Lost in Translation—Basic Science in the Era of Translational Research

Ferric C. Fang and Arturo Casadevall

Updated information and services can be found at:
http://iai.asm.org/content/78/2/563

These include:

REFERENCES

This article cites 11 articles, 7 of which can be accessed free at:
http://iai.asm.org/content/78/2/563#ref-list-1

CONTENT ALERTS

Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more»

Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml
To subscribe to another ASM Journal go to: http://journals.asm.org/site/subscriptions/

Journals.ASM.org
“Poetry is what gets lost in translation.”
—Robert Frost

No, we’re not talking about ribosomes. Translational research is defined as “the process of applying ideas, insights, and discoveries generated through basic scientific inquiry to the treatment or prevention of human disease” (http://grants1.nih.gov/grants/guide/pa-files/PAR-02-138.html), sometimes abbreviated as “from bench to bedside” (http://www.nihroadmap.nih.gov). Although there is no universal agreement on what the word “translational” really means (16), there is no denying that translational research is the buzzword of the moment. In 2006, the NIH launched a Clinical and Translational Science Awards consortium of nearly 50 centers throughout the country, with a committed investment of $500 million annually by 2012 (1; http://www.ctsaweb.org). In 2009, the American Association for the Advancement of Science announced the publication of a new journal, Science Translational Medicine.

There are obvious reasons for the new emphasis on translational research. One is political. With ever-present political pressure on NIH administrators to demonstrate the tangible public benefit from the billions of dollars invested in scientific research, translational research is an easy sell—the testing of new treatments, vaccines, and diagnostic tests. Another is to fill the gap in the flow of information between basic science and clinical medicine, perhaps most notably a lack of sufficient resources to support early-stage investigation and the challenges involved in organizing clinical trials. The new focus on translational research aims to remove these obstacles and facilitate and expedite the practical application of scientific discoveries. A third reason is an increasing impatience with the pace with which basic scientific discovery has resulted in new products and cures. Although translation of the molecular biology revolution into genetically modified crops, recombinant drugs, molecular forensics, and nascent gene therapy within a mere generation has been rapid by historical standards, the age of instant communication and fast-forward remote control buttons has created even greater expectations. For feared diseases such as cancer, AIDS, and Alzheimer’s disease, progress toward prevention or cure has not been as rapid as many would like. Hence, some of the impetus toward translational research comes from an impatient public speaking through its political leaders, who are the ultimate source of support for most scientific investigation through federally supported research. Finally, there is in some scientific fields, such as immunology, an increased awareness that observations from animal models do not always precisely extrapolate to humans. For this reason, more translational research in humans is believed to be essential, despite the complexities and logistical hurdles posed by such research.

In a different era, Vannevar Bush argued strenuously to President Truman that the federal government should invest in basic science. He presciently observed the following: “Discoveries pertinent to medical progress have often come from remote and unexpected sources and it is certain that this will be true in the future. It is wholly probable that progress in the treatment of . . . refractory diseases will be made as a result of fundamental discoveries in subjects unrelated to those diseases, and perhaps entirely unexpected by the investigator. . . . Basic research is the pacemaker of technological progress. . . . New products and new processes do not appear full-grown. They are founded on new principles and new conceptions, which in turn are painstakingly developed by research in the purest realms of science” (2).

In Bush’s view, basic research would be performed by academia, and applied research would be performed largely by industry and government facilities (11). The conceptual dichotomy of basic and applied research has proven to be an enduring one. The late Daniel Kosshland viewed basic and applied science as “revolutionary” and “evolutionary,” respectively, summarizing the difference thus: “Basic research is the type that is not always practical but often leads to great discoveries. Applied research refines these discoveries into useful products” (8).

And so basic research discoveries, such as semiconductors and the structure of DNA, have revolutionized electronics and biology, making possible the laptop computer on which this essay was composed and the molecular research to which so many of us have devoted our careers.

The consensus forged after the Second World War that basic and applied research were the domains of academia and industry, respectively, began to fade to in the 1980s when the Bayh-Dole act allowed universities to patent knowledge obtained with federal funding. Universities ascertainment that certain discoveries were enormously lucrative, and academic scientists began to emerge in a new role: that of the discoverer-entrepreneur. Within a decade, all major universities developed offices specializing in intellectual property to promote the protection and commercialization of scientific discoveries. Whatever the merits of this approach, one outcome was the blurring of the intellectual boundaries between academia and industry. Hence, scientists that formerly worked solely on basic biological mechanisms found greater freedom to develop their research along more practical lines, with the encouragement of their institutions. Furthermore, universities learned that it was much easier to connect with the public as well as with potential beneficiaries by highlighting their translational advances rather
than their basic science discoveries. Translational research generated revenue, brought publicity, and enhanced public relations. In the evolving zeitgeist, academia is no longer viewed as an impartial champion for basic research.

Recently we considered the definition of “importance” in science and concluded that this quality is a function of four parameters: size, practicality, integration, and newness (3). From this perspective, basic and translational science differ primarily in integration and practicality, respectively. The importance of basic science derives from its contribution to knowledge deeper within the tree of information and, consequently, its greater potential for integration with other facts. In contrast, the importance of translational science lies in its practicality. Hence, we do not view basic and translational science as one being more important than the other but rather as complementary areas of human endeavor, with the important distinction that basic science findings often precede advances in translational science. We also note that observations in translational or applied science can generate new questions for fundamental research, as illustrated from the fact that vaccination preceded the field of immunology. Hence, the epistemological flow is bidirectional, and investments in both types of science are needed. As we scan a recent issue of *Infection and Immunity*, we see a stimulating mix of basic research, such as a novel mechanism by which diverse bacterial toxins stimulate expression of a host transcription factor (6), and applied or translational research, such as the improved immunogenicity of an anthrax vaccine following the addition of a heterologous helper T-cell epitope (12)—which seems just as it should be.

If the current emphasis on translational research leads to more scientific applications that benefit human society, that will be all for the better. However, it will be critical not to allow our impatience for translational applications to skew resources for fundamental research, as illustrated from the fact that vaccination preceded the field of immunology. Hence, the epistemological flow is bidirectional, and investments in both types of science are needed. As we scan a recent issue of *Infection and Immunity*, we see a stimulating mix of basic research, such as a novel mechanism by which diverse bacterial toxins stimulate expression of a host transcription factor (6), and applied or translational research, such as the improved immunogenicity of an anthrax vaccine following the addition of a heterologous helper T-cell epitope (12)—which seems just as it should be.

If the current emphasis on translational research leads to more scientific applications that benefit human society, that will be all for the better. However, it will be critical not to allow our impatience for translational applications to skew resources for fundamental research, as illustrated from the fact that vaccination preceded the field of immunology. Hence, the epistemological flow is bidirectional, and investments in both types of science are needed. As we scan a recent issue of *Infection and Immunity*, we see a stimulating mix of basic research, such as a novel mechanism by which diverse bacterial toxins stimulate expression of a host transcription factor (6), and applied or translational research, such as the improved immunogenicity of an anthrax vaccine following the addition of a heterologous helper T-cell epitope (12)—which seems just as it should be.

The scientific community must educate politicians and the public about how science really works, emphasize the complementary relationship between basic and applied research, and advocate more stable and sustained support of the nation’s scientific enterprise. Our goal in this commentary is not to pit translational versus basic research but rather to draw renewed attention to the tenuous present condition of basic research, which will continue to be the engine driving humanity’s hopes for curing disease, increasing productivity, eliminating poverty, developing renewable sources of energy, sustaining agriculture, and ameliorating climate change, to mention only a few current challenges. In the current enthusiasm for translational research, we must not forget that basic science is under threat. Medically related basic science research is particularly vulnerable because the NIH is the only source of support for much of this work, whereas applied research may be supported by a mixture of government, commercial, and private foundational sources. Moreover, over the past 2 decades industry has replaced the federal government as the leading source of support for research and development (Fig. 1). Funding trends have shown flat federal support for basic science for more than 5 years (7) (Fig. 2A). The success rate for individual investigator-initiated R01 applications has fallen sharply (9), as the proportion of federal awards and funding devoted to R01 projects has steadily declined over the past decade (Fig. 2B). Translators need something to translate. The time is ripe for a massive new national investment in science that includes basic research. Until the pendulum swings and basic science reemerges as a national priority, basic scientists will have to be imaginative in promoting the potential translational applications of their research, develop new methods to “humanize” their work (10), integrate their basic studies as components of larger translational programs, and hope that study sections will continue to
support good science even when it is not immediately apparent what the practical applications will be.

History has taught us that the path from basic discoveries to scientific and technological applications is seldom a straight line. Marie Curie described how her discovery of radium, which presaged the therapeutic use of radioisotopes, was purely serendipitous:

“When radium was discovered no one know that it would prove useful in hospitals. The work was one of pure science. And this is a proof that scientific work must not be considered from the point of view of the direct usefulness of it” (5).

More recently, we have seen studies of insect embryogenesis lead to a revolution in innate immunity (14), resulting in innumerable applications in drug and vaccine development. In her Nobel banquet speech, Christiane Nüsslein-Vollhard recalled her discovery of the Toll gene in *Drosophila*:

“We started out in our research with a deep interest in understanding the origin and development of pattern during embryogenesis. None of us expected that our work would be so successful or that our findings would ever have relevance to medicine” (http://nobelprize.org/nobel_prizes/medicine/laureates/1995/nusslein-volhard-speech.html).

And when American Society for Microbiology member Carol Greider learned earlier this year that she had been
awarded the Nobel Prize for her groundbreaking work on telomeres, which may lead to advances in the treatment of cancer or the amelioration of aging, she emphasized the following:

“We didn’t know at the time that there were any particular disease implications. We were just interested in the fundamental questions... [this] is really a tribute to curiosity-driven basic science” (13).

Her words require no translation.

REFERENCES

Ferric C. Fang
Editor in Chief, Infection and Immunity
Department of Microbiology
University of Washington School of Medicine, Seattle, Washington

Arturo Casadevall
Editor in Chief, mBio
Departments of Microbiology & Immunology and Medicine
Albert Einstein College of Medicine, Bronx, New York

The views expressed in this Editorial do not necessarily reflect the views of the journal or of ASM.
Editor: R. P. Morrison