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Introduction 

A data structure is partially persistent if previous versions remain available for queries but 
not for updates. A data structure is fully persistent if past versions remain available both for 
queries and for updates in a "branching" model of time. The tree representing the branching 
temporal evolution of the data structure is called the version tree [4]. Each node in the version 
tree represents the result of one update operation on a version of the data structure. 

An array is a data structure A on which two operations are defined: Access(A, i), which returns 
the ith element of A, and Store(A, i, x), which replaces the ith element of A with x. 1 This 
paper outlines a technique for making arrays fully persistent in O(log log n) expected amortized 
time per operation and O(n) space.e 

Since an array can model a RAM's memory, any data structure on a RAM in which each 
operation takes O(F(n)) time and performs O(U(n)) memory modifications can be made fully 
persistent using O(F(n) log log n) expected amortized time per operation and using O(nU(n)) 
space. 

1 Array indices are assumed to be in the range {I, ... , n}, where n is the number of operations to be performed. 

2All logarithms in this paper are binary. 
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2 Previous Work 

Partially persistent data structures were investigated by Sarnak and Tarjan [7]; fully persistent 
data structures by Sarnak et. al. [4]. They gave a technique for converting a data structure into 
a (fully) persistent data structure in a constant factor extra time per and space per memory 
modification. However, their techniques applied only to data structures consisting of a network 
of records of bounded size and bounded in-degree. In particular, they could not make persistent 
arrays or data structures containing unbounded fan-in directed graphs. 

Fully persistent arrays are related to context trees, which are models of inheritance and re­
semble tree structured association lists [11, 12, 5]. In a context tree, one has two operations: 
AddContext(x, name, val), which creates a new leaf beneath an existing node x and assigns 
it the pair (name,val), and LookUp(x,name), which finds the deepest ancestor of a node x 
(including x) which has a pair whose first element is name, and returns the associated value 
(with an error if no such node exists). Fully persistent arrays may be implemented as context 
trees where one stores (arrayindex.value) pairs at the nodes of the tree. 

Dietz [1] showed that context trees may be efficiently implemented using the order maintenance 
problem. This is the problem of maintaining a list of record on which two operations are 
performed: insert a new record at a specified position in the list, and, given two records in the 
list, determine which is closer to the beginning of the list. An 0(1) amortized time algorithm 
for OMP was given by Tsakalidis [8] and an 0(1) worst case algorithm by Dietz and Sleator [2]. 
These algorithms permit one to implement fully persistent arrays in O( 1) space per update and 
O(log m) time per operation, where m is the number of times the array location in question 
occurs in the version tree. This paper improves this time bound to O( min(log m, log log n)). 
OMP was used by Sarnak et. al. [4] to represent version trees; this representation is described 
in section 3.1. 

Dietzfelbinger et. al. [3] showed how to implement partially persistent arrays in O(log log m) 
worst case time for Access operations and O(log log m) amortized expected time for Store 
operations, where m is again the number of occurences in the version tree (here a tree consisting 
of a single path) of the array index in question. The result in this paper extends their result to 
full persistence. 
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Figure 1: Version Tree 

3 An Outline of the Algorithm 

3.1 Representing the Version Tree 

The version tree is represented by a list L(A) of records, called the traversal list. For each 
vertex v in the version tree the list contains two records, v' and v". These records represent 
the first and last times v is visited during a traversal of the tree. When a Store is performed 
on some version v of the array, a new leaf u is added to the tree and is made the first child of 
v, u' is inserted immediately after v', and u" after u', 

For example, the tree in figure 1 has five nodes a, b, c, d and e and the traversal list 

a, , , If) (1)L(A) = ( 'b',C,C", "d' d" b" ,e,e,a. " 

For each array index i, keep a separate data structure representing those vertices in the version 
tree which were created by operations that stored into A[i]. We say that i occurs at these 
vertices. Call this set of vertices V(i). V(i) partitions the version tree into subtrees, such 
that a vertex v is in the same subtree as its parent iff v is not the root and v ¢ V(i). Let 
V(i, 1), ... , V(i, mi) be the partition induced by V(i). V(i) also partitions L(A) into contiguous 
sublists in the natural way: two adjacent records are in the same sublist iff they belong to 
vertices that are in the same set V (i, j). 

Lemma 1 V(i) partitions L(A) into at most 21IV(i)11 + 1 subliste. 

Proof: If IIV(i)11 is empty, it partitions L(A) into one sublist, L(A) itself. Now add vertices to 
V(i) in increasing order of depth. Each additional vertex may split an existing sublist into at 
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most three pieces. The lemma follows by induction. I 

Lemma 2 Any record in L(A) is the initial record in sublists induced by at most two V(i) 'so 

Proof: Let v be a vertex in the version tree. The record v' can be the initial record in sublists 
for at most two indices: the index occuring at v, and the index occuring at v's left sibling (if 
any). The record v" can be the initial record of a sublist of L(A) only for the index occuring 
at its rightmost child, if any. I 

The motivation behind this approach is that we can find the set V( i, j) containing a node x by 
finding the sublist of L(A) induced by V(i) that contains x', if we label the sublists of L(A) 
appropriately. 

For each array index i, we represent the sublists of L(A) induced by V(i) by storing their initial 
elements in a balanced tree. Since we can determine the order of list elements in constant time, 
we can find the sublist containing x' and therefore perform Access operations in O(log IIV(i)lI) 
time. This is essentially the algorithm of [1] (although the time bound there was not quite as 
good, because the algorithm presented for OMP was not optimal). 

3.2 The Order Maintenance Problem 

The idea for speeding up the algorithm is inspired by observing how the order maintenance 
problem is solved. The list L is broken up into sublists L 1 , ••• , Li ; each of length O(log IILII). 
Inside each sublist, elements are assigned integer labels that increase monotonically along the 
list. When a new item is inserted into a sublist it is assigned a label equal to the average of the 
labels of its neighbors, rounded down. When there is no room (two neighbors have consecutive 
labels) or when the sublist becomes too large it is split into sublists of half size and the elements 
of each are relabeled evenly, with labels of consecutive elements at least \\L\I apart. 

The sublists are placed into another list, where they are also monotonically labeled. There are 
several algorithms that will monotonically label a list at a cost of O(log n) amortized relabelings 
per insertion [1,8,2]. Note that in all cases the labels are expressible with O(logn) bits; i.e., 
are nonnegative integers bounded by some polynomial in n. We call the problem of maintaining 
such labels under insertions the monotonic labeling problem (MLP). 

Let x and y be elements of L, contained in sublists L, and L j • If L, =f L j then the order of x 
and y can be determined by comparing the labels of L, and Lj . Otherwise, the order of x and 
y can be found by comparing their own labels. This takes O(1) time. 
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By observing that in n insertions the sublists can split at most O(n/log n) times, we conclude 
that this algorithm implements OMP in 0(1) amortized time per insertion. 

3.3 Using 0 (log log U) Priority Queues 

Because the labels assigned in the algorithm for OMP are small integers, it is natural to try 
to store subsets of the list elements using the fast data structure of van Emde Boas, Kaas and 
Zijlstra [10, 9] (hereafter "VKZ"), in which we can perform insertions, deletions and greatest 
lower bound queries in O(1oglog U) time, U the bound on the labels. This data structure can be 
made space efficient using dynamic perfect hashing, at the expense .of requiring randomization. 
Using time stamps instead of list labels, this is the idea behind partially persistent arrays [3]. 

When implementing fully persistent arrays, however, serious problems arise. The O( 1) amor­
tized time algorithms for OMP do not assign labels directly to elements of L(A), but rather 
to sublists of L(A) of size O(1og n). We might define the label of an element of L(A) to be 
the label of its sublist in the OMP data structure concatenated with the its label in its sublist. 
In this case, however, each insertion into L(A) causes O(1ogn) (amortized) implicit labels to 
change. If each of these records is at the beginning of some a sublist for some index i, changing 
the VKZ data structures may take O(1ogn log log n) time. 

3.4 Bucketing 

We overcome these problems with several tricks. In the VKZ data structures, use the "bucketing 
trick" (see [6J, for example). Group together data items into subsets or buckets of size 0(log2 n). 
The buckets are contiguous; that is, for two distinct buckets 51 and 52 either x < y for all x E 51 
and y E 52 or all x > y for x E 51 and y E 52. Each bucket is represented by a conventional 
balanced tree of depth O(log log n). Store the buckets in a VKZ data structure, indexed by 
their minimum elements. To insert into the data structure, find the bucket whose minimum 
element is the greatest minimum element less than the new element, and put the new element 
into the bucket. When a bucket gets too large split it in half and insert the new fragment into 
the VKZ data structure. 

The bucketing trick means that we only need modify a VKZ data structure when the label of 
the minimum record of a bucket is changed. Since each record occurs only 0(1) times, there 
are at most O(n] log2 n) such bucket headers. Since each relabeling by the OMP algorithm 
causes O(1ogn) implicit labels to change, we might expect an average of only 0(1og-1 n) bucket 
headers to be relabelled on any operation. 
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3.5 Weighted Monotonic Labeling 

Unfortunately, the distribution of bucket headers in sublists of L(A) may be nonuniform. To 
solve this problem, we modify the monotonic labeling algorithm to take into account the cost 
of relabeling a sublist. Let the function h(r) be 1 if r is a bucket header, 0 otherwise. For each 
sublist L, of L( A) produced by the 0 MP algorithm, define the cost of relabeling L, to be 

cost(Li ) = 1 + L h(r)loglogn.	 (2) 
rEL; 

The cost is proportional to the time we must spend when the sublist is relabeled. If there are 
k sublists of L(A), the sum of the costs is (1 +o(l))k. 

The weighted analogue of the problem of maintaining monotonic labels under insertions is the 
weighted monotonic labeling problem (WMLP). This is the problem of performing the following 
operations on a list L: 

ChangeCost(x, ~) Change the cost of list item x from cost( x) to cost(x) +~. 

Split(x, <i) Split the list element x into two list elements Xl and X2 

with costs CI and cost(x) ­ CI. 

Assume the costs are positive integers. If the sum of the costs of the elements of L are always 
O(IILII), and we assume it takes time cost(x) to relabel x, we now there is an algorithm for 
WMLP that takes O(I~llog IILII) amortized time for ChangeCost operations and O(cost(x) + 
log IILII) amortized time for Split operations. 

The idea behind the algorithm is to surround each element x with cost(x) dummy elements 
on each side, and use the existing algorithms for MLP on this augmented list. The motivation 
is that the existing labeling algorithms have the property that they renumber list elements 
in a contiguous region around the insertion point. Therefore, if some "real" list element x is 
renumbered, at least cost(x) dummy elements are also renumbered, and the cost ofrenumbering 
x will be at most a constant factor larger than the number of relabelings of dummy elements. 
The upper bound on the MLP algorithm of O(log IILII) amortized relabelings per insertion, 
together with the linear bound on the total number of dummy elements, yields the desired 
result. 

We now describe in more detail how Split and ChangeCost operations are performed: 

1.	 When performing ChangeCost(x, ~), if ~ < 0 then we delete 21~1 elements from the 
list. This takes time O(I~llog IILI!) (actually, it can be done in O(~) time). If ~ > 0, 
we insert 2 ~ additional dummy elements around x. We do the insertion as far from x 
as possible, so that if x is renumbered then so are cost( x) dummy elements. This takes 
time ~log IILII. 
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2.	 When performing a Split( Xl , c) operation, we must split the existing 2 cost(Xl) dummies 
into two groups of size 2 c and 2 (cost(Xl) - c), respectively. We delete Xl and insert 
it and a new element X2 at the proper positions in the dummy list. This takes times 
O(cost(x) + log IlL/I). 

3.6 Using WMLP for Fully Persistent Arrays 

We use the algorithm for WMLP to implement aMP. We again break the list L(A) into sublists, 
only now we limit each sublist to have cost (as defined in equation 2) O(log IIL(A)II). When a 
sublist is split it splits into two sublists of nearly equal cost (the costs can be made equal to 
within 8 (log log n), and are always O(log n)). 

When a bucket splits in the VKZ data structure, a new element of L(A) becomes a bucket 
header. The cost of the sublist of L( A) containing that element increases by O(log log n). Using 
ChangeCost, the cost of the sublist is increased, taking time O(lognloglogn). Because this 
can happen at most O(njlog2 n) times in n operations, the amortized cost due to ChangeCost 
operations is o(log log n] log n) per operation, which is not significant. 

Because the cost of a sublist is proportional to the actual time needed to fix up the VKZ data 
structures when that sublist's label is changed, we can conclude: 

Theorem 3 Fully persistent array operations can be performed in O(log log n) amortized time 
per operation. 

If dynamic perfect hashing is used to store the VKZ data structures then space is O(n), but 
the time bound is degraded to expected time by the need to perform randomization. 

4 Summary 

This paper has outlined an algorithm for fully persistent arrays in which Access operations 
take O(log log n) time and Store operations take O(log log n) amortized expected time. The 
algorithm uses linear space. 

Because any data structure can be implemented with an array, we can use the techniques 
described in this paper to make any data structure fully persistent at a cost of an extra factor 
of log log n per operation and using space proportional to the number of memory modifications. 
Of course, a data structure that is efficient only in the amortized sense may perform poorly if 
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made fully persistent, because expensive operations may be replicated on many branches of the 
version tree. 
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