ADJOINT POLYNOMIALS OF BRIDGE-PATH AND BRIDGE-CYCLE GRAPHS
AND CHEBYSHEV POLYNOMIALS

Toufik Mansour
Department of Mathematics, University of Haifa, 31905 Haifa, Israel
toufik@math.haifa.ac.il

Abstract

The chromatic polynomial of a simple graph G with $n > 0$ vertices is a polynomial $\sum_{k=1}^{n} \alpha_k(G)x(x-1) \cdots (x-k+1)$ of degree n, where $\alpha_k(G)$ is the number of k-independent partitions of G for all k. The adjoint polynomial of G is defined to be $\sum_{k=1}^{n} \alpha_k(G^c)x^k$, where G^c is the complement of G. We find explicit formulas for the adjoint polynomials of the bridge-path and bridge-cycle graphs. Consequence, we find the zeros of the adjoint polynomials of several families of graphs.

Key words. Adjoint polynomial, Bridge graph, Chebyshev polynomial

2010 Mathematics Subject Classifications. Primary: 05C15 Secondary: 05C38, 42C05

1. Introduction

Let G be a connected simple graph with vertex and edge sets $V(G)$ and $E(G)$, respectively. As usual, the degree of a vertex of a graph is defined as the number of edges incident to the vertex. An independent set of a graph G is a subset of $V(G)$ such that no two vertices in the subset represent an edge of G. A partition $\{V_1, V_2, \ldots, V_k\}$ of the vertex set of G, where k is a positive integer, is called a k-independent partition if each V_i is a nonempty independent set of G. We denote the number of k-independent partitions of G by $\alpha_k(G)$. Then the chromatic polynomial of G is given by

$$P(G, u) = \sum_{k=1}^{n} \alpha_k(G)u(u-1) \cdots (u-k+1).$$

Let $N_k(G)$ be the number of spanning subgraphs of G with exactly k components, each of which is complete. The adjoint polynomial of G is defined to be the polynomial

$$h(G, u) = \sum_{k=1}^{n} N_k(G)u^k.$$

Evidently $N_k(G) = \alpha_k(G^c)$, where G^c is the complement of G. For $x, y \in V(G)$, let $G \cdot xy$ be the graph obtained from G by identifying the vertices x and y and replacing multi-edges by single ones. For $xy \in E(G)$, let

$$E'(xy) = \{xu \in E(G)|u \neq y, yu \notin E(G)\} \cup \{yv \in E(G)|v \neq x, xv \notin E(G)\}.$$

For any subset S of $E(G)$, we define $G - S$ to be the spanning subgraph of G with edge set $E(G) - S$. If $xy \in E(G)$, define $G - xy = G - \{xy\}$. For $x \neq y$, define $G \ast xy = (G - E'(xy)) \cdot xy.$
Let families of graphs. path graph and cycle graph. As well as, we find the zeros of the a djoint polynomials of several new and bridge-tree graphs, respectively. As consequence, we obtain all the results of [3] in the cases of

\[h(G, u) = h(G - xy, u) + h(G \star xy, u). \]

When \(xy \) is an edge of \(G \) which is not contained in any triangle of \(G \), then (1.1) can be written as

\[h(G, u) = h(G - xy, u) + uh(G - \{x, y\}, u). \]

The adjoint polynomial (and the chromatic polynomial) are studied extensively, see [1, 2, 5, 8, 10]. So far, the chromatic polynomials of very few graphs may be computed and closed formulas of which are given. Chromaticity of the complements of paths and cycles were studied in [4, 6, 3], the formulas for adjoint polynomial of the path graph \(P_n \) with \(n \) vertices and of the cycle \(C_n \) graph with \(n \) vertices were given. Also, the zeros of these two adjoint polynomials are studied in [3].

In next sections we find explicit formulas for the adjoint polynomials of the bridge-path, bridge-cycle and bridge-tree graphs, respectively. As consequence, we obtain all the results of [3] in the cases of path graph and cycle graph. As well as, we find the zeros of the adjoint polynomials of several new families of graphs.

2. Bridge-path graph

Let \(\{G_i\}_{i=1}^d \) be a set of finite pairwise disjoint graphs with \(v_i \in V(G_i) \). The bridge-path graph

\[\text{BP}(G_1, G_2, \ldots, G_d) = \text{BP}(G_1, G_2, \ldots, G_d; v_1, v_2, \ldots, v_d) \]

of \(\{G_i\}_{i=1}^d \) with respect to the vertices \(\{v_i\}_{i=1}^d \) is the graph obtained from the graphs \(G_1, \ldots, G_d \) by connecting the vertices \(v_i \) and \(v_{i+1} \) by an edge for all \(i = 1, 2, \ldots, d - 1 \), see Figure 1.

![Figure 1. The bridge-path graph](image)

In order to compute the adjoint polynomial of the bridge-path graph \(\text{BP}(G_1, G_2, \ldots, G_d) \) we need the following definition and notation. Let \(A \) be any set of integer numbers, a sparse subset of \(A \) is a subset of \(A \) in which there are no two consecutive elements. Let \(G \) be any graph and let \(v \in V(G) \) be any vertex of \(G \). We denote the graph obtained from \(G \) by deleting the vertex \(v \) by \(G \setminus v \).

Theorem 2.1. The adjoint polynomial of the bridge-path graph \(\text{BP}(G_1, G_2, \ldots, G_d; v_1, v_2, \ldots, v_d) \) is given by

\[
\sum_{S \in S_d} u^{|S|} \prod_{j \in S'} h_j \prod_{j \in S} h_j' h_{j-1}' = \sum_{s \geq 0} \left(\sum_{2 \leq i_2 < i_3 < \cdots < i_s \leq d} \prod_{j \in \{i_1, i_1-1, \ldots, i_s, i_s-1\}} h_j \prod_{j=1}^d h_j' h_{j-1}' \right) u^s,
\]

where \(S_d \) is the set of all sparse subsets of \(\{2, 3, \ldots, d\} \) and \(S' = \{d \setminus \{j - 1, j \mid j \in S\} \} \), \(h_i = h(G_i, u) \), \(h_i' = h(G_i \setminus v_i, u) \), and we say that \(i \ll j \) if and only if \(i + 1 < j \).
Proof. We give two proofs.

Inductive proof. We denote the adjoint polynomial of the bridge-path graph \(G = BP(G_1, G_2, \ldots, G_d; v_1, v_2, \ldots, v_d) \) by \(F_d \). If we consider the edge \(v_d - v_{d+1} \) in the graph \(G \), then (1.1) gives

\[
F_d = h_d F_{d-1} + uh'_d h'_{d-1} F_{d-2},
\]

for all \(d \geq 3 \). By direct calculations we can state that \(F_1 = h_1 \) and \(F_2 = h_2 h_1 + uh'_2 h'_1 \). Define \(h_0 = 1 \).

Now we proof by induction that

\[
F_d = \sum_{s \geq 0} \left(\sum_{2 \leq i_1 < i_2 < \cdots < i_s \leq d} \prod_{j=1}^{s} h_{j} \prod_{j<i} h'_j h'_{i_j-1} \right) u^s.
\]

It is not hard to verify this for \(d = 0, 1, 2 \). Assume the claim holds for \(0, 1, \ldots, d \) and let us prove it for \(d + 1 \). By (2.1) and induction hypothesis we obtain that

\[
F_d = h_d F_{d-1} + uh'_d h'_{d-1} F_{d-2}
\]

\[
= h_d \sum_{s \geq 0} \left(\sum_{2 \leq i_1 < i_2 < \cdots < i_s \leq d-1} \prod_{j=1}^{s} h_{j} \prod_{j<i} h'_j h'_{i_j-1} \right) u^s + uh'_d h'_{d-1} \sum_{s \geq 0} \left(\sum_{2 \leq i_1 < i_2 < \cdots < i_s \leq d-2} \prod_{j=1}^{s} h_{j} \prod_{j<i} h'_j h'_{i_j-1} \right) u^s
\]

\[
= \sum_{s \geq 0} \left(\sum_{2 \leq i_1 < i_2 < \cdots < i_s \leq d-1} \prod_{j=1}^{s} h_{j} \prod_{j<i} h'_j h'_{i_j-1} \right) u^s + \sum_{s \geq 1} \left(\sum_{2 \leq i_1 < i_2 < \cdots < i_s = d} \prod_{j=1}^{s} h_{j} \prod_{j<i} h'_j h'_{i_j-1} \right) u^s,
\]

If we define the last sum as zero for \(s = 0 \), then we obtain that

\[
F_d = \sum_{s \geq 0} \left(\sum_{2 \leq i_1 < i_2 < \cdots < i_s \leq d} \prod_{j=1}^{s} h_{j} \prod_{j<i} h'_j h'_{i_j-1} \right) u^s,
\]

which completes the proof.

Combinatorial proof. Let \(G = BP(G_1, G_2, \ldots, G_d; v_1, v_2, \ldots, v_d) \), since we are considering a partition \(S \) of \(G \) in which every block is a complete graph, for a vertex \(v_i \) there are only two possibilities: either it belongs to a block of size \(2 \) consisting in an edge \(v_i v_{i+1} \) or \(v_{i-1} v_i \), or it belongs to a block of a partition of \(G_i \) in which every block is a complete graph. Let \(S \) be the set of all indices \(j \) corresponding to the endpoints of the edges \(v_{j-1} v_j \) forming a block in the partition. For a given set \(S \) of this kind, the contribution to the adjoint polynomial \(h(G, u) \) is

\[
u^{S'} \prod_{j \in S'} h_j \prod_{j \in S} h'_j h'_{j-1},
\]

where \(S' = \{ d \backslash \{ j, j-1 \mid j \in S \} \} \). By the definitions, a set \(S \) is any sparse subset of \(\{2, 3, \ldots, d\} \). Hence, by summing over all possibilities of \(S \), we obtain

\[
\sum_{S \in S_d} u^{S'} \prod_{j \in S'} h_j \prod_{j \in S} h'_j h'_{j-1},
\]

where \(S_d \) is the set of all sparse subsets of \(\{2, 3, \ldots, d\} \).
Let G be any finite graph and $v \in V(G)$. Define $BP_d(G, v)$ to be the bridge-path graph $BP_{d} (G, \ldots, G; v, \ldots, v)$. The above theorem for $BP_d(G, v)$ gives
\[
h (BP_d(G, v), u) = \sum_{s \geq 0} \sum_{2 \leq i_1 \ll i_2 \ll \cdots \ll i_s \leq d} h^{d-2s}(G, u) h^{2s}(G \setminus v, u) u^s.
\]
On the other hand,
\[
\binom{d-s}{s} = \sum_{2 \leq i_1 \ll i_2 \ll \cdots \ll i_s \leq d} 1,
\]
which is true since the number of vectors (i_1, i_2, \ldots, i_s) such that $2 \leq i_1 \ll i_2 \ll \cdots \ll i_s \leq d$ equals the number of vectors (j_1, j_2, \ldots, j_s) such that $1 \leq j_1 \ll j_2 \ll \cdots \ll j_s \leq d - s$ (define $j_m = i_m - m$), which it is given by $\binom{d-s}{s}$. Hence,
\[
h (BP_d(G, v), u) = \sum_{s \geq 0} \binom{d-s}{s} h^{d-2s}(G, u) h^{2s}(G \setminus v, u) u^s,
\]
where $\binom{a}{b}$ is defined to be zero for $a < b$. Now, by using the fact that the n-th Chebyshev polynomial of the second kind $U_n(x)$ (see [9]) is given by
\[
U_n(x) = \sum_{k \geq 0} \binom{n-k}{k} (-1)^k (2x)^{n-2k},
\]
we obtain an explicit formula for the adjoint polynomial of the bridge-path graph $BP_d(G, v)$ as follows.

Theorem 2.2. Let G be any finite graph and $v \in V(G)$. Then for all $d \geq 0$,
\[
h (BP_d(G, v), u) = (i \sqrt{u})^d h^d(G \setminus v, u) U_d \left(\frac{h(G, u)}{2i \sqrt{u} h(G \setminus v, u)} \right),
\]
where $i^2 = -1$ and $U_d(t)$ is the d-th Chebyshev polynomial of the second kind.

Example 2.3. Let G be a graph with one vertex v. By definitions we have $h(G, u) = u$ and $h(G \setminus v, u) = 1$. Thus Theorem 2.2 gives
\[
h (BP_d(G, v), u) = (i \sqrt{u})^d U_d \left(\frac{\sqrt{u}}{2i} \right) = \sum_{s \geq 0} \binom{d-s}{s} u^{d-s},
\]
as showed in [3].

Example 2.4. More generally, assume that $G = P_m$ be a path graph on m vertices v_1, v_2, \ldots, v_m such that the degree of v_1 is 1. By Example 2.3 we have $h(G, u) = (i \sqrt{u})^m U_m \left(\frac{\sqrt{u}}{2i} \right)$ and $h(G \setminus v, u) = (i \sqrt{u})^{m-1} U_{m-1} \left(\frac{\sqrt{u}}{2i} \right)$. Thus Theorem 2.2 gives
\[
h (BP_d(G, v_1), u) = (i \sqrt{u})^m U_{m-1}^d \left(\frac{\sqrt{u}}{2i} \right) U_d \left(\frac{U_m \left(\frac{\sqrt{u}}{2i} \right)}{2U_{m-1} \left(\frac{\sqrt{u}}{2i} \right)} \right).
\]
Now we study the zeros of the adjoint polynomial of the graph $BP_d(G, v)$.

Theorem 2.5. Let G be a graph with a vertex v. For all $d \geq 0$,
\[h(BP_d(G, v), u) = \prod_{j=1}^{\lfloor d/2 \rfloor} \left(h^2(G, u) + 2uh(G\setminus v, u) + 2uh(G\setminus v, u) \cos \frac{2j\pi}{d+1} \right). \]

Proof. Theorem 2.2 and the fact that the d-th Chebyshev polynomial of the second kind is given by
\[U_d(x) = 2^n \prod_{j=1}^{d} (x - \cos \frac{j\pi}{d+1}) \] give
\[h(BP_d(G, v), u) = \prod_{j=1}^{\lfloor d/2 \rfloor} \left(h^2(G, u) - 2i\sqrt{uh(G\setminus v, u)} \cos \frac{j\pi}{d+1} \right), \]
which is equivalent to
\[h(BP_d(G, v), u) = \prod_{j=1}^{\lfloor d/2 \rfloor} \left(h^2(G, u) + 4uh(G\setminus v, u) \cos^2 \frac{j\pi}{d+1} \right). \]
Using the identity $2\cos^2 t = 1 + \cos 2t$, we get the desired result. \qed

Example 2.6. Let G be a graph with one vertex v. By definition we have $h(G, u) = u$ and $h(G\setminus v, u) = 1$. Thus Theorem 2.5 gives
\[h(BP_d(G, v), u) = \prod_{j=1}^{\lfloor d/2 \rfloor} \left(u^2 + 2u + 2u \cos \frac{2j\pi}{d+1} \right), \]
which shows that the zeros of the adjoint polynomial $h(P_n, u)$ are
\[0, 0, \ldots, 0 - 2 - 2 \cos \frac{2j\pi}{d+1}, \quad j = 0, 1, \ldots, \lfloor d/2 \rfloor, \]
as showed in [3].

![Figure 2. The graph D_n](image-url)

Now, let G_1 be a cycle on three vertices v_1, v'_1, v''_1 and let $G_i, i = 2, 3, \ldots, d$, be a graph with one vertex v_i. Let $D_d = BP(G_1, \ldots, G_d; v_1, \ldots, v_d)$. By applying (1.1) with respect to the edge $v_1v'_1$ of the cycle and Example 2.3, we have
\[h(D_d, u) = h(BP_d(G, v), u) + h(BP_d(G, v), u) \]
\[= \frac{1}{u} h(BP_{d+1}(G, v), u) \]
\[= u(i\sqrt{u})^{d-1}U_{d+3} \left(\frac{\sqrt{u}}{2i} \right). \]
Hence the zeros of the adjoint polynomial of the graph D_d, see Figure 2, are given by
\[0, 0, \ldots, 0 - 2 - 2 \cos \frac{2j\pi}{d+4}, \quad j = 1, 2, \ldots, \lfloor (d+3)/2 \rfloor. \]
Now, let G_1 be a cycle on three vertices v_1, v'_1, v''_1, let G_i, $i = 2, 3, \ldots, d - 1$, be a graph with one vertex v_i, and let G_d be a cycle on three vertices v_d, v'_d, v''_d. Let $E_d = BP(G_1, \ldots, G_d; v_1, \ldots, v_d)$. By applying (1.1) with respect to the edge $v_1v'_1$ of the cycle, we have that

$$h(E_d, u) = h(D_{d+2}, u) + h(D_{d+1}, u) = -u(i\sqrt{u})^d \left(\frac{\sqrt{u}}{i} U_{d+5} \left(\frac{\sqrt{\pi}}{2t} \right) - U_{d+4} \left(\frac{\sqrt{\pi}}{2t} \right) \right)$$

$$= (i\sqrt{u})^{d+2} U_{d+6} \left(\frac{\sqrt{u}}{2t} \right)$$

Hence the zeros of the adjoint polynomial of the graph E_d, see Figure 3, are given by

$$\left\{ 0, 0, \ldots, 0, -2 - 2 \cos \frac{2j\pi}{d+7}, \quad j = 1, 2, \ldots, [(d+5)/2] \right\}$$

Example 2.7. Let G be a graph with two vertex v and w and edge vw. By definitions we have $h(G, u) = u + u^2$ and $h(G\backslash v, u) = u$. Thus Theorem 2.5 gives

$$h(BP_d(G, v), u) = \prod_{j=1}^{[d/2]} \left(u^4 + 2u^3 + 3u^2 + 2u + \cos \frac{2j\pi}{d+1} \right),$$

which shows that the zeros of the adjoint polynomial $h(P_n, u)$ are

$$\left\{ 0, 0, \ldots, 0, -1 \pm i \sqrt{2 + 2 \cos \frac{2j\pi}{d+1}}, \quad j = 0, 1, \ldots, [d/2] \right\}.$$

3. Bridge-cycle graph

Let $\{G_i\}_{i=1}^d$ be a set of finite pairwise disjoint graphs with $v_i \in V(G_i)$. The **bridge-cycle graph**

$$BC(G_1, G_2, \ldots, G_d) = BC(G_1, G_2, \ldots, G_d; v_1, v_2, \ldots, v_d)$$

of $\{G_i\}_{i=1}^d$ with respect to the vertices $\{v_i\}_{i=1}^d$ is the graph obtained from the graphs G_1, \ldots, G_d by connecting the vertices v_i and v_{i+1} by an edge for all $i = 1, 2, \ldots, d - 1$ and connecting the vertices v_1 and v_d by an edge, see Figure 4.

Theorem 3.1. The adjoint polynomial of the bridge-path graph $BC(G_1, G_2, \ldots, G_d; v_1, v_2, \ldots, v_d)$ is given by $F(G_1, \ldots, G_d) + uh'_1h''_1F(G_2, \ldots, G_{d-1})$, where

$$F(G_1, \ldots, G_d) = \sum_{s \geq 0} \left(\sum_{2 \leq i_1 < i_2 < \cdots < i_s \leq d} \prod_{j \in [d] \backslash \{i_1, i_1-1, \ldots, i_s, i_s-1\}} h_j \prod_{j=1}^{s} h_{i_j}h'_{i_{j-1}} \right) u^s,$$

$h_i = h(G_i, u)$, $h'_i = h(G_i\backslash v_i, u)$, and we say that $i \ll j$ if and only if $i + 1 < j$.
Figure 4. The bridge-cycle graph

Proof. We denote the adjoint polynomial of the bridge-path graph \(G = BC(G_1, \ldots, G_d; v_1, \ldots, v_d) \) by \(B_d \). If we consider the edge \(v_1 v_d \) in the graph \(G \), then (1.1) gives

\[
B_d = F_d + uh'_d F'_{d-2},
\]

for all \(d \geq 2 \), where \(F_d \) is the adjoint polynomial of the bridge-path graph \(BC(G_1, \ldots, G_d; v_1, \ldots, v_d) \) and \(F'_{d-2} \) is the adjoint polynomial of the bridge-path graph \(BC(G_2, \ldots, G_{d-1}; v_1, \ldots, v_{d-1}) \). The proof can be completed by using Theorem 2.1.

Let \(G \) be any finite graph and \(v \in V(G) \). Define \(BC_d(G, v) \) to be the bridge-cycle graph \(BC(G_1, \ldots, G_d; v_1, \ldots, v_d) \). The above theorem for \(BC_d(G, v) \) gives \(h(BC_d(G, v), u) = F_d + uh^2(G \setminus v, u)F_{d-2} \), where \(F_d \) is given by Theorem 2.2. Hence

\[
h(BC_d(G, v), u) = \sum_{s \geq 0} \binom{d-s}{s} h^{d-2s}(G, u) h^{2s}(G \setminus v, u) + \sum_{s \geq 0} \binom{d-2-s}{s} h^{d-2-2s}(G, u) h^{2s+2}(G \setminus v, u) u^{s+1}.
\]

Let \(G \) be any finite graph and \(v \in V(G) \). Define \(BC_d(G, v) \) to be the bridge-cycle graph \(BC(G_1, \ldots, G_d; v_1, \ldots, v_d) \). The above theorem for \(BC_d(G, v) \) gives \(h(BC_d(G, v), u) = F_d + uh^2(G \setminus v, u)F_{d-2} \), where \(F_d \) is given by Theorem 2.2. Hence

\[
h(BC_d(G, v), u) = \sum_{s \geq 0} \binom{d-s}{s} h^{d-2s}(G, u) h^{2s}(G \setminus v, u) + \sum_{s \geq 1} \binom{d-1-s}{s-1} h^{d-2s}(G, u) h^{2s}(G \setminus v, u) u^{s-1} + \sum_{s \geq 0} \frac{d}{d-s} \binom{d-s}{s} h^{d-2s}(G, u) h^{2s}(G \setminus v, u) u^{s},
\]

where \(\binom{a}{b} \) is assumed to be 0 whenever \(a, b < 0 \) or \(a < b \). Thus, we can state the following result.

Corollary 3.2. Let \(G \) be any finite graph and \(v \in V(G) \). Then for all \(d \geq 0 \),

\[
h(BC_d(G, v), u) = \sum_{s \geq 0} \frac{d}{d-s} \binom{d-s}{s} h^{d-2s}(G, u) h^{2s}(G \setminus v, u) u^{s}.
\]

The adjoint polynomial of the bridge-cycle graph can be expressed in terms of Chebyshev polynomials of the second kind as follows. From (4.1) and Theorem 2.5 we obtain that
Corollary 3.3. Let G be any finite graph and $v \in V(G)$. Then for all $d \geq 0$,

$$h(BC_d(G, v), u) = (i\sqrt{u})^d h^d(G \setminus v, u) \left[U_d \left(\frac{h(G, u)}{2i\sqrt{uh(G \setminus v, u)}} \right) - U_{d-2} \left(\frac{h(G, u)}{2i\sqrt{uh(G \setminus v, u)}} \right) \right],$$

where $i^2 = -1$ and $U_d(t)$ is the d-th Chebyshev polynomial of the second kind.

In order to find the zeros of the adjoint polynomial of the bridge-cycle graph, we need the trigonometric representation of the Chebyshev polynomials, namely $U_d(x) = \frac{\sin((d+1)\theta)}{\sin \theta}$ with $x = \cos \theta$. Let $x = \cos \theta$, then

$$U_d(x) - U_{d-2}(x) = \frac{\sin((d+1)\theta)}{\sin \theta} - \frac{\sin((d-1)\theta)}{\sin \theta} = \frac{\sin((d+1)\theta) - \sin((d-1)\theta)}{\sin \theta} = 2 \cos(d\theta) = 2T_d(\cos \theta),$$

where $T_d(t)$ is the d-th Chebyshev polynomial of the first kind (see [9]). This implies the following result.

Theorem 3.4. Let G be any finite graph and $v \in V(G)$. Then for all $d \geq 0$,

$$h(BC_d(G, v), u) = 2(i\sqrt{u})^d h^d(G \setminus v, u)T_d \left(\frac{h(G, u)}{2i\sqrt{uh(G \setminus v, u)}} \right),$$

where $i^2 = -1$ and $T_d(t)$ is the d-th Chebyshev polynomial of the first kind.

Example 3.5. Let G be a graph with one vertex v. By Theorem 3.4 we have that

$$h(BC_d(G, v), u) = 2(i\sqrt{u})^d T_d \left(\frac{\sqrt{u}}{2i} \right).$$

Thus $h(BC_d(G, v), u) = 0$ if and only if $u = 0$ (with multiplicity $\lceil d/2 \rceil$) or $u = -4 \cos^2 \left(\frac{(2k-1)\pi}{2d} \right)$ for some $k = 1, \ldots, \lceil d/2 \rceil$. Hence, the zeros of the polynomial $h(BC_d(G, v), u)$ are

$$0, 0, \ldots, 0, -2 - 2 \cos \left(\frac{(2k-1)\pi}{d} \right), \quad k = 1, \ldots, \lfloor d/2 \rfloor,$$

as have been shown in [3].

Example 3.6. Let G be a graph with two vertices v and w and one edge vw. By Theorem 3.4 we have that

$$h(BC_d(G, v), u) = 2(i\sqrt{u})^d u^d T_d \left(\frac{1 + u}{2i\sqrt{u}} \right).$$

Thus $h(BC_d(G, v), u) = 0$ if and only if $u = 0$ (with multiplicity $d + \lceil d/2 \rceil$) or $1 + u = 2i \sqrt{u} \cos \left(\frac{(2k-1)\pi}{2d} \right)$ for some $k = 1, \ldots, \lfloor d/2 \rfloor$. Hence, the zeros of the polynomial $h(BC_d(G, v), u)$ are

$$0, 0, \ldots, 0, -1 \pm \sqrt{15 + 8 \cos \left(\frac{(2k-1)\pi}{d} \right) + \cos^2 \left(\frac{(2k-1)\pi}{d} \right)}, \quad k = 1, \ldots, \lfloor d/2 \rfloor.$$

4. Further results

Let \(\{G_i\}_{i=1}^d \) be a set of finite pairwise disjoint graphs with \(v_i \in V(G_i) \) and let \(v_0 \notin \bigcup_{i=1}^d V(G_i) \). The bridge-tree graph

\[
T(G_1, G_2, \ldots, G_d) = T(G_1, G_2, \ldots, G_d; v_0, v_1, v_2, \ldots, v_d)
\]

of \(\{G_i\}_{i=1}^d \) with respect to the vertices \(\{v_i\}_{i=1}^d \) is the graph obtained from the graphs \(G_1, \ldots, G_d \) by connecting any vertex \(v_i \) with the vertex \(v_0 \), see Figure 5.

![Figure 5. The bridge-tree graph](image)

Theorem 4.1. The adjoint polynomial of the tree graph \(T(G_1, G_2, \ldots, G_d; v_0, v_1, v_2, \ldots, v_d) \) is given by

\[
u \prod_{j=1}^d h(G_j, u) \left(1 + \sum_{j=1}^d \frac{h(G_j \setminus v_j, u)}{h(G_j, u)} \right).
\]

Proof. We give two proofs.

Inductive proof. We denote the adjoint polynomial of the bridge-tree graph \(G = T(G_1, \ldots, G_d; v_0, v_1, \ldots, v_d) \) by \(T_d \). If we consider the edge \(v_0v_d \) in the graph \(G \), then (1.1) gives

\[
T_d = h(G_d, u)T_{d-1} + uh(G_d \setminus v_d, u)h(G_{d-1}, u) \cdots h(G_1, u),
\]

for all \(d \geq 1 \), where \(T_0 \) is defined as \(u \). By simple induction on \(d \) we complete the proof.

Combinatorial proof. Let us write an equation for \(T_d \). Since we are considering a partition of \(G \) in which every block is a complete graph, for a vertex \(v_0 \) there are only two possibilities: either it forms a single block, or it belongs to a block formed of an edge \(v_0v_d \). The contribution of the first case is given by \(u \prod_{j=1}^d h(G_j, u) \), and the contribution of the second case is given by \(uh(G_j \setminus v_j, u) \prod_{k=1, k \neq j}^d h(G_k, u) \).

Hence,

\[
T_d = u \prod_{j=1}^d h(G_j, u) + u \sum_{j=1}^d \left(h(G_j \setminus v_j, u) \prod_{k=1, k \neq j}^d h(G_k, u) \right) = u \prod_{j=1}^d h(G_j, u) \left(1 + \sum_{j=1}^d \frac{h(G_j \setminus v_j, u)}{h(G_j, u)} \right),
\]

as required. \(\square \)

Let \(G \) be any finite graph, \(v \in V(G) \) and \(v_0 \notin V(G) \). Define \(T_d(G, v) \) to be the bridge-tree graph \(T(G, \ldots, G; v_0, v, \ldots, v) \). The above theorem for \(T_d(G, v) \) gives

\[
h(T_d(G, v), u) = uh^d(G, u) \left(1 + d \frac{h(G \setminus v, u)}{h(G, u)} \right).
\]
For instance, if G has only one vertex v, then $h(T_d(G, v), u) = u^d(u + d)$. More generally, let G be the path graph P_m with m vertices where we assume that the vertex $v \in V(P_m)$ has degree 1. Then

$$h(T_d(P_m, v), u) = uh_d(P_m, u) \left(1 + d \frac{h(P_{m-1}, u)}{h(P_m, u)}\right),$$

which, by Example 2.3, implies that

$$h(T_d(P_m, v), u) = u(i \sqrt{u})^{m(d-1)}U_{m-1}^{d-1} \left[\left(i \sqrt{u}\right)^m U_m \left(\frac{\sqrt{u}}{2i}\right) + d\left(i \sqrt{u}\right)^{m-1} U_{m-1} \left(\frac{\sqrt{u}}{2i}\right)\right].$$

Acknowledgements. We thank the referees for suggesting important improvements to the presentation of this paper.

References