on the Grassmann manifolds. We also
introduce a consistent notation for matricizing a tensor, for contracted ten-
sor products and some tensor-algebraic manipulations, which simplify the
derivation of the Newton equations and enable straightforward algorithmic
implementation. Experiments show a quadratic convergence rate for the
Newton-Grassmann algorithm.

1 Introduction

The problem of approximating a tensor A ∈ RJ×K×L by another tensor B of equal
dimension but of lower rank,

min
B
‖A − B‖,

occurs e.g. in signal processing [14, 4], and pattern classification [18]. Throughout the
paper, we will use the Frobenius norm (we will state the precise meaning of this and
other concepts in Section 2). There is no unique definition of the rank of a tensor (as
opposed to the case of matrices). Here we will deal with the concept of multi-linear rank
[3] and assume that rank(B) = (r1, r2, r3), which means that the tensor B can be written
as a product of a core tensor S and three matrices,

B = (X, Y, Z) · S, (1)
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with matrices of full column rank, X ∈ RJ×r1 , Y ∈ RK×r2 , and Z ∈ RL×r3 . The tensor
S has dimension r1 × r2 × r3. It is no restriction to assume that X, Y , and Z have
orthonormal columns. Thus we want to solve the problem

min
S,X,Y,Z

‖A − (X, Y, Z) · S‖, subject to XT X = I, Y T Y = I, ZT Z = I. (2)

The approximation problem is illustrated in Figure 1.

A
S
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Y T

Z
T

≈

Figure 1: The approximation of a tensor A by another tensor B = (X, Y, Z) · S of lower
multi-linear rank.

Unlike the matrix case, there is no known closed form solution of the approximation
problem (2). It can be shown that the minimization problem is well-defined [14],[3,
Corollary 4.5].

We will restrict ourselves to considering the approximation problem (2) for a 3−tensor
A in this paper. The main contribution is the derivation of a Newton method for the
solution of (2). The constraints on the unknown matrices X, Y , and Z are taken into
account by formulating the problem as an optimization problem on a product of three
Grassmann manifolds. To be able to differentiate the objective function and derive the
Newton equations without extensive index manipulation (as is sometimes used in tensor
algebra) we develop an algebraic framework based on tensor contractions. Within this
framework it is also straightforward to generalize the derivations to tensors of order 4
and higher, and we sketch this in Section 4.6.

In view of the lack of a standard terminology and notation in the field of tensor
computations we define the concepts used in this paper in Section 2. There we also we
also propose a “canonical” tensor matricization, contracted tensor products, and a few
tensor-algebraic identities. The optimization problem problem on the product of three
Grassmann manifolds is formulated in Section 3 and the Newton-Grassmann method
is derived in Section 4.2. In Section 5 the numerical implementation of the method is
briefly described, and some preliminary numerical experiments are reported.

2 Tensor Concepts and Identities

For simplicity of notation and presentation, we will mostly, in this and the following
sections, present the basic concepts using examples in terms of 3−tensors or 5−tensors.
Some more general definitions are given in [13, 1, 3]. We will use Roman letters written
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with a calligraphic font to denote tensors, capital Roman letters to denote matrices
(2−tensors), and lower case Roman letters to denote vectors. However, we will also use
Roman letters in the the middle of the alphabet, J,K, L, . . . , and j, k, l, . . . ,, to denote
tensor dimensions and subscripts.

Let A denote a tensor in RJ×K×L. The three “dimensions” of the tensor are referred
to as modes. In the approximation problem (2) we will not consider the tensor as
multi-linear operator1, and therefore there is no need to make a distinction between
contravariant and covariant tensor modes in the tensor notation. We will use both
standard subscripts and “MATLAB-like” notation: a particular tensor element will be
denoted in two equivalent ways:

A(j, k, l) = ajkl.

We will refer to subtensors in the following way. A subtensor obtained by fixing one of
the indices is called a slice, e.g.,

A(j, :, :).

A fibre is a subtensor, where all indices but one are fixed,

A(j, :, l).

When in the following we use tensors, matrices and vectors in operations that we will
define, it is assumed that the dimensions of the respective quantities are conforming in
the sense that all the operations are well-defined.

2.1 Tensor–Matrix Multiplication

Even if our tensors are not primarily linear operators with contravariant and covariant
modes, it is convenient to define two variants of tensor–matrix multiplication. We first
define the mode−p contravariant multiplication of a tensor by a matrix. For concreteness
we first let p = 1. The mode−1 product of a tensor A ∈ RJ×K×L by a matrix W ∈ RM×J

is defined by

RM×K×L 3 B = (W )1 · A, B(m, k, l) =
J∑

j=1

ajklwmj . (3)

This means that all column vectors (mode−1 fibres) in the 3−tensor are multiplied by
the matrix W . Similarly, mode−2 multiplication by a matrix X means that all row
vectors (mode−2 fibres) are multiplied by the matrix X. Mode−3 multiplication is
analogous.

It is easy to see that for integers p 6= q, mode−p and mode−q multiplication commute:

(W )p · ((X)q · A) = (X)q · ((W )p · A), p 6= q.

1However, when we derive the Newton equations for solving the minimization problem, then we will
deal with a Hessian, which, of course, is a linear operator constructed in terms of tensors.
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Therefore it makes sense to define

(W,X)p,q · A = (W )p · ((X)q · A).

Obviously the following identity holds,

(W1)p · ((W2)p · A) = (W1W2)p · A, (4)

where the matrix and tensor dimensions are assumed to be conforming, and the product
W1W2 is standard matrix multiplication.

In the case when tensor-matrix multiplication is performed in all modes in the same
formula, we omit the subscripts and write

(X, Y, Z) · A, (5)

where the mode of each multiplication is understood from the order in which the matrices
are given. Thus, we have the identity

(Y )2 · A = (I, Y, I) · A.

The notation (5) was suggested by Lim2 [3].
One can also write the standard matrix multiplication of three matrices in the form

XFY T = (X, Y ) · F, (6)

where, at the same time, F is considered as a matrix and a 2−tensor.
Covariant multiplication, cf. [11, Chapter 2], by a matrix V ∈ RJ×M is defined

RM×K×L 3 C = A · (W )1, C(m, k, l) =
J∑

j=1

ajklwjm. (7)

Obviously we have the following relation between contravariant and covariant multipli-
cation:

(XT )p · A = A · (X)p. (8)

2.2 A “Canonical” Tensor Matricization

In the following sections we will occasionally rearrange the elements of a tensor so
that they form a matrix3. We will refer to this as matricizing the tensor4. Some-
times the matricization is performed along one specific mode [13, 10, 17]. Given an
N−tensor A ∈ RI1×···×IN its matricization along the n–th mode is a matrix of dimen-
sions In× I1 · · · In−1In+1 · · · IN . Here we will introduce a more general tensor matriciza-
tion5 which is intuitively and directly related to the matrix–tensor multiplication. In

2An alternative notation was given in [13].
3In particular, when the Newton equations are to be solved numerically, they must be arranged as

standard “matrix-vector” linear equations.
4Alternative terms are unfolding [13] or flattening [17].
5A similar, but not identical, generalized matricization is given in Bader and Kolda [1, 2]. The difference

between the two definitions is explained later in this section.
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this matricization we will map some modes of a tensor to the rows of the matrix and
the rest to the columns.

Let r = {r1, · · · , rL} be the modes of A mapped to the rows and c = {c1, · · · , cM} be
the modes of A mapped to the columns. The matricization is denoted

A(r;c) ∈ RJ×K , where J =
L∏

i=1

Iri , and K =
M∏

i=1

Ici . (9)

Of course many different one–to–one functions can map the tensor A onto a matrix with
dimensions as specified in (9). The different maps differ in the ordering of the row– and
column–indices of specific tensor elements.

We consider it useful, for analysis and consistency with tensor–matrix products, if the
matricization operation has the following properties, which are best illustrated with a
few examples. Let A be a 5–tensor and consider the product B = A · (X,Y, Z, U, V )
where X,Y, Z, U, V are matrices of appropriate dimensions multiplied with A along its
different modes. Here ⊗ denotes Kronecker product of matrices.

B(2;1,3:5) ≡ B(2) = Y T A(2)(X ⊗ Z ⊗ U ⊗ V ), r = {2}, c = {1, 3, 4, 5},
B(3,2;1,4,5) ≡ B(3,2) = (Z ⊗ Y )T A(3,2)(X ⊗ U ⊗ V ), r = {3, 2}, c = {1, 4, 5},

B(2,4,1;5,3) = (Y ⊗ U ⊗X)T A(2,4,1;5,3)(V ⊗ Z), r = {2, 4, 1}, c = {5, 3},
B(1,2,4;5,3) ≡ B(;5,3) = (X ⊗ Y ⊗ U)T A(;5,3)(V ⊗ Z), r = {1, 2, 4}, c = {5, 3}.
Observe that the ordering of the matrices in the Kronecker products is specified by
the matricization indices r and c. Specifying only the row (column) modes assumes
the column (row) modes to be in increasing order. In the above examples we have
used the covariant multiplication. For contravariant multiplication the transpose will be
introduced on the other side. For instance, with C = (X,Y, Z, U, V ) · A we have

C(2) = Y A(2)(X ⊗ Z ⊗ U ⊗ V )T , r = {2}, c = {1, 3, 4, 5},
C(3,2) = (Z ⊗ Y )A(3,2)(X ⊗ U ⊗ V )T , r = {3, 2}, c = {1, 4, 5}.

For a given an N–tensor A, the matricization to A(r;c) has the desired properties, if
the element A(i1, . . . , iN ) is mapped to A(r;c)(j, k) where

j = 1 +
L∑

l=1

[
(
irL−l+1

− 1
) l−1∏

l′=1

IrL−l′+1

]
, (10)

k = 1 +
M∑

m=1

[
(
icM−m+1 − 1

) m−1∏

m′=1

IcM−m′+1

]
. (11)

The matricization mapping presented in Bader and Kolda [1, 2] is different from ours
in that it reverses the ordering of the matrices in both sides of matricized forms6 of the
matrix–tensor products.

6For example, in the Bader-Kolda mapping the matricization of B would be B(2,4,1;5,3) = (X ⊗ U ⊗
Y )T A(2,4,1;5,3)(Z ⊗ V ).
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Applying the matricizing on the matrix products B = (X,Y ) ·A = XAY T we obtain

B(1) = XA(1)Y T , B(2) = Y A(2)XT .

Of course, this is trivial since for matrices A(1) ≡ A and A(2) ≡ AT .
Observe that this framework enables vectorization as well. Then one of r or c has to

be the empty set, denoted ∅ and the other contains all modes. Consider first the matrix
case, B = (X,Y ) ·A = XAY T . Vectorizing B with r = {1, 2} and c = ∅ we obtain

B(1,2;∅) = (X ⊗ Y )A(1,2;∅),

where A(1,2;∅) and B(1,2;∅) are the row-wise vectorizations of A and B, giving a column
vector. Changing the row modes to r = {2, 1} we obtain the more familiar

B(2,1;∅) = vec(B) = vec(XAY T ) = (Y ⊗X) vec(A) = (Y ⊗X)A(2,1;∅),

where, by convention, vec(·) denotes the column-wise vectorization. Further, with a
3-tensor B = A · (X, Y, Z) we have

B(2,1,3;∅) = (Y ⊗X ⊗ Z)T A(2,1,3;∅), and B(∅;2,1,3) = A(∅;2,1,3)(Y ⊗X ⊗ Z),

where in the first case the vectorization gives a column vector and in the second the
vectorization gives a row vector.

Finally, for later reference, we specify two special cases with tensor–matrix product
along one mode only. Let A be a general N–tensor. Then

B = A · (X)p, ⇔ B(p) = XT A(p), (12)

C = (X)p · A, ⇔ C(p) = XA(p). (13)

The notation in this paper emphasizes the connection between multi-linear tensor-
matrix products and their matricized form. Other notations are found in [12, 13, 10, 8].

2.3 Inner Product, Tensor Product, and Contracted Product

Given two tensors A and B of the same dimensions, we define the inner product

〈A,B〉 =
∑

j,k,l

ajklbjkl. (14)

The corresponding tensor norm is

‖A‖ = 〈A,A〉1/2. (15)

This Frobenius norm will be used throughout the paper. As in the matrix case the norm
is invariant under orthogonal transformations, i.e.

‖A‖ = ‖(U, V, W ) · A‖ = ‖A · (U, V, W )‖,
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for orthogonal matrices U , V , and W . This follows immediately from the fact that
mode−p multiplication by an orthogonal matrix does not change the Euclidean length
of the mode−p fibres.

The product of two tensors, A ∈ RJ×K×L and B ∈ RM×N , say, is a tensor of higher
dimensionality, here a 5−tensor,

RJ×K×L×M×N 3 C = A⊗ B, cjklmn = ajklbmn.

This is the tensor product, or outer product7.
The inner product (14) can be considered as a special case of the contracted product of

two tensors, which is a tensor (outer) product followed by a contraction along specified
modes. Thus, if A and B are 3−tensors of equal dimensions, we define, using essentially
the notation of [1],

C = 〈A,B〉1 , cjklm =
∑

λ

aλjkbλlm , (4−tensor) ,

D = 〈A,B〉1:2 , djk =
∑

λ,µ

aλµjbλµk , (2−tensor),

e = 〈A,B〉 = 〈A,B〉1:3 , e =
∑

λ,µ,ν

aλµνbλµν , (scalar).

We will refer to the first two as partial contractions.
Observe that we let the ordering of the modes in contracted tensor products be im-

plicitly given in the summation. Thus given A ∈ RJ×K×L and B ∈ RJ×M×N , then

C = 〈A,B〉1 ∈ RK×L×M×N .

In general, the modes of the product are given by the ordering of the non-contracted
modes of the first argument followed by the ordering of the non-contracted modes of the
second argument.

We will also use negative subscripts when the the contraction is made in all but a few
modes. For 3-tensors we have

〈A,B〉2:3 ≡ 〈A,B〉−1 , 〈A,B〉2 ≡ 〈A,B〉−(1,3) .

The contracted product can be defined also for tensors of different numbers of modes.
For example, with a 4−tensor F and matrices (2−tensors) F and G,

〈A, F 〉3:4;1:2 = G,
∑
µ,ν

ajkµνfµν = gjk, (16)

defines a linear system of equations.
In the following sections we will need a number of lemmas. The first result relates

contraction to matricization.
7Often the same notation, ⊗, is used for the Kronecker product of matrices, which is the tensor product

of two matrices (2−tensors), followed by a particular matricization of the 4−tensor.
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Lemma 2.1. Let A and B be N–tensors of matching dimensions in all but (possibly)
the ith mode and A(i) and B(i) the corresponding ith mode matricizations. Then

〈A,B〉−i = A(i)B(i)T , (17)

and
〈A,B〉 = tr(A(i)B(i)T ) = tr(〈A,B〉−i). (18)

Proof. For simplicity we give the proof only for 3–tensors and partial contraction in all
but the first mode. The general case is completely analogous. Let A ∈ RJ×L×M and
B ∈ RK×L×M . Then

〈A,B〉−1(j, k) =
∑

l,m

ajlmbklm. (19)

With C = A(1)B(1)T we get
C(j, k) =

∑

λ

a
(1)
jλ b

(1)
kλ , (20)

where A(1)(j, λ) = a
(1)
jλ and B(1)(k, λ) = b

(1)
kλ . By equation (11) element A(j, l,m) is

mapped to A(1)(j, λ) where λ = m + (l − 1)M , and similarly for elements of B. The
equality of (17) follows by observing that the λ–summation for the right hand side
actually consists of a summation over m and l.

The identity (18) follows from (19) by inspection.

The partial contracted products of two matrices A and B are

〈A,B〉−2 = 〈A,B〉1 = AT B, 〈A,B〉−1 = 〈A,B〉2 = ABT , (21)

which shows that partial contraction is related to matrix transposition. In the next
lemma we show that partial contractions play the role of taking the adjoint with respect
to the inner product (14).

Lemma 2.2. Let the N–tensors B and C and the matrix Q be of conforming dimensions.
Then

〈B · (Q)i, C〉 = 〈Q, 〈B, C〉−i〉 , (22)

〈B · (Q)i, C〉−i = QT 〈B, C〉−i = 〈Q, 〈B, C〉−i〉1 , (23)

〈B, C · (QT )i〉−i = 〈B, C〉−iQ
T = 〈〈B, C〉−i, Q〉2 . (24)

Proof. Equation (22) follows from

〈Q, 〈B, C〉−i〉 = 〈Q,B(i)C(i)T 〉 = tr(QT B(i)C(i)T )

= tr((B · (Q)i)(i)C(i)T 〉 = 〈B · (Q)i, C〉,

where we have used (18) and (12). The second and third identities follow directly by
matricizing the expressions along the ith mode and using (17).
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The following lemma can be motivated as follows: Obviously, from the definition of
contracted product, the mapping

Q −→ 〈B · (Q)j , C〉−i

is linear from matrices to matrices. In order to solve a linear system involving such a
mapping we need to write it in the form (16).

Lemma 2.3. Let the N–tensors B and C and the matrix Q be of conforming dimensions.
If j 6= i then

〈B · (Q)j , C〉−i =

{〈〈B, C〉−(i,j), Q
〉
1,3;1,2

if j < i〈〈B, C〉−(i,j), Q
〉
2,4;1,2

if j > i
(25)

〈B, C · (Q)j〉−i =

{〈〈B, C〉−(i,j), Q
〉
3,1;1,2

if j < i〈〈B, C〉−(i,j), Q
〉
4,2;1,2

if j > i
(26)

The proof is given in the appendix.

2.4 Multi-Linear Rank and Higher Order SVD

The multi-linear rank of a 3−tensor is a triplet (r1, r2, r3) such that

ri = dim(R(A(i)) = rank(A(i)), i = 1, 2, 3,

where R(A) = {y | y = Ax} is the range space of the matrix A, and rank(A) is the matrix
rank. Multi-linear rank is discussed in [3], as well as other rank concepts. In this paper
we will only deal with multi-linear rank, and we will use the notation rank−(r1, r2, r3),
and rank(A) = (r1, r2, r3).

For matrices the rank is obtained via the Singular Value Decomposition (SVD), see
e.g. [7, Chapter 2]. One generalization of the SVD to tensors, the Higher Order SVD,
was given in [13]. We here present the HOSVD for the case when A is a 3−tensor. The
general case is an obvious generalization.

Theorem 2.4 (HOSVD). Any 3−tensor A ∈ RJ×K×L can be factorized

A = (U, V, W ) · S, (27)

where U ∈ RJ×J , V ∈ RK×K , and W ∈ RL×L, are orthogonal matrices, and S ∈
RJ×K×L is all-orthogonal: the matrices 〈S,S〉−i, i = 1, 2, 3, are diagonal, and

‖S(1, :, :)‖ ≥ ‖S(2, :, :)‖ ≥ · · · ≥ 0, (28)
‖S(:, 1, :)‖ ≥ ‖S(:, 2, :)‖ ≥ · · · ≥ 0, (29)
‖S(:, :, 1)‖ ≥ ‖S(:, :, 2)‖ ≥ · · · ≥ 0, (30)

are the 1−mode, 2−mode, and 3−mode singular values, also denoted σ
(1)
i , σ

(2)
i , σ

(3)
i .
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Partitioning the orthogonal matrices in terms of columns, U = (u1, . . . , uJ), V =
(v1, . . . , vK), W = (w1, . . . , wL), the HOSVD equation can be written

A =
∑

j,k,l

sjkl uj ⊗ vk ⊗ wl,

where and ⊗ denotes the tensor product: For vectors x, y and z we have

(x⊗ y ⊗ z)λµν = xλyµzν .

Assume that the higher order singular values of A satisfy

σ(1)
r1

> 0, σ
(1)
r1+1 = 0,

σ(2)
r2

> 0, σ
(2)
r2+1 = 0,

σ(3)
r3

> 0, σ
(3)
r3+1 = 0,

for some constants r1, r2, and r3. It is easy to show that in this case the multi-linear
rank of A is (r1, r2, r3).

3 Best Rank−(r1, r2, r3) Approximation

Assume that we want to approximate, using the norm (15), the tensor A by another
tensor B of rank (r1, r2, r3). Thus we want to solve

min
rank(B)=(r1,r2,r3)

‖A − B‖. (31)

This problem is treated in [14]. In the matrix case, the solution of the corresponding
problem is given by the truncated SVD (the Eckart-Young property; a simple proof is
given in [6, Theorem 6.7]). In view of the fact that the HOSVD “orders the mass” of
the tensor in a similar way as the SVD, see (28)-(30), one might think that a truncated
HOSVD would give the solution of (31). However, this is not the case [14].

Some theoretical questions concerning the best rank−(r1, r2, r3) approximation prob-
lem are studied in [3]. In particular the following result is proved.

Proposition 3.1. Every k−tensor A has a best approximation B with

rank(B) ≤ (r1, r2, . . . , rk)

for any specified (r1, r2, . . . , rk).

The rank constraint in (31) implies (see [3, 14] and Section 2.4) that B can be written

B = (X, Y, Z) · B, B ∈ Rr1×r2×r3

where X ∈ RJ×r1 , Y ∈ RK×r2 , and Z ∈ RL×r3 , with

XT X = I, Y T Y = I, ZT Z = I. (32)
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The identity matrices in (32) have dimensions r1, r2, and r3, respectively.
Define three orthogonal matrices,

X̂ =
(
X X⊥

)
, X⊥ ∈ RJ×(J−r1),

Ŷ =
(
Y Y⊥

)
, Y⊥ ∈ RK×(K−r2),

Ẑ =
(
Z Z⊥

)
, Z⊥ ∈ RL×(L−r3).

In transformed coordinates, i.e., with Â = (X̂T , Ŷ T , ẐT ) · A and B̂ = (X̂T , Ŷ T , ẐT ) · B,
the residual in the approximation problem becomes

‖Â − B̂‖2 =
r1∑

j=1

r2∑

k=1

r3∑

l=1

(âjkl − b̂jkl)2 +
J∑

j=r1+1

K∑

k=r2+1

L∑

l=r3+1

(âjkl − b̂jkl)2

=
r1∑

j=1

r2∑

k=1

r3∑

l=1

(âjkl − b̂jkl)2 +
J∑

j=r1+1

K∑

k=r2+1

L∑

l=r3+1

â2
jkl ,

due to the rank constraint. The first term can be made equal to zero by choosing
âjkl − b̂jkl, and the residual becomes

‖Â − B̂‖2 =
J∑

j=r1+1

K∑

k=r2+1

L∑

l=r3+1

â2
jkl.

We now see that the problem of solving (31), i.e. making the residual as small as possible,
is equivalent to determining X, Y , and Z so that

‖(XT , Y T , ZT ) · A‖ = ‖A · (X, Y, Z)‖

is maximized. We thus define the objective function to be maximized,

Φ(X,Y, Z) =
1
2
‖A · (X, Y, Z)‖2 =

1
2

∑

j,k,l

A2
jkl, Ajkl =

∑

λ,µ,ν

aλµνxλjyµkzνl, (33)

where xλj , yµk, and zνl are elements of X, Y , and Z, respectively.

4 Solving the Maximization Problem by Newton’s Method

It follows from the invariance of the norm under orthogonal transformations that

Φ(X,Y, Z) = Φ(XU, Y V, ZW ), (34)

for orthogonal matrices U ∈ Rr1×r1 , V ∈ Rr2×r2 , and W ∈ Rr3×r3 . This means that
the problem of maximizing Φ under the orthogonality constraint (32) is is not yet well-
defined: the problem is over-parameterized, and any straightforward constrained opti-
mization method would have difficulties. It follows that we should maximize the function
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Φ not just over matrices with orthonormal columns but over equivalence classes of such
matrices, for instance,

[X] = {XU | U orthogonal}. (35)

This means that we should maximize over the Grassmann manifold [5], or more precisely,
over a product of Grassmann manifolds.

4.1 Newton’s Method on the Grassmann Manifold

The Grassmann manifold can be considered as a set of equivalence classes of matrices
(35) with orthonormal columns that span the same subspace, see [5]. Here we give a
very brief description of Newton’s method for maximizing a function G(X) defined on
the Grassmann manifold, and then we state Newton’s method on the product manifold.

Assume that X ∈ RJ×r1 is a point on the Grassmann manifold Gr(J, r1). A tangent
vector ∆ ∈ RJ×r1 at X satisfies

XT ∆ = 0,

and the tangent space at X, consisting of all tangent vectors at X and denoted TX , is a
linear space. The projection on the tangent space is

ΠX = I −XXT . (36)

The canonical metric (inner product) of the Grassmann manifold is

〈∆1, ∆2〉 = tr(∆T
1 ∆2), (37)

where ∆1 and ∆2 are tangent vectors.
Let ∆ be a tangent vector at X, and let X(t) be a parameterization of a geodesic curve

in the direction ∆. With the thin SVD, ∆ = UΣV T , where U ∈ RJ×r1 , and Σ ∈ Rr1×r1 ,
the geodesic is given by

X(t) = XV cos(tΣ)V T + U sin(tΣ)V T . (38)

In Newton’s method for maximizing a function G(t), with t = 0 as a tentative maximizer,
we approximate the function by the first three terms of the Maclaurin expansion,

G(t) ≈ G(0) + t
dG

dt

∣∣∣∣
t=0

+
t2

2
d2G

dt2

∣∣∣∣
t=0

,

and then we maximize the second degree polynomial in t. In Newton’s method on the
Grassmann manifold the objective of the quadratic approximation is to determine a
tangent vector ∆ that maximizes a second degree function

G(X(t)) ≈ G(X) + 〈∆,∇G〉+
1
2
〈∆,H(∆)〉, (39)

where 〈·, ·〉 is the inner product (37). ∇G is the gradient on the tangent space,

∇G = ΠXGx, (Gx)jk =
∂G

∂xjk
, (40)
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and the Hessian H(∆) is a linear operator on the tangent space, TX 3 ∆ −→ H(∆) ∈
TX . It is shown in [5] that the Newton equation for determining ∆ ∈ TX is a Sylvester-
like equation, which in our notation becomes

ΠX〈Gxx, ∆〉1:2 −∆〈X, Gx〉1 = −∇G, (Gxx)jklm =
∂2G

∂Xjk ∂Xlm
. (41)

Here the contracted product of the 4–tensor Gxx and the matrix ∆ defines a linear
operator. 〈Gxx,∆〉1:2 is a matrix, which can be multiplied by ΠX to project it to the
tangent space TX .

In order to solve the Newton equation (41) numerically, there are essentially three
approaches:

Solve the problem in the ambient Euclidean space Using the coordinates given by X
itself, we could disregard that the problem is defined on the Grassmann manifold and
solve the Newton equation in the ambient Euclidean space RJr1 . Since X is constrained,
i.e. XT X = I, the overparameterized coordinate representation will cause the Newton-
Grassmann equation (41) to be singular. A pseudoinverse solution combined with a
projection might be used to keep the iterates on the manifold.

Solve the problem on the tangent space The Newton-Grassmann equation (41) is
non-singular in the neighbourhood of a local maximum when considered on the tangent
space TX . Using a coordinate representation on the tangent space one can obtain a
smaller problem with a full rank Hessian operator. We will do this in the case of a
product manifold in Section 4.3.

Solve the problem by introducing Lagrange multipliers The third approach, which
is more efficient for large problems with J À r1, is to effectively introduce Lagrange
multipliers for the constraint and simultaneously solve for those and ∆, see e.g. [15, Alg.
2].

4.2 Newton’s Method on the Product Manifold

Our constrained optimization problem is

max
(X,Y,Z)∈Gr3

Φ(X, Y, Z), Gr3 = Gr(J, r1)×Gr(K, r2)×Gr(L, r3), (42)

where the objective function is defined in (33). The tangent space at (X,Y, Z) is
T3 = TX × TY × TZ , and the inner product is the sum of the inner products on the
respective manifolds. We will now derive the Newton equation on the product manifold
corresponding to (41). First we will differentiate Φ in the direction of a geodesic curve,
and then we will identify the terms in the expansion corresponding to (39).

A geodesic curve in the direction (∆x, ∆y,∆z) is given by (X(t), Y (t), Z(t)), where
the components are defined according to (38). From the definition of a tangent vector
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(see also (38)) we have
∂xst

∂t
= (∆x)st,

and corresponding in the other two directions. We therefore get
(

dX(t)
dt

,
dY (t)

dt
,

dZ(t)
dt

)
= (∆x , ∆y , ∆z),

and since
A · (X, Y, Z)(j, k, l) =

∑

λ,µ,ν

aλµνxλjyµkzνl,

every xλj etc. will be replaced by (∆x)λj etc. in the differentiation of A · (X, Y, Z):

d(A · (X, Y, Z))
dt

= A · (∆x, Y, Z) +A · (X, ∆y, Z) +A · (X, Y,∆z).

Grassmann Gradient The first derivative of Φ becomes

dΦ
dt

=
1
2

d

dt
〈A · (X, Y, Z),A · (X,Y, Z)〉

= 〈A · (∆x, Y, Z),A · (X, Y, Z)〉 (43)
+ 〈A · (X, ∆y, Z),A · (X, Y, Z)〉 (44)
+ 〈A · (X, Y,∆z),A · (X, Y, Z)〉. (45)

First we will identify the gradient, and to do this we need to rewrite (43)-(45) in the
form of the derivative term in (39).

It is convenient to define the tensor F = A · (X,Y, Z), since it will be used in many
expressions. From (22) we see that

〈A · (∆x, Y, Z),F〉 = 〈∆x, 〈A · (I, Y, Z),F 〉−1〉 =: 〈∆x, Φx〉, (46)

and corresponding for the other terms in (44) and (45). The X-part of the Grassmann
gradient (see (40)) then becomes

ΠXΦx = ΠX〈A · (I, Y, Z),F〉−1

= 〈A · (I, Y, Z),A · (X,Y, Z)〉−1 −XXT 〈A · (I, Y, Z),F〉−1

= 〈A · (I, Y, Z),A · (I, Y, Z)〉−1X −X〈F ,F〉−1, (47)

where we have used Lemma 2.1, (23) and (24). The factors in (47) have an interpretation
in terms of subtensors: F is a tensor in Rr1×r2×r3 and the contracted product

〈F ,F〉−1 = 〈F ,F〉2:3 = 〈A · (X, Y, Z),A · (X, Y, Z)〉2:3

is a symmetric matrix in Rr1×r1 , whose (j, k) element is the inner product between
F(j, :, :) and F(k, :, :), that is first mode jth and kth slices of F . Multiplying from
the left by X results in an J × r1 matrix. Similarly, 〈A · (I, Y, Z),A · (I, Y, Z)〉−1 is a
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symmetric J × J matrix, where the elements are inner products between the slices of
A · (I, Y, Z) and A · (I, Y, Z).

Using analogous reformulations for (44) and (45), the complete Grassmann gradient
becomes

∇Φ =




ΠXΦx

ΠY Φy

ΠY Φz


 =




〈A · (I, Y, Z),A · (I, Y, Z)〉−1X −X〈F ,F〉−1

〈A · (X, I, Z),A · (X, I, Z)〉−2Y − Y 〈F ,F〉−2

〈A · (X, Y, I),A · (X, Y, I)〉−3Z − Z〈F ,F〉−3


 . (48)

Grassmann Hessian Computing the second derivative of Φ, using the same technique
as for the gradient we obtain

d2Φ
dt2

= 〈A · (∆x, Y, Z),A · (∆x, Y, Z)〉+ 〈A · (∆x, ∆y, Z),A · (X,Y, Z)〉
+ 〈A · (∆x, Y, Z),A · (X, ∆y, Z)〉+ 〈A · (∆x, Y,∆z),A · (X, Y, Z)〉
+ 〈A · (∆x, Y, Z),A · (X, Y,∆z)〉+ · · · , (49)

where, for simplicity of the present discussion, we have omitted 10 analogous terms. The
first term, which gives the “xx” derivative, can be dealt with using Lemma 2.2. We get

〈A · (∆x, Y, Z),A · (∆x, Y, Z)〉 = 〈∆x, 〈A · (I, Y, Z),A · (∆x, Y, Z)〉−1〉
= 〈∆x, 〈A · (I, Y, Z),A · (I, Y, Z)〉−1∆x〉.

From (41) and (46) we now see that the “xx” part of the Grassmann Hessian is a
Sylvester operator,

Hxx(∆x) = ΠX〈A · (I, Y, Z),A · (I, Y, Z)〉−1∆x −∆xXT Φx

= ΠX〈A · (I, Y, Z),A · (I, Y, Z)〉−1∆x −∆x〈F ,F〉−1, (50)

where Φx is defined in (46), and we have used Lemma 2.2.
For the second term in (49) we get, using Lemmas 2.2 and 2.3,

〈A · (∆x, ∆y, Z),A · (X,Y, Z)〉 = 〈∆x, 〈A · (I,∆y, Z),A · (X, Y, Z)〉−1〉
= 〈∆x, 〈F1

xy, ∆y〉2,4;1:2 〉. (51)

where F1
xy is the 4−tensor

RJ×K×r1×r2 3 F1
xy = 〈A · (I, I, Z),A · (X,Y, Z)〉−(1,2) = 〈A · (I, I, Z),A · (X,Y, Z)〉3.

It is obvious that 〈F1
xy, ·〉2,4;1:2 defines a linear operator that maps matrices on matrices.

The third term in (49) becomes, again using Lemmas 2.2 and 2.3,

〈A · (∆x, Y, Z),A · (X, ∆y, Z)〉 = 〈∆x, 〈A · (I, Y, Z),A · (X, ∆y, Z)〉−1〉
= 〈∆x, 〈F2

xy, ∆y〉4,2;1:2 〉. (52)
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where F2
xy is a 4−tensor,

RJ×r2×r1×K 3 F2
xy = 〈A · (I, Y, Z),A · (X, I, Z)〉−(1,2) = 〈A · (I, Y, Z),A · (X, I, Z)〉3.

We now have
Fxy(∆y) = 〈F1

xy, ∆y〉2,4;1:2 + 〈F2
xy,∆y〉4,2;1:2 . (53)

The fourth and fifth terms in (49) can be dealt with similarly and give the Fxz operator.
In order for the second derivative operators to be in the tangent space we must multiply

Fxy, and Fxz by Πx. If we rewrite all the terms in the second derivative (49) in an
analogous way, we get a Hessian operator, H : T3 7→ T3, where

H(∆) =



Hxx(∆x) +Hxy(∆y) +Hxz(∆z)
Hyx(∆x) +Hyy(∆y) +Hyz(∆z)
Hzx(∆x) +Hzy(∆y) +Hzz(∆z)


 , (54)

and each “H∗∗” is a linear operator to be specified below. The diagonal operators8 are
(recall that F = A · (X, Y, Z)),

Hxx(∆x) = Πx〈Bx,Bx〉−1∆x −∆x〈F ,F〉−1, Bx = A · (I, Y, Z),
Hyy(∆y) = Πy〈By,By〉−2∆y −∆y〈F ,F〉−2, By = A · (X, I, Z), (55)
Hzz(∆z) = Πz〈Bz,Bz〉−3∆z −∆z〈F ,F〉−3, Bz = A · (X,Y, I).

Since the Hessian operator is selfadjoint9 we give only the blocks of the “upper triangular
part”,

Hxy(∆y) = Πx

(〈〈Cxy,F〉−(1,2) , ∆y〉2,4;1:2 + 〈〈Bx,By〉−(1,2), ∆y〉4,2;1:2

)
,

Hxz(∆z) = Πx

(〈〈Cxz,F〉−(1,3), ∆z〉2,4;1:2 + 〈〈Bx,Bz〉−(1,3),∆z〉4,2;1:2

)
,

Hyz(∆z) = Πy

(〈〈Cyz,F〉−(2,3) , ∆z〉2,4;1:2 + 〈〈By,Bz〉−(2,3), ∆z〉4,2;1:2

)
,

where we have also introduced Cxy = A·(I, I, Z), Cxz = A·(I, Y, I) and Cyz = A·(X, I, I).
Observe that diagonal operators are Sylvester operators, and the off-diagonal operators
have the form of 4–tensors acting on matrices.

4.3 Coordinate Representation for Gradient the Hessian Operator on the
Tangent Space

The Hessian (54) is still given in a coordinate-free form. In order to make it more
concrete, and to obtain a linear system of equations with the correct dimension that
is non-singular in a neighbourhood of a maximum, we introduce coordinate expressions

8Even if the Hessian is not a block matrix, we will refer to the operators Hxx, Hyy, etc. as diagonal
operators and Hxy, Hxz, etc. as off-diagonal operators.

9The operator is still somewhat abstract in the sense that we have not specified any coordinate repre-
sentation on the tangent space T3. However, considered as an operator on T3 it can be seen that the
operator is selfadjoint.

16



for the unknowns. We first see that the projections onto the tangent spaces can be
represented as

ΠX = X⊥XT
⊥, ΠY = Y⊥Y T

⊥ , ΠZ = Z⊥ZT
⊥,

where X⊥, Y⊥, Z⊥, are defined as in Section 3. In order to get a coordinate representation
for the unknown tangents, we write them as [5, Section 2.5]

∆x = X⊥Dx, Dx ∈ R(J−r1)×r1 ,

∆y = Y⊥Dy, Dy ∈ R(K−r2)×r2 , (56)

∆z = Z⊥Dz, Dx ∈ R(L−r3)×r3 ;

(note that the coordinate matrices are not assumed to be diagonal, even if the notation
might be interpreted in that direction). With these coordinate expressions we can repeat
the derivation from after (49) and write the Hessian as a linear operator acting on Dx,
Dy, and Dz. We get

Ĥ(D) :=




XT
⊥ 0 0
0 Y T

⊥ 0
0 0 ZT

⊥






Hxx(∆x) +Hxy(∆y) +Hxz(∆z)
Hyx(∆x) +Hyy(∆y) +Hyz(∆z)
Hzx(∆x) +Hzy(∆y) +Hzz(∆z)




=



Ĥxx(Dx) + Ĥxy(Dy) + Ĥxz(Dz)
Ĥyx(Dx) + Ĥyy(Dy) + Ĥyz(Dz)
Ĥzx(Dx) + Ĥzy(Dy) + Ĥzz(Dz)


 , (57)

where each “Ĥ∗∗” is a linear operator. The diagonal operators are

Ĥxx(Dx) = 〈B̂x, B̂x〉−1Dx −Dx〈F ,F〉−1, B̂x = A · (X⊥, Y, Z),

Ĥyy(Dy) = 〈B̂y, B̂y〉−2Dy −Dy〈F ,F〉−2, B̂y = A · (X, Y⊥, Z), (58)

Ĥzz(Dz) = 〈B̂z, B̂z〉−3Dz −Dz〈F ,F〉−3, B̂z = A · (X, Y, Z⊥).

The Hessian operator Ĥ is selfadjoint with respect to the inner product,

〈D, Ĥ(D)〉T3 = 〈Ĥ(D), D〉T3 .

where
〈D, E〉T3 = 〈Dx, Ex〉+ 〈Dy, Ey〉+ 〈Dz, Ez〉,

and D = (Dx, Dy, Dz) and E = (Ex, Ey, Ez) are the coordinates for two tangents.
Therefore we give only the blocks of the “upper triangular part”,

Ĥxy(Dy) =
(
〈〈Ĉxy,F〉−(1,2) , Dy〉2,4;1:2 + 〈〈B̂x, B̂y〉−(1,2), Dy〉4,2;1:2

)
,

Ĥxz(Dz) =
(
〈〈Ĉxz,F〉−(1,3), Dz〉2,4;1:2 + 〈〈B̂x, B̂z〉−(1,3), Dz〉4,2;1:2

)
, (59)

Ĥyz(Dz) =
(
〈〈Ĉyz,F〉−(2,3) , Dz〉2,4;1:2 + 〈〈B̂y, B̂z〉−(2,3), Dz〉4,2;1:2

)
,
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where Ĉxy = A · (X⊥, Y⊥, Z) , Ĉxz = A · (X⊥, Y, Z⊥) and Ĉyz = A · (X, Y⊥, Z⊥).
In the coordinate representation (56) the Grassmann gradient (48) is given by

∇Φ̂ =




XT
⊥ 0 0
0 Y T

⊥ 0
0 0 ZT

⊥







ΠXΦx

ΠY Φy

ΠY Φz


 =



〈B̂x,F〉−1

〈B̂y,F〉−2

〈B̂z,F〉−3


 . (60)

It is known [14] that in general the objective function (42) is not concave. In fact
it is easy to construct non-concave examples using the coordinate representation of the
Hessian.

Proposition 4.1. The maximization problem (42) can have local maxima.

Proof. Given any tensor A and a stationary point (X,Y, Z), for which the Hessian Ĥ is
negative definite. Now create a new tensor Ã by modifying A in such a way that a large
element occurs in Ã · (X⊥, Y⊥, Z⊥). Then, obviously, (X, Y, Z) is a stationary point for
Φ̃(X,Y, Z) = 1

2‖Ã · (X,Y, Z)‖2, but it cannot be a global maximum.

4.4 Interpretation of Operators in the Hessian

The Hessian operator Ĥ consists of partial contractions involving the tensors

A · (X,Y, Z), A · (X⊥, Y, Z), A · (X, Y⊥, Z), A · (X,Y, Z⊥),
A · (X, Y⊥, Z⊥), A · (X⊥, Y, Z⊥), A · (X⊥, Y⊥, Z).

These are blocks of the tensor Â = A · ((X X⊥), (Y Y⊥), (Z Z⊥)). The only block in Â
that does not occur in Ĥ is A · (X⊥, Y⊥, Z⊥). Â is illustrated in Figure 2.

The partial contractions 〈·, ·〉−p are matrices, whose elements are inner products be-
tween the slices in a subtensor. In Figure 2 we illustrate the inner products in Ĥxx. In the
off-diagonal operators the inner products are between fibres in subtensors. For instance,
in Ĥxy the inner products in 〈Ĉxy,F〉−(1,2) are between fibers, illustrated with the
symbol, from A · (X⊥, Y⊥, Z) and A · (X, Y, Z). Similarly the elements of 〈B̂x, B̂y〉−(1,2)

are inner products between the fibers from A · (X⊥, Y, Z) and A · (X,Y⊥, Z).

4.5 Matricizing the Hessian Operator

It is now straightforward to matricize the operators in the Hessian and vectorize Dx, Dy

and Dz to obtain a standard matrix–vector linear system.
The “xx” block in (58) has the form

Ĥxx(Dx) = 〈B̂x, B̂x〉−1Dx −Dx〈F ,F〉−1. (61)

Observing that the contracted tensors are matrices and with straightforward vectoriza-
tion of matrix products [9, Chapter 4.3] we get

vec(Ĥxx(Dx)) =
(
I ⊗ 〈B̂x, B̂x〉−1 + 〈F ,F〉−1 ⊗ I

)
dx ≡ Ĥxxdx,

18



A · (X, Y, Z)

A · (X
⊥, Y, Z)

A · (X, Y
⊥, Z)

A · (X
⊥, Y

⊥, Z)

A · (X, Y, Z
⊥)

A · (X
⊥, Y, Z

⊥)

A · (X, Y
⊥, Z

⊥)

A · (X
⊥, Y

⊥, Z
⊥)

Figure 2: Illustration of the partial contractions in the Hessian. For better visibility we
have slided the backward part of the the tensor Â to the right.

where dx = vec(Dx). The other diagonal blocks are treated analogously.
The off-diagonal blocks in (59) consist of two 4–tensors acting on matrices. The “xy”

block is given by

Ĥxy(Dy) =
(
〈Ĥ1

xy , Dy〉2,4;1:2 + 〈Ĥ2
xy, Dy〉4,2;1:2

)
,

where Ĥ1
xy = 〈Ĉxy,F〉−(1,2) and Ĥ2

xy = 〈B̂x, B̂y〉−(1,2). In Ĥ1
xy, we map the first and third

mode to the rows and second and forth mode to the columns of the matrix. In Ĥ2
xy the

ordering of the row modes is the same but the column modes are four and two. The
vectorized form of the operation Ĥxy(Dy) is

vec(Ĥxy(Dy)) =
(
Ĥ1 (1,3;2,4)

xy + Ĥ2 (1,3;4,2)
xy

)
dy ≡ Ĥxydy,

where dy = vec(Dy).
After matricizing all blocks of Ĥ and vectorizing the gradients we obtain the matrix

form for the Newton equation,

Ĥd =




Ĥxx Ĥxy Ĥxz

Ĥyx Ĥyy Ĥyz

Ĥzx Ĥzy Ĥzz







dx

dy

dz


 = −




gx

gy

gz


 = −g, (62)

where gx = vec
(
〈B̂x,F〉−1

)
, gy = vec

(
〈B̂y,F〉−2

)
and gz = vec

(
〈B̂z,F〉−3

)
are the

vectorized gradients from (60).
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4.6 Generalizing to Higher Order Tensors

Note that the representations for the Grassmann gradient and Hessian in Section 4.2
can easily be generalized to the case of 4−tensors and higher. Assume that the objective
function Φ(X,Y, Z,W ) = 1

2‖A · (X,Y, Z,W )‖F is to be maximized over a product of
four Grassmann manifolds. Then the diagonal operators in the Hessian (55) have to be
modified by introducing an extra matrix W , i.e. we put Bx = A · (I, Y, Z, W ), etc., and
then we add a fourth diagonal block,

Hww(∆w) = Πw〈Bw,Bw〉−4∆w −∆w〈F ,F〉−4,

where F = A · (X, Y, Z, W ), and Bw = A · (X, Y, Z, I). The off-diagonal operators are
modified analogously. For instance

Hxw(∆w) = Πx

(〈〈Cxw,F〉−(1,4) , ∆w〉2,4;1:2 + 〈〈Bx,Bw〉−(1,4), ∆w〉4,2;1:2

)
,

where Bx and Bw are as above, and Cxw = A · (I, Y, Z, I).

5 Implementation and Experimental Results

Given the analysis from the previous section together with the TensorToolbox10 [1] the
algorithmic implementation in MATLAB is straightforward. A pseudo–code is given in
Algorithm 1.

Algorithm 1 Newton-Grassmann algorithm
Given tensor A and starting points (X0, Y0, Z0) ∈ Gr3

repeat
compute the Grassmann gradient ∇Φ̂ given in equation (60)
compute the Grassmann Hessian Ĥ from equation (57)
matricize Ĥ and vectorize ∇Φ̂ to form the Grassmann-Newton equations (62)
solve D = (Dx, Dy, Dz) from the Newton equation on the Grassmann manifolds
take a geodesic step along the direction given by D to obtain new iterates (X,Y,Z)

until ‖∇Φ̂‖/Φ < TOL

In this section we report the results of a couple of preliminary numerical experiments,
where we compare the Newton-Grassmann algorithm with higher order orthogonal iter-
ation (HOOI) [14]. Each HOOI iteration consists of 3 steps, where in each step two of
the unknown matrices are considered as fixed, and the third is updated.

Test 1 Our first experiment was tailored to simulate a “signal tensor” with low rank
and added normally distributed noise. We used two 20× 20× 20 tensors, A1 = B1 + ρE1

10The TensorToolbox implements basic tensor operations as tensor–matrix multiplication and general
matricization of tensors. Even though you have to make some minor notational modifications it is
quite consistent with the presented framework of this paper.
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and A2 = B2 + ρE2, where we chose B1 and B2 as random tensors with ranks (10, 10, 10)
and (15, 15, 15), respectively. Thus B1 was constructed from a 10× 10× 10 tensor with
normally distributed (N(0, 1)) elements; that tensor was then ’blown up’ to dimension
20 × 20 × 20 by multiplying it in each mode by a 20 × 10 matrix with orthonormal
columns. The elements of the noise tensors E1 and E2 were chosen normally distributed
(N(0, 1)) and the level of noise was controlled by ρ, which was taken equal to 0.1. In
both cases we computed a rank−(5, 5, 5) approximation. As initial approximation a
random tensor was chosen and 10 HOOI iterations were performed before the Newton
method was started. Figure 3 shows the convergence history of the Newton-Grassmann
and HOOI methods.
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Figure 3: Convergence history for Test 1: number of iterations versus the relative gra-
dient norm ‖∇Φ̂‖/Φ. The lower pair of Newton-Grassmann and HOOI curves
is for A1 and the upper pair is for A2.

We also performed tests where the ranks of the “signal tensor” and the approximating
tensor coincided. Then, for small values of ρ, the convergence of HOOI was very rapid.

Test 2 We approximated a random 20× 20× 20 tensor (the elements were in N(0, 1))
by a rank−(5, 5, 5) tensor. Both algorithms were initialized by HOSVD and we per-
formed 20 HOOI iterations before Newton–Grassmann was employed. Figure 4 shows
the convergence history.

The quadratic convergence of the Newton–Grassmann algorithm is clearly visible in
both plots.

In our experience the HOOI method may have acceptable convergence speed for low
rank signal tensors with noise of small magnitude. In general, the closer the rank of the
approximating tensor to the correct rank of the signal tensor the faster the convergence.
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Figure 4: Convergence history for Test2.

On the other hand, approximating a full rank tensor with HOOI can have very slow
convergence, see Figure 4, and in some cases HOOI requires a large number of iterations
before the convergence is stabilized to a constant linear rate, cf. the upper curve in
Figure 3.

Computational complexity Naturally, the price to be paid for the fast convergence of
the Newton-Grassmann method is a higher computational cost per iteration. Assume,
for simplicity, that we have an n×n×n tensor which is approximated by a r×r×r tensor.
Each iteration in HOOI involves six tensor by matrix products and three maximization
problems, e.g. A · (I, Y, Z) and

max
XT X=I

‖XT A(1)(Y ⊗ Z)‖.

The solution is the dominant r–dimensional left singular subspace of the matrix A(1)(Y ⊗
Z), which we assume is computed with SVD [7, Section 5.4.5]. Then, the approximate
amount of flops (floating point additions and multiplications) per iteration is 6n3r for
the tensor–matrix product and 18nr4 + 33r6 for the dominant subspace (based on the
table in [7, Section 5.4.5]; note that faster SVD algorithms are available and will be
implemented in the next version of LAPACK), which gives

flops(HOOI) ≈ 6n3r + 18nr4 + 33r6.

Each iteration in the Newton–Grassmann algorithm is dominated by the computation
of the Hessian and the solution of the Newton’s equations (62), which amounts to

flops(Newton) ≈ 4n4 + 9n3r3.
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Optimization Issues With the formulation of our problem (31) as an optimization
problem on the product of Grassmann manifolds, and with the parametrization of Section
4.3 we have reduced it to an unconstrained optimization problem. When solving this
one must deal with standard optimization issues such as obtaining good starting points,
indefiniteness of the Hessian, line search, etc., see e.g. [16] for details.

As is always the case with Newton’s method, the choice of a good starting point is
important. One obvious alternative is to start with X0 = U(:, 1 : r1), Y0 = V (:, 1 : r2)
and Z0 = W (:, 1 : r3) where U , V and W are obtained from the HOSVD. But this
choice is often not good enough. In our experiments with random tensors, the Hessian
was almost always indefinite for points given by the HOSVD. When we performed initial
HOOI iterations, then within a reasonable amount of steps we got to the proximity of
the local minimum where we could employ the Newton algorithm. An alternative for
HOOI could be to perform the initial steps with a conjugate gradient algorithm on the
product Grassmann manifold.

6 Conclusion and future work

In this paper we have formulated the tensor approximation problem to be defined on
product of Grassmann manifolds and derived the Newton’s method for this problem.
We have showed quadratic convergence of the algorithm in the proximity of a local
minimizer.

The general tensor matricization introduced in Section 2.2, the contracted tensor
products and the tensor algebraic identities from Section 2.3 have been very useful both
for the analysis of the differentiated expressions of the objective function and for the
algorithmic implementation. The generalization from 3–tensors to higher order tensors
is straightforward with the presented tensor algebraic analysis.

Our present and future work include further analysis of the theoretical aspects of
the best approximation problem. For computational and memory efficiency, the imple-
mentation details for the Newton-Grassmann algorithms need to be investigated. An
alternative approach for this and similar problems, which we are presently pursuing, is
to develop Quasi-Newton methods on (products of) Grassmann manifolds.

A Proof of Lemma 2.3

To prove the identities we will use the definition for contracted tensor product to verify
that elements of the resulting matrices in both sides are the same. Let j < i and assume
we have the following dimensions;

B ∈ RK1×···×Kj×···×Ki×···×KN ,

Q ∈ RKj×Lj .
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The dimensions of the modes of the tensor C are assumed to be the same as those in B,
except modes j and i, which are taken to be Lj and Li. We will show that

〈B · (Q)j , C〉−i =
〈〈B, C〉−(i,j), Q

〉
1,3;1,2

. (63)

Then, for the first argument on the left hand side we have

B · (Q)j =: D ∈ RK1×···×Lj×···×Ki×···×KN

where the elements are given by

dk1···lj ···ki···kN
=

∑

kj

ak1···kj ···ki···kN
qkj lj .

The expression on the left hand side of (63) becomes

〈D, C〉−i =: E ∈ RKi×Li ,

where the entries are

ekili =
∑

k1,...,kj−1,lj
kj+1,...,ki−1

ki+1,...,kN

dk1···lj ···ki···kN
ck1···lj ···li···kN

=
∑

k1,...,kj ,lj
kj+1,...,ki−1

ki+1,...,kN

ak1···kj ···ki···kN
qkj ljck1···lj ···li···kN

=
∑

kj ,lj

qkj lj

∑

k1,...,kj−1

kj+1,...,ki−1

ki+1,...,kN

ak1···kj ···ki···kN
ck1···lj ···li···kN

,

which shows that (63) holds. The other cases are analogous.
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