
Making the Distribution Subsystem Secure
Zacharias El Banna, Erik Klintskog and Per Brand

January 11, 2005

Swedish Institute of Computer Science, Kista, Sweden

SICS Technical Report T2004:14
ISSN 1100-3154

ISRN:SICS-T–2004/14-SE

1

Contents

1 Introduction 3
1.1 Structure of the Report . 3

2 The Distribution Subsystem - DSS 4
2.1 Distribution Model . 4
2.2 Sharing Language Entities . 4
2.3 Division of Labor . 6
2.4 Bootstrapping . 6

3 The Security Division of Labor 7

4 The Three Security Scenarios 8
4.1 The Outsider Attack . 8
4.2 The Indirect Attack . 9
4.3 The Insider Attack . 10

5 DSS Internals 10
5.1 Messaging Layer . 11

6 Making the Basic DSS Services Secure 12
6.1 Requirements on a Secure DSS . 13

7 Design 14
7.1 DSites - Identity and Address Protection 14
7.2 Connection Establishment and Channels 16
7.3 Unforgeable Entity Identifiers . 17

8 Evaluation 18

9 Capabilities as a Security Mechanism 18

10 Work Status 19

11 Future Work & Discussion 19
11.1 Protocol Robustification . 19
11.2 Denial-of-Service . 19
11.3 Trust Model . 20
11.4 Capability Model over Abstract Entities 20
11.5 Programming System Interaction . 20

12 Conclusion 20

2

1 Introduction

This report describes the results in securing the Distribution SubSystem (DSS)[16,
6, 8] middleware library. The DSS provides generic distribution support for shared
data structures/language entities on the level of first class references. Security for the
DSS, is thus on the level of first class references. Internally this means unforgeable
references, encrypted channels and secured consistency protocols as well as a robust
implementation that is able to withstand an attack.

We have ensured that the DSS provides a reference secure shared data model.
The DSS can be coupled to a centralized programming system to make a distribution-
extended programming system[2], and with the security provisions this makes the dis-
tributed programming system reference secure. Alternatively the DSS can be used di-
rectly by the application level to provide a reference secure data-sharing model. Only
the processes that have legitimately received a reference to a data structure can access
the data structure. In addition, a process will only accept connections from processes
that have legitimate reference to a data structure that is shared between the two pro-
cesses.

1.1 Structure of the Report

The report is structured as follows. First, the rational behind and the implementation of
the DSS are briefly discussed. This with the primary intention to put the reader in the
context of the DSS (for further information about the DSS see [16, 6, 8]). Second, we
describe the division of labor in respect of security between the DSS and an applica-
tion/programming system that uses the DSS. This is the first contribution of this report.
Third, we present the three major types of security threats a distributed application is
faced with on the level of the DSS. These are later used in the report to validate the
completeness of our solution. This is the second contribution of the report. Fourth,
the internals of the DSS, and the extensions required to make the DSS secure (where
practical achievable) is described. Fifth, the design of a secure DSS implementation
is described. This is the third contribution of this work. The report is then concluded
with an evaluation section, a section that arguments for a capability based model over
an access list model, and a future work section. The contributions are summarized
here:

� Model of division of labor in respect to security between the DSS and a program-
ming system.

� Model of possible threat scenarios for a distributed computation.

� Design and implementation of a secure DSS middleware library that partly copes
with the threat scenarios.

The future works section discuses further extensions to the DSS in order to han-
dle(where practically achievable) all the thread scenarios.

3

2 The Distribution Subsystem - DSS

The Distribution Subsystem (DSS) is a language independent middleware library1 for
efficient distribution of data structures. The middleware library offers a novel language
independent interface for sharing data structures. The interface is based on a notion
of abstract entities and clearly separates functional concepts from non-functional con-
cepts. The internal protocols that realize shared data structures, called entity consis-
tency protocols are divided in three separate subcomponents. This approach to software
design for entity consistency simplifies further protocol development and also allows
for runtime protocol composition[16].

The DSS is not primarily intended to be used directly by application developers.
Instead the DSS can be coupled to a programming system in order to realize a power-
ful distributed programming system. Central in the model is a clear division of labor
between the (centralized) programming system and the DSS. Clearly the centralized
programming system needs to be extended to be able to interact with the DSS and ful-
fill its part of the contract with the DSS. The programming system must now be able to
marshal (or serialize) data structures and, in general, code. The work has been evalu-
ated and results to date look good, both in terms of ease of coupling and performance
[16, 6].

The DSS model, design and implementation, without security instrumentation is
described more fully in [8]. Here we give a short overview, highlighting the division of
labor between the DSS and PS.

2.1 Distribution Model

The distribution support provided by the DSS is to allow threads on different machines
to transparently share language entities just as if the threads reside within the same
process. Modulo failure and performance there is no difference between sharing within
one OS-process and across a network. Similarly, and this may be more important, there
is no difference when the distribution of threads changes. For example, given three
threads A,B and C located on two OS-processes, there is no difference between the
case when A and B are co-located on the same process on the one hand and when B
and C are co-located on the same process on the other.

2.2 Sharing Language Entities

The Distribution Subsystem (DSS) is a middleware library, designed to provide dis-
tribution support for a programming systems [6]. Programming systems suitable for
coupling to the DSS need to be referentially secure. This is, of course, good for secu-
rity, but is also a key property needed to realize efficient distribution. Theses suitable
languages do not allow for pointer arithmetic or any other language mechanism that
permits a thread to gain access to a data structure without having a direct or indirect
reference to it.

Distribution support is on the level of language entities/data structures, over an
interface of abstract entities. Associated with an abstract entity type is a consistency
model, e.g. sequential consistency for shared objects. The DSS provides one or more
consistency protocols for each supported abstract entity type [8].

1The middleware library is implemented in C++ as a library and it is available for download at
http://dss.sics.se

4

Thread

E1

AE1

Thread

Thread

E2

AE2

E2

AE2

Programming
System

DSSDSS

Figure 1: A programming system connect language entities to the abstract entity in-
stances of the DSS and can then take full advantage of all features provided by the
DSS. Entity E2 is shared between the two depicted processes, both running the DSS

Abstract
Entity

Coordinator

Entity Consistency
Protocol

DSSProcess ProcessDSS

Interface

DSS Process

DSS Process

Abstract Entity

Interface

Abstract Entity

Interface

Abstract Entity

Interface

Figure 2: The coordination network and the per-process coordination proxy. The ab-
stract entity instance is coupled to a coordination proxy connecting it to the coordi-
nation network. Note that in this example the coordination hub consists of a single
coordinator located at one of the processes hosting a coordination proxy

Figure 1 depicts threads sharing entities (E1 and E2) locally and also with threads
on other processes, through the abstract entity instances (AE1 and AE2).

Hereinafter, we refer to a process that executes the DSS as a DSS-node. Each
DSS-node is assigned a globally unique identity. In addition, a DSS-node’s identity
is separate from its address which is important to overcome network asymmetry and
achieve mobility[24].

For each shared language entity there is a coordination network. All DSS-nodes
that share or have a reference to a given entity belong to the coordination network. In
addition there may be one or more coordinator nodes, responsible for the necessary
coordination to uphold the consistency model for the language entity. The nodes in
a coordination network may or may not know of each other. The extent to which
members of a coordination network know of each other depends on the entity type.
Note that nodes that share the same entity can potentially interact with each other.
All DSS-nodes know the coordinator(s) of all coordination networks that they are a
member of. Coordinators may know none, some or all of the nodes in coordination
network. Once again, this is dependent on the entity type.

Clearly a coordination network is a fine-grained concept, one for each shared entity.

5

A DSS-node may thus be a member of many coordination networks, one for each
shared entity that the node is holding a reference to.

2.3 Division of Labor

The DSS provides distribution support for the programming system. In order to un-
derstand what is meant by support it is useful to recapitulate what the programming
system should provide by itself.

The programming system provides the concepts of threads (or fine-grained pro-
cesses), data structures and the associated operations. Two threads may share an entity
within an OS-process. The programming system is responsible for maintaining the
consistency of any type of data structure (including objects and code) according to the
programming language semantics. In addition the programming system (possibly mak-
ing use of operating system features) ensures that the processor is shared fairly between
the threads according to the programming model.

In general, at any one time a thread references directly or indirectly only some of
the language entities or data structures within the OS-process. This set, the reference
set, is constantly changing. References may be lost as variables go out of scope and
references may be gained by the action of other threads. An example of the latter is
when one thread updates an instance variable in a shared entity, making the new value
available to all other threads that share the same entity.

A central notion in the DSS that makes it virtually programming language inde-
pendent is the notion of abstract language entity. There are numerous programming
languages with numerous concrete language entities and operations, reflecting a wide
range of semantics. Only some of the essential properties of language entities are
needed for distribution support. One of the tasks when a programming system is cou-
pled to the DSS is to classify concrete language entities and operations into abstract
entities. The programming system must be able to distinguish between shared and lo-
cal entities so that it can co-operate with the DSS whenever operations are attempted on
shared entities. In addition the programming system must be able to marshal/unmarshal
(serialize) language entities.

2.4 Bootstrapping

Without additional instrumentation referentially secure programming systems have the
drawback of being difficult to bootstrap. In this model a newly created thread must
be given an initial reference to some shared entity. Without this the thread can only
work in isolation, not interacting at all with other threads. There is no way to connect
computations or threads that are not already directly or indirectly connected via the
transitive closure of the reference sets of all entities that are currently referenced.

In order to allow for more dynamicity the DSS offers an additional mechanism
for bootstrapping. The DSS can, if so instructed, construct a ticket (a string) from an
arbitrary language entity. This ticket can then, by some means outside the system of
connected DSS-nodes, be given to another DSS-node. The recipient DSS-node will
then have a reference to the original entity. Creating a ticket to an entity implicitly
makes the entity shared even if the ticket is never actually used. As tickets may be freely
replicated outside the system only a subset of the otherwise many available memory
management strategies are applicable.

6

3 The Security Division of Labor

We shall now consider the division of labor as regards security between the DSS and
the programming system.

On an abstract level, sufficient for the DSS model, we view the programming model
as a model over threads and language entities. Threads have references to language
entities and as some language entities are mutable threads may acquire references to
entities that it previously did not know via the action of other threads. This is under the
control of the programming system and the DSS is not involved at all.

On the programming system level the security model may have notions of users,
rights, capabilities, etc. However at the DSS level with little loss of generality we
restrict ourselves, at least for now, to the concepts of threads, language entities, and
references. Users are modeled as threads and all threads that reference a certain lan-
guage entity have essentially the same rights and privileges on it. Note, that this does
not mean that the concepts of varying rights and capabilities cannot be modeled on the
programming system level. For example, we have the difference between read versus
read/write rights to a file. This can be modeled as two different entities, one for each
type of right.

Thus the programming system is responsible for ensuring that when references
(or rights, or capabilities) are passed from one thread (or user) to another that this in
accordance with the security policy and restrictions that are desired.

What then is the responsibility of the DSS? The goal of the DSS is to ensure that
given that the program and programming system are both correct that the invariants
are not broken when the threads (or users) reside on different machines, or in different
environments (i.e. moving from a closed LAN environment to the Internet).

The threats are:

Access A thread (user) should not be able to access/update an entity to which it has
not been a given a reference at the programming system level. Here forgery of
references as well as eavesdropping must be taken into account.

Destruction A thread should not be able to destroy an entity to which it has not been
given a reference. By destruction we mean that other threads with legitimate
references are denied access/update to the given entity.

Resource exhaustion A thread should not be able to exhaust system resources in such
a way as to prevent other threads from making progress on their legitimate work.
A denial-of-service attack is the classic example of resource exhaustion attack,
but there are others. In general, if there is a model of fairness on the programming
system level, this should be maintained in the distributed scenario. One thread
should not be able to prevent another thread from making progress.

Denial-of-Service Attacks and the DSS Traditional Denial-of-Service attacks (DoS),
massive communication in order to block out useful communication and computation,
is an unsolved menace on the Internet of today, although there is work on overlay net-
works to prevent the effect of this kind of attacks[15]. The problem is on the level of
the operating system. Thus a proper solution requires operating system support. The
DSS cannot cope with this kind of attacks. A DoS attack in the context of this work can
either be repeated initiation of the connection establishment protocol or non-useful in-
teraction with a valid entity, i.e. entity operations with the cause of consuming memory
or processor cycles.

7

A B

C

M

B

C

Scenario 3

M

B

C

A

D

M

Scenario 1 Scenario 2

e1 e2

Figure 3: Three security scenarios. 1) Outsider attack 2) Indirect attack 3) Insider
attack

4 The Three Security Scenarios

We now present the three main security threat scenarios. Here we consider the action
that a malicious DSS-node might take. Note that we do not exclude that the malicious
node has access to the DSS-implementation or source code.

The first scenario is the outsider scenario. We have a group of DSS-nodes sharing
an entity. The attacker does not have legitimate reference to the entity. Moreover the
attacker does not have even have a legitimate reason to connect to any node within the
group, as the attacker shares no other entity with any of the nodes within the group.

The second scenario is the indirect scenario. We have a group of DSS-nodes sharing
an entity. The attacker does not have a legitimate reference to the entity, just as in the
first scenario. However the attacker does share other entities with some or all the
members of the group. The attacker does, in other words, have a legitimate reason to
connect to group nodes.

The third scenario is the insider scenario. Here the attacker is actually a member
of a group of DSS-nodes that share an entity.

4.1 The Outsider Attack

The outsider attack is visualized in figure 3 scenario 1. A set of DSS-nodes (A, B,
and C) share the same entity. The malicious node M has no legitimate reference to
the entity nor does it share other entities with nodes A, B and C. However, we must
take into account that M can monitor the traffic between nodes A, B and C, and that M
can guess the IP-address of A, B and C. Note that the entity may have become shared
between A, B and C via normal reference-passing (making use of another shared entity)
or via the ticket mechanism.

The incorrect access problem is twofold. Node M should not by monitoring net-
work traffic nor by fooling sites A, B or C be able to access or update the entity. We
also have to assume that node M can masquerade his own identity, so that he may make
many attempts to obtain access.

8

The two key ideas to the relatively straightforward solution to the incorrect access
problem is encryption of communication and the (in practice) unguessable entity iden-
tifiers. Node M obtains no useful information from network monitoring. Although M
can by guessing or knowing IP-addresses contacts nodes A, B and C, they quickly dis-
connect as M does not have the correct identifier for any shared entity that A, B, or C
hold.

In this scenario the destruction problem is very similar to the access problem. If
we can prevent node M from getting access to the entity we can also prevent node M
from corrupting it. However, there is one slight difference. Node M may be able to
indirectly destroy the entity by causing node A, B or C to crash. Nodes A, B and C
do not know a priori that M is an impostor; this has to be established in the initial part
of the dialog between the two nodes. We see that it is important that this part of the
protocol needs to be robust to protocol violation.

The resource exhaustion problem in this scenario is a classic denial-of-service sce-
nario. Although nodes A, B, and C can fairly quickly determine that M is an impostor,
this determination still consumes some resources. If the attacks are frequent enough
this may interfere with legitimate protocol operations involving nodes A, B and C.

4.2 The Indirect Attack

The indirect attack is visualized in figure 3, scenario 2. We have five DSS-nodes sharing
two entities. Nodes A, B and C share entity e1. B, D and M share entity e2. Here we are
considering the scenario where M is incorrectly allowed to access, destroy or exhaust
the entity e1 from the viewpoint of A, B and C.

Particularly when it comes to incorrect destruction and resource exhausting this
opens up many more possibilities than M had in scenario 1. One way of destroying
the entity e1 is to cause node B to crash, which effects not only node B, but may also
prevent nodes A and C from working with entity e1.

In this scenario there are some additional considerations on the implementation
of programming system level unmarshaling routines. Unmarshaling of code and data
must be both robust and referentially secure. The well-known problem of byte code
verification is in this category.

The unmarshaler must be able to recognize corrupt data and code. In particularly
the unmarshaler must not crash the entire OS-process. In the example, if node B re-
ceives corrupt data in accordance with operations on the shared entity e2 it is ok that
this destroys entity e2 but this must not destroy entity e1 as well, as would be the case
if the entire process crashes.

A more subtle requirement on the programming system is that referentially security
must be guaranteed by the runtime system, it is not enough to rely on the compiler.
For example, it must not be possible to hand-code a byte code sequence associated
with operation-shipping on entity e2 so that other memory areas - in this case those
associated with entity e1 are actually addressed.

Finally, there are now some additional aspects to fairness aspects as regards both
computation and memory, at least for some of the protocols. Node M may send mar-
shaled representations of very large data structures, unexpectedly exhausting the virtual
memory of node B.

We now consider this scenario from the perspective of the requirements on the DSS.
In this scenario the access problem is almost the same as for the outsider scenario.
The one additional consideration is that the legitimate communication according to the

9

protocol concerning entity e2 should not provide any additional clues as to the identity
of the e1.

The destruction and resource exhaustion problems in this scenario are more severe.
The entire consistency protocol for entity e2 must now be robust to attack with a view
to crashing the other nodes. This differs from the outsider scenario where only the
opening sequence of protocol messages needed to be robust.

Aside from denial-of-service attacks there are some additional potential resource
exhaustion problems. The rationale of the attack is to cause node B to use all of its
time and resources dealing with entity e2 starving proper operation of the protocol for
entity e1 in node B.

4.3 The Insider Attack

The insider attack is visualized in figure3 scenario 3. Here node M has a legitimate
reference to a shared entity. Note that in this scenario the access problem is not relevant,
as the malicious node has a legitimate reference. However, the destruction problem
remains, in that the malicious node may or may not be able to destroy the entity, so as
to make it unusable for other nodes sharing the entity. In the figure, node M may or
may not be able to destroy the entity from the viewpoint of node C.

While the insider and indirect attack scenarios are more or less independent of the
particular entity type and the associated consistency protocol this is not true of the
insider attack scenario.

First, for some protocols, given that one participating node is malicious there is
nothing that can be done. A good example of such a protocol is the migratory mutable
protocol, where the mutable entity is shipped to the DSS-node that is working on it, so
that the operation may be performed there. Not only may the malicious node hold the
mutable data forever, denying it to all others, it may arbitrarily corrupt the data, making
it unusable to others.

Other protocols, like the asynchronous message-sending protocol or stationary ob-
ject (RMI or RPC-like) are amenable to security instrumentation. The reason is that
these protocols are essentially asymmetric in the capability associated with entity ref-
erences. In the stationary object the DSS-node holding the object state is privileges. If
that node is malicious then nothing can be done to prevent malicious access of the data.
However, if the malicious node is only holding a reference and has no direct access to
the state then protection is possible.

5 DSS Internals

Central in the DSS is the consistency protocol framework. This framework enables
simplified development of protocols as indicated by the large suite of efficient protocols
provided by the DSS [6]. The key component in this framework is an efficient and
expressive inter-process service. As shown in Figure 4, the DSS is internally divided
into two layers:

Protocol layer This layer implements the consistency protocols that coordinates ac-
cesses to the shared entity. The protocols are divided into three subcomponents
or strategies. Two of them are independent of entity type. First the memory
management strategy responsible for distributed garbage-collection. Second the

10

Coordination Strategy

Memory Management
Strategy

Consistency Strategy

Programming System

Messaging Components

Transportation

Abstract Entity Interface

DSS

Figure 4: The structure of the DSS middleware library. Within the DSS, the proto-
col layer consists of three sub components/strategies all using the messaging layer to
communicate with other DSS-nodes

coordination strategy defines the way in which consistency coordination or ar-
bitration is achieved. The coordinator may be stationary or mobile, single or
redundant. Finally we have the consistency strategy. This is dependent on ab-
stract entity type. This protocol ensures that entity consistency is maintained.

Messaging layer Inter-process interaction tasks, e.g. messaging abstractions and fault
detection, is realized in this layer. It provides the abstractions the protocol layer
use for messaging and expressing locality.

All the processes that have a reference to a shared entity together with one (or more)
coordinators form a network, the coordination network. The data structure is called an
abstract entity instance, and in the course of protocol operation abstract entity instances
will send messages to one another. This is depicted in Figure 2.

At any point in time a DSS-node may know other DSS-nodes; these nodes are
referred to as the known set. During the course of computation, references to DSS-
nodes are passed between DSS-nodes in a diffusion manor, thus the known set changes.
At any one time a DSS-node needs to communicate with a subset of the known set, this
subset is also constantly changing. It is perfectly possible that a DSS-node will never
communicate with a given node in the known set. The known set is implicitly controlled
by the entity consistency protocols.

5.1 Messaging Layer

The DSS-node representation, the DSite, is a composition of an identity and an address.
A DSite express locality, offers a messaging interface for protocols and expresses ac-
cessibility of the remote process, i.e. detects network perturbations and classifies them
into fault states.

The DSite is internally divided into different components, realizing different tasks
and also customizable for different application needs[7]. The DSite representation is
dynamic and depends on the use. If communication is needed the DSite is said to be
active and is comprised of five data structures, depicted in Figure 5. First, the two left-
most data structures manage identity (DssSite) and address (CscSite). Second, a single
(Session) data structure manages connection negotiation and reliable message send-
ing. Finally, actual transportation of a message is done by the Transport and Channel

11

DssSite Transport

CscSite Channel

Session

Marshalling

Buffer

DSite

IO−factoryCSC

APM

Figure 5: The complete runtime representation of an active DSite. The five runtime
data structures that constitutes a DSite resides in all three modules of the DSS. Each
data structure realize a specific task domain, e.g. transportation, addressing and trans-
mission control.

object. The Channel object is an abstraction of a communication channel, i.e. sock-
ets. The Transport object is an interface to different types of Channel. Marshaling of
messages into binary format for transportation is done by the Transport object. The
last data structure, conceptually not a part of the DSite runtime representation, is the
marshaling buffer, used to store serialized messages waiting for transportation.

When a new, not currently present DSite representation, is received at a DSS-node
it is added to the known set. It is not until a protocol instance uses it for communication
that the DSS-node establishes a connection to the represented DSS-node. Connections
are thus established on a by-need basis, according to the address part of the DSite.
When no communication is needed the channel is eventually dropped.

The addressing schema of the DSS is a customizable component, allowing for
change of both run-time address and addressing schema. Effectively this means that
the serialized representation of a DSite is dynamic, consisting of a static identity part
and a (possibly) dynamic address part. During a distributed computation DSS-nodes
might physically move or logically change address, e.g. when running on a mobile
device.

6 Making the Basic DSS Services Secure

The DSS is designed around the concept of references. This is true on the consistency
protocol layer and on the messaging layer. By holding a reference to a process in the
form of a DSite, a connection can be established to the process. The same holds for
entity consistency protocols; a reference to a coordination network gives full access to
the shared data structure the coordination network coordinates. Due to the expected
diffusion behavior, the garbage collection protocol and the fact that a reference is a
capability to enter a coordination network, references are not stored in a centralized
repository but received and managed locally on a DSS-node. Consequently, there is no
notion of which processes that has received a reference to a process or to a coordination
network.

The reference based schema is elegant and efficient. A reference to a shared data
structure can be passed between two processes without involving third party processes.
However, by forging references, a process could be granted access to both processes
and shared data structures it should not have access to – this is the rationale for capa-
bility systems in general, designation and authority comes hand in hand.

12

6.1 Requirements on a Secure DSS

We have identified the following security requirements in the DSS.

Unforgeable DSite References In order to establish contact with a DSS-node, a cor-
rect DSite instance is required. Making DSite references unforgeable prevent
processes from connecting to a DSS-node without holding a correct reference
to that process, i.e. knowing or guessing the physical address is not enough.
Furthermore, a correct reference to a given DSS-node can only be created by a
DSS-node itself. Other nodes learn of a DSS-node (in the form of a DSite) by
reception of DSite references. Unforgeable DSite references are required in sce-
nario one and two. In scenario one the attacker needs a valid DSite reference to
connect to one of the other nodes and in scenario two the two untrusted nodes
(M and F) is not aware of nodes A and C, i.e. B effectively becomes a gateway
for communication.

Robust Connection Establishment The ability to connect to a DSS-node must be re-
stricted to prevent non-trusted nodes from causing damage a DSS-node. Only
a DSS-node that has the capability to connect to a DSS-node should be able do
that. A modified connection protocol must withstand buffer underflow/overflow
attacks and repel attackers quickly in order to minimize effects of Denial-of-
Service attacks. This condition can be mapped to scenario one where an attacker
is kept out side of the network of trusted nodes.

Encrypted Channels Any observed communication between two parties should never
reveal identity or addressing or other sensitive data, except the obvious fact that
they are communicating. Similar to the previous requirements this apply to both
scenario one and two, if all communication remains hidden a malicious node can
not contact any of the trusted nodes or read data in transit.

Each protocol type within the DSS has a set of message types. Thus means that
although messages in general are different, patterns can be detected and to con-
ceal them, and prevent an eavesdropper from deducing what is sent, cipher en-
cryption must support a feedback mechanism, e.g. Chained Block Cipher (CBC).
Furthermore, two communicating DSS-nodes must be able to detect if someone
has tampered with the channel – i.e. check data integrity – and take appropriate
actions.

Unforgeable DSite Addresses A DSS-node has the ability to change its contact in-
formation (e.g. its IP and port number in a TCP based network). Information
regarding a nodes address change diffuses out from the node itself to the other
nodes in a network of a distributed computation. A possible attack to a dis-
tributed computation is to insert an invalid address for a particular node, and thus
making it impossible to contact the node. Thus, address changes for a particular
node can only be issued by the node itself. This requirement can be mapped to
scenario two, from destruction point of view. If a malicious node M can convince
another node D that a third node B, which contains a coordinator for entity e, has
moved to arbitrary location then the entity becomes useless for D.

Unforgeable Coordination Network References Similar to the DSites, coordination
networks are accessed using references. A reference to a coordination network
should only be constructed by reception of a reference to the coordination net-
work. These identities should be verifiable, i.e. it should be possible to tell

13

whether an identity has existed or not, thus rendering it possible to detect con-
tinuous searching attempts for entities.

This requirement maps to scenario two where the malicious node M is unable to
obtain entity e1.

7 Design

The design of the security enhancements for the DSS is governed by the requirement
to affect as little as possible of the current designs favorable properties and features.
Only as a last resort should something be removed or seriously crippled. Furthermore
the DSS is constantly extended and changed to add more functionality and improve
performance. All in all the design and implementation of security features should be
isolated and transparent to the maximum extent for the abstractions that use them.

The use of the widely known Secure Socket Layer (SSL)[1] for communication and
addressing was ruled out for several reasons. First the DSS offers internal routing and
needs to set up indirect end-point communication using other existing channels while
not exposing traffic to the intermediary nodes (not possible with SSL only). Second,
addressing is highly dynamic and not directly bound to sockets, so the DSS can not
rely on TCP/IP addressing as SSL does. Last, the asymmetric keys are used for other
things than just session key establishment, e.g. signing internal abstract data like ca-
pabilities, DSites etc and should be made available through the DSites together with
signing/verifying functions.

For an eavesdropper to obtain the clear text transmissions of the channel there are
two approaches: either guess the session key of the channel or retrieve the ticket used
to connect then obtain the identity-key pair. Both approaches are made difficult enough
to prevent intrusion.

7.1 DSites - Identity and Address Protection

The task for a DSite is to provide identification and establish connections when needed.
The DSite representing the local DSS-node is used as a tool to prove origin and intent,
e.g. to prove creation of references, verify and protect address representations and sign
references. To comply with these tasks and requirements the asymmetric RSA[20]
key algorithm is used by the DSite. This algorithm is fairly simple to implement and
provides adequate strength. The key size is defined at compile time for the DSS library
and should be set to guarantee[17] enough safety for an ongoing computation.

Each local DSite is paired with a private key used for signing. The matching public
key is used as the identity of the DSite. This identity, and henceforth the key pair, is
fixed during the entire lifetime of the DSS-node. Having the public key as identity
is preferable for two reasons: first the public key anyway has to be distributed with
the DSite for the completeness of the connection protocol, second the keys are, and
has to be; unique which is the case for the identity too. The address part of the DSite
is dynamic and is paired with a counter representing the address version. Every time
a CscSite instructs its DssSite that its address has changed the counter is increased.
When a DSite is spread around the network of DSS-nodes, they can update DSite
representations with the latest (seen) address info.

Using a public key as identity prevents masquerading; a malicious DSS-node must
have the private key to sign the hash. This schema would of course fail if some DSS-
node would find out the private key, but that is a matter of key strength. Longer keys

14

���
���Signed hash Length Counter Identity Address

Constant length header

Figure 6: The layout of the marshaled DSite representation. The identity and address
part is variable length. The header, consisting of the length of the representation (in
bytes), address counter and a signed hash of the other elements

would improve security at the cost of additional computation, both when applying the
keys and when generating the big prime numbers[18, 14] used by them.

DSites monitor its channel to detect if a fault has occurred. This information is
propagated to the coordination networks so that they can take appropriate actions. This
state information is extended to cover security, thus a DSite can also be, apart from
regular fault states, regarded suspected malicious or malicious, which is propagated up
to the communication layer similar to regular faults.

To improve performance during marshaling a pre-serialized representation is stored
with every DSite. Figure 6 shows the layout of the serialized representation. The
complete representation is a composition of the serialized representation of the public
key/identity and the address. The address counter is stored in the header together with
the length of the serialized representation. A MD5 hash is calculated on the above
composition and then signed with the private key. This signature is then added to the
complete representation.

To avoid illegally structured DSites from appearing on the network of DSS-nodes
all marshaled representations are verified upon first importation. This schema prevents
an intruder from spreading fake DSite representations.

When a DSite representation enters a new DSS node the identity is compared
against other stored DSites to identify duplicates of the same DSite2 according to the
following tests: :

Identity exists with same signature. The newly imported representation is discarded
and the old one used.

Identity exists but signature is different. The counter versions are matched; if older
the newly imported representation is discarded. If newer the validity of the
signed hash is checked and if correct the CscSite is updated with the new in-
formation and the DssSite with a new marshaled representation.

Identity does not exist. The signed hash is verified, for mutual trust, to avoid importa-
tion of obviously false DSites. If invalid the exporting DSS-node is also discon-
nected and marked as malicious since it should have detected the same during its
importation of the Site. Similar to how failures are handled the DSS informs the
CSC about the faulty site and discards the newly unmarshaled representation.

2DSites are governed by the at-most-one-copy property, independently of how many times a DSite is im-
ported only one representation is stored. This facilitates updates of address information and avoids memory
explosion.

15

7.2 Connection Establishment and Channels

A connection between two DSS-nodes is established, if none exists, when messages are
to be delivered between the DSS-nodes. During connection establishment the Session
object negotiate settings, e.g. buffer sizes, ping intervals, encryption keys.

Message serialization is a cooperate task between the DSS and the CSC or the PS,
initiated by the Session object when space is available for serialization and data can
be transported. Serialization depends on the transportation type (e.g. stream, packet-
based or virtual circuit) and the connected channel. However, after a message has
been serialized it is always placed on a transportation buffer while waiting for actual
delivery. To make encrypted channels transparent from the transportation type, since
there are potentially many, encryption functionality is placed on the buffer controller.
If a secure channel is requested during connection negotiation then the ordinary buffer
controller is replaced with an encryption-enabled controller, fed with parameters from
the connection establishment. Both the replacement and the usage of an encryption-
enabled controller are entirely transparent for the various transportation objects.

The previous connection establishment protocol is described in [7]. In short the
initiating side asks the CSC for a direct channel or route to the destination and when
given transportation means simple clear-text verification is done. The new protocol
uses the public key of the DSite to protect the entire negotiation from eavesdropping.
The identities of any participant is never revealed in clear text and the contacted DSS-
node assumes, and verifies, that the initiating side knows the identity/key, hence an
observer cannot establish a connection to anyone of the participants; knowing the iden-
tity becomes a capability to connect to the network of DSS-nodes.

Outlined below is the connection negotiation procedures, the initiating side are de-
noted (I) while the contacted side is denoted (C). The initiating side requests a channel
to the contacted side and when a channel is established and eventually handed to the
session objects negotiations start. To prevent replaying of negotiation messages nonces
are used as capabilities to verify correct state transitions during negotiation. Message
element extraction is protected from buffer underflow and if the protocol encounters
invalid data or buffer problems the channel is immediately dropped and the other side
is marked as possibly malicious.

1. (C) creates a session object that is handed the newly created transport object. (C)
then sends a presentation message containing a nonce for verification (capability
for further contacts). The message is encrypted using the private key of the local
DSite. This message verifies that (I) know the identity of (C).

2. (I) receives the presentation message and decrypts and extracts the nonce. If
(I) didn’t have the identity of (C) then the message would be unreadable. (I)
then creates a presentation message with its identity. The received nonce, a new
nonce and requests for security and session parameters (e.g. proposed timeouts
and proposed session keys) are encrypted with (I)s private key and stored in the
message, i.e. I is proving that he really is (I). The complete message is encrypted
using the identity-key of (C).

3. (C) receives (I)s presentation and verifies the nonces. If (C) agrees on the pro-
posed security/session settings the buffer controller for the incoming buffer is se-
curity enabled. At this stage simultaneous connections are detected and resolved.
(C) creates a message including security and session responses and encrypts it
using the private key of (C).

16

4. (I) receives the answer message and if encrypted channels are used both the
incoming and the outgoing channel are changed to encrypt. A final connection-
negotiation message is then sent to (I) before other messages can be serialized.

5. (C) receives the last negotiation message and can change its outgoing channel to
be encrypted if that is what was decided. Afterwards all queued messages can be
delivered.

The encryption technique used for the DSS is a block cipher in CBC mode, effec-
tively hiding reappearing messages. The particular block cipher can customized. Using
a simple interface offering basic operations e.g. encrypt, decrypt, key setup, the algo-
rithm of choice can be selected and used. The encryption algorithm is a matter of taste
and trade-off between performance, strength and key set up speed. The schema sim-
ply ensures that future improved algorithms can be incorporated into the DSS. In the
current implementation the blowfish algorithm[21] was selected mainly due to the sim-
ple implementation and favorable performance[22]. Note that any other block cipher
algorithm, like the well-known 3DES, IDEA or AES (Rijndael[3]), can be used.

The crypto buffer-controller takes serialized data and encrypts it into frames of at
most a given (negotiated) size. An Adler32[5] checksum of the plain text is calculated
and attached, together with the frame length value, to the frame header.

A fully transmitted frame with correct checksum is given to the marshaler that
deserializes data into Message Containers, while performing some basic verification of
data, e.g. correctness of size specifications for data types, valid DSite representations
and complete lists. In case the checksum or length mismatch the transport object is
instructed to force a close of the channel. In case communication is still required a
new session has to be negotiated. The transportation object is totally unaware of frame
splitting and just transmits bytes as usual, disregarding frame boundaries.

7.3 Unforgeable Entity Identifiers

Shared abstract entities have their local representative in programming system space
coupled to an abstract entity instance in the DSS. The protocol instances belong to the
corresponding coordination network. [6]. This network is identified through a globally
unique entity identifier or GUId, thus the GUId effectively creates a capability to access
the coordination network. The realization of basic unforgeable references depends on
this identifier.

The representation of a GUId is consists of two data structures:

1. The DSite of the creating DSS-node

2. A counter and some control data which is signed with the private key of the
creating DSite from above.

.
Knowledge of the creator DSite together with the sizable and, per DSS-node, unique

signature, is enough to pin-point a coordination network.
The GUId is created together with the rest of the data structures for a new coor-

dination network. The GUId is distributed with every reference to the entity. When a
protocol instance wants to send a message it creates a message container with enough
space for data, i.e. GUId and message type, for it to be delivered correctly.

17

On the receiving side the GUId is matched against GUIds of local coordination
proxies and coordinators. If the GUId exists the message is delivered to the correct
abstract entity instance, else it is silently dismissed.

8 Evaluation

Testing the implementation was carried out in order to verify the design. Evaluation
of the RSA public key algorithm and the cipher algorithm was not carried out since
in this context, they are state-of-the-art encryption algorithms. Three implementation
tests were performed, covering the security additions to the DSS:

Connection negotiation. Flaws in the connection establishment protocol were checked
for by feeding the channels with inaccurate data as well as both oversize and un-
dersized inputs. DSite representations were also manipulated in order to verify
that any deviation from the specified format was detected.

Detecting channel perturbation. Channel communication was tested by inserting,
removing and changing random bytes. This tested the buffer controller design
and verified that problems regarding channels were correctly detected and the
channel closed in case of errors.

Detecting forged messages. A test for invalid references to coordination networks
was performed. References were generated and inserted into message contain-
ers, these were detected at the other side and the entire message discarded. Due
to the dynamics of the Message Container and the incremental marshaling of
the DSS the entire message has to be deserialized before it can be discarded.
Preferably a message should be discarded directly when an invalid reference is
detected and the buffered simply cleared while the data is completing. This is
something that should be investigated in later stages of securing the DSS.

9 Capabilities as a Security Mechanism

Internally the reference and diffusion model of the DSS is inherently oriented towards
the capability access control mechanism. Capabilities are in nature non-discretionary,
suitable for the DSS which offers diffusion based distribution model and provides a
non-discretionary distribution model. Capabilities have been identified as an access
control mechanism for many years [4]. Work on capability mechanisms includes areas
as operating systems, programming and object systems and distributed applications,
which has shown it to be a general and plausible security mechanism [9, 12, 23, 13, 19,
11, 10].

Another mechanism for access control is access control lists (ACL). ACLs are dis-
cretionary and provide simpler means for discretionary control, e.g. revoking or ex-
tending user rights. However, for a reference diffusion model a capability system,
where delegation is trivial and cost-effective, becomes more attractive.

Important to note is that there is nothing preventing the DSS from being connected
to access control list based programming applications/systems. One possible program-
ming model (for ACL) is to make use of two abstract entities: one representing the
resource and the other user identity. Both of these are shared and needs to be protected
from forgery by the DSS. Associated with the resource is a mutable access control

18

list. Moreover, the referential secure model is a powerful tool for implementing both
capability and ACL based models on the programming system level.

10 Work Status

Focus has been on completing securing the most primitive mechanisms in the DSS;
secure channels, unforgable DSite references and unforgeable entity references. These
services are implemented in the DSS and have undertaken a first evaluation. All the
naming schemas in the DSS are based on pairs of DSites and integer values. Unfor-
gable DSite references are thus the base requirement for realizing unforgable entity
identifiers.

Less attention has been devoted to choice of encryption algorithms. To simplify
the development, and increase the chance of third party usage we have only used
algorithms publicly available. The component oriented design of the security ser-
vices makes replacement of particular algorithms feasible at a later stage, an interface
through which adapted algorithms can be plugged in, is offered to DSS users.

11 Future Work & Discussion

We have in this document described three scenarios we expect the DSS to handle, in
conjunction with a properly instrumented programming system. To fully handle the
two latter scenarios in Figure 3 – to the greatest possible extent – we plan to improve
several aspects of the DSS.

11.1 Protocol Robustification

If we consider the indirect threat scenario, we cannot, in general, prevent a malicious
node from destroying the entity it has a reference to. In general, the protocols rely
upon that the nodes cooperate. However this destruction (or resource exhaustion) must
not spill over to other entities. The process-to-process interaction protocols must be
made robust, i.e. there must be no way to crash a DSS-node using knowledge of the
implementation.

11.2 Denial-of-Service

DoS attacks can be applied to several layers of the DSS. From pure, externally handled,
socket connections to more serious consistency protocol interaction that claims more
resources. Preventing attacks on sockets is easier to handle for the DSS since attackers
are repelled quickly (they represent scenario one in the figure).

For instance, when a message to an entity is received that does not match any of the
locally existing (within the DSS) entity instances the message is silently dismissed. No
actions against the sending DSS-node is taken due the distributed garbage collection
(DGC) schema of the DSS. The two reasons are: first the receiver cannot be certain
that the GUId has not existed earlier or that the sender has not received a received
a reference from a malicious site that kept the reference while a garbage collection
was performed and start spreading it afterward. A solution could be to have verified
references as soon they are imported, but this is probably extremely costly in terms of
extra messages and synchronization.

19

The example is just one of many possible security holes in the DSS regarding
denial-of-service and they must be treated in as far as possible or practical.

11.3 Trust Model

Offering a trust model for the DSS may be needed for two reasons. Firstly, a trust
model may allow for necessary or useful optimization among trusted nodes. Secondly
a trust model may be useful programming aid.

Implementing protocol robustification can – but might not – impose a significant
execution overhead. If DSS-nodes can be trusted then this may be avoided.

On the programming system level the application developer is, in general, given a
choice of consistency protocols to choose from for a given language entity. The choice
governs only non-functional aspects, but may be important for tuning the application
for performance. However, for some application the most efficient conflicts with the
most secure. The trust model can be used to guide and/or restrict the choice of protocol.

11.4 Capability Model over Abstract Entities

The DSS model is based on the notion of abstract entities and abstract operations.
For instance, sequentially consistent mutables can be updated or accessed. It may be
advantageous to distinguish between the update capability and the access capability in
the DSS. We want to investigate the potential of a capability model based on abstract
entities and abstract operations supported in the DSS.

11.5 Programming System Interaction

Currently, messages that do not pass the security inspection are quietly dropped. It
may be useful to propagate attempted security breaches to the programming system
level. We need to investigate how best to expose this information to the programming
system level. Also, it is probably important that if the security provisioning attempts to
identify the misbehaving node that this identification is also secure. If not, a new type
of destruction threat becomes possible, when a malicious node convinces other nodes
that a, in fact well-behaved, node is misbehaving.

12 Conclusion

The work covered in this report represents a first step towards a security enabled DSS,
from the aspect of the three scenarios discussed in section 4.

These scenarios exemplify the model of threats that the DSS will ultimately handle.
A design of security extension that provides protection against some of the threats of
these scenarios is also presented. The design offers encryption on channels between
processes, but this is made optional, which is useful from a performance perspective
when processes are trusted. Furthermore the component-oriented design allows the
specific encryption algorithm to be replaced.

A secure and verifiable process identifier has been designed. This replaces the
original identifier of the DSS, and supports the reference diffusion model of the DSS in
untrusted environments. This identifier is designed with asymmetric key pairs. Based
partly on these process identifiers are references to shared data structures made un-
forgeable.

20

We believe that the model provides a generic service for security, much in the same
way as the DSS provides a generic service for shared data structures. The current
implementation provides some of what is needed to ensure the model and work is
ongoing to provide for the rest.

References

[1] P. Karlton A.O. Freier and P.C. Kocher. The ssl protocol: Version 3.0, March
1996. Available at http://home.netscape.com/eng/ssl3/ssl-toc.html.

[2] Mozart Consortium. http://www.mozart-oz.org, December 2002.

[3] J. Daemen and V. Rijmen. Rijndael, the advanced encryption standard. Dr. Dobb’s
Journal, 26(3):137–139, march 2001.

[4] J. B. Dennis and E. C. Van Horn. Programming semantics for multiprogrammed
computations. Technical Report MIT/LCS/TR-23, MIT, 1965.

[5] L. Deutsch. Zlib compressed data format specification version 3. Internet RFC
1950.

[6] P. Brand E. Klintskog, Z. El Banna and S. Haridi. The design and evaluation of a
middleware library for distribution of language entities. In

�����
Asian Computing

Conference, Dec. 2003. To appear.

[7] P. Brand E. Klintskog, Z. El Banna and S. Haridi. A peer-to-peer approach to en-
hance middleware connectivity. In OPODIS 2003: 	 ��� International Conference
on Principles of Distributed Systems, Dec. 2003. To appear.

[8] P. Brand E. Klintskog, Z. El Banna and S. Haridi. The dss, a middleware library
for efficient and transparent distribution of language entities. In Thirty-seventh
Annual HAWAI’I INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES,
Jan. 2004. To appear.

[9] Li Gong. A secure identity-based capability system. In IEEE Symposium on
Security and Privacy, pages 56–65, 1989.

[10] D. Hagimont and N. De Palma. Non-functional capability-based access control
in the java environment. http://citeseer.nj.nec.com/537978.html.

[11] Daniel Hagimont and Leila Ismail. A protection scheme for mobile agents on
java. In Mobile Computing and Networking, pages 215–222, 1997.

[12] N. Hardy. The keykos architecture. ACM Operating Systems Review, pages 8–25,
September 1985.

[13] Secure multi-user distributed applications - waterken inc., November 2003.
http://www.waterken.com.

[14] Marc Joye, Pascal Paillier, and Serge Vaudenay. Efficient generation of prime
numbers. Lecture Notes in Computer Science, 1965:340+, 2001.

[15] A. Keromytis, V. Misra, and D. Rubenstein. Sos: Secure overlay services. In
Proceedings of ACM SIGCOMM 2002, August 2002.

21

[16] E. Klintskog, Z. El Banna, and P. Brand. A generic middleware for intra-language
transparent distribution. Technical Report T2003:01, Swedish Institute of Com-
puter Science, January 2003.

[17] Arjen K. Lenstra and Eric R. Verheul. Selecting cryptographic key sizes. Jour-
nal of Cryptology: the journal of the International Association for Cryptologic
Research, 14(4):255–293, 2001.

[18] Ueli Maurer. Fast generation of prime numbers and secure public-key crypto-
graphic parameters. Journal of Cryptology, 8(3):123–155, 1995.

[19] M.S. Miller and J.S. Shapiro. Paradigm regained: Abstraction mechanism for
access control. In

�
���
Asian Computing Conference, Dec. 2003. To appear.

[20] R. L. Rivest, A. Shamir, and L. M. Adelman. A method for obtaining digital
signatures and public-key cryptosystems. Technical Report MIT/LCS/TM-82,
MIT, 1977.

[21] B. Schneier. Description of a new variable-length key, 64-bit block cipher (Blow-
fish). Lecture Notes in Computer Science, 809:191–204, 1994.

[22] Bruce Schneier. Applied cryptography (2nd ed.): protocols, algorithms, and
source code in C. John Wiley & Sons, Inc., 1995.

[23] Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. EROS: a fast
capability system. In Symposium on Operating Systems Principles, pages 170–
185, 1999.

[24] A. Snoeren, H. Balakrishnan, and M. Kaashoek. Reconsidering internet mobility.
In

�����
Workshop on Hot Topics in Operating Systems, May 2001.

22

