
Formal and Informal Specifications of a Secure
System Component: Final Results in a

Comparative Study

T. M. Brookes1, J. S. Fitzgerald2, P. G. Larsen3

1 British Aerospace (Systems and Equipment) Ltd., Plymouth, UK
2 Centre for Software Reliability, University of Newcastle upon Tyne, NE1 7RU, UK

3 IFAD (The Institute of Applied Computer Science), Odense, Denmark

Abstract. This paper presents the findings from the later phases of a
study of the effects of introducing formal specification to the commercial-
scale development of a small security-critical system component. The ob-
jectives and form of the study are briefly reviewed. Observations have
been made of the effort profile across the project, compliance of the de-
veloped system with customer requirements and software characteristics.
The results of these observations are presented. Conclusions and areas
of further work are discussed.

1 Introduction

An important topic in any branch of practical engineering is how to improve the
development process with the aims of decreasing time to market, reducing the
overall development costs and ensuring that the product meets the customer’s
requirements. Numerous techniques, for example those of structured and object-
oriented design, have been introduced in recent years with claims that they allow
these objectives to be reached. Formal specification, the subject of this paper,
can be viewed as a complementary technique which allows system requirements
to be captured and expressed in a rigorous fashion.

The use of formal specification is currently mandated for high assurance
security- and safety-critical systems [ITS91,MoD91a,MoD91b]. In these cases,
the perceived expense of using formal specification can be justified as there is
no other method of performing the project to the satisfaction of the regulatory
authorities. But what are the true costs of using formal specification in such a
project? The study described in [FBGL94] and [Fit95] sought to provide evi-
dence on the costs and benefits of a modest degree of formal specification by
comparing separate developments of the same system, one development using
conventional practice, the other using the same techniques plus specification in
VDM-SL supported by the IFAD Toolbox. A previous paper [FBGL94] described
the differences in the two development paths’ early phase of system design. This
paper presents findings from the later software design, implementation and test-
ing phases.

Section 2 briefly reviews the development process and the comparison already
made of the early phases. Section 3 presents the new results from the later
stages and compares the distribution of effort across the whole process. the
overall observations of the project are discussed in Section 4. Section 5 describes
the future direction of formal specification work in BASE and Section 6 briefly
discusses the value of this kind of small comparative study.

2 Project Overview

2.1 Background

One important area of BASE business is the development of secure message
handling systems. Such systems are typically developed to high levels of assur-
ance assessed by a third party. Increasingly, the criteria for achievement of high
assurance levels require some use of formal techniques. The study reported here
was motivated by a desire to observe the consequences of introducing a modest
degree of formal specification into a BASE development process in order to meet
the criteria for high assurance levels.

The study was intended to assess:

1. the effectiveness of formal specification in terms of the additional develop-
ment costs versus any benefits gained by reducing ambiguities, misunder-
standings and rework, with a view to its possible introduction to all or part
of the life cycle for other projects;

2. the problems and difficulties involved in the use of formal specification, so
that future projects may learn from this experience; and

3. the training requirement needed to introduce formal specification into the
design process.

It should be stressed that it was not an aim of this study to show the absolute
worth of formal methods. In particular, it was not an attempt to prove that
some costs or benefits stem directly from the formality of a notation.

2.2 The Trusted Gateway Development

The development of a trusted gateway was used as the baseline project for the
comparison. The gateway considered is a simple device which is located in the
communications path between systems at different security levels. Its purpose
is to determine the classification of the messages which pass through it and
to ensure that they only pass to a destination at the correct security level. It
was an excellent system to consider as its behaviour could be well defined, was
sufficiently simple as to be tractable with the effort available for the project, yet
was sufficiently complex as to be non-trivial.

The trusted gateway was developed by two separate design teams who did
not communicate, although they were aware of each other’s existence. The first
team used a conventional development methodology, Ward and Mellor [WM86]
supported by the Teamwork1 Computer Aided System/Software Engineering
1 Teamwork is a Registered Trademark of Cadre Technology Inc.

tool set. The other team followed a similar design process, but used formal
specification in VDM-SL [ABH+95] to support this design methodology. The
formal specification was developed and tested using the VDM Toolbox from
IFAD [ELL94]. The utilisation of tools and the details of the development process
followed are described in [FLBG95].

The development was initiated by producing a customer requirement that
was submitted to each of the design teams. In the first (system design) phase
there was a divergence in the design as each of the groups interpreted the original
specification. The two design processes were carefully logged: the results of their
comparison are described in more detail in [FBGL94].

The second (software design) phase saw each system design and test plan
developed to levels of greater detail. In the implementation and testing phases
each version of the system was coded and tested using the test plan devised by
its own design team. The test procedures from the other design team were then
applied to compare the test coverage achieved by the two design approaches.
The software produced was subjected to a final acceptance test by the customer.
Areas where the performance was deficient were highlighted and examination of
project records was used to pinpoint the decisions in the design process respon-
sible for the introduction of that deficiency.

Training in the use of formal specification and the Toolbox was provided
for the engineers involved in the design and monitoring activities. The Toolbox
provided a means for preparing VDM specifications in the correct format, per-
formed static checking, and could animate the VDM-SL specifications produced
during the course of the design. IFAD and the Centre for Software Reliability at
the University of Newcastle also participated in the comparative reviews of the
design and progress.

3 Observations

This section presents the results of the observations made in the later design
phases and across the project as a whole. The following points were assessed
and used to compare the two design processes:

1. effort required to perform the design task (Section 3.1);
2. compliance of the system with the original specification(Section 3.2); and
3. performance of the system and tests in terms of code size, speed, and com-

plexity (Section3.3).

A number of other observations on specification style, training, tool support and
specification language syntax were also recorded (Sections 3.4 – 3.7).

3.1 Design effort

The tables below show how the effort expended on the project was distributed.
Figure 1 shows the normalised number of hours spent in each phase assuming
that the project was 100 hours in duration. The effort was provisionally allocated

on a 40:40:20 hour split between systems design, software design and implemen-
tation. The column headed ‘Allocated Time’ indicates the time allocated to each
phase at the start of the project. The columns headed ‘Conventional’ and ‘Formal
methods’ show the time expended in the individual paths.

Figure 2 indicates the distribution of time among the phases in each path
(note that the figures have been rounded to two places.)

Phase Allocated Conventional Formal Excess
Time Method Method F over C

System Design 40 30 35 + 17%
Software Design 40 40 33 - 17%
Implementation 20 17 13 - 24%

Totals 100 87 81 - 7%

Fig. 1. Normalised Number of Person Hours Spent in each phase

Phase Conventional Formal
Method Method Ratio

% Project % Project (C/F)

System Design 34% 43% 0.77
Software Design 46% 41% 1.15
Implementation 20% 16% 1.25

Totals 100% 100%

Fig. 2. Distribution of Project Time within each path

The system design phase required roughly 17% more effort in the formal
path than for the conventional path when considered in terms of the overall
project (which includes design reviews, etc.). The engineers in this phase had
equal skills and experience. When the time spent in this phase is examined as
a percentage of the project, there is a larger difference. In the formal path 43%
of the time is spent in the system design phase as compared to only 34% on the
conventional path; a more significant difference. Neither engineer was limited by
available resources as both underspent the total project budget, by 25% in the
conventional path, and 12.5% in the formal path.

In the software design phase the engineers were of different skill and expe-
rience, the engineer in the formal path having more experience. Although the
formal path required less effort to complete, it was felt that this result was bi-
ased by the difference in the engineers. After comparing the work of the two
engineers, and taking into account their different experience levels, there was

not judged to be a significant additional effort which would be incurred if formal
specification were used in the software design phase under normal conditions.

In the implementation phase, the engineers were again of similar age and
experience. Both paths took the same amount of effort to complete the first
version of the system. However, the conventional implementation required re-
work to correct a problem discovered when the system was tested with the test
suite developed on the formal path. This increased added about 15% to the
cost of the phase. As a percentage of the overall project, the formal software
implementation took 13% of the effort as compared to 17% in the conventional
path.

Comparing the effort for the entire programme, the use of formal specification
did not incur an overhead, in fact the overall effort required was slightly less.
The difference is not felt to be significant. The effort distribution in the formal
path exhibited higher costs in the early parts of the programme where system
requirements are being analysed and understood, but that the additional effort
is recovered in the later stages of the programme. This change in the effort profile
is also typical of the introduction of structured design methods where system
understanding is promoted before development.

3.2 Compliance with Customer Requirements

In the system design phase, the formal specification path detected a special con-
dition, implicit in the requirement, which was not identified in the conventional
path until the test suite developed for the formal path was run on the imple-
mented system. In normal business, the error would not have been detected by
testing, but would possibly have been detected by the customer2. Re-work was
required in the conventional development process to correct this, adding the 15%
extra effort to the implementation phase already discussed. No effort was used
to correct the supporting design documentation, so this represents the very min-
imum additional cost. Had this system been developed for external evaluation,
considerably greater time and effort would have had to be expended to correct
and re-evaluate the design documentation.

3.3 Code Metrics

Complexity The routines which determine message security classification were
compared to evaluate the relative complexity of the code developed on the two
paths. This routine was chosen because it forms the kernel of the system, and in
particular implements the security enforcing function.

The McCabe Complexity of the code was found to be 74 for this routine on
the conventional path and 10 on the formal path. If the formal specification itself
were treated as an implementation, its complexity would be estimated at 4.

2 In BASE, this would be referred to as a design error because it led to the development
of a product which did not meet the customer’s expectations.

These figures would suggest that the formal path produced much simpler code
in the main function than the conventional path. An investigation was conducted
to see if the change to the code on the conventional path caused by the failure
to pass the formal test suite had affected the code complexity. This showed that
there had been a significant increase in the complexity (from roughly 10 to the
74 measured) when the code for the main function was re-written to correct the
deficiency. The conventional development did not in itself produce complicated
code, but problems may have been introduced when the routine was redesigned
to correct problems discovered late in the testing process.

Size The number of lines of code in a routine is not a particularly helpful metric,
although in this case, as both routines are trying to implement the same function,
they are of some use. The code on the formal path was less than one fifth of
the size of the code on the conventional path. The ratio of lines of comment to
code, which is an indication of the maintainability of the final system as the code
is probably better documented internally, was much larger on the formal path,
albeit the number of lines of comment was smaller. The differences identified here
cannot be attributed solely to the use of formal specification, and are believed
to reflect the experience and ability of the software engineer.

Speed The speed of operation was tested by passing a large block of messages
through the system. To minimise any machine-related errors, the software was
installed on the same machine for each test, and all other software running was
disabled. The results obtained are shown in Figure 3.

Formal Conventional
Phase Implementation Implementation Ratio

initialisation time 70 17 4
(seconds)
processing rate 250 18 13.9
(char per sec)

Fig. 3. Code Speed for the Different Implementations

The formal implementation spends roughly four times as long checking the
system data, the classification definitions and start and end of message defini-
tions, as the conventional implementation. However, when the system is pro-
cessing messages it is almost fourteen times faster. Since the trusted gateway is
designed to be set up once and then left to operate for a long period of time, the
relative speed of initialisation does not matter in assessing system performance.
The system developed in the formal path would thus be considered to be much
faster than the conventional implementation. Note that speed was not given to
either team as a design objective.

3.4 Specification Style: developing an implementation for a memory
purging operation

To give an indication of the specification styles used by the BASE engineers, this
section illustrates the evolution of the formal specification during the software
development phase by considering the simple operation used to purge the trusted
gateway’s system memory. At the start of the system design phase, Purge was
defined on the very abstract system design model, with no indication as to how
the operation was to be implemented. The message is replaced by an empty
sequence which would satisfy the requirements of the security policy model that
there should be no remnant of the message left in the system after processing.
The definition is shown below as recorded in the design documentation 3:

This represents the clearing of the Message Data areas, which
is not strictly needed for the execution of the formal
specification in the IFAD Toolbox, but is included for clarity
of the overall formal specification.
\begin{vdm_al}

operations

Purge : () ==> ()

Purge()==
(
ValidMessage := ""
);

\end{vdm_al}

This specification was refined (in the informal sense) during the software de-
sign phase, where a specific algorithm recommended in the original customer
specification is described. The algorithm writes characters over the location in
the memory occupied by the message. The new definition is shown below, to-
gether with the designer’s comments:

This operation performs a purge on the first ’length’ characters
of ’buffer’. Each element of the buffer has the sequence FF
then 0 written to it eight times followed by 246 once. This
sequence is repeated 4 times.

Note that the testing of this function in vdmde (the IFAD Toolbox)
is very time consuming due to the loops. It can be disabled if

3 The LATEX vdm al commands are part of the interface of the IFAD Toolbox, and
separate the VDM-SL formulae from the explanatory text.

required if the term length is replaced by 0 in the first for
loop. Also note that the characters written to the buffer are
not those required due to keyboard limitations.

Input Parameters length
- The number of characters to be purged.

Returns None
States Affected buffer

- buffer has a wipe sequence written to it

\begin{vdm_al}

Purge : nat ==> ()
Purge (length)==
(

for i = 1 to length do
(

for count1 = 1 to 4 do
(

for count = 1 to 8 do
(

buffer := buffer ++ {i |-> ’A’};
buffer := buffer ++ {i |-> ’0’}

);
buffer := buffer ++ {i |->’B’}

);
buffer := buffer ++ {i |-> ’0’}

) -- i < length
);

\end{vdm_al}

When this function has to be implemented in a high level language, the second
version can be easily translated, whilst the first possesses insufficient detail to
be used. The implementation in C is shown below.

/**/
/* Function : Purge */
/* This function will purge the data between the two pointers */
/* passed in */
/* */
/* Parameters : (global) plus */
/* LPSTR lpszCommence : point from which to */
/* commence purge */
/* LPSTR lpszFinish : stop purge */
/* */

/* Return : void */
/* */
/**/
void FAR PASCAL Purge(LPSTR lpszCommence, LPSTR lpszFinish)
{

int iNumberChars, iLoop, iCount1, iCount;

iNumberChars = lpszFinish - lpszCommence;

for(iLoop = 1; iLoop <= iNumberChars; iLoop++)
{

for(iCount1 = 1; iCount1 <= 4; iCount1++)
{

for(iCount = 1; iCount <= 8; iCount++)
{

_fstrcpy(lpszCommence, "A");
_fstrcpy(lpszCommence, "0");

}
_fstrcpy(lpszCommence, "B");

}
_fstrcpy(lpszCommence, "0");

++lpszCommence;
}

lpszCommence = lpszCommence - iNumberChars;

/* clear */
_fmemset(lpszCommence, 0, iNumberChars);

//SendMessage(hMMI, STATUSMSG, IDS_PURGE, 0L);

}

The core of the implemented routine and the final VDM specifications are
very similar. The code which has been added is primarily concerned with the
implementation in the target hardware and operating system. A formal proof of
correctness against the specification is hindered by the absence of an appropriate
proof theory for the implementation language. However, informal examination
of these structures would suggest that the implementation respects the formal
specification.

3.5 Training

One objective of the study was to assess the training requirement needed to
introduce formal specification into the design process. A basic one week course

in the use of formal specification and the IFAD Toolbox was given, and was
sufficient for imparting general specification skills. Overall, this is an encour-
aging result in that it suggests that the training overhead associated with the
introduction of formal specification into a design process is typical of introduc-
ing a new technology into a company. The engineers, who had no background
in formal methods, found it straightforward to apply. Consultancy from expert
users was found to be essential when the engineers were starting to apply formal
specification. This could be supplied either by experienced practitioners within
the company, or by an outside consultant.

3.6 Tool Support

The formal path used the VDM Specification Language supported by a computer-
based tool, the IFAD VDM-SL Toolbox, which allowed the specification to be
type checked and animated. These facilities allowed engineers who were un-
familiar with the language to quickly learn how to write well-formed formal
specifications.

It is important that the introduction of formal design into the development
process be supported by computer based tool. Tool support was regarded as a
practical necessity for the formal path to be followed at all. For a perspective on
the practical use of the Toolbox, see [Muk95].

The use of animation allowed the system design to be examined early in the
development process and let the engineers consider if the specified behaviour met
expectations. The test cases used at this stage were carried forward through the
programme and were eventually applied to the final system. This technique for
demonstrating conformance to requirements could be applied by inexperienced
engineers who have good domain knowledge but relatively little expertise in for-
mal specification. For this reason it is believed to be a more attractive technique
than formal proof.

3.7 Presentation of Specifications

VDM-SL was used in the formal path because of the availability of expertise
and tool support for this language. In principle, any other model-oriented for-
mal specification language susceptible to the same degree of type-checking and
animation with sufficiently good tool support could have been used.

The Standard version of VDM-SL has an alternative ASCII syntax which
does not use the mathematical symbols commonly found in formal specifications.
The engineers expressed a preference for the the ASCII syntax, even though it
is more verbose. This is probably due to their familiarity with programming
languages and the IFAD Toolbox’s use of the ASCII version of the language. In
discussing formal specifications with colleagues unfamiliar with formal notation,
the ASCII syntax was also preferred as a less intimidating alternative to the
mathematical syntax.

4 Discussion

As indicated in the introduction, this study did not aim to show the absolute
worth of formal specification. However, it does add to the body of evidence in
the public domain on the costs and benefits of using formal techniques. In this
section, we consider the main points which BASE have felt to be of relevance
to them from the study. Recall from Section 2.1 that the study was intended to
assess the effectiveness of formal techniques (costs and benefits), the problems
and difficulties of adding formal techniques to the development process and the
training requirement associated with formal specification. Each of these areas is
considered in turn.

Effectiveness

The study indicated that adding formal specification can bring real benefits
to a product development without incurring a prohibitive cost overhead when
the costs are considered over the entire life cycle, providing it is applied where
appropriate, and is applied in conjunction with other design methodologies which
cater for large systems. The opportunity afforded for early error detection and
resolution are expected to contribute to a reduction in time to market.

The development process clearly illustrated how the detection of errors late
in the design process can lead to expense in making corrections and result in
code which is poorly supported by the design documentation and is difficult to
maintain. This is often stated in the literature as a driver to good systems design
as a cost saver. Tests developed from a poor understanding of the system will
not necessarily detect design flaws. These may be found for the first time by the
customer.

It was felt that the major benefits of adding formal specification are seen in
the better definition of the data used, and the identification of exception condi-
tions. Defining data (in the system state and interfaces) in an implementation-
independent manner allows this information to be passed through the various
design stages without transformation, albeit with the addition of detail, until the
system is implemented. The rigour required to define the data using a formal
notation also forces the designer to question the customer (or to make and justify
assumptions about the data) very early in the design process. It was noted that
during the formal design of the trusted gateway considerably more time was
spend in elucidating the data types which the system used and writing them
down unambiguously (see [FBGL94]), possibly as a consequence of the use of
a model-oriented specification language. The resulting formal definition can be
included in the data dictionary entries used in the CASE tools.

Defining the required functionality is a more demanding activity because of
the skill required to understand which parts of a design should be expressed
formally and to be able to abstract the required functionality from requirements
which are rarely clear, consistent and unambiguous.

Problems introducing formal specification

Formal specification did not make as valuable a contribution to the software
design phase as was expected after the system design phase. This may have
been because the example chosen was simple enough for the system design to be
easily expressed as code, or it may be inherent in the method. Producing software
from a formal specification is not simple even if the specification is executable:
constructs used in the formal specification may not translate well into the target
language leading to either an inefficient implementation, or a substantial amount
of re-work to optimise the code design. One would expect that increasing local
experience in designing efficient code from formal specifications would make this
task easier, e.g. as well known implementation strategies are recorded for future
use.

Training

It was originally felt that the same training would be appropriate for both sys-
tems and software engineers. However, after the experience of this project, we
feel that short one- or two-day supplementary courses are needed to impart
specialist skills. The systems engineers require skills in abstraction, functional
specification and data specification. The software engineers require additional
skills in refinement.

Training in the use of formal specification is essential for an engineer who
is going to implement a formal specification. The ability to read a specification
is not sufficient: the training must encompass the concepts behind the use of
formal specification. In particular it should be stressed in training that the formal
specification of an algorithm does not preclude many implementations from being
used providing they are compatible with the formal specification. It is in this
area that the skills of a software engineer will still be employed.

5 Outcome of the study

BASE has already applied formal specification to a sub-system in a larger secure
system which required a high level of evaluation. The external authority which
evaluates designs has indicated that the trusted gateway design using VDM-SL
is could be evaluated to the new high level sought.

Guidelines are being developed recommending the use of formal specifica-
tion techniques in the areas where this study has suggested they are beneficial,
principally in the system design phase. However, it was also noted that formal
specification should not be employed universally: each function should be con-
sidered on its own merits to assess whether or not the use of formal specification,
with the attendant overhead, was justified.

Within the company, presentations have been given to the engineering com-
munity to disseminate the results of the trusted gateway study. With the ex-
istence of a small core of personnel who have some expertise with the use of

formal specification, the aim is to spread the use into areas of projects where
the use is beneficial. Formal specification will, at least initially, be applied where
appropriate by reason of criticality, complexity of data or functionality.

6 Concluding Remarks

We have described the findings of the later stages of a comparative study in the
development of a system with and without the use of formal techniques. One
might conclude by asking how useful such a study is in increasing the exploitation
of mathematically rigorous techniques in the development of software systems.

First, the object of the study was not to provide a “success story” for for-
malists. The trusted gateway project was aimed at one specific development
process in BASE and geared to one area of application where the motivation to
experiment with formal techniques already existed through the desire to reach
specific levels of assurance. As an outcome of the trusted gateway development,
it has become possible to develop some systems to a higher level of assurance
than hitherto in BASE. Work is actively being pursued to widen the use of
mathematically-based techniques where there is felt to be a genuine benefit in
the company.

Although the trusted gateway development was a much more closely defined
and monitored process than is usual in commercial software development, the
sample size was one and a host of variable (human) factors were unaccounted
for in the comparative analysis. To conduct a statistically significant “clinical
trial” of formal methods would be beyond the means of most companies or
even industrial sectors. We would suggest that adoption of formal methods is
more likely to proceed via smaller-scale studies specific to the needs of particular
groups, companies or sectors. The results of such studies will always be qualified,
and rarely be generally applicable, but they will help in building a larger body
of evidence which may be useful to those considering formal techniques for the
first time, and certainly more useful than the unsupported claims which abound
in some other areas of software engineering.

Acknowledgements

The authors would like to thank British Aerospace (Systems and Equipment)
Limited for giving permission to publish many of the details of this work, as well
as the engineers who participated in the study. We are grateful for the support
of the European Commission (ESSI Grant 10670). JSF is grateful to the United
Kingdom Engineering and Physical Sciences Research Council for support under
an EPSRC Research Fellowship. All the authors are grateful to the anonymous
referees for FME’96 for their helpful comments on an earlier draft of the paper.

References

[ABH+95] D.J. Andrews, H. Bruun, B.S. Hansen, P.G. Larsen, N. Plat, et al. Informa-
tion Technology — Programming Languages, their environments and system

software interfaces — Vienna Development Method-Specification Language
Part 1: Base language. ISO, 1995.

[ELL94] René Elmstrøm, Peter Gorm Larsen, and Poul Bøgh Lassen. The IFAD
VDM-SL Toolbox: A Practical Approach to Formal Specifications. ACM
Sigplan Notices, 29(9):77–80, September 1994.

[FBGL94] J. S. Fitzgerald, T. M. Brookes, M. A. Green, and P. G. Larsen. Formal
and informal specifications of a secure system component: first results in a
comparative study. In M. Naftalin, B. T. Denvir, and M. Bertran, editors,
FME’94: Industrial Benefit of Formal Methods, volume 873 of Lecture Notes
in Computer Science, pages 35–44. Springer-Verlag, 1994.

[Fit95] J. S. Fitzgerald. The ConForm Project Home Page. World-wide web at
URL:
http://www.cs.ncl.ac.uk/research/csr/projects/ConForm.html , 1995.

[FLBG95] J.S. Fitzgerald, P.G. Larsen, T.M. Brookes, and M.A. Green. Applications
of Formal Methods, chapter 14 Developing a Security-critical System us-
ing Formal and Convential Methods. Prentice-Hall International Series in
Computer Science, 1995.

[ITS91] Office for Official Publications of the European Community. Information
Technology Security Evaluation Criteria, June 1991.

[MoD91a] United Kingdom Ministry of Defence, Directorate of Standardisation. Safety
Management Requirements for Defence Systems Containing Programmable
Electronics, 1991.

[MoD91b] United Kingdom Ministry of Defence,Directorate of Standardisation. Pro-
curement of safety-critical software, 1991.

[Muk95] Paul Mukherjee. Computer-aided validation of formal specifications. Soft-
ware Engineering Journal, pages 133–140, July 1995.

[WM86] P.T. Ward and S.J. Mellor. Structured Development for Real-Time Systems,
volume 1-3. Yourdon Press, New York, 1985-1986.

