
TECH REPORT

/~

(?~7~

Fully Persistent Arrays .

Paul F. Dietz

Technical Report 290

June 1989

1

Fully Persistent Arrays

(Extended Abstract)

Paul F. Dietz

Department of Computer Science

University of Rochester

Rochester, NY, USA 14627

dietz©ks.rochester .edu

Introduction

A data structure is partially persistent if previous versions remain available for queries but
not for updates. A data structure is fully persistent if past versions remain available both for
queries and for updates in a "branching" model of time. The tree representing the branching
temporal evolution of the data structure is called the version tree [4]. Each node in the version
tree represents the result of one update operation on a version of the data structure.

An array is a data structure A on which two operations are defined: Access(A, i), which returns
the ith element of A, and Store(A, i, x), which replaces the ith element of A with x. 1 This
paper outlines a technique for making arrays fully persistent in O(log log n) expected amortized
time per operation and O(n) space.e

Since an array can model a RAM's memory, any data structure on a RAM in which each
operation takes O(F(n)) time and performs O(U(n)) memory modifications can be made fully
persistent using O(F(n) log log n) expected amortized time per operation and using O(nU(n))
space.

1 Array indices are assumed to be in the range {I, ... , n}, where n is the number of operations to be performed.

2All logarithms in this paper are binary.

1

2 Previous Work

Partially persistent data structures were investigated by Sarnak and Tarjan [7]; fully persistent
data structures by Sarnak et. al. [4]. They gave a technique for converting a data structure into
a (fully) persistent data structure in a constant factor extra time per and space per memory
modification. However, their techniques applied only to data structures consisting of a network
of records of bounded size and bounded in-degree. In particular, they could not make persistent
arrays or data structures containing unbounded fan-in directed graphs.

Fully persistent arrays are related to context trees, which are models of inheritance and re­
semble tree structured association lists [11, 12, 5]. In a context tree, one has two operations:
AddContext(x, name, val), which creates a new leaf beneath an existing node x and assigns
it the pair (name,val), and LookUp(x,name), which finds the deepest ancestor of a node x
(including x) which has a pair whose first element is name, and returns the associated value
(with an error if no such node exists). Fully persistent arrays may be implemented as context
trees where one stores (arrayindex.value) pairs at the nodes of the tree.

Dietz [1] showed that context trees may be efficiently implemented using the order maintenance
problem. This is the problem of maintaining a list of record on which two operations are
performed: insert a new record at a specified position in the list, and, given two records in the
list, determine which is closer to the beginning of the list. An 0(1) amortized time algorithm
for OMP was given by Tsakalidis [8] and an 0(1) worst case algorithm by Dietz and Sleator [2].
These algorithms permit one to implement fully persistent arrays in O(1) space per update and
O(log m) time per operation, where m is the number of times the array location in question
occurs in the version tree. This paper improves this time bound to O(min(log m, log log n)).
OMP was used by Sarnak et. al. [4] to represent version trees; this representation is described
in section 3.1.

Dietzfelbinger et. al. [3] showed how to implement partially persistent arrays in O(log log m)
worst case time for Access operations and O(log log m) amortized expected time for Store
operations, where m is again the number of occurences in the version tree (here a tree consisting
of a single path) of the array index in question. The result in this paper extends their result to
full persistence.

2

e

Figure 1: Version Tree

3 An Outline of the Algorithm

3.1 Representing the Version Tree

The version tree is represented by a list L(A) of records, called the traversal list. For each
vertex v in the version tree the list contains two records, v' and v". These records represent
the first and last times v is visited during a traversal of the tree. When a Store is performed
on some version v of the array, a new leaf u is added to the tree and is made the first child of
v, u' is inserted immediately after v', and u" after u',

For example, the tree in figure 1 has five nodes a, b, c, d and e and the traversal list

a, , , If) (1)L(A) = ('b',C,C", "d' d" b" ,e,e,a. "

For each array index i, keep a separate data structure representing those vertices in the version
tree which were created by operations that stored into A[i]. We say that i occurs at these
vertices. Call this set of vertices V(i). V(i) partitions the version tree into subtrees, such
that a vertex v is in the same subtree as its parent iff v is not the root and v ¢ V(i). Let
V(i, 1), ... , V(i, mi) be the partition induced by V(i). V(i) also partitions L(A) into contiguous
sublists in the natural way: two adjacent records are in the same sublist iff they belong to
vertices that are in the same set V (i, j).

Lemma 1 V(i) partitions L(A) into at most 21IV(i)11 + 1 subliste.

Proof: If IIV(i)11 is empty, it partitions L(A) into one sublist, L(A) itself. Now add vertices to
V(i) in increasing order of depth. Each additional vertex may split an existing sublist into at

3

most three pieces. The lemma follows by induction. I

Lemma 2 Any record in L(A) is the initial record in sublists induced by at most two V(i) 'so

Proof: Let v be a vertex in the version tree. The record v' can be the initial record in sublists
for at most two indices: the index occuring at v, and the index occuring at v's left sibling (if
any). The record v" can be the initial record of a sublist of L(A) only for the index occuring
at its rightmost child, if any. I

The motivation behind this approach is that we can find the set V(i, j) containing a node x by
finding the sublist of L(A) induced by V(i) that contains x', if we label the sublists of L(A)
appropriately.

For each array index i, we represent the sublists of L(A) induced by V(i) by storing their initial
elements in a balanced tree. Since we can determine the order of list elements in constant time,
we can find the sublist containing x' and therefore perform Access operations in O(log IIV(i)lI)
time. This is essentially the algorithm of [1] (although the time bound there was not quite as
good, because the algorithm presented for OMP was not optimal).

3.2 The Order Maintenance Problem

The idea for speeding up the algorithm is inspired by observing how the order maintenance
problem is solved. The list L is broken up into sublists L 1 , ••• , Li ; each of length O(log IILII).
Inside each sublist, elements are assigned integer labels that increase monotonically along the
list. When a new item is inserted into a sublist it is assigned a label equal to the average of the
labels of its neighbors, rounded down. When there is no room (two neighbors have consecutive
labels) or when the sublist becomes too large it is split into sublists of half size and the elements
of each are relabeled evenly, with labels of consecutive elements at least \\L\I apart.

The sublists are placed into another list, where they are also monotonically labeled. There are
several algorithms that will monotonically label a list at a cost of O(log n) amortized relabelings
per insertion [1,8,2]. Note that in all cases the labels are expressible with O(logn) bits; i.e.,
are nonnegative integers bounded by some polynomial in n. We call the problem of maintaining
such labels under insertions the monotonic labeling problem (MLP).

Let x and y be elements of L, contained in sublists L, and L j • If L, =f L j then the order of x
and y can be determined by comparing the labels of L, and Lj . Otherwise, the order of x and
y can be found by comparing their own labels. This takes O(1) time.

4

By observing that in n insertions the sublists can split at most O(n/log n) times, we conclude
that this algorithm implements OMP in 0(1) amortized time per insertion.

3.3 Using 0 (log log U) Priority Queues

Because the labels assigned in the algorithm for OMP are small integers, it is natural to try
to store subsets of the list elements using the fast data structure of van Emde Boas, Kaas and
Zijlstra [10, 9] (hereafter "VKZ"), in which we can perform insertions, deletions and greatest
lower bound queries in O(1oglog U) time, U the bound on the labels. This data structure can be
made space efficient using dynamic perfect hashing, at the expense .of requiring randomization.
Using time stamps instead of list labels, this is the idea behind partially persistent arrays [3].

When implementing fully persistent arrays, however, serious problems arise. The O(1) amor­
tized time algorithms for OMP do not assign labels directly to elements of L(A), but rather
to sublists of L(A) of size O(1og n). We might define the label of an element of L(A) to be
the label of its sublist in the OMP data structure concatenated with the its label in its sublist.
In this case, however, each insertion into L(A) causes O(1ogn) (amortized) implicit labels to
change. If each of these records is at the beginning of some a sublist for some index i, changing
the VKZ data structures may take O(1ogn log log n) time.

3.4 Bucketing

We overcome these problems with several tricks. In the VKZ data structures, use the "bucketing
trick" (see [6J, for example). Group together data items into subsets or buckets of size 0(log2 n).
The buckets are contiguous; that is, for two distinct buckets 51 and 52 either x < y for all x E 51
and y E 52 or all x > y for x E 51 and y E 52. Each bucket is represented by a conventional
balanced tree of depth O(log log n). Store the buckets in a VKZ data structure, indexed by
their minimum elements. To insert into the data structure, find the bucket whose minimum
element is the greatest minimum element less than the new element, and put the new element
into the bucket. When a bucket gets too large split it in half and insert the new fragment into
the VKZ data structure.

The bucketing trick means that we only need modify a VKZ data structure when the label of
the minimum record of a bucket is changed. Since each record occurs only 0(1) times, there
are at most O(n] log2 n) such bucket headers. Since each relabeling by the OMP algorithm
causes O(1ogn) implicit labels to change, we might expect an average of only 0(1og-1 n) bucket
headers to be relabelled on any operation.

5

3.5 Weighted Monotonic Labeling

Unfortunately, the distribution of bucket headers in sublists of L(A) may be nonuniform. To
solve this problem, we modify the monotonic labeling algorithm to take into account the cost
of relabeling a sublist. Let the function h(r) be 1 if r is a bucket header, 0 otherwise. For each
sublist L, of L(A) produced by the 0 MP algorithm, define the cost of relabeling L, to be

cost(Li) = 1 + L h(r)loglogn.	 (2)
rEL;

The cost is proportional to the time we must spend when the sublist is relabeled. If there are
k sublists of L(A), the sum of the costs is (1 +o(l))k.

The weighted analogue of the problem of maintaining monotonic labels under insertions is the
weighted monotonic labeling problem (WMLP). This is the problem of performing the following
operations on a list L:

ChangeCost(x, ~) Change the cost of list item x from cost(x) to cost(x) +~.

Split(x, <i) Split the list element x into two list elements Xl and X2

with costs CI and cost(x) ­ CI.

Assume the costs are positive integers. If the sum of the costs of the elements of L are always
O(IILII), and we assume it takes time cost(x) to relabel x, we now there is an algorithm for
WMLP that takes O(I~llog IILII) amortized time for ChangeCost operations and O(cost(x) +
log IILII) amortized time for Split operations.

The idea behind the algorithm is to surround each element x with cost(x) dummy elements
on each side, and use the existing algorithms for MLP on this augmented list. The motivation
is that the existing labeling algorithms have the property that they renumber list elements
in a contiguous region around the insertion point. Therefore, if some "real" list element x is
renumbered, at least cost(x) dummy elements are also renumbered, and the cost ofrenumbering
x will be at most a constant factor larger than the number of relabelings of dummy elements.
The upper bound on the MLP algorithm of O(log IILII) amortized relabelings per insertion,
together with the linear bound on the total number of dummy elements, yields the desired
result.

We now describe in more detail how Split and ChangeCost operations are performed:

1.	 When performing ChangeCost(x, ~), if ~ < 0 then we delete 21~1 elements from the
list. This takes time O(I~llog IILI!) (actually, it can be done in O(~) time). If ~ > 0,
we insert 2 ~ additional dummy elements around x. We do the insertion as far from x
as possible, so that if x is renumbered then so are cost(x) dummy elements. This takes
time ~log IILII.

6

2.	 When performing a Split(Xl , c) operation, we must split the existing 2 cost(Xl) dummies
into two groups of size 2 c and 2 (cost(Xl) - c), respectively. We delete Xl and insert
it and a new element X2 at the proper positions in the dummy list. This takes times
O(cost(x) + log IlL/I).

3.6 Using WMLP for Fully Persistent Arrays

We use the algorithm for WMLP to implement aMP. We again break the list L(A) into sublists,
only now we limit each sublist to have cost (as defined in equation 2) O(log IIL(A)II). When a
sublist is split it splits into two sublists of nearly equal cost (the costs can be made equal to
within 8 (log log n), and are always O(log n)).

When a bucket splits in the VKZ data structure, a new element of L(A) becomes a bucket
header. The cost of the sublist of L(A) containing that element increases by O(log log n). Using
ChangeCost, the cost of the sublist is increased, taking time O(lognloglogn). Because this
can happen at most O(njlog2 n) times in n operations, the amortized cost due to ChangeCost
operations is o(log log n] log n) per operation, which is not significant.

Because the cost of a sublist is proportional to the actual time needed to fix up the VKZ data
structures when that sublist's label is changed, we can conclude:

Theorem 3 Fully persistent array operations can be performed in O(log log n) amortized time
per operation.

If dynamic perfect hashing is used to store the VKZ data structures then space is O(n), but
the time bound is degraded to expected time by the need to perform randomization.

4 Summary

This paper has outlined an algorithm for fully persistent arrays in which Access operations
take O(log log n) time and Store operations take O(log log n) amortized expected time. The
algorithm uses linear space.

Because any data structure can be implemented with an array, we can use the techniques
described in this paper to make any data structure fully persistent at a cost of an extra factor
of log log n per operation and using space proportional to the number of memory modifications.
Of course, a data structure that is efficient only in the amortized sense may perform poorly if

7

made fully persistent, because expensive operations may be replicated on many branches of the
version tree.

References

[1]	 Paul F. Dietz. Maintaining order in a linked list. In Proc. 14th ACM STOC, pages 122-127,
May 1982.

[2]	 Paul F. Dietz and Daniel D. Sleator. Two algorithms for maintaining order in a list. In
Proc, 19th ACM STOC, pages 365-372, May 1987. Submitted to JCSS. A revised version
of the paper is available that tightens up the analysis.

[3]	 M. Dietzfelbinger, A. Karlin, K. Melhorn, F. Meyer auf der Heide, H. Rohnert, and R. E.
Tarjan. Dynamic perfect hashing: Upper and lower bounds. In Proc. 29th FOCS, pages
524-531, 1988. The application to persistent arrays was presented but does not appear in
the proceedings.

[4]	 James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E. Tarjan. Making data
structures persistent. In Proc. 18th ACM STOC, pages 109-121, May 1986.

[5]	 Carlo Montangero, Giuliano Pacini, Maria Simi, and Franco Turini. Information manage­
ment in context trees. Acta. Info., 10:85-94, 1978.

[6]	 Mark Overmars. A O(1) average time update scheme for balanced binary search trees.
Bull. EATCS, pages 27-29, 1982.

[7]	 Neil Sarnak and Robert E. Tarjan. Planar point location using persistent search trees.
Communications of the AC.M, 29(7):669-679, July 1986.

[8]	 A. K. Tsakalidis. Maintaining order in a generalized linked list. Acta. Info., 21(1):101-112,
1984.

[9]	 P. van Emde Boas. Preserving order in a forest in less than logarithmic time and linear
space. Info. Proc. Lett., 6(3):80-82, June 1977.

[10]	 P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an efficient
priority queue. Math. Sys. Theo., 10:99-127, 1977.

[11]	 Ben Wegbreit. Retrieval from context trees. Info. Proc. Lett., 3(4):119-120, March 1975.

[12]	 Ben Wegbreit. Faster retrieval from context trees. Communications of the A CM, 19(9):526­
529, September 1976.

8

