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Abstract

The purpose of this paper is to present a new expression for the generalized Van-
dermonde determinant [3], [19], and thus for the Schur function. We also obtain an
equivalence relation on the set of all generalized Vandermonde determinants.
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1. Introduction

This paper is organized as follows: In this section we give a general
background. In section 2 we prove an expression for a generalized
Vandermonde determinant with two deleted rows and finally in section
3 we prove an expression for an arbitrary generalized Vandermonde
determinant.

The generalized Vandermonde determinants are intimately connected
to the symmetric group as was outlined in [10]. The basic theory of the
symmetric group was developed by Young and Frobenius in the first
two decades of the twentieth century. A partition [10] of m € N is any
finite sequence

(1) A= (AL ), m= > N =)
j=1

Received September 21, 2000.
91991 Mathematics Subject Classification: Primary 15A15; Secondary 20C30
1



2 THOMAS ERNST

of non-negative integers in decreasing order:
MZ>X> 2N >0

containing only finitely many non-zero terms such that the weight of A
1))
(2) )\j =1m,
j=1
where [()), the number of parts > 0 of A, is called the length of A. We
shall find it convenient not to distinguish between two such sequences
which differ only by a string of zeros at the end. Let z® = H?:1 x?‘j
be a monomial, and consider the polynomial a, obtained by antisym-
metrizing z“:

R L o
a2 Qa2 . a2
(3) o = aa(tr,... 1) = Y clww(z) = | "1 2 I
wESn

where €(w) is the sign of the permutation w. Given partitions A : A\; >
A > >X N, >0ofmand d: (n—1,n—2,...,1,0) of (g), the
generalized Vandermonde determinant is defined by

xi\l—l—n—l xg\l—l—n—l I?Ll—l—n—l
A -2 A -2 _
- £E12+n £1722+n xég—i—n 2
ax+5 =
A A : A
" 3" : xn

(4)

The Schur function sy, defined by

ax+s
5 =
( ) SA as )

is a quotient of two homogeneous skew-symmetric polynomials and is
thus a homogeneous symmetric polynomial [10].

The Schur functions are particularly relevant to discussions of the
quantum Hall effect [17], [15]; to the characters of irreducible represen-
tations of U(n) [21, p. 213], [17]; to the characters of GI(n,C), which
can be expressed in terms of Schur functions [14],[1, p. 237], [20, ch.
VIL6] ; to the characters of Sp(2n + 1,C) [11]; to the characters of
Sp(2n,R) [6]; and to the characters of the simple Lie algebras sl(n, C)
and su(n), which have the same representations [4]. Recently, Schur
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functions have been used in g¢-calculus [13],[8]. Further generalized
Vandermonde determinants occur in Sato theory, where the variables
are partial differential operators [12], [2].

There is a rich literature on Schur functions, e.g. [7], [9], [18], but I
have been unable to find a similar expression to the one presented in
this paper there.

2. Generalized Vandermonde determinants with two deleted rows.

In this section we will prove a general equation for a generalized Vander-
monde determinant with two deleted rows in terms of the elementary
symmetric polynomials e,. We will henceforth use k; as summation
indices and we will use both A and /; (which denotes the deleted rows)
to characterize the generalized Vandermonde determinant.

LEMMA 2.1.
xl .o 'rTL
(6) 7 /l\ = ( H (.Z'Z—«T])> en—l(xla"' ,.Z'n).
Xy Ty 1<j<i<n
x"f e xz

PROOF. By the properties of the roots of an equation [16], we know
that the Vandermonde determinant

1 ... 1

T1 - Tn+y1
: .. : = H (xl - xj) H (xn-i-l - .CE]') =
) ) ’ 1<j<i<n 1<j<n

xn “ .. xn
1 n+1

= ( (x; — £E])> (=)™ (—1)len_l(x1, . ,xn)xlnH =
1<j<i<n !

= Z(—l)”” ( H (2 — x5)en (1, - - 7517n)> xln+1-

1=0 1<j<i<n
On the other hand, an expansion with respect to column n + 1 gives

1 ... 1

:I; o e xn n n
R D o  CR L CUNPEEN
: . : =0

Ty e Tpiy

Equating coefficients of 2! ,,, we are done.
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Expand the determinant

1 T |
_ Yy 1 o Tpg4l
g =0 T
yn'+1 lel.-i-l L. ni%
with respect to column n + 2. The minors =, are defined by (8):
n+1
(8) == Z Tt ()R
m=0

Starting with (6), the strategy in this chapter will be to express
these minors in two different ways to obtain an equation which gives
an expression for the generalized Vandermonde determinants in terms
of multiple sums of elementary symmetric functions.

Remark 1. The y in (7) is a dummy variable, which is used in the com-
putations. The z; are the variables that will enter in the generalized
Vandermonde determinants.

To simplify notation, we introduce the following operator @fx I

DEFINITION 1. Let 0 < N <[ <n, put k = (k,... ,kn), 1 <k; <
n,1 < j < N and let U,y be the subset of {1,...,n}", where no
repetitions are allowed. Then

keU, N
N-1 j N
©) j=1 i=1 i=1
X Cn i (X1, oo Thyy e e s Thyy v s Ty) X
% (_1)k1+...+kN+I(7r)N H (xz _ x]) ,
1<5<i<n,
4,57 {k1,... ,kn}

where I(m)y is the number of inversions of the permutation [5] 7 =
(k1,...,kn), where the k; are counted in increasing order as 1,... , N.
In particular,

(10) on, = - ( H (x; — xj)> 1. Tpen (1, .., Xy);

1<j<i<n
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X H (i — ) | eni(z1,. o Ty oo, X))

1<j<i<nyg,j#{k}

(12) O, =(-1)" ( IT (xi- l’j))

1<j<i<n
THEOREM 2.2. Let 2 <1 <n+1. Then

1 - 1
2 . 22
, : n
- — | =) (2. 0p...7,)* X
7 O - '
(1?)) x?'-i-l xz'—i-l
T @) ) el B ) X

1<j<i<n,ij#{k}
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PROOF. Our aim is first to expand the minor =5 with respect to row
1, and then expand all the minors but the first one with respect to

column 1 and use (6).

(14)
1 1 1
2 2 2
- Y 1 T
=, = : : :” = ( H (; x])> (z1...20)% +
: : : 1<jic
gl gt o IS
vt 7 Tn
o S T I
k=1 : B
yn-i-l x?f+1 Z—i—l xz-l—l
n
- ( H (x; x])> (z1...20)° + Z(ml Tpo. 1) X
1<j<i<n k=1
1 ... 1 1
T Ty Tn,
x D (DT By =
xl_l . xz—l . xz—l
by (6) 2 - !
= H (i —xj) | (z1...20) —|—ZZy €n—it1
1<j<i<n 1=2 k=1
(1 B ) DM | T 1)
1<j<i<n,
i,57{k}

Now expand the determinant =, with respect to column 1.

Hy = ( H (x; — x])> (z1...2,)%+

1<j<i<n
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1 1

2 2

1 Ty,

n+1 : :
+1,1 Y L

+§ :(_1) Yy 2 2l
1=2 1 n
n+1 n+1

‘rl o o. e ‘rn

Finally equate the coefficients of .

THEOREM 2.3. Let 3 <[ <n+1. Then

1 1
T .. Tn
(15) | aptt o aptt
= Z (X1 Thy oo X)) engg1 (X1, oo Tl -
keUn,Q
Ty @) (=) IRk (T )P X

x 11 (i —2)) | =65, 1

1<j<i<nyi,j#{k1,k2}

ProoF. Expand the determinant =3 with respect to row 1.

1 1 1 1 1
T x
_ |y on 2ol
= Y 1 no | = (1. x,) | L D+
’ " "
yn+1 x?f-i—l xz-{-l 1 n
Yy T Ty Tn
n 3 3 3 3
S| P A
k=1 .
n+1 n+1 n+1 n+1
Y Ty Ky T
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Expand this last determinant with respect to column 1
and use (6) and (13).

(16)

=, = ( H (x; — x])> 1. Tpep1(T1,. .., Tn) +

1<j<i<n
n
—|—y§ (T1 .. Ty - Ty) H (x; —xj) | (=)™ +
k1=1 1< <i<n,i,j#{k1}
T Ty Ty
Ty Ty Ty,
n+1 n . .
k1+l o~ — — —_
+ E y' E 7 7 N
k= 1 k1 n
=1
n+l /n:1 L. n+1
Ty Ly Tn
= ( H (x; — x])> 1. Tpen 1 (T1, ..., Ty) +
1<j<i<n
n
—|—y§ (X1... Thy .. p) H (x; —xj) | (=)™ +
k1=1 1< <i<n,i,j#{k1}
n+1 n
Z l Z K1+l —~
+ y (_1) 1+$1"'$k1"'$nx
1=3 k=1
1 1 1
—2 2
Ty Lky Ty
: by(13)
o I -1 il
g Ty Ty
n n n
Zy T, T
= ( I @ wj)> Ty .. Ty €no1(T1, .0, Tn) +
1<j<i<n
3 k
+y E gy - - Tn) H (@i — ;) | (=)™ +
k1=1 1< <i<n,i,j#{k1}
n+1
—1—5 Y g (T1 . Tpy - Ty) X
= kEUnQ
—~ —~ I+ky+ko+I(n
X 6n—l+1($1, e 3 Thyy e Ty e ey Tp)(—1) T2 (m2 %

X (L1, . Tpy oo Ty ) H (i — ;)

1<j<i<nyi,j#{k1,k2}
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The factor (—1)/™2+1 comes from a renumbering of the summation
indices. By expanding the determinant =3 with respect to column 1
we get

1<5<i<n
3 3
‘Tl xn
+(=Dy| . .|
n+1 n+1
xl “ .. xn
T .- Tn
3 3
l’ “ .. l’
n+l 1 n
+1,1 : :
+Y (=D o
=3 xa e xf/L
n+1 n+1
"'El ... xn

The theorem now follows by equating the coefficients of 7.

We can now state a general theorem for a generalized Vandermonde
determinant with two deleted rows.

THEOREM 2.4. Let 0 <y <ly <n—+1. Then

1 ... 1
xl .« .. xn
o I
Xy cee In 11 +1
(18) — .= (—1)( ? )@2,12—1'
o gl

For the proof we need to prove the following lemma for =; by induc-
tion.

LEMMA 2.5. Let 2 <[ <n-+2. Then
-2 n+1

- k141 ! -
(19) = = Z ykl(_l)k1+( 2 >®]::l—2 + Zykl(_1>kl+l+(2)@f¢7lil—l'

k1=0 k1=l
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PRrROOF. The lemma is true for [ = 2 by (14) and for [ = 3 by (16)
Assume that the induction hypothesis is true for =;_;

(20)
1
k:l k1+ k1+1 @k1 < k1+1+ ) k1 gl—2
Eo1 = Y ni—3 Y9 k-1
=0 ki=l—1

On the other hand an expansion of =;_; with respect to column 1 gives

El—l = ( H (.Qfl — .CE])> T1...Tp en_l+3(x1, NN ,.Z'n)

1<j<i<n
xl o .. ‘I’TL
s & m
+ 5 (bt !
Yy :
ki=1 S o
—2 -2
Ty Ty
21 P
( ) xn—i—l xn-i—l
1 n
1 1
X1 L,
n+1 /l—\2 /l-_\g
x o« .. l’
ki1+1, k1 1 n
T Z (=" "y : :
k1=l-1 — —
o gh
n+1 . n+1
.731 * I’n .
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Equating the coefficients for y*! of the two last equations gives first

(10) and (13), then for 1 < ky <1 —2

1 . 1
xl o .. xn
k1 Tk
Xy cet Tn k41
(22) T ==y Mel
A : 1
and finally for | —2 < k; <n+2
1 .. 1
xl o .. xn
12 -2
231 xn -1 _
(23) : .= (—1)( : )@ln,k?l—l‘
e gk
A : el

The verification of the induction hypothesis is completed by expanding

=; with respect to row 1.

1 1 1 1 1
Yy T T, X1 T
=l = T3 — | = (ZEl. l’n) - — |+
-1 -1 -1 =2 1—2
Yy x, Ty Ty xn
n+1 n+1 n+1 n n
Yy Ty Ly, Ty L
Yy Ty Lo L
2 2 2 2
Y Ty Ty Ty
n . . .
E _1\k2 | — —
+ ( 1) -1 .Qfl 1 .Tl_l -1
ko1 Y 1 ko
n+1 n+1 /n:l n+1
Y T Ly L
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Expand the last determinant with respect to column 1 and use (13)
(22) and (23).

n
k1+
\—1[ — E ykl k1+( @k’ll 2+ E E k2+kl+1yklx
ko=1k1=2

k1=0
1 e 1 . 1
X1 Ly T
- xll_ xk;_ xnl_ n n+l
XXy Ty * " Ty . . . . . + E E
o o T ko=1 k1=l
-2 -2 1—2
L1 Ly T
n n n
x] Ty, xn
1 1 1
T Lo Ty
12 12 13
xy Ty x
— 2 n
(_1)k2+k1yk1$1 Ce Ty Ty X ] ] ) ) —
1— 1— 1—
xy xy, Tn
n n n
Ty Ly, L,

1 n
LS el 4 37 S ),
ko=1 k1=2

k1=0
XyFlay T, I:L1—_1}1—3[931> R
n  n+l
+ Z Z(_l)k2+k1+(l;1)yklxl N TRRRRT
ka=1 k1=l
-2
XGn 1,k1—2 [331, o ’f\k’m cet ’xﬂ] - Z ykl( 1)k1+(k1+1)@];1l—2+
k1=0

n+1
n Z Y1 (=1) 1)EH+(y )@n py

k1=l
Finally equation (18) follows from (22) or (23).
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We are now going to prove an equation for a generalized Vandermonde
determinant with an arbitrary number of rows deleted. This equation
will be a natural generalization of theorem 2.4!

3. Generalized Vandermonde determinants with any number of
deleted rows.

We start with a definition of some numbers which will be used through-
out this chapter:

DEFINITION 2. Let {byju}’—; be natural numbers, t,u € N, which
satisfy the equation

t—1
(24) et =2+ Y (bajaa— 1) = u.

j=1
These numbers also satisfy the inequalities
(25> b)\,j,t,u > 1,1 <j<t-— L; b)\,t,t,u > 2.
The maximum value of by ;. is in fact equal to the jumps in degree
(for j =1,...,t) of the generalized Vandermonde determinant as the
following equation shows:
(26) max(bw,m) = )\n—j +1-— >\n—j+la j = 1, e ,t.

To compute the by j+ ., we apply the following procedure: First by j 4,
gets a maximal value, then by 2;,, etc. until the 'increment’ u is ex-
hausted.

Remark 2. The following theorem defines an equivalence relation E
on the set ayys of all generalized Vandermonde determinants. The
equivalence class I, 45, ,+1 is defined by the following two criteria:

1. The highest power in the determinant is n 4+ s — 1.

2.

ls_1—5+2

(27) Z b)‘vjvls—l—5+27u = ls—l —|— 1
j=1

Any two generalized Vandermonde determinants which belong to the
same equivalence class F, ;. ,11 can be transformed to each other by
the method shown in the following proof.
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Ezxample 1. The following table gives an example of how to compute
I(m)s 4+ 320, k; mod 2 (n=5):

]fl k?g k?3 ](77') + Zz k?z k?l k?g ]Cg I(ﬂ') + Zz k?z
11 2] 3 11 3] 4|1 1
11 2] 4 -1 3] 4 2 -1
11 2] 5 11 3 4] 5 1
11 3| 2 -1 31 51 -1
11 3] 4 11 3| 5 2 1
11 31 5 -1 31 5 4 -1
11 4| 2 1041 1| 2 -1
11 4| 3 140 14 3 1
11 41 5 1141 1] 5 -1
1] 5] 2 -1 04 2] 1 1
11 5| 3 11 4] 2] 3 -1
11 5] 4 -1 4] 25 1
21 1] 3 -1 41 311 -1
21 1| 4 11 4| 3| 2 1
21 1] 5 -1 40 315 -1
21 3|1 114 5|1 1
21 3| 4 -1 4] 5 2 -1
21 3] 5 11 4 5] 3 1
20 411 -1 5 1 2 1
21 4| 3 1151 1] 3 -1
21 415 -1 5] 1 4 1
21 5|1 115 21 -1
21 5| 3 -1 5 213 1
21 5| 4 115 2| 4 -1
31 1] 2 115 3|1 1
31 1] 4 -1 5] 3 2 -1
31 1] 5 11 5| 3] 4 1
31 2] 1 -1 5 4] 1 -1
31 2] 4 11 5] 4] 2 1
31 215 -1 5] 4 3 -1

The following examples show how to compute the by ;..

Ezample 2. We start with the determinant defined by A = (5,5,0).
To compute it we move backwards from the determinant defined by
A =(2,2,0,0,0,0), which has u = 0, and the bs are easy to calculate.
Transform to A = (3,3,0,0,0), which has by131 = 1, byos1 = 1,
b)\73’371 = 3. Transform to A = (4, 4, 0, O), which has b>\,172,2 = 1, b>\,272,2 =
4. And finally transform to A = (5, 5,0), which has by 113 = 5.
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Ezample 3. We start with the determinant defined by A = (4,2,0).
To compute it we move backwards from the determinant defined by
A = (2,0,0,0,0), which has v = 0, and the bs are easy to calculate.
Transform to A = (3,1,0,0), which has by 131 =1, by231 =2, byss1 =
2. And finally transform to A = (4,2,0), which has by 1292 = 3, by222 =
2.

THEOREM 3.1. Let 0 < |} < lh < ... < ly < n+s—1. Further
assume that we have deleted s rows from the original Vandermonde
determinant. For convenience put

(28) N=l,,—s+2.
Then

1 1

‘rl DR xn

o~ —

A b

—

xl DR xf’f
—1 -1
(29) x711+5 . xz-{-s
N J
< > - JIaw - za)ov2 x
keU, N j=1 i=1
X Cplyts—1(T1y o v s Thyyeev s Thonyevo s Tp) X
> (_1)k1+---+k’N+I(ﬂ')N H (xl _ xj)
1<j<i<n,
Z7.]7£{k177kN}

Proor. We introduce an ’induction variable’ m, which goes from 1
to s — 2. This variable counts the number of times we move backwards
in the same equivalence class E,, ;4. ,+1. For each m the exponent of
the extracted monomial decreases and the number of variables in the
new determinant decreases by one. The induction hypothesis is true
for m = 0 by theorem (2.4).
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Assume that the theorem is true for m — 1.

Ty o Tnds—1-m
T P

sS—m sS—m
Ty T Tpas 1om -

/'l\ l/'\

S S
xl e xn—i—s—l—m
(30) ghtsml L gntstl

= (- 3

keUn-‘—s—l—m,lsil-‘—l—m

ls—1+1-m ]
—~~ b . _ _
H (1... kaz T B e
i=1 i=1
—~ —_—
X €nlots—1(T1yyeee s Thyy oo Tl 1  Tpts—1—m) X
X(_1)kl+~~~+k15,1+1—m+1(ﬂ)ls,1+1—m H (xZ _ fL’j)

1<j<i<n+s—1—m,
GjAE K,k 41-m}

An expansion of the same determinant with respect to the last column
gives

xq o Tpgs—2—m

! 3 l/.\

s—1—m
x . e x

(_1)n+s—m+lxl 1 n+s—2—m +
n+s—1—-m : . :
(31) 1=0 - _

xlls e xls

+ G(xn—i-s—l—m)?

where G(Zp45-1-m) are the terms with x, s 1_,, of order ls_1_,, + 1
and higher.
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We now have to pick out the terms which contain xlrf;i,:’f_m from
(30) i.e. we have to solve the equation

J
(32) ls—1om = Z bahls 1 +1—mm—1-
h=1
This implies that
(33) kiti=n+s—1—m.
Further
(34) b jlsr+1—mm—1 DX 1,01 +1—mm—1 7 br i —mym-

When m = 1, the bs have the following values:
battea—11 =1, bag o110 = 2,000, o111 = 1,

oD 20 -1 = Lbag, —10s 10 = 2.

If l,_5+1=1[,_4, the last term shall be by;, ,;, ,-11 = 3.

This is accomplished by putting j = l;_o +1 and k; = n + s — 2
followed by suppression of the index k;, which results in a reordering
of the k;s. By equating equations (30) and (31) , cancelling the factor

s—1—m

(—1)nFs=mHla1-m and equating the coefficients of z,7; 1”7, we ob-
tain

1 1
X1 o Tpds—2—m
— —
ls_m_l - ls—m—l
1 xn+s—2—m o
— —
lS DY l5
Ty xn+s—2—m
n+s—1 n+s—1
Ty T Tpasom

= (_1)(15_1;27’m)+n+s_m+l5717m Z

kEUn+s—2—m,l571 —m

o~

(1. | | Tk - Tips—omm) Ml mm
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(1)t a1 Ty [T (-

1<j<i<n+s—2—m,
i, j# k1, ki, —m}

Obviously, I(7);,_y41-m = I(m)1._, _m(—1)=17""l=1=m "and a compu-
tation shows that the last determinant is equal to

(72 3

kEUn+s—2—m,l571 —m

ls—1—m 7
T b gl 1—
(331 “ e kaz P xn+8—2—m) Ihlg—1—m,m X
Jj=1 i=1
— S
Xen_lﬁ_S_l(xl’ cee o Ty 7‘Tkls_17m’ s >xn+s—2—m)><
8 (_]-)kl+m+kls_17m+[(ﬂ')l5—17m H (1’1 - fL’j)

1<j<i<n+s—2—m,
i j A Rtk —m}

Now put m = s — 2 to obtain equation (29).
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