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ABSTRACT
Application programmer’s interfaces give access to domain
knowledge encapsulated in class libraries without providing
the appropriate notation for expressing domain composition.
Since object-oriented languages are designed for extensibil-
ity and reuse, the language constructs are often sufficient
for expressing domain abstractions at the semantic level.
However, they do not provide the right abstractions at the
syntactic level. In this paper we describe MetaBorg, a
method for providing concrete syntax for domain abstrac-
tions to application programmers. The method consists
of embedding domain-specific languages in a general pur-
pose host language and assimilating the embedded domain
code into the surrounding host code. Instead of extending
the implementation of the host language, the assimilation
phase implements domain abstractions in terms of existing
APIs leaving the host language undisturbed. Indeed, Meta-
Borg can be considered a method for promoting APIs to
the language level. The method is supported by proven and
available technology, i.e. the syntax definition formalism
SDF and the program transformation language and toolset
Stratego/XT. We illustrate the method with applications
in three domains: code generation, XML generation, and
user-interface construction.

Categories and Subject Descriptors
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cessors
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1. INTRODUCTION
Class libraries encapsulate knowledge about the domain

for which the library is written. The application program-
mer’s interface to a library is the means for programmers
to access that knowledge. However, the generic language
of method invocation provided by object-oriented languages
does often not provide the right notation for expressing
domain-specific composition. General purpose languages,
particularly object-oriented languages, are designed for ex-
tensibility and reuse. That is, language concepts such as
objects, interfaces, inheritance, and polymorphism support
the construction of class hierarchies with reusable implemen-
tations that can easily be extended with variants. Thus, OO
languages provide the flexibility to develop and evolve APIs
according to growing insight into a domain.

Although these facilities are often sufficient for express-
ing domain abstractions at the semantic level, they do not
provide the right abstractions at the syntactic level. This is
obvious when considering the domain of arithmetic or logical
operations. Most modern languages provide infix operators
using the well known notation from mathematics. Program-
mers complain when they have to program in a language
where arithmetic operations are made available in the same
syntax as other procedures. Consider writing e1 + e2 as
add(e1, e2) or even x := e1; x.add(e2). However, when
programming in other domains such as code generation, doc-
ument processing, or graphical user-interface construction,
programmers are forced to express their designs using the
generic notation of method invocation rather than a more
appropriate domain notation. Thus programmers have to
write code such as

JPanel panel =

new JPanel(new BorderLayout(12,12));

panel.setBorder(

BorderFactory.createEmptyBorder(15,15,15,15));

in order to construct a user-interface, rather than using a
more compositional syntax reflecting the nice hierarchical
structure of user-interface components in the Swing library.
Building in syntactic support for such domains in a gen-
eral purpose language is not feasible, however, because of
the different speeds at which languages and domain abstrac-
tions develop. A language should strive for stability, while
libraries can be more volatile.

In this paper we describe MetaBorg, a method for pro-
viding concrete syntax for domain abstractions to appli-
cation programmers. The method consists of embedding



domain-specific languages in a general purpose host lan-
guage and assimilating the embedded domain code into the
surrounding host code1. Instead of extending the implemen-
tation of the host language, the assimilation phase imple-
ments domain abstractions in terms of existing APIs leaving
the host language undisturbed. Indeed, MetaBorg can be
considered a method for promoting APIs to the language
level [33].

For example, to improve the construction of user-interfaces
in Java, we have designed a little Swing User-interface Lan-
guage (Swul) that makes the compositional structure of
the Swing components visible in application programs. Us-
ing our method we have embedded this language in Java,
such that it is directly available to application programmers.
They can now write within their Java programs expressions
such as

JPanel panel = panel of border layout {

north = label "Welcome"

center = scrollpane of

input : textarea {

rows = 20

columns = 40

}

south = panel of border layout {

east = button for ExitAction

}

};

in order to implement a user-interface consisting of a panel
with border layout, containing a label, a text area, and an-
other panel with a button. Such a program is assimilated
into the surrounding Java code by translating it to the se-
quence of Swing method calls that one would write by hand.

Our work stands in a long line of approaches to add syn-
tactic extensibility to programming languages [30, 50, 13, 39,
2, 6, 3]. Although our work has many commonalities with
other approaches, it is distinguished by its generality, i.e.
the lack of restrictions on either the syntax or the semantics
of embedding and assimilation. In addition, implementa-
tion of embeddings is high-level and concise; definition and
embedding of Swul required only 100 lines of syntax defi-
nition and 170 lines of assimilation rules. Our method has
the following characteristics:

Syntactic Embedded code fragments are checked syntac-
tically at compile-time. This is in contrast with ap-
proaches to compose program fragments using string
literals.

No restrictions on syntax definition Our maxim is that
it should be possible to design a notation that is fitting
for the domain without placing artificial restrictions on
the syntax to be used. This means that both lexical
and context-free syntax should be definable. Further-
more, all aspects of the embedding, including quota-
tion symbols, if any, should be adaptable. Only the
full class of context-free grammars allows such natu-
ral syntax definition. This is in contrast to languages

1MetaBorg provides generic technology for allowing a host lan-
guage (collective) to incorporate and assimilate external domains
(cultures) in order to strengthen itself. The ease of implementing
embeddings makes resistance futile.

with user-definable operators [23], overloading of (a
fixed set of) operators, syntax macros [30], or gram-
mar formalisms supporting only a subset, such as LL
or LALR, of the context-free grammars [13, 2]. The
only proviso we make is that host and embedded lan-
guage have a context-free syntax.

Not restricted to a single host language The method
is not specific to a particular host language [2], but can
be used to embed any language in any host language.

Interaction with host language Embedded code frag-
ments should be able to refer to artifacts in the host
program and vice versa. This is in contrast to ap-
proaches based on a separate domain-specific language
from which code is generated [40, 33].

Combination of extensions It should be possible to com-
bine multiple domain notations. This in contrast to
hard-wired language extensions.

No restrictions on assimilation The translation of em-
bedded fragments to the host language should not be
limited to a simple homomorphism or other fixed trans-
lation order [6], but should allow use of context-sensitive
information, global analysis, and multi-stage transfor-
mations.

As a consequence of these characteristics we do not re-
quire that language extensions are implemented within pro-
grams in the host language itself [13], since such approaches
lead to restrictions in many of the areas mentioned above.
We also do not expect language design and implementation
skills from the average application programmer. Instead we
opt for a separation of roles between the meta-programmer
defining the language embedding and assimilation, and the
application programmer using a domain notation. However,
our techniques are sufficiently high-level that a knowledge-
able programmer can use them to create new embeddings.
That is, the method is based on SDF2 [10, 44, 45], a syntax
definition formalism used to define embeddings, and Strat-
ego/XT [26, 47] a language and toolset for program trans-
formation used to implement assimilation. These tools are
mature and freely available from [38] and [41], respectively.
The applications of MetaBorg developed in this paper are
available at http://www.metaborg.org.

We proceed as follows. In Section 2 we examine the
practice of object-oriented programming in three domains:
code generation, document generation, and graphical user-
interface construction. For each of these domains we show
how the readability of programs improves dramatically by
employing domain-specific concrete syntax. In particular,
we show how to generate Java programs and XML docu-
ments in Java. Furthermore, we describe the domain-specific
Swing User-interface Language (Swul), which provides a
nice compositional language for user-interface composition
in Java. In Section 3 we explain how concrete syntax em-
beddings and the corresponding assimilations are realized
using the MetaBorg method and illustrate this by the im-
plementation of embeddings for the three applications from
Section 2. In Section 4 we give an overview of the syntax
definition formalism SDF2. In Section 5.2 we discuss the re-
lation with competing approaches such as user-definable op-
erators, syntax macros, application generators, and domain-
specific languages. We discuss future work in Section 5.3,
and conclude in Section 6.

http://www.metaborg.org


2. CONCRETE SYNTAX FOR OBJECTS
In this section we examine three application domains that

suffer from the misalignment between language notation and
the domain: code generation, XML document generation,
and graphical user-interface construction. For each of these
domains we discuss the methods that are used for program-
ming in these domains using an object-oriented language
and we show how our concrete syntax method dramatically
improves the readability and writability of applications in
these domains. For all examples in this paper we use Java
as the host language, but the techniques are equally well
applicable to other languages.

2.1 Code Generation
A code generator automates the production of boilerplate

code by translating a compact high-level specification of a
problem into full blown code. Typical applications include
the generation of data-types for the representation of ab-
stract syntax trees, the generation of XML data binding [5]
code for converting XML to a specific data-type, and the
generation of object-relational binding code for connecting
an object-oriented program to a database system. Numer-
ous tools are available for these purposes; LLBLGen [4]
is an object-relational binding generator; ApiGen [16] and
JTB [42] are abstract syntax tree generators, JAXB [25] and
Castor [14] are XML data binding tools, to name but a few.

The implementation of a code generator requires an in-
ternal representation of program code and an interface for
accessing this representation in order to compose and trans-
form code fragments. Ideally, generators use a structured
representation of programs, i.e. a data-structure to repre-
sent abstract syntax trees. Such a representation makes it
easy to compose, analyze, and transform fragments. For
example, the XML data binding tool JAXB uses a full ab-
stract syntax tree in its code generator. However, in prac-
tice, many generators are string-based, meaning that code
is generated by directly printing strings to a file, or by rep-
resenting fragments as strings and composing those. For
example and ironically, the abstract syntax tree generators
ApiGen [16] and JTB [42] are text-based code generators.
Castor [14] is an example of a hybrid approach which uses a
combination of an abstract syntax tree for the global struc-
ture and text for method bodies.

Neither implementation using a data-structure, nor using
string literals is satisfactory. The advantage of using string
literals or text templates is that one can use concrete syn-
tax, i.e. the fragments are readable as program code, and
it is trivial to implement. The approach is illustrated by
the Castor example in Figure 1, which builds up a string
representation of a program fragment. However, the dis-
advantages far outweigh the advantages. Escaping to the
host language to insert a fragment of code computed else-
where is cumbersome. The syntax of the generated code is
not checked. No further manipulation of the code is possi-
ble. And runtime overhead is incurred for parsing, analysis,
compilation or interpretation if code is to be executed.

The advantage of using a data-structure is that the gener-
ated code is structured and is amenable to further process-
ing. Type correctness of the generator often entails syntactic
correctness of the generated program. It is also easy to im-
plement in a general purpose object-oriented language. The
approach requires the creation of a class hierarchy which can
be substantial for a real language. Code generators such as

String x = "propertyChangeListeners";

jsc.add("if (");

jsc.append(x);

jsc.append(" == null) return;");

jsc.add("PropertyChangeEvent event = new ");

jsc.append("PropertyChangeEvent");

jsc.append("(this, f, v1, v2);");

jsc.add("");

jsc.add("for (int i = 0; i < ");

jsc.append(x);

jsc.append(".size(); i++) {");

jsc.indent();

jsc.add("((PropertyChangeListener) ");

jsc.append(x);

jsc.append(".elementAt(i)).");

jsc.append("propertyChange(event);");

jsc.unindent();

jsc.add("}");

Figure 1: Code generation in Castor.

ATerm x = id |[ propertyChangeListeners ]|;

ATerm stm = bstm |[ {

if(x == null) return;

PropertyChangeEvent event =

new PropertyChangeEvent(this, f, v1, v1);

for(int c=0; c < x.size(); c++) {

((...)x.elementAt(c)).propertyChange(event);

}

}

]|;

Figure 2: Code generation with concrete syntax.

ApiGen and JTB can be used for that purpose. However,
composition of code fragments is done via calls to the code
API, leading to very verbose meta-programs. It is usually
hard to understand the structure of the generated code when
inspecting such meta-programs.

The MetaBorg method combines the best of both worlds.
Code fragments are written using the concrete syntax of the
programming language, but the implementation is based on
an API for code representation. This is illustrated in Fig-
ure 2 with a fragment of a Java program generating a Java
program, corresponding to the example in Figure 1. The
generator uses ATerms [8] for the representation of gener-
ated code. Instead of using constructors from the ATerm
class hierarchy to create a code fragment, it is written as
a regular piece of Java code. The code fragments are dis-
tinguished from the surrounding code by the delimiters |[

and ]|. The delimiters are not fixed in MetaBorg and can
even be left out when appropriate. The bstm and id tags
are used to indicate that the fragments are of syntactic cate-
gory statement and identifier respectively. A fragment does
not need to be closed, but can incorporate code fragments
generated elsewhere. For example, in Figure 2 the identifier
assigned to variable x is used in the fragment assigned to
the variable stm.

Meta-programs with embedded object-program fragments
are translated to pure Java programs in which code con-
struction is expressed directly in terms of calls to the code



out.startDocument();

out.startElement("", "html", "html", noAttrs);

out.startElement("", "body", "body", noAttrs);

out.startElement("", "p", "p", noAttrs);

out.characters(text.toCharArray(), 0,

text.length());

out.endElement("", "p", "p");

out.endElement("", "body", "body");

out.endElement("", "html", "html");

out.endDocument();

Figure 3: Composition of an XML document in Co-
coon.

out.write document %>

<html>

<body>

<p><% text :: cdata %></p>

</body>

</html>

<%;

Figure 4: Composition of an XML document
with concrete syntax with underlying SAX Con-
tentHandler invocations.

representation API. This tool also guarantees that the code
fragments are syntactically correct. The type system of the
host language and a properly defined underlying API will
then guarantee that compositions are syntactically correct
as well.

Note that MetaBorg is not restricted to Java in Java.
The same method can be used to embed other languages in
Java (e.g. to generate C# code), or to use a different host
language (e.g. to generate Java code with a C# program).
The realization of these embeddings will be discussed in Sec-
tion 3.

2.2 XML Document Generation
XML is used on a large scale for the exchange of data be-

tween programs. This requires programs to read and write
XML documents and to convert internal data to XML and
back. Applications that generate XML documents by filling
in templates suffer from the lack of support for XML syn-
tax in general purpose programming languages. The prob-
lems are similar to that in code generation. Text-based solu-
tions cannot guarantee that the produced text is well-formed
XML. Typical examples are server-side scripting languages
such as JSP and ASP .NET, which support the embedding
of a programming language in XML or HTML. Further ma-
nipulation of the document after generation is impossible. A
typical example of post generation transformation is the ad-
dition of statistics to a generated web page. Many web page
generators just put this information outside the HTML tags,
which is of course invalid, but is accepted by web browsers
if the page does not claim to be well-formed XML.

Other solutions are based on data structures. In libraries
such as W3C DOM, JDOM, and XOM, documents are rep-
resented by instances of classes corresponding to the generic
structure of XML, e.g. Document, Element, and Attribute.
Thus document construction is achieved with the construc-
tors of these classes. Alternatively, construction can be
achieved with events emitted to a SAX ContentHandler,

parse-java-xml

assimilate-sax

Java

XML

Java

Figure 5: A program with embedded concrete syn-
tax (e.g., for XML) is translated to a pure Java pro-
gram.

which can be an XML serializer or a DOM constructor, as
illustrated in Figure 3 with a code fragment from Cocoon
[15]. By using these APIs the code is guaranteed to produce
well-formed XML as long as the library does its job prop-
erly. However, these solutions result in sequences of method
invocations that are hard to read.

The MetaBorg solution is the same as in the case of code
generation. There is a good notation for this domain, i.e.,
XML itself. With the MetaBorg method we make this no-
tation available to the application programmer, while keep-
ing the properties of APIs for structured representation of
documents. Figure 4 shows a statement in a Java program
with an embedded XML document. The symbols %> and <%

are used to delimit the embedded XML from the surround-
ing code. Within the document is a reference to a document
fragment defined earlier in the program, using the <% and
%> antiquotation delimiters. The assimilation process (Fig-
ure 5) transforms a Java program with embedded XML to
a pure Java program with calls to a SAX ContentHandler.

The big difference between the embedding of XML and
the embedding of a programming language is that the lexical
structure of XML is completely different from that of, say,
Java. This makes the parsing problem more complicated.

2.3 Graphical User-Interface Construction
In the cases of code and XML generation a domain nota-

tion is readily available to improve the readability of appli-
cation programs. However, there are many other domains
with APIs representing a ‘language’ in the sense of a coher-
ent set of concepts and composition facilities, but without a
concrete notation. Programming in these domains can also
be improved by employing domain-specific notation, which
should then first be designed. Consider for example the con-
struction of graphical user-interfaces in Java.

Graphical user-interfaces can be generated with a visual
tool or can be written by hand. A handwritten user-interface
typically instantiates GUI components such as buttons and
textfields and arranges these components in panels by using
fixed positioning or a layout manager that allows the user-
interface to adapt itself to changes in the size of the window.
Despite catalogs of design patterns for developing graphical
user-interfaces, this code is still one of the most unwieldy
parts of a program (Figure 6; left). A handwritten user-
interface takes quite a few lines of code and the resulting
code is difficult to understand and maintain.

There are a few proposals for languages specifically geared
towards user-interfaces, e.g. Mozilla’s XUL, W3C’s XForms
and Microsoft’s XAML, but these solutions do not integrate



JTextArea text = new JTextArea(20,40);

JPanel panel = new JPanel(new BorderLayout(12,12));

panel.setBorder(

BorderFactory.createEmptyBorder(15, 15, 15, 15)

);

panel.add(BorderLayout.NORTH,

new JLabel("Please enter your message"));

panel.add(BorderLayout.CENTER, new JScrollPane(text));

JPanel south = new JPanel(new BorderLayout(12,12));

JPanel buttons = new JPanel(new GridLayout(1, 2, 12, 12));

buttons.add(new JButton("Ok"));

buttons.add(new JButton("Cancel"));

south.add(BorderLayout.EAST, buttons);

panel.add(BorderLayout.SOUTH, south);

Figure 6: Sequence of statements for composing a user-interface
with Swing API methods (left) and Swul implementation for
composing the same user-interface (right).

JPanel panel = panel of border layout {

hgap = 12 vgap = 12

north = label "Please enter your message"

center = scrollpane of textarea {

rows = 20

columns = 40

}

south = panel of border layout {

east = panel of grid layout {

hgap = 12 vgap = 12

row = {

button "Ok"

button "Cancel"

}

}

}

};

well with the host language. They abstract from a GUI
toolkit, which is not always an advantage, and restrict the
way the GUI can interact with the host language. XUL
clones for Java, such as SwiXml and Luxor, use reflection
and a convention for the location of methods (or Action

fields) to invoke code in the host language. Although this
works reasonably well, it limits the way the host language is
able to interact with the GUI code. For example, a model-
view-controller design, where the GUI components are di-
rectly updated from their (Swing) models, is not possible in
these toolkits. Furthermore, the XML formatted GUI spec-
ifications are interpreted, not checked statically for internal
consistency or correct interaction with code in the host lan-
guage.

Using the MetaBorg method we have developed a solu-
tion that provides domain-specific notation for the construc-
tion of user-interfaces and integrates well with the rest of the
program written in the host language. Expressions in the
Swing User-interface Language (Swul) correspond to com-
ponents of a Swing user-interface. The language encourages
the compositional construction of complex components, in
contrast to the assembly language spaghetti style used with
direct calls to Swing. Thus, subcomponents are subexpres-
sions, and are not added afterwards. Attributes of compo-
nents are named, avoiding the need to continuously looking
up the order of method parameters. The declaration of the
layout style is combined with the instantiation of the sub-
components. Embedded in Java the Swul language can be
used directly to program user-interfaces. Swul expressions
can refer to elements such as variables and methods from
other parts of the program. For example, in order to set the
value of a layout attribute or to pass an event-handler.

The example in Figure 6 (right) illustrates the use of
Swul, creating in a single Java assignment (be it multiline),
the same user-interface implemented directly using Swing
methods on the left. Although the Swul solution uses more
lines, the difference in number of non-space characters (507
vs 243) indicates that the Swul solution is significantly more
concise.

2.4 Other Applications
We have discussed three application domains in which

concrete domain notation improves programs. The same

approach can be applied to many other domains, including
embedded query languages such as XPath and SQL. Unfor-
tunately, queries in these languages are usually embedded in
string literals. They are often even composed at runtime by
concatenating strings. In this case the SQL statements and
XPath queries cannot be checked syntactically at compile
time. This might result in runtime errors or, even worse,
security problems. If a value from the host language is em-
bedded in an SQL query by string concatenation, then there
is no guarantee that the string actually is of the syntactic
category expected at this point in the SQL statement. This
results in a security issue that is rather easy to exploit by
entering SQL constructs where plain strings are expected.
To prevent this, the embedded string has to be escaped.
A missing escape will immediately pose a security threat.
This is a general problem of runtime composition of code
fragments by string concatenation. XML applications that
use string concatenation might be a security risk as well. In
such applications proper escaping is required at many dif-
ferent places in the code. This task can be automated by
applying our language embedding tools.

Another example of a little language that is often embed-
ded in string literals is the language of regular expressions
used for pattern matching of character sequences. A regular
expression is encoded in a string literal which is interpreted
or compiled at runtime to a matcher. The clarity of a reg-
ular expression is reduced by requiring special characters to
be escaped. C# reduces the number of characters that have
to be escaped by adding verbatim strings to the language,
where only double quotes have to be escaped. Just as in all
string literal based embeddings the regular expression is not
checked syntactically at compile-time.

The difference with the other examples is that the libraries
operating on these languages usually only accept textual
input. This makes a structured representation of the query
more annoying than advantageous. Yet, the MetaBorg
method can still be used by assimilating the embedded code
fragments to the corresponding string operations. This will
make the embedding of meta values safer and easier, and the
embedding will guarantee the syntactic correctness of the
embedded expressions. To this end the MetaBorg tools
support the representation of embedded fragments in a full
parse tree, which can be yielded to a string.
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Figure 7: Architecture of embedding and assimila-
tion framework.

3. REALIZING CONCRETE SYNTAX
Introducing domain-specific notation in a host language

requires (1) an embedding of the domain-specific language
in the host language and (2) assimilation of the embedded
domain fragments into the surrounding host code. In this
section we describe the method of embedding and assimila-
tion from the point of view of the meta-programmer creat-
ing the embedding. We illustrate the method with several
examples. In the next sections the technology behind the
method will be discussed.

3.1 Embedding and Assimilation
The architecture of the MetaBorg method is illustrated

by the diagram in Figure 7. The embedding of domain no-
tation in a host language requires a syntax definition for the
host language, a syntax definition for the embedded lan-
guage, and a syntax definition for the combination of the
two languages, embedding the latter in the former. A parser
then uses this combined syntax definition to parse programs
in the extended language. Next, an assimilator applies a
set of rules to assimilate the embedded domain fragments,
reducing the program to the pure host language.

The diagram also illustrates the roles of programmer, meta-
programmer, and MetaBorg tooling. An application pro-
grammer using the domain extension uses the combination
of parser and assimilator for the extension as a single tool,
which could even be integrated with the compiler. Thus,
programming in the extended language is no different than
programming in the host language, except for the additional
expressivity that is available. The meta-programmer imple-
menting a domain extension needs to provide the syntax
definitions for host and domain language, the syntax for the
embedding and the assimilation rules. Generally, the syntax
definition for the host language can be reused from a library
of syntax definitions. The syntax definition of the domain
language can be reused as well, if the domain language is
an existing language that is already used on its own. If the
host API is a shared target between several domain nota-
tions, then a set of generic assimilation rules can be used.
This is typically the case for meta-programming domains
where a standard API for abstract syntax trees is used. Fi-
nally, syntax definitions and assimilation rules are processed
by the generic tools provided in the Stratego/XT toolset [41,

module Java-Tuple

imports Generic-Java

exports

context-free syntax

"(" Expr "," Expr ")" ->

Expr {cons("NewTuple")}

"(" Type "," Type ")" ->

Type {cons("TupleType")}

Figure 8: Syntax definition of Java with tuples.

module Java-Tuple-Assimilate

imports Generic-Java

rules

AssimilateTuple :

expr |[ (e1 , e2 ) ]| ->

expr |[ Tuple.construct(e1 , e2 ) ]|

AssimilateTuple :

type |[ (t1 , t2 ) ]| ->

type |[ Tuple<t1 , t2 > ]|

Figure 9: Rewrite rules for assimilation of tuples in
Java

47]; MetaBorg can be considered as a particular pattern
of usage of these tools.

To make these concepts more concrete we will illustrate
the method with several examples. Before diving into the
interesting aspects, we look at a very simple example, i.e.
the extension of Java 1.5 with concrete syntax for tuples.

Tuples are instances of a class Tuple<A, B>, which is pa-
rameterized with the type of the first and second item of the
tuple. We define an extension of Java providing the notation
(x,y) for the construction and declaration of tuples. Thus,
(Integer, String) is a type expression and corresponds
to the type Tuple<Integer, String>. The expression (1,

"foo") is an instance of Tuple<Integer, String>, where
the first item in the tuple is the integer 1 and the second is
the String "foo".

To realize this extension all we need is the syntax def-
inition in Figure 8 and the assimilation rules in Figure 9.
The syntax definition in Figure 8 defines the language Java-
Tuple, which extends Java with syntax for tuple expressions
and tuple types. The extension of the Java language is
achieved by a simple import of the syntax definition of Java.
Thus, it is not necessary to create a copy of that syntax def-
inition and add the rules for tuples to it. The Java-Tuple

syntax module is written in SDF, which is the syntax defi-
nition formalism employed by MetaBorg. A syntax defini-
tion mainly consists of productions of the form s1 ... sn

-> s0 {cons("c")}, declaring that a phrase of type s0 can
be formed by concatenating phrases of types s0 . . . sn. The
constructor c is a name for the production that is used in
the construction of abstract syntax trees. The features of
SDF that enable concise modular syntax definition will be
explained in Section 4.

Assimilation of the language extension is achieved by trans-
lating the new language constructs to the base language. For
example, the Java-Tuple declaration

(Integer, String) t = (1, "Hello world!");



is translated into the Java declaration

Tuple<Integer , String> t =

Tuple.construct(1 , "Hello world!");

This translation is achieved by the rewrite rules in Figure 9.
The assimilation into the host language is implemented in
the Stratego program transformation language. Rewrite
rules play a central role in Stratego. A labeled rewrite rule
L: p1 -> p2 rewrites a program fragment matching the
pattern p1 to the program fragment p2, where the meta-
variables in p2 are instantiated with the corresponding frag-
ments found when matching p1. In the first rewrite rule
of Figure 9, e1 and e2 are meta-variables denoting Java
expressions. In the second, t1 and t2 are meta-variables
denoting Java types. Thus, the first rule replaces a tuple
expression (e1, e2 ) with a call to the construct method
of the Tuple class, passing the expressions e1 and e2 .

Note that the Stratego rewrite rules use concrete syntax
as well. That is, the rules are transformations on Java pro-
grams and thus use the syntax of Java to indicate code frag-
ments. However, the rules are implemented as transforma-
tions on abstract syntax trees. This is achieved by the same
method as applied to Java programs [46].

3.2 Java with Swul
Next we examine a serious example, i.e. the embedding of

Swul, the Swing User-interface Language, into Java. Plain
Java code using the Swing API is a kind of assembly lan-
guage in which intermediate results are bound to variables
to be used elsewhere. This is illustrated in Figure 6. We
have custom designed Swul in order to provide a compo-
sitional syntax for the construction of user-interfaces with
Swing in Java. Swul is just a more attractive notation for
the same code. The assimilation of embedded Swul pro-
duces the sequence of statements that one would normally
write by hand.

3.2.1 Embedding
Swul is defined as a separate language with its own syn-

tax definition in SDF module Swul, introducing productions
such as

"panel" "of" Layout -> Component {cons("Panel")}

"border" "layout" "{" LayoutProp* "}" ->

Layout {cons("BorderLayout")}

to define syntax for Swing concepts such as panels and layout
schemes.

The embedding of the language in Java is achieved by
creating a new SDF module Java-Swul (Figure 10) that im-
ports the syntax of Java and the syntax of Swul. The actual
imported modules are prefixed wrappers of the real syntax
definition, a feature of SDF further explained below.

Combining the two syntax definitions by importing them
in a new module does not actually achieve the embedding
of the syntax of Swul into Java. The languages are strictly
separated from each other since the productions of Java do
not refer to non-terminals of Swul and vice versa. The em-
bedding of Swul in Java is achieved by adding productions
to the combined syntax definition that allow Swul expres-
sions to be used as Java expressions and vice versa. These
productions just connect the languages at the desired loca-
tion. Note that the embedding of the language is completely
user-definable with an ordinary SDF module.

module Java-Swul

imports Java-Prefixed Swul-Prefixed

exports

context-free syntax

SwulComponent -> JavaExpr {cons("ToExpr")}

SwulLayout -> JavaExpr {cons("ToExpr")}

JavaExpr -> SwulBorder {cons("FromExpr")}

JavaExpr -> SwulComponent {cons("FromExpr")}

Figure 10: Syntax definition of Java with Swul;
concrete syntax for user-interface construction with
Swing

Swulc-Component :

swul |[ scrollpane of c ]| ->

expr |[ new JScrollPane(e ) ]|

where <Swulc-Component> c => e

Swulc-Component :

swul |[ textarea {ps* } ]| ->

expr |[

{|JTextArea x = new JTextArea(); bstm* |x |}

]|

where new => x

; <map(Swulc-SetProp(|x ))> ps* => bstm*

Swulc-AddComponent(|x ) :

swul |[ north = c ]| ->

bstm |[ x.add(BorderLayout.NORTH, e ); ]|

where <Swulc-Component> c => e

Swulc-Layout :

swul |[ grid layout {ps* } ]| ->

expr |[ new GridLayout(i ,j ) ]|

where <nr-of-rows> ps* => i

; <nr-of-columns> ps* => j

Swulc-SetProp(|x ) :

swul |[ border = b ]| ->

bstm |[ x.setBorder(e ); ]|

where <Swulc-Border> b => e

Swulc-Component :

swul |[ x : c ]| -> expr |[ {| t x = e ; | x |} ]|

where <java-type-of> c => t

; <Swulc-Component> c => e

Figure 11: Some of the rewrite rules for assimilation
of GUI abstractions using Swing API.

module Java-Prefixed

imports Java

[ ImportDec => JavaImportDec

CompilationUnit => JavaCompilationUnit

TypeDec => JavaTypeDec

....

Expr => JavaExpr ]

Figure 12: Syntax definition that prefixes all Java
non-terminals with the name of the language.



The kind of connection between the languages is indicated
by specific constructor names. Productions that allow Swul
constructs to be used as Java expressions use the constructor
ToExpr. Similarly, productions that allow Java expressions
to be used in Swul use the constructor FromExpr. Thus, in
the embedding defined above, the ToExpr productions de-
clare that Swul component and layout expressions can be
used as Java expressions. The FromExpr productions declare
that Java expressions can be used as Swul border or com-
ponent expressions. Note that no special quotation symbols
are needed to inject Swul expressions into Java expressions
or vice versa.

Another point to note about the embedding is the import
of the modules Java-Prefixed and Swul-Prefixed instead
of Java and Swul. The -Prefixed SDF modules are (gen-
erated) SDF modules that import the actual syntax and
rename all non-terminals in this imported definition by pre-
fixing them with the name of the language. An example
of such a module is shown in Figure 12. Note that these
renamings do not require an actual copy of the definitions,
but rather an import with a set of renamings applied.

These renamings are necessary to keep the two languages
strictly separated, except for the explicitly defined connec-
tions. For example, both languages might define an Id

or Expr non-terminal. If these syntax definitions are just
imported directly, then there will be just one Id or Expr

non-terminal. Productions using these non-terminals will
then refer to the productions for these non-terminals from
both languages. This embedding is not explicit and should
therefore be prevented. By making the non-terminal names
unique for both languages, undesired embedding is avoided.

3.2.2 Assimilation
Assimilation is again achieved via rewrite rules imple-

mented in Stratego. The rewrite rules transform Swul ex-
pressions to Java expressions. These rules express the knowl-
edge of the Swing API captured in the language by trans-
lating each Swul construct to the appropriate sequence of
Swing method calls. Figure 11 illustrates this for some of the
Swul constructs. Note again that although these examples
are all written in concrete syntax, the actual representation
that is being transformed is a structured abstract syntax
tree. The Swul and Java code fragments are all syntacti-
cally checked when compiling the generator.

Most of the rewrite rules have a where clause. The Strat-
ego construct <s> t => p applies the rewriting s to the ex-
pression t and matches the result of applying s to t to the
pattern p. In the examples the patterns are simple variables.
In this case, <s> t => x is comparable to an ordinary assign-
ment of s applied to t to the variable x. The rewrite rules
use meta-variables in the code fragments. That is, ps* , c ,
x , e and bstm* are Stratego variables, used directly in the
Java code fragment. These variables are bound to abstract
syntax trees and are not matched literally as Java variables.
The Stratego primitive new (used in the where clauses) gen-
erates a new unique identifier.

Most rewrite rules in Figure 11 are straightforward trans-
lations from Swul constructs to corresponding Swing API
invocations. For example, the rewrite rule for a scrollpane

directly translates into a constructor call of the JScrollPane
class. Some constructs in Swul provide even more abstrac-
tion than an alternative syntax. For example, the rewrite
rule for the grid layout calculates the number of rows and

columns. The rewrite rule for the Swul construct x : c ,
the last rule in the figure, shows another abstraction; if pos-
sible, it determines the type of the component and declares
a variable x of this type with the initial value c . This in-
line declaration is very useful since Swul does not cover the
full Swing API, but just the most common constructs. If
unusual things have to be configured for a component, then
this can be done later without ruining the compositional
definition of the user-interface.

The transformation makes use of a convenience exten-
sion of Java with expression blocks, which are removed by
a separate transformation. In fact the compositional na-
ture of Swul (and other extensions) is based on this exten-
sion. Constructing Java objects is composable in Java itself
as long as all required operations can be performed by in-
voking a single method or constructor. As soon as further
method calls are required there is a problem in composing
objects without binding them to intermediate variables. The
extension of Java with expression blocks solves this prob-
lem introducing two expression: {| bstm* | e |} and {|

e | bstm* |}. An expression block is thus a list of block-
level statements followed by an expression or the other way
around. The expression is the value of the expression block.
In the first case the statements are lifted to the block-level
statements before the context expression. In the second case
they will be lifted to block-level statements after the context
expression. The syntax of this extension is defined by two
SDF production rules and the constructs are translated into
ordinary Java by a small Stratego program.

The expression block extension makes the definition of
assimilation, and code generators in general, much simpler.
For example, the declaration of a textarea{ps* } is trans-
lated to a declaration of a new variable x of type JTextArea,
which is instantiated to a new JTextArea. The instantiation
of the properties of the textarea is achieved with additional
statements, which are executed after creating the textarea.
The context in which the textarea was placed receives as
value the variable x . Thus a linear sequence of statements
building the components of the user-interface is realized.

3.3 Java with XML
Our next example is the embedding of XML in Java. The

application of this embedding was illustrated in Figure 4.

3.3.1 Embedding
Some of the production rules of the syntax embedding are

shown in Figure 13. These production rules are somewhat
different from usual embeddings, since the embedded XML
syntax is translated to the SAX API. XML construction in
SAX is not done using expressions and objects, but by invok-
ing methods of the ContentHandler interface. Typically, the
methods of a ContentHandler are invoked to report pars-
ing events of an XML parser as callbacks to an application.
However, any code can use the ContentHandler interface to
report the content of an XML document.

The embedding extends Java with syntax for writing XML
content to a ContentHandler. The ContentHandler instance
is specified by a Java identifier. The ToStm and Write con-
structors are used to represent the switch from Java to XML.
The Write constructor has two arguments: a Java identifier
of the ContentHandler and the XML content to write to it.

In addition to the embedding of XML in Java, we also de-
fine production rules for escaping from XML back to Java.



context-free syntax

ObjectStm -> JavaStm {cons("ToStm")}

JavaId "." "write" "%>" Content "<%" ";" -> ObjectStm {cons("Write")}

JavaId "." "write" "document" "%>" Document "<%" ";" -> ObjectStm {cons("Write")}

"<%" JavaStm "%>" -> Content {cons("FromStm")}

"<%" JavaExpr "%>" -> DoubleQuotedPart {cons("FromExpr")}

"<%" JavaExpr "::" "cdata" "%>" -> Content {cons("TextFromExpr")}

Figure 13: Syntax definition of Java with XML

explode-write :

ToStm(Write(Id(x ), c )) -> bstm |[ { bstm* } ]|

where <content-to-stm(|x )> c => bstm*

content-to-stm(|x ) :

Document(c ) ->

bstm* |[

x.startDocument();

bstm1*

x.endDocument();

]|

where <content-to-stms(|x )> c => bstm1*

content-to-stm(|x ) :

Element(Name(None(), n ), atts , kids ) ->

bstm* |[

org.xml.sax.helpers.AttributesImpl y

= new org.xml.sax.helpers.AttributesImpl();

bstm1*

x.startElement("", "~n ", "~n ", y );

bstm2*

x.endElement("", "~n ", "~n ");

]|

where <map(content-to-stms(|x ))> kids => bstm2*

; new => y

; <map(attr-to-stm(|y ))> atts => bstm1*

content-to-stm(|x ) :

TextFromExpr(e ) ->

bstm |[

x.characters({|

String y = e ; | y.toCharArray()

|}, 0, y.length());

]|

where new => y

content-to-stm(|x ) :

Text(s ) ->

bstm* |[ x.characters(new char[]{e* }, 0, i ); ]|

where <explode-string> s => cs

; <length; int-to-string> cs => i

; <map(escape-char)> cs => e*

Figure 14: Rewrite rules for assimilation of XML to
SAX ContentHandler invocations.

First, the escape from XML content to Java is represented
by the FromStm constructor. This escape consists of a Java
statement, which might be surprising, since an escape to the
host language usually is an expression. However, the SAX
ContentHandler produces XML content by statements, not
by expressions. Second, the embedding defines an escape
from XML attribute values (DoubleQuotedPart) to Java.
Third, the embedding defines a more specific anti-quotation
for character data, using the constructor TextFromExpr. The
result of the Java expression must be a String, which is emit-
ted to the ContentHandler.

3.3.2 Assimilation
Most of the Stratego rewrite rules for the assimilation of

the embedded XML fragments into Java are shown in Fig-
ure 14. For a single XML construct the resulting code frag-
ments are now larger than in the previous examples. Hence,
the XML syntax of this embedding is a major abstraction
from the API interface provided by SAX. In this assimila-
tion, the left-hand side of the rewrite rules are not written
in concrete XML syntax, but rather in abstract syntax. The
left-hand side patterns are so small that using concrete syn-
tax would only be confusing. This illustrates that programs
using concrete syntax can fall-back to the assimilated nota-
tion in the host language (in this case abstract syntax for
XML) when this is more appropriate.

Figure 14 shows the rewrite rules for XML documents,
elements, text and character data escapes to Java. The
translation of Document and Text is straightforward. The
translation of an Element is somewhat more involved, since
the list of attributes has to be assimilated into an instance of
the AttributesImpl class. Character data escapes to Java
are translated using the expression blocks, as discussed be-
fore. This translation to an expression block is necessary
because we need the value at multiple locations; for calcu-
lating the length of the string and for translating it into a
character array that is passed to the ContentHandler. Note
that the rules use several meta-variables: x , y , bstm1* ,
bstm2* , and e* . Also, the translation of an XML element
uses a special construct inside a string literal: "~n ". The
~ construct denotes an escape to the host language, which
is Stratego in this case. Anti-quotation and meta-variables
inside such lexical constructs are a unique feature of SDF
and SGLR. This is possible by preserving the structure of
lexemes, which will be discussed in more detail in Section 4.

3.4 Java with Java
Lastly, we return to our first example in Section 2: Java

embedded in Java. This combined language is called Java-
Java. JavaJava is a language for Java meta-programming,



context-free syntax

"|[" Expr "]|" -> JavaExpr {cons("ToExpr")}

"expr" "|[" Expr "]|" -> JavaExpr {...}

"type" "|[" Type "]|" -> JavaExpr {...}

"bstm*" "|[" BlockStm* "]|" -> JavaExpr {...}

"~" JavaExpr -> Expr {cons("FromExpr")}

"~*" JavaExpr -> {Expr ","}* {...}

"~*" JavaExpr -> {VarInit ","}* {...}

"~*" JavaExpr -> {FormalParam ","}* {...}

"~*" JavaExpr -> ClassBodyDec* {...}

variables

"e" [0-9]* -> Expr {prefer}

"t" [0-9]* -> Type {prefer}

"e" [0-9]* "*" -> {Expr ","}* {prefer}

"e" [0-9]* "*" -> {VarInit ","}* {prefer}

"bstm" [0-9]* "*" -> BlockStm* {prefer}

[ij] [0-9]* -> DeciLiteral {prefer}

[xyz] [0-9]* -> Id {prefer}

Figure 15: Syntax definition of Java with Java

i.e. Java programs that generate or manipulate Java pro-
grams. The embedding and assimilation of JavaJava are
defined with the MetaBorg method. The implementation
involves the definition of an embedding of Java in Java, and
an assimilation of the embedded Java fragments into the
host language.

3.4.1 Embedding
A selected number of productions from the embedding of

Java in Java are shown in Figure 15. The complete embed-
ding is much larger, since the Java syntax definition contains
many non-terminals. For each non-terminal that is to be
quoted or anti-quoted in JavaJava, productions have to be
defined in the combined syntax definition. The JavaJava
syntax definition applies some of the more advanced features
in SDF for combining the syntax of the embedded language
and the host language.

The first two productions show that the declaration of
non-terminals of concrete syntax fragments is optional. To
this end, there is a production rule for embedding Java ex-
pressions using just the quotation symbols |[ and ]| and there
is a production with an explicit declaration expr of the non-
terminal. The embedding of BlockStm* shows that lists of
non-terminals, in this case BlockStm, can be embedded as
well.

The escapes to the meta level use the ~ symbol in this em-
bedding. That is, meta Java expressions can be included by
using only a ~ before the meta expression. The ~* escape
can be used to escape to a Java expression that produces
a list of a certain non-terminal, even if they are separated
by tokens. The ~* escape is defined by an SDF produc-
tion rule that produces a list non-terminal (the right-hand
side of the production rules). For example, the escape for
{Expr ","}* is used in method invocations, which take a
number of expressions separated by commas. In the ar-
gument list of a method in concrete syntax it is possible
to escape to the meta level using foo(~*args ), but even
foo("bar",~arg,~*args ) and foo(~*args1,~*args2 ) are

allowed. All these escape are defined by a single production
rule in the embedding of Java in Java. No additional SDF
productions are required, since productions that produce list
symbols are desugared to a set of more basic productions
that are sufficient to handle all these combinations.

JavaJava also provides meta-variables, which is an even
more compact method for embedding variables from the
meta language in embedded code fragments. The SDF syn-
tax definition formalism has been designed for application in
meta-programming and therefore it has the built-in notion
of meta-variables. Meta-variables are defined in a variables

section. This section consists of SDF productions that de-
fine a special meaning for certain identifiers. For example,
the first production in the variables section of Figure 15
defines that the identifier e is a meta-variable denoting a
Java expression. Some other meta-variables in JavaJava
are e* for lists of expressions separated by commas and x ,
y , and z for identifiers.

3.4.2 Assimilation
The MetaBorg examples of Java with Swul and Java

with XML apply assimilations that are specific to the host
language and the embedded language. The assimilation can-
not be reused for different embedded languages since the as-
similator rewrites specific constructs of the embedded lan-
guage to the host language. Such a specific assimilator can
incorporate domain-specific knowledge, which adds a level
of abstraction to the syntactic embedding. For example, the
Swul assimilator calculates the number of rows and columns
of a GridLayout.

However, for some applications it is possible to implement
a generic assimilation of an arbitrary embedded language
to an API in the host language. Hence, the assimilation
can be reused for the embedding of any language in the
host language. For instance, generic assimilation is possible
for assimilating embedded languages in meta-programming.
Meta-programming frameworks often follow a certain stan-
dard procedure for representing a subject program in a class
hierarchy. Examples of such frameworks are JJForester [28],
ApiGen [16], Java Tree Builder [42] with JavaCC [24], and
SableCC [20]. For a specific meta-programming framework
the mapping from a language definition to a class structure is
fixed or at least reproducible. This fixed translation scheme
can be used for the implementation of a generic assimilator.
Similarly, a generic assimilator is also possible if the target
API itself is generic. This is the case if the embedded lan-
guage is to be represented using a generic class hierarchy for
trees, such as ATerms [8] or XML.

The generic assimilation from an embedded language to
the construction of a generic tree representation can be im-
plemented particularly well in a language that supports ge-
neric programming. To illustrate the implementation of
a generic assimilation we have implemented an assimila-
tion from the embedded Java code in the JavaJava lan-
guage to the ATerm library. A generic assimilation requires
generic programming. Stratego allows generic term con-
struction and deconstruction using the # operator. A term
foo(bar(), fred()) can be deconstructed into the con-
structor of the term, foo, and a list of children to which
the construct is applied, bar() and fred(). The pattern
fun #([t* ]) binds the constructor name to the variable fun

and the list of children to the variable t* .



AssimilateAppl(x) :

fun #([t* ]){} -> |[ _factory.makeAppl(e , e* ) ]|

where <AssimilateAFun> (fun , <length> t* ) => e

; <map(x)> t* => e*

AssimilateAFun :

(fun , arity ) ->

|[ _factory.makeAFun("~fun ", i , false) ]|

where <int-to-string> arity => i

AssimilateMetaVar(x) :

meta-var(x ) -> expr |[ x ]|

AssimilateInt(x) :

i -> expr |[ _factory.makeInt(j ) ]|

where <int-to-string> i => j

AssimilateString(x) :

s -> expr |[

_factory.makeAppl(

_factory.makeAFun("~s ", 0, true)

)

]|

where <is-string> s

Figure 16: Generic assimilation of abstract syntax
trees in Java with ATerms

The generic assimilation of ATerms to Java is implemented
by the Stratego rewrite rules shown in Figure 16. The
rewrite rules AssimilateAppl and AssimilateAFun handle
ATerm constructor applications and use generic term decon-
struction. The right hand sides of the rewrite rules are Java
expressions. For the construction of ATerms in the resulting
Java code, methods defined in the ATermFactory interface
of the ATerm library are invoked. The rules AssimilateInt
and AssimilateString handle the ATerm integer and string
constructs. The AssimilateMetaVar rule rewrites meta-
variables to real Java variables.

This generic assimilation can be applied to all embedded
languages in the host language Java. Hence, an embedding
of a different subject language only needs to define the com-
bined syntax definition.

API specific assimilations for the same JavaJava lan-
guage can be implemented as well. For example, an as-
similator could target the class hierarchy for Java abstract
syntax trees in Eclipse.

4. SYNTAX DEFINITION
The embedding of languages poses some challenges on

syntax definition and parser technique. MetaBorg employs
the Syntax Definition Formalism SDF [45] and SGLR [44,
10], a Scannerless Generalized LR parser.

In the previous section we described several MetaBorg
embeddings. So far, we have not revealed how these com-
bined language are actually parsed and what the features of
the syntax definition formalism SDF are. Full insight in why
SDF is the appropriate syntax definition formalism for defin-
ing language embeddings requires more detailed knowledge
of SDF. In this section, the SDF syntax definition formalism
is introduced and we show how it is applied to achieve con-
crete syntax for objects. Several features of the syntax defi-

nition formalism allow the concise definition of the syntax of
embeddings. Two features of this parsing technology are es-
sential for defining the syntax of language embeddings: the
GLR algorithm [43, 36] and scannerless parsing [37]. These
features are combined in SGLR [44, 10].

4.1 SDF Overview
The SDF syntax definition formalism supports concise

and natural expression of the syntax of context-free lan-
guages. SDF integrates lexical and context-free syntax in
a single formalism. The complete syntax of a language is
thus defined in a single definition. SDF supports the en-
tire class of context-free grammars. SDF does therefore not
restrict the grammars to a subclass of the context-free gram-
mars, such as LL or LALR. SDF syntax definitions can be
split into modules, and SDF modules can be reused in differ-
ent syntax definitions. Disambiguation of grammars is not
done by grammar hacking, but by applying special purpose
disambiguation facilities in SDF, such as priorities, reject
productions, and follow restrictions. To illustrate the key
features we explain a syntax definition of expressions. For
more documentation and examples we refer to [38, 45].

4.1.1 Context-Free and Lexical Syntax
Syntax is defined in syntax sections, which are either con-

text-free or lexical. The difference between these two kinds
of syntax sections is that in lexical syntax no layout is al-
lowed between symbols. In context-free syntax sections lay-
out is allowed between the symbols of a production. The
term context-free syntax should not be confused with the
expressiveness of the production rules. The expressiveness
of the lexical and context-free syntax sections is not differ-
ent: lexical syntax is not restricted to a regular grammar.
In fact lexical and context-free syntax is even translated into
a single core syntax definition formalism [45].

Lexical syntax sections are used to define constructs such
as identifiers, layout and literals. Layout is a special non-
terminal in SDF named LAYOUT. Optional layout is inserted
between the symbols of productions in a context-free syntax
section to allow layout between the symbols there. The fol-
lowing lexical syntax section defines layout (LAYOUT), iden-
tifiers (Id), and integer constants (IntConst).

lexical syntax

[A-Za-z][A-Za-z0-9]* -> Id

[0-9]+ -> IntConst

[\r\n\t\ ] -> LAYOUT

These lexical sorts can be used in a context-free syntax
section to define the more complex constructs of a language.
The context-free syntax of the example language consists of
variables, integer literals, arithmetic operations, method in-
vocations and conditional expressions. Note that the defi-
nition of expressions is concise, without the hurdles of in-
troducing additional non-terminals to handle priority and
associativity of operators.

context-free syntax

Id -> Exp {cons("Var")}

IntConst -> Exp {cons("Int")}

Exp "+" Exp -> Exp {cons("Plus")}

Exp "-" Exp -> Exp {cons("Min")}

Exp "*" Exp -> Exp {cons("Mul")}

Exp "/" Exp -> Exp {cons("Div")}



Exp "." Id "(" {Exp ","}* ")" -> Exp

{cons("Call")}

"if" Exp "then" Exp "else" Exp -> Exp

{cons("If")}

The productions are annotated with a constructor name
(cons("...")). These constructor names are used to con-
struct an abstract syntax tree from the parse tree that re-
sults from parsing an input text. We use the ATerm for-
mat [8] for the representation of parse and abstract syn-
tax trees. The ATerm format is somewhat comparable to
XML, but is more structured. It supports lists, tuples, inte-
gers, string literals, and of course constructor applications.
For example, the input 4 + l.get(5) is represented by the
ATerm:

Plus(Int("4"), Call(Var("l"), "get", [Int("5")]))

4.1.2 Disambiguation
SDF supports the full class of context-free grammars, in-

cluding ambiguous grammars. The implementation of SGLR
is able to produce a parse forest of all possible parse trees,
but obviously we would like to define what parse trees are
preferred over others. For the purpose of disambiguation
SDF allows separate disambiguation filters instead of hack-
ing the syntax definition itself into a non-ambiguous form.
Separate priority definitions, follow restrictions, reject, avoid,
and prefer filters can be used to disambiguate a syntax def-
inition [10].

The syntax definition above is highly ambiguous for sev-
eral reasons. First of all there is an associativity problem for
the binary operators. The input 1 + 2 + 3 can be parsed
as either

Plus(_, Plus(_, _)) or Plus(Plus(_, _), _)

Since there is more than one possible interpretation, pars-
ing the input will result in a parse forest. The ambiguous
phrases are represented by amb nodes in the parse tree. Pro-
duction rules in SDF can be annotated with right, left,
assoc or non-assoc to define the associativity of an opera-
tor. In this case the + operator is left associative, therefore
the new production rule is:

Exp "+" Exp -> Exp {left, cons("Plus")}

Another problem is the priority of operators. The input
1 + 2 * 3 can be parsed as

Plus(_, Mul(_,_)) or Mul(Plus(_,_), _)

A related problem is the input 4 + x.get(). Although it
might seem apparent that the method get must be invoked
on the variable x, this is not the only possible parse. The
input can be parsed as

Plus(_, Call(_,_,_)) or Call(Plus(_, _),_,_)

These ambiguities can be solved by defining priorities of pro-
duction rules. Priorities in SDF are defined relatively and
not by defining priority levels. The priority of * is usually
higher then the priority of + and the priority of the method
call is higher than all operators in our example language.
Since such priorities are not properties of a single produc-
tion, there is a separate section in an SDF module for defin-
ing priorities. Production rules in priority definitions can

also be grouped, which means that their priority is equal.
In this case the associativity of such a group should be de-
fined. If - and + are in the same priority group, then the
associativity of the group determines how for example the
input 1 - 2 + 3 is parsed. The resulting priority definition
is:

context-free priorities

Exp "." Id "(" {Exp ","}* ")" -> Exp

> {left:

Exp "/" Exp -> Exp

Exp "*" Exp -> Exp }

> {left:

Exp "+" Exp -> Exp

Exp "-" Exp -> Exp }

These priorities solve all ambiguity problems in the exam-
ple. There is still one problem left, but it is not an ambiguity
problem in this example. The syntax definition is too lib-
eral: identifiers are not recognized in a greedy way, which
means that the input if 1 then aelse b is valid. Also,
the syntax definition does not forbid if 1 thena else b,
since the restriction that keywords cannot be immediately
followed by an identifier character has not been expressed.
The syntax definition must exclude these two input texts by
recognizing identifiers and integer literals in a greedy way
and by disallowing a keyword to be followed by an identi-
fier character. The longest match policy is implicit in most
parser generators, especially in those with a separate scan-
ner. In SDF a longest match restriction can be defined in
the syntax definition itself by using a follow restriction. A
follow restriction A -/- CC forbids that the non-terminal A
is followed by a character from the character class CC .

lexical restrictions

Id -/- [A-Za-z0-9]

IntConst -/- [0-9]

"if" "then" "else" -/- [A-Za-z0-9]

4.2 The Importance of Modularity
Modularity is essential for the definition of the syntax of

language embeddings. To make the embedding of the syntax
of a language A in a host language B concise and maintain-
able, it must be possible to develop the syntax definitions
of language A and B independently from each other. Mod-
ularity in the definition of language embeddings becomes
even more important if more than one language needs to be
embedded. For example, XML and SQL, XPath and XML,
Java and XML. Defining these embeddings in a single syntax
definition is unacceptable from the point of view of clarity,
maintenance, and reusability.

Most syntax definition techniques that are used in prac-
tice are limited to some subset of the context-free grammars,
since they target a parser generator that applies a certain
restricted parsing algorithm. This is illustrated by the fact
that most syntax definition languages are coupled with a
parser generator implementation. Depending on the parsing
algorithm that the generated parser is using, the syntax def-
inition is restricted to a certain subclass of the context-free
grammars, such as LALR for YACC, CUP and SableCC, or
LL for ANTLR and JavaCC. Restricting syntax definitions
to some proper subclass of context-free grammars is to a
certain extent acceptable for generating parsers from mono-
lithic syntax definitions of single programming languages,



but it is not for combining programming languages, for ex-
ample in the embedding of languages in host languages.

An interesting formal result is that there is no proper
subclass of the context-free grammars that is closed under
union. As a consequence, grammar languages that are re-
stricted to some proper subset of the context-free languages
cannot be modular since the combination of two, for exam-
ple LR, syntax definitions is not guaranteed to be in this
subset. Therefore, SDF supports the full class of context-
free grammars.

Supporting the full class of context-free grammars in a
syntax definition formalism introduces some challenges to
the applied parsing technology. Parsers and parser genera-
tors that allow the full class of context-free grammars ap-
ply Generalized LR (GLR) [43, 36] or Earley [18] parsing.
The GLR parsing algorithm maintains multiple LR parsing
states in parallel. At phrases where the parser cannot choose
from multiple production rules to apply, it forks the current
parser. The forked parsers meet again if a token in the input
is to be parsed with the same non-terminal.

The modularity features of SDF are comprehensive. Since
using modular syntax definition in SDF introduces not a
single awkwardness, defining syntax definitions in a modular
way is even encouraged. Renamings make the combination
and isolation of syntax definitions very flexible as explained
in Section 3.2.1. SDF is modular to the core.

4.3 The Importance of Scannerless Parsing
Most parsers apply a separate scanner for lexical analy-

sis. The purpose of this lexical analysis phase is to break
up the input into tokens, such as identifiers, numbers, lay-
out, and specific keywords (e.g. if, switch, try, catch).
That is, the lexical analysis phase decides what kind of to-
ken a lexeme is. A separate lexical analysis phase allows
the parser to operate on the list of lexemes, ignoring their
actual contents. The lexical syntax of a language is usually
specified by regular expressions. The scanner applies finite
automata to recognize the tokens specified by these regular
expressions.

4.3.1 Context of Tokens
Scanners that do not interact with the parser cannot con-

sider the context of a sequence of characters in the decision
which token a sequence represents. This is essentially the
reason for having reserved keywords, which cannot be used
as identifiers in the language. The separate lexical analyzer
is also the reason for not allowing nested block comments
( /* /* */ */) and for disallowing a -- b to be parsed as
a - (-b). Thus, the lexical analyzer decides what token a
list of characters represents, without considering the context
of the tokens in the input stream.

This maybe reasonable for parsing inputs written in a
single language, in particular since this language can be
designed with these restrictions in mind. Yet, it is more
problematic when the input consists of a combination of
languages. By not considering the context of a sequence of
characters in the input stream, it is impossible to assign it
different tokens, since this ultimately depends on the context
of the lexeme. As regards embedded languages, the scanner
can not assign different token types to the same lexeme in
embedded code and in host code. This is a serious problem
if the lexical syntax of the embedded language is entirely
different from the lexical syntax of the host language. It is

not a problem if the embedded language is the same lan-
guage as the host language (for example Java embedded in
Java), since the lexical syntax is in this case not different in
the embedded code fragments. However, embedding XML
in Java is more challenging, since the lexical syntax of XML
is completely different from Java. In this case the lexical an-
alyzer must consider the context of a sequence of characters
before deciding what kind of token it is.

4.3.2 Preserve Structure of Lexemes
A scanner usually passes lexemes as an unstructured atomic

value to the parser. The internal structure of the tokens
is thus not preserved. This is a pity since tokens such as
floating point and String literals can have quite a complex
structure. The string literal "Hello\r\n world!" will typ-
ically result in the token "\"Hello\\r\\n world!\"". The
semantic tools that operates on parse (or abstract syntax)
trees must analyze the structure of the tokens again to de-
termine its meaning. However, preservation of the structure
of a lexeme is essential if it must be possible to escape to
the meta language inside a token. We have already seen
such escapes in our examples, namely the escape in XML
attribute values and Java string literals (see Section 3.3.2).
Parsing with a separate scanner does not support such struc-
tured lexemes, since lexemes are passed as a plain sequence
of characters to the parser. In scannerless parsing the struc-
ture of lexemes can be preserved. For example, in our Java
tools the string literal above is represented as:

String(

[ Chars("Hello")

, NamedEscape(114)

, NamedEscape(110)

, Chars(" world!") ]

)

The preservation of lexical structure is mostly a matter
of convenience if parsing inputs of single programming lan-
guages. However, for the embedding of a language in a host
language, the preservation of lexical structure is extremely
useful, if not a requirement. For example, the following
XML attribute contains an escape to the meta level inside
an XML attribute:

<a href="http://www.<% s %>.org">Stratego/XT</a>

In scannerless parsing the structure of the attribute value
can be preserved. In the embedding of XML in Java, the
attribute is represented as:

Attribute(

QName(None, "href")

, DoubleQuoted([

Literal("http://www.")

, Literal(FromExpr(ExprName(Id("s"))))

, Literal(".org")

])

)

Note that preserving the structure of lexical syntax is re-
lated to the context of tokens. The content of a string literal
is in a sense an embedded language. Scanning string literals
could result in separate tokens of the lexical syntax of this
language. This requires the scanner to know about the con-
text of a sequence of characters. After all, the lexical syntax
of this ‘embedded’ string literal language is completely dif-
ferent from the lexical syntax of the host language.



4.3.3 Solutions
Of course these problems can all be solved in hand-written

scanners. Such a scanner can interact with the parser in
arbitrary ways. However, writing efficient parsers and scan-
ners by hand that can handle ambiguous input streams is
very difficult. Writing scanners and parsers by hand is in
general not an option if languages need to be combined.

The solution is to discard the separate lexical analysis
phase completely. The parser directly operates on the char-
acters of the input. In syntax definitions for scannerless
parsers the lexical syntax and context-free syntax can be
specified in a single syntax definition formalism. Hence, the
full syntax of a language is specified in a single definition. All
information regarding the disambiguation can be in the same
syntax definition and there are no implicit disambiguation
rules based on the parser technology that is applied. Since
the parser operates on individual characters the context-free
analysis of the parser can be used to determine the types of
individual characters. Thus, the context of the character is
taken into account. If a certain token is not expected at a
certain location in the input, then it will not be considered.
Parsing without a separate scanner is called scannerless, a
term that was coined in [37]. This solution combined with
the GLR algorithm is known as Scannerless Generalized LR
parsing [44]. The parser generator for SDF (pgen) generates
a parse table for a Scannerless Generalized LR parser (sglr).
The implementation is available at [34, 38].

5. DISCUSSION
In this section we discuss previous, related, and future

work.

5.1 Previous Work
SDF [21] was originally designed for use as a general syn-

tax definition formalism. However, through its implementa-
tion it was closely tied to the algebraic specification formal-
ism ASF+SDF [17], which is supported by the ASF+SDF
Meta-Environment [9]. Redesign and reimplementation as
SDF2 [45, 10] has made the language available for use out-
side the Meta-Environment. SDF2 is also distributed as part
of the XT bundle of program transformation tools [26]. Syn-
tax definition in SDF2 is limited to context-free grammars.
This is a limitation for languages with context-sensitive syn-
tax such as that of Haskell (offside rule). However, in the
setting of embedded concrete syntax, in which small frag-
ments are used and not all context is always available, any
parsing technique will have a hard time. The combination
of SDF with ASF was the first to use SDF for the definition
of embedded syntax.

Stratego [48, 47, 41] is a language for the implementa-
tion of program transformation based on rewrite rules under
control of programmable rewriting strategies. Rewrite rules
transform first-order terms. In [46] an extension of Stratego
with concrete syntax for the program fragments manipu-
lated by its rewrite rules is introduced. The paper presents
a single generic assimilation transformation, mapping term
representations of abstract syntax trees into Stratego terms,
similar to the assimilation of Java programs to ATerms in
Section 3.4. The paper also gives an outline of a general ar-
chitecture for extension of an arbitrary host language with
concrete syntax.

In [19] the approach is extended to Prolog as a meta-
language, mainly to provide concrete syntax for the schemas

of the AutoBayes program synthesis engine. Since Prolog
is also a term-based language the assimilation is defined in
a similar generic way.

The contributions of this paper are the extension of the
approach to an object-oriented host language, the targeting
of specific APIs by the assimilation transformation, and the
specific extensions of Java for code generation, XML gener-
ation, and user-interface construction. The design of Swul
and its embedding in Java is a nice byproduct of this project.

5.2 Related Work
There have been many other approaches to make pro-

gramming languages syntactically extensible. We give an
overview of such approaches and discuss their relation to
MetaBorg.

5.2.1 Extensible Syntax
The extensible syntax [13] applied in the implementation

of F<: [12] was the first step into incremental syntax defini-
tion by extending and restricting a small core language. The
definition of syntax extensions and the assimilation into the
host language are in the source code of the host language.
Syntax extensions can be local (syntax ... in ... end)
or defined at toplevel. The syntax can be defined incremen-
tally by updating, extending, or adding production rules
to an existing grammar. The syntax extensions include a
rewriting to the host language by constructor applications
or action definitions that rewrite the syntax directly to the
target language.

The implementation of extensible syntax is based on LL
parsing, which makes the syntax definition cumbersome and
not modular, since the class of LL grammars is not closed
under union and concatenation. It would be interesting to
develop a comparable inline extensible syntax mechanism
based on the more powerful parsing technique of scannerless
generalized LR parsing, which was not mature enough when
extensible syntax was developed.

Although the implementation of user-definable syntax in
this work is very flexible (despite the LL parsing), we do
not believe that there is a need for defining ad-hoc syntax
extensions so powerful. Rather, in practice syntax exten-
sions are carefully designed in a separate role. Developing
appropriate domain-specific syntax extensions of a host lan-
guage is thus a separate role and does not necessarily need
to be performed in the host language. The implementation
can be provided in separate tools. The additional advan-
tage of these separate tools is that the meta-programmer
can choose the most appropriate programming language for
implementing an assimilation. The MetaBorg method aids
the implementation of these tools by providing powerful and
generic tools for parsing and assimilation into the host lan-
guage.

5.2.2 Harmonia’s Blender
Blender [3], developed in the Harmonia project, targets

parsing inputs that cannot be designed to be non-ambiguous.
Begel and Graham [3] thoroughly analyze the problems in
handling ambiguous inputs, especially embedded languages.
Blender generates from Flex- and Bison-like definitions a
lexical analyzer, parse tables and class definitions for repre-
senting abstract syntax trees in C++.

Blender applies GLR parsing with an incremental lexical
analyzer that is forked together with the LR parsers in the



GLR algorithm. The scanner is thus not completely sep-
arate from the parser, but parsing is not scannerless. If
multiple lexical types can be assigned to a token, then the
scanner reports all possible interpretations to the parser.
For each interpretation of a token a parser and scanner is
forked. This approach was also used by the implementation
of SDF before the introduction of scannerless parsing [21].
The approach was abandoned because of huge numbers of
forks and the increased complexity of the algorithm when
trying to reduce the number of forks. In addition, the use of
context-free grammars instead of regular grammars greatly
increases expressivity, allowing nested comments and anti-
quotation within lexical syntax, for example.

GLR parsing where the scanner is forked together with LR
parsers should solve most issues with using a separate scan-
ner. We have not been able to investigate whether or not
this is really a performance improvement over Scannerless
Generalized LR parsing, since no benchmarks are provided
and Blender is not available for download. The main ar-
gument for not using scannerless parsing in the Harmonia
project is to facilitate interactive environments using incre-
mental parsing. In our view parse trees of scannerless pars-
ing can be persisted as well and be reused to reparse just
the edited parts. Begel and Graham suggest this as well and
remark that the size of the parse trees might be a problem.
However, the efficient ATerm format [8] has already proven
to be successful in reducing the size of parse trees through
maximal sharing.

Syntax definitions of Blender are modular, thus languages
can be developed and maintained independently. Unfor-
tunately, the syntax definition formalism used in Blender
is much less concise than SDF. The lexical analyzer ap-
plies longest match and order-based matching. Although
this is appropriate for most programming languages, we be-
lieve that implicit disambiguation by the parser should be
avoided. Order-based selection is especially problematic if
the lexical syntax is defined in several modules, as is typi-
cally the case when defining the syntax of an embedded lan-
guage. The built-in preference for the longest match and to-
kens defined first, requires insight in the algorithms applied
by the lexical analyzer generator. This makes debugging of
the syntax definition more complex and requires studying
traces of the parser. The declarative disambiguation meth-
ods of SDF allow the complete definition of the syntax of a
language, independent from the tools applied to it.

5.2.3 Jakarta Tool Suite (JTS)
The Jakarta Tool Suite (JTS) [2] is a set of tools for ex-

tending Java with domain specific constructs. The main
tools of JTS are Jak, which allows meta programming for
Java in Java using the Java concrete syntax, and Bali, a
frontend of JavaCC [24]. JTS targets the implementation of
component-based generators, called GenVoca generators.

The Jak language of JTS supports the generation of Java
programs by using the concrete syntax of Java in Java. Code
fragments are embedded in tree constructors (for example
exp{...}exp). From these fragments it is possible to es-
cape to the meta language by an escape such as $exp(...).
The Jak language is comparable to our JavaJava language,
but since our embedding is entirely user-definable and easy
to extend, JavaJava supports a wider range of quotations
(tree constructors) and anti-quotations (escapes). In Java-
Java the explicit declaration of non-terminals in tree con-

structors and escapes is not required if the non-terminal
of code fragments can be determined by the parser. This
makes code fragments much more concise. We would like
to remove even more non-terminal declarations by disam-
biguating the code fragments in an extended type checker
for Java. This future work is discussed later. In addition
to anti-quotations, JavaJava also supports meta-variables
which is a very compact embedding of variables from the
meta language in the generated code fragments. Both solu-
tions guarantee the syntactical correctness of the code frag-
ments and construct an abstract syntax tree representation
of the generated code.

Jak also features a matching facility. We have not im-
plemented this yet in JavaJava, because there is no easy
mapping of match statements to existing APIs or language
constructs in Java. The Tom pattern matching compiler [35]
could be used to implement support for patterns in concrete
syntax.

JTS Bali is a tool for generating tools for extensions of
Java. Bali is a front-end of JavaCC. Bali generates abstract
syntax tree definitions and a parser by passing a grammar to
JavaCC. Relying on JavaCC parsing technology introduces
a lot of problems. Syntax definitions are much less concise
compared to SDF and even to other available parser tools.
JavaCC is an LL(k) parser generator, which implies that
grammars are not composable and have to be manipulated
to solve ambiguities. This parsing technology is appropriate
for parsing languages that are designed not to be ambiguous,
but in a toolkit for defining language extensions it is a major
issue, as has been discussed in Section 4.

Bali composes grammars by combining the lexical and
grammar rules. This merging is not guaranteed to succeed
since LL(k) grammars are not composable. Bali uses heuris-
tics to combine lexical rules such that the best results are
produced in the common cases. Lexical scanners prefer the
longest match and select rules that apply by order. There-
fore, keyword rules are put before the more general rules,
such as for identifiers. This implies that keywords for the
embedded language may cancel use of those keywords as
identifiers in the host language. The syntax definition and
parsing techniques of SDF are much easier to use and can
be applied for arbitrary embeddings. Because of the parser
technology which Bali relies on, Bali will not be able to
handle syntactic extensions that have an entirely different
lexical syntax. SDF has no problem such embeddings, as
discussed in Section 4.

5.2.4 Syntax Macros
Syntax macros [30] define syntactic abstractions over code

fragments. Syntax macros usually operate on abstract syn-
tax tree representations of programs. A syntax macro ac-
cepts abstract syntax tree arguments and generates a new
abstract syntax tree that replaces the syntax macro invoca-
tion. To ensure the production of syntactically correct pro-
grams, the resulting abstract syntax tree of a syntax macro
invocation must be of the same type as the macro invoca-
tion.

In all implementations of syntax macros, a macro invo-
cation must start with a unique macro delimiter, which is
usually an identifier consisting of letters. This identifier in-
dicates the syntax macro that is invoked. Such a macro
delimiter is required since the syntax of macro invocations
is defined in the input file itself. Some syntax macro imple-



mentations allow overloading of these identifiers to refer to
different syntax macro definitions using the same identifier.
The fixed syntax for a macro invocation is in many cases
acceptable. The fixed syntax for invocations can even result
in attractive, data-like, programs (called a Very Domain-
Specific Language, VDSL, in [6]).

However, the fixed invocation syntax of syntax macros
is a limited extension of the syntax of the host language.
The embedding of a domain-specific language in MetaBorg
can be an arbitrary context-free language. The expressivity
of our extensions is illustrated by the embedding of Java,
XML, a tuple syntax, and Swul. MetaBorg also allows
an embedded language to use an entirely different lexical
syntax, which is not the case for syntax macros, where lexical
analysis of the macros is performed by the scanner of the
base language. In particular, this feature of MetaBorg is
illustrated by the embedding of XML in Java.

The main difference between syntax macro systems is the
expressiveness of argument definitions. The most limited
systems only allow a fixed number of arguments, usually
with a syntax comparable to procedure calls. The most
expressive systems are MS2 [50], which allows regular lan-
guages, and Dylan [39] and Metamorphic Syntax Macros [6],
which allow context-free languages. The non-terminals ap-
pearing in actual arguments of macros in Dylan, are not
represented as abstract syntax trees, but as a list of tokens.
In [6] the user-defined non-terminals are represented as an
abstract syntax tree. These user-defined non-terminals are
however required to have a fixed associated non-terminal in
the host language. The MetaBorg method releases this re-
striction by completely separating the assimilation into the
host language from the syntax definition of language exten-
sions.

Implementations of syntax macros also differ in the ex-
pressivity of the rewriting to the base language in the syntax
macro definitions, called assimilation in MetaBorg. Usu-
ally a syntax macro definition consists of the definition of
the invocation syntax, which is some language over termi-
nals and non-terminals of the host language. The arguments
of the syntax macro can be used in the definition of code to
be produced by a macro invocation. In [30] conditional syn-
tax macros were already proposed, which increases the ex-
pressivity of the rewriting language. In the programmable
syntax macros of MS2 [50] the macro language is a small
extension of the host programming language. This exten-
sion is targeted at rewriting syntactic extensions to the base
language. C++ templates are well-known to be Turing com-
plete, but this expressivity is not based on rewriting trees,
but on constant folding.

The Java Syntactic Extender (JSE) [1] macro system is
mainly inspired by Dylan. The expressiveness of the syntax
that can be introduced is limited. As in most macro systems,
a macro identifier is required in invocations and the parser
used by JSE is not extensible. Rather, a source file is parsed
by a fixed parser to a ‘skeleton syntax tree’ (SST). The SST
is a lexical representation of a Java source file, but it is
somewhat more structured than a plain sequence of tokens.
JSE macros are implemented in Java and operate on the
SST, i.e. lexical syntax. Hence, the source code fragments
that are manipulated by JSE are not syntactically struc-
tured and JSE does not guarantee that the fragments are
syntactically correct. Processing of the input arguments is
done by pattern matching, or by arbitrary procedural code.

Therefore, JSE supports any syntax extensions that can be
represented in the SST, but it is not possible to introduce
syntax that does not conform to the lexical syntax of Java.
To improve error reporting, JSE tries to maintain the origi-
nal source code location in the generated code. The source
location will be lost if arbitrary manipulations of the SST
are performed.

For a more extensive survey of the properties of various
systems supporting syntax macros, see [6].

5.2.5 Metafront
Metafront [7] was designed as a more general solution

to the parsing issues experienced in metamorphic syntax
macros [6]. Metafront applies a novel parsing algorithm:
specificity parsing. Metafront extends the formalism of context-
free grammars with a separate set of regular terminal lan-
guages. The lexical syntax of a language is thus still defined
separately from the context-free syntax, but there is not a
separate scanner and parser tool. However, Metafront is not
a scannerless parser in the sense of not tokenizing the input
stream at all. It uses a separate scanner for tokenizing the
input file. If at a certain point in the input stream multiple
options out of the set of terminal languages are available,
then the most specific one is chosen. Specificity parsing
thus has a built-in preference for the longest token. Speci-
ficity parsing in Metafront does not return to a choicepoint
in the input stream; it immediately commits the choice for
a certain token. Left recursion is not allowed in syntax def-
initions to ensure termination. Metafront adds a form of
lookahead called attractors to solve ambiguities if there is
not a most specific token. An attractor specifies after how
many successful tokens for a certain production this alter-
native must be chosen. Attractors are also used to reject
certain alternatives.

Because of the attractor disambiguation construct, syntax
definitions in Metafront are less concise then syntax defini-
tions in SDF2. Left recursion has to be removed, which is
unfortunate. However, Metafront syntax definitions are in-
deed modular, unlike other parser generators that do not use
Earley or GLR. The main goal of Metafront is not to sacri-
fice performance when there is a need for extensible syntax
definitions. Since the current implementation is a prototype
that interprets language definitions, it is difficult to deter-
mine whether specificity parsing will in practice have signifi-
cantly better performance than Scannerless Generalized LR
parsing.

Metafront also features a transformation language. Meta-
front transformations are guaranteed to terminate and will
transform syntactically correct input to syntactically cor-
rect output. It is unclear to us why termination guarantees
are important in this context. Guaranteeing termination
sacrifices the expressivity and abstraction facilities of the
transformation language and we prefer a more expressive
language over termination guarantees. In the Stratego/XT
project we have developed many complex transformations,
in particular program optimizations. Testing transforma-
tions has in practice proven to be sufficient to see whether
a transformation terminates or not. It would be interesting
to separate Metafront in a parsing and transformation com-
ponent and experiment with the performance of specificity
parsing.



5.3 Future Work

5.3.1 Application Domains
There are many opportunities for applying MetaBorg

to create domain-specific extensions of Java and other host
languages. We summarize some of our ideas to give more
insight into the scope of concrete syntax for objects.

In linguistic reflection a program can generate new pro-
grams at runtime and execute these generated programs as
part of its own execution [27]. Linguistic reflective programs
are program generators and as such the generator is con-
cerned with the syntactical and semantical correctness of
the generated programs. In [27] programs are generated
by constructing a textual representation in strings, which
is unclear and error-prone. The authors suggest as further
work to generate code using an abstract syntax and place
the challenge to have the generator code look as the gener-
ated language would normally be written. Our solution for
embedding languages using MetaBorg makes this possible
by embedding a concrete syntax for the abstract syntax of
a programming language.

Linguistic reflection tools targeting a specific platform
might even target standardized abstract syntax trees such
as the CodeDOM of .NET. These abstract syntax trees can
then be accepted directly by a compiler or interpreter, which
makes an expensive and error-prone intermediate textual
form unnecessary. It might even be possible to directly com-
pile embedded fragments to Java Byte code or .NET .IL, for
example by defining a concrete syntax for the objects used
by a byte code construction library, such as the Byte Code
Engineering Library (BCEL) [11].

JJTraveler [49] is a visitor combinator framework for
Java. Visitor combinators can be used to compose tree
traversals from basic visitor combinators. The set of basic
combinators of JJTraveler is inspired by the strategy prim-
itives of Stratego, a strategic program transformation lan-
guage where rewriting rules are applied according to user-
definable rewriting strategies. However, JJTraveler visitor
construction is somewhat verbose compared to the concise
notation for strategies in Stratego. In essence JJTraveler
provides classes for all strategy operators of Stratego. The
embedding of concrete syntax for these strategy operators
would be an interesting application of MetaBorg.

Doug Lea’s java.util.concurrent library introduces use-
ful abstractions for concurrent programming. This library
provides utility classes developed in [29]. Other program-
ming languages already have these concurrency abstractions
over the low-level facilities as built-in constructs. Domain-
specific notations for these abstractions can be developed
with MetaBorg as an extension of the Java language.

XQuery is a query language developed by the W3C. It
enjoys wide support by researchers and the industry. JSR
225 aims at standardizing an API for evaluating XQuery
operations. XQueries are however even less attractive for
inclusion in String literals then XPath and SQL statements
since the queries tend to be larger and span multiple lines.
Obviously this language needs to be embedded in Java to
make static syntactical verification possible and embedding
of values from the host language easier and more secure.

5.3.2 Open Compilers
Open Compilers can improve the integration of Meta-

Borg based embedded languages in the compilation process.

Assimilators can be arbitrarily complex and in some cases
they will need to have more detailed semantic information
on the input program than a structured representation of
the input program in an abstract syntax tree provides. We
already experience some problems where assimilators needed
to know the type of expressions.

Improved integration of the assimilators in the compiler
will provide the required information to the assimilator and
will improve the analysis that can be performed on programs
with a reasonable amount of work. Application of assimi-
lators in different phases of an open compiler (e.g. parsing,
semantic analysis, and translation to intermediate code) will
improve error reporting since the aspects of assimilation into
the host language can be implemented separately for each
phase by extending components of the open compiler.

A useful experiment of extending the components of an
open compiler is delayed disambiguation in the input pro-
grams. In many cases the embedding of a language requires
disambiguation because the fragments of the embedded lan-
guage can be parsed as more than one non-terminal. In the
embedding of Java in Java this disambiguation is performed
by optionally prefixing the fragments with exp and bstm to
indicate the non-terminal of the fragment. In the embedding
of XML in Java the non-terminal of anti-quotations has to
be defined since the anti-quotation might refer to character
data as well as content. When this explicit disambiguation
is required is not always clear and excessive use of disam-
biguations makes the code less concise.

An interesting solution to this problem is to solve the am-
biguities by means of interaction with a type checker. From
a fragment such as Expr e = expr |[ 1 + 2 ]| it is easy
to see that there is unnecessary duplication of type decla-
rations. If the type checker of the host language can be
extended, then during type-checking the appropriate alter-
native from a set of ambiguous abstract syntax trees can be
chosen. By preserving the ambiguities until the type check-
ing phase they can be handled at this point. This requires
the parser to be able to report all possible parses, which
SGLR supports. We plan to develop tools for this kind of
disambiguation of embedded languages in Java.

6. CONCLUSIONS
Programming language design these days often is about

selecting candidates for tasteful inclusion in the core lan-
guage. Design patterns and application libraries are among
the candidates for assimilation into the host language. Ex-
tending existing programming languages with new features
that used to be provided by libraries has several advantages.
The core language can provide an attractive syntax for these
features, and tools such as type-checkers, refactoring tools,
IDEs and debuggers will (need to) have built-in knowledge
of the extensions.

Cω (first called Xen [32, 31]) lifts the area of data-access
to the language level. To this end, it makes the type system
of the host language more general and extends the language
of ‘object literals’ with an alternative XML syntax. Cω pro-
vides languages features for iterating, collecting, filtering,
and applying functions over data structures. The Xtatic
language [51], a follow-up of XDuce [22], extends an exist-
ing programming language with XML specific support as
well, but uses a translation into the host language, which
is C#.



However, the growth of a language with more domain spe-
cific constructs is limited by the general application area of
the language. Extensions of the language can potentially
be applied in all code written in this language. Therefore
very domain specific notation will never be accepted to the
core language itself. The kitchen sink is only interesting
for kitchen related applications. Hence, language extensions
tend to abstract over control flow rather than over data. A
domain-specific concrete syntax for objects will usually not
be lifted to the host language, since objects are much more
application specific than routines.

Syntax macros take domain-specific extension to the other
extreme by allowing the programmer to extend the host lan-
guage within the program itself. This is a very lightweight
extension of the language, but is restricted by a host of tech-
nical problems. Our MetaBorg method is somewhere in
between designing a new language and ad-hoc extensions
with syntax macros. Since extensions need to be defined
carefully by a domain expert, domain-specific notations are
introduced in a separate role. To conclude, MetaBorg is
more flexible than Cω in that it does not target a specific
domain and MetaBorg allows arbitrary extensions, as op-
posed to syntax macros. We expect that extensions will be
implemented in MetaBorg or similar toolkits before they
are assimilated into the host language for good. For those
extensions that will never make it there, MetaBorg pro-
vides the way to still make them available to application
programmers.
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