Finding Satisfying Global States: All for One and One for All

Neeraj Mittal¹, Alper Sen², Vijay K. Garg²*, and Ranganath Atreya¹

¹ Department of Computer Science
The University of Texas at Dallas
Richardson, TX 75083, USA
neerajm@utdallas.edu atreya@student.utdallas.edu
² Department of Electrical and Computer Engineering
The University of Texas at Austin
Austin, TX 78712, USA
sen@ece.utexas.edu garg@ece.utexas.edu

Abstract. Given a distributed computation and a global predicate, predicate detection is concerned with determining whether there exists at least one consistent cut (or global state) of the computation that satisfies the predicate. On the other hand, computation slicing involves computing the smallest subcomputation—with the least number of consistent cuts—that contains all consistent cuts of the computation satisfying the predicate. In this paper, we study the relationship between the above two problems and show that they are actually equivalent. Specifically, given an algorithm to detect a predicate, we derive an algorithm to compute the slice for the predicate. The time-complexity of our slicing algorithm is \(O(n|E|)\) times the time-complexity of the detection algorithm, where \(n\) is the number of processes and \(E\) is the set of events. We discuss how the “equivalence” result of this paper can be utilized to derive a more efficient algorithm for solving the general predicate detection problem. Slicing algorithms described in our earlier papers are all off-line in nature. In this paper, we give an efficient on-line algorithm for computing the slice for a predicate that can be detected efficiently. The amortized time-complexity of the algorithm is \(O(n(c + n))\) times the time-complexity of the detection algorithm, where \(c\) is the average concurrency in the computation.

Key words: analyzing distributed computations, computation slicing, predicate detection, global property evaluation, testing and debugging, software fault tolerance, on-line algorithm

1 Introduction

Writing correct distributed programs is a non-trivial task. Not surprisingly, distributed systems are particularly vulnerable to software faults. Testing and debugging is an effective way of improving the dependability of a software prior to its deployment. Software bugs that do persist after extensive testing and debugging have to be tolerated at runtime to ensure that the system continues to operate properly. Detecting a fault in an execution of a distributed system (e.g., violation of mutual exclusion) is a fundamental problem that arises during testing and debugging as well as software fault tolerance.

In this paper, we focus on detecting those faults that can be expressed as predicates on variables of processes. For example, “no process has the token” can be written as \(\text{no	extunderscore token}_1 \land \text{no	extunderscore token}_2 \land \cdots \land \text{no	extunderscore token}_n\), where \(\text{no	extunderscore token}_i\) denotes the absence of token on

* supported in part by the NSF Grants ECS-9907213, CCR-9988225, Texas Education Board Grant ARP-320, an Engineering Foundation Fellowship, and an IBM grant.
process \(p_i \). This gives rise to the **predicate detection problem** which involves determining whether there exists a consistent cut (or global state) of a distributed computation that satisfies given global predicate. (This problem is also referred to as detecting a predicate under possibly modality in the literature.) For example, a programmer debugging an implementation of a distributed mutual exclusion algorithm may want to test whether a given execution of the system contains a global state for which two or more processes are in their critical sections.

Detecting a predicate in a distributed computation is a hard problem in general [17, 8]. The reason is the combinatorial explosion in the number of possible consistent cuts. Given \(n \) processes each executing at most \(k \) events, the number of possible consistent cuts in the computation could be as large as \(O(k^n) \). Finding a consistent cut that satisfies the given predicate may, therefore, require looking at a large number of consistent cuts. Many approaches to predicate detection exploit the structure of the predicate—by imposing restrictions—to evaluate its value efficiently for a given computation. Polynomial-time algorithms have been developed for several useful classes of predicates (e.g., conjunctive predicates [8], relational predicates [4] and so on).

In our earlier papers [9, 13], we introduce the notion of **computation slice**. Intuitively, slice is a concise representation of consistent cuts satisfying a certain condition. The slice of a computation with respect to a predicate is the directed graph with the least number of consistent cuts of the computation for which the predicate evaluates to true. Slicing can be used to throw away the extraneous global states of the computation in an efficient manner, and focus on only those that are currently relevant for our purpose. The number of consistent cuts of the slice is much smaller than those of the computation. Therefore, in order to detect a fault, rather than searching the state-space of the computation, it is much more efficient to search the state-space of the slice. We also identify a class of predicates, called **regular predicates**, for which the slice is lean [9, 13]. That is, the slice for a regular predicate contains precisely those consistent cuts for which the predicate evaluates to true.

As an illustration, suppose we want to detect the predicate \((x_1 \times x_2 + x_3 < 5) \land (x_1 \geq 1) \land (x_3 \leq 3)\) in the computation shown in Fig. 1(a). The computation consists of three processes \(p_1, p_2 \) and \(p_3 \) hosting integer variables \(x_1, x_2 \) and \(x_3 \), respectively. The events are represented by circles. Each event is labeled with the value of the respective variable immediately after the event is executed. For example, the value of variable \(x_1 \) becomes \(-1\) which does not satisfy \(x_1 \geq 1 \). To reach a consistent cut satisfying \(x_1 \geq 1 \), \(c \) has to be executed. In other words, any consistent cut in which only \(b \) has been executed but not \(c \) is of no interest to us and can be ignored. The slice is shown in Fig. 1(b). It is modeled by a partial order on a set of meta-events; each **meta-event** consists of one or more “primitive” events. A consistent cut of the slice either contains...
Fig. 1. (a) A computation and (b) its slice with respect to \((x_1 \geq 1) \land (x_3 \leq 3)\).

all the events in a meta-event or none of them. (Intuitively, any consistent cut of the computation that contains only a partial set of events in a meta-event is of no relevance to us.) Moreover, a meta-event “belongs” to a consistent cut only if all its incoming neighbours are also contained in the cut. We can now restrict our search to the consistent cuts of the slice which are only six in number, namely \(\{a, q, r, u, v\}\), \(\{a, q, r, u, v, b, c\}\), \(\{a, q, r, u, v, w\}\), \(\{a, q, r, u, w, b, c, w\}\), \(\{a, q, r, v, w, s\}\) and \(\{a, q, r, u, v, b, c, w, s\}\). The slice has much fewer consistent cuts than the computation itself—exponentially smaller in many cases—resulting in substantial savings.

The predicate detection problem is only concerned with determining whether there exists at least one consistent cut of the computation that satisfies the given predicate. Computation slicing, on the other hand, is concerned with computing (a succinct representation of) all consistent cuts of the computation for which the given predicate evaluates to true. Clearly, detecting a predicate is no harder than computing its slice in the sense that the predicate detection problem can be easily solved given the slice for the predicate (it suffices to test for the emptiness of the slice). In this paper, we prove a somewhat surprising result that detecting a predicate is no easier than computing its slice. In other words, given an algorithm \(A\) for detecting a predicate \(b\), there exists an algorithm \(B\) for computing the slice for \(b\) such that the time-complexity of \(B\) is at most \(O(n|E|)\) times the time-complexity of \(A\), where \(n\) is the number of processes and \(E\) is the set of events. As a corollary, it can be derived that there exists a polynomial-time algorithm for detecting a predicate if and only if there exists a polynomial-time algorithm for computing its slice.

At first glance, it may seem that we are not any better off than we were before. After all, if predicate detection is “equivalent” to computation slicing, then how can slicing be used to improve the complexity of predicate detection? Indeed, slicing can be used to facilitate predicate detection as illustrated by the following example. Consider a predicate \(b\) that is a conjunction of two clauses \(b_1\) and \(b_2\). Now, assume that \(b_1\) is such that it can be detected efficiently but \(b_2\) has no structural property that can be exploited for efficient detection. An efficient algorithm for locating some consistent cut satisfying \(b_1\) cannot guarantee that the cut also satisfies \(b_2\). Therefore, to detect \(b\), without computation slicing, we are forced to use techniques such as breadth first search [5], depth first search [1], and partial-order methods (a model-checking technique) [18], which do not take advantage of the fact that \(b_1\) can be detected efficiently. With computation slicing, however, we can first compute the slice for \(b_1\). If only a small fraction of consistent cuts satisfy \(b_1\), then instead of detecting \(b\) in the computation, it is much more efficient to detect \(b\) in the slice. Therefore by spending only polynomial amount of time in computing the slice we
can throw away exponential number of consistent cuts, thereby obtaining an exponential speedup overall. In fact, our experimental results indicate that slicing can indeed lead to an exponential improvement over existing techniques for predicate detection in terms of time and space [14]. Consequently, the result of this paper, rather than diminishing the benefits of computation slicing, actually enhances them by greatly expanding the class of predicates for which the slice can be computed efficiently.

Note that other techniques for reducing the time-complexity [18] and/or the space-complexity [1] of predicate detection are orthogonal to slicing, and as such can be used in conjunction with slicing. Slicing can also be employed to reduce the search-space for detecting a predicate under other modalities including definitely, invariant and controllable [5, 13, 8] and their nestings, which generates a subset of temporal logic [16]. Other applications include tool for debugging a distributed program and a more effective visualization of a distributed computation using event abstraction [10]. For instance, a programmer can use slicing to focus his attention on only faulty consistent cuts of a computation, which may provide a valuable insight into the bug that caused the fault. An examination of the structure of the slice may be used to locate potentially problematic events.

Although in this paper our focus is on distributed systems, slicing has applications in other areas as well, such as combinatorics [7]. A combinatorial problem usually requires counting or enumerating structures that satisfy a given property. In [7], we cast the combinatorial problem as a distributed computation such that there is a bijection between the combinatorial structures satisfying a property \(b \) and the consistent cuts that satisfy a property equivalent to \(b \). We then apply results in slicing a computation with respect to a predicate to obtain a slice consisting of only those consistent cuts that satisfy the desired property. This gives us an efficient algorithm to count or enumerate structures that satisfy \(b \) when the total set of structures is large but the set of structures satisfying \(b \) is small. Several applications of slicing for analyzing problems in integer partitions, set families, and the set of permutations are given in [7].

The algorithms described in our earlier papers [9, 13, 15] for computing a slice are all off-line in nature; they assume that the entire set of events is available a priori. While this is quite adequate for applications such as testing and debugging, for other applications such as software fault tolerance, it is desirable that the slice be computed incrementally in an on-line manner; as and when a new event is generated, the current slice is updated to reflect its arrival. The reason is that for software fault tolerance, it is important to detect the fault as early as possible before it can cause any severe damage. If the slice is computed only after a certain number of events have been collected and then analyzed for the presence of a faulty consistent cut, it may be too late for any meaningful recovery. At the same time, whenever an event arrives, the cost of incrementally updating the slice should be less than the cost of recomputing the slice from scratch using an off-line algorithm. The on-line algorithm is also useful when slicing is used to visualize a computation in progress. For instance, when debugging an implementation of distributed mutual exclusion algorithm, the programmer may want to “look” at only those consistent cuts that violate mutual exclusion. In this paper, we give an efficient incremental algorithm to compute the slice for a predicate given an efficient algorithm to detect the predicate. The amortized time-complexity of the algorithm is \(O(n(c + n)) \) times the time-complexity of the detection
algorithm, where \(c \) is the \textit{average concurrency} in the computation. We define average concurrency in the computation to be the ratio of the number of concurrent pairs to the number of events.

To summarize, in this paper, we prove that the problem of detecting a predicate in a computation is equivalent to the problem of computing the slice for the predicate (Sect. 4). Additionally, we give an efficient on-line algorithm for computing the slice for a predicate that can be detected efficiently (Sect. 5). Section 2 describes the system model and notation used in this paper. Section 3 contains background on computation slicing necessary to understand the rest of the paper. Due to the lack of space, the proofs of all lemmas and theorems have been moved to the appendix.

2 Model and Notation

We assume a loosely-coupled system consisting of \(n \) processes denoted by \(P = \{p_1, p_2, \ldots, p_n\} \) communicating via asynchronous messages. We do not assume any shared memory or global clock.

Traditionally, a distributed computation is modeled as a partial order on a set of events [11]. In this paper we relax the restriction that the order on events must be a partial order. More precisely, we use directed graphs to model distributed computations as well as slices. Directed graphs allow us to handle both of them in a uniform and convenient manner.

Given a directed graph \(G \), let \(V(G) \) and \(E(G) \) denote its set of vertices and edges, respectively. A subset of vertices of a directed graph forms a \textit{consistent cut} if the subset contains a vertex only if it also contains all its incoming neighbours. Formally,

\[
C \text{ is a consistent cut of } G \triangleq \forall e, f \in V(G) : (e, f) \in E(G) : f \in C \Rightarrow e \in C
\]

Observe that a consistent cut either contains all vertices in a strongly connected component or none of them. Let \(\mathcal{C}(G) \) denote the set of consistent cuts of a directed graph \(G \). Observe that the empty set \(\emptyset \) and the set of vertices \(V(G) \) trivially belong to \(\mathcal{C}(G) \). We call them \textit{trivial} consistent cuts. Also, let \(\mathcal{P}(G) \) denote the set of pairs of vertices \((u, v)\) such that there is a path from \(u \) to \(v \) in \(G \). We assume that every vertex has a path to itself.

A \textit{distributed computation} (or simply a \textit{computation}) \((E, \rightarrow)\) is a directed graph with vertices as the set of events \(E \) and edges as \(\rightarrow \). To limit our attention to only those consistent cuts that can actually occur during an execution, we assume that \(\mathcal{P}((E, \rightarrow)) \) contains at least the Lamport’s happened-before relation [11]. A distributed computation in our model can contain cycles. This is because whereas a computation in the traditional or happened-before model captures the \textit{observable} order of execution of events, a computation in our model captures the set of possible consistent cuts. Intuitively, each strongly connected component of a computation constitutes a \textit{meta-event}.

Let \(\text{proc}(e) \) denote the process on which event \(e \) occurs. The predecessor and successor events of \(e \) on \(\text{proc}(e) \) are denoted by \(\text{pred}(e) \) and \(\text{succ}(e) \), respectively, if they exist. When two events \(e \) and \(f \) occurred on the same process and \(e \) occurred before \(f \) in real-time, then we write \(e \overset{p}{\rightarrow} f \), and let \(\overset{p}{\rightarrow} \) be the reflexive closure of \(\overset{p}{\rightarrow} \). We assume the presence of fictitious initial and final events on each process. The initial event on process \(p_i \), denoted by \(\bot_i \), occurs before any other event on \(p_i \). Likewise, the final event on process \(p_i \), denoted
by T_1, occurs after all other events on p_i. For convenience, let \bot and \top denote the set of all initial events and final events, respectively. We assume that all initial events belong to the same strongly connected component. Similarly, all final events belong to the same strongly connected component. This ensures that any non-trivial consistent cut will contain all initial events and none of the final events. Thus, every consistent cut of a computation in the traditional model is a non-trivial consistent cut of the corresponding computation in our model and vice versa. Only non-trivial consistent cuts are of interest to us.

A global predicate (or simply a predicate) is a boolean-valued function on variables of processes. Given a consistent cut, a predicate is evaluated with respect to the values of variables resulting after executing all events in the cut. If a predicate b evaluates to true for a consistent cut C, we say that “C satisfies b”. We leave the predicate undefined for the trivial consistent cuts. A global predicate is local if it depends on variables of a single process.

Example 1. Consider the computation depicted in Fig. 2(a). It has three processes, namely p_1, p_2 and p_3. The events e_1, f_1 and g_1 are the initial events, and the events e_4, f_4 and g_4 are the final events of the computation. The cut $A = \{e_1, e_2, e_3, e_4, f_1, g_1\}$ is not consistent because $g_4 \rightarrow e_4$ and $e_4 \in A$ but $g_4 \notin A$. The cut $\{e_1, e_2, f_1, f_2, g_1\}$ is consistent. The events e_1, f_1 and g_1 belong to the same strongly connected component or meta-event. Processes p_1, p_2 and p_3 host integer variables x, y and z, respectively. The predicate $x \leq 1$ is local whereas the predicate $x + y \leq z$ is not. The consistent cut $\{e_1, f_1, g_1\}$ satisfies $x + y \leq z$ but the consistent cut $\{e_1, e_2, f_1, f_2, g_1\}$ does not.

3 Background

The notion of computation slice is based on the Birkhoff’s Representation Theorem for Finite Distributive Lattices [6] which we describe next.

3.1 Birkhoff’s Theorem

We first describe some concepts needed to understand the theorem. A lattice is called distributive if its meet operator distributes over its join operator [6]. An element of a lattice is called join-irreducible if (1) it is not the least element of the lattice, and (2) it cannot be expressed as join of two distinct elements (of the lattice), both different from itself [6]. Let L be a lattice and $JI(L)$ be the set of its join-irreducible elements. In case L is a distributive lattice, it satisfies an important property that every element in L can be expressed as join of some subset of elements in $JI(L)$ and vice versa [6, Birkhoff’s Theorem]. In other words, $JI(L)$ completely characterizes L. This is significant because $|JI(L)|$ is generally much smaller—exponentially in many cases—than $|L|$. Hence if some computation on L can instead be performed on $JI(L)$, we obtain a significant computational advantage.

Consider a computation $\langle E, \rightarrow \rangle$ and let $C(E)$ denote the set of its consistent cuts. It can be proved that $C(E)$ forms a distributive lattice under the relation \subseteq; its join and meet operators correspond to set union (\cup) and set intersection (\cap), respectively [12]. We show

\[\]
Fig. 2. (a) A computation, (b) the lattice of its consistent cuts, (c) the smallest sublattice that contains all consistent cuts satisfying the predicate $x+y-z \leq 1$, and (d) the poset induced on the set of join-irreducible elements of the sublattice.

that the set $\mathcal{C}(E)$ satisfies no additional structural property [9, 13]. Further, the set of join-irreducible elements of $\mathcal{C}(E)$ is isomorphic to the set of strongly connected components of $\langle E, \rightarrow \rangle$ [9, 13].

Example 2. Consider the computation shown in Fig. 2(a). The (distributive) lattice spanned by its set of consistent cuts is shown in Fig. 2(b). Each consistent cut is labeled with the number of events that have to be executed on each process to reach the cut. The join-irreducible elements of the lattice have been drawn with thick boundaries. (They have exactly one incoming edge in the Hasse diagram.) The lattice has eight join-irreducible elements which is same as the number of strongly connected components of the computa-
tion. It can be verified that every consistent cut of the computation can be written as the
join of some subset of these eight join-irreducible elements and vice versa. For instance, \(R \)
in Fig. 2(b)) can be expressed as the join of \(U \) and \(V \).

Now, consider a subset \(D \subseteq C(E) \). We say that \(D \) forms a sublattice of \(C(E) \) if \(D \) is
closed under set union and set intersection. That is, given two consistent cuts from \(D \), the
consistent cuts obtained by their set union and set intersection also belong to \(D \). It can be
proved that any sublattice of a distributive lattice is also a distributive lattice [6]. Thus if
\(D \) is a sublattice of \(C(E) \), then, using Birkhoff’s Theorem, \(\mathcal{J}(D) \) completely characterizes
\(D \). This forms the basis for the notion of computation slice.

3.2 Computation Slice

Roughly speaking, a computation slice (or simply a slice) is a concise representation of
all those consistent cuts of the computation that satisfy the predicate. For a computation
\(\langle E, \rightarrow \rangle \) and a predicate \(b \), let \(C(E) \) denote the set of consistent cuts of \(\langle E, \rightarrow \rangle \) and, further,
let \(C_b(E) \subseteq C(E) \) be the subset of those consistent cuts that that satisfy \(b \). Also, let \(S_b(E) \)
denote the set of graphs on vertices \(E \) that contain \(C_b(E) \). That is,

\[
S_b(E) \triangleq \{ G \mid \forall V(G) = E \text{ and } C_b(E) \subseteq C(G) \}
\]

We now formally define the notion of slice.

Definition 1 (slice [13]). A slice of a computation with respect to a predicate is a directed
graph with the least number of consistent cuts that contains all consistent cuts of the
given computation for which the predicate evaluates to true. Formally, given a computation
\(\langle E, \rightarrow \rangle \) and a predicate \(b \),

\[
G \text{ is a slice of } \langle E, \rightarrow \rangle \text{ for } b \triangleq \langle \forall H : H \in S_b(E) : |C(G)| \leq |C(H)| \rangle
\]

We denote the slice of a computation \(\langle E, \rightarrow \rangle \) with respect to a predicate \(b \) by \(\text{slice}(\langle E, \rightarrow \rangle, b) \).

We prove in [13] that the slice exists and is uniquely defined for all predicates. The slice is
unique in the sense that for all graphs that fulfill the condition stated in the above definition,
not only their number of consistent cuts same but the consistent cuts themselves are
identical. Moreover, they also have identical meta-events. The main idea behind the proof
is as follows. Consider a computation \(\langle E, \rightarrow \rangle \) and a predicate \(b \). We show that there exists
a unique subset \(D \subseteq C(E) \) satisfying the following conditions. First, \(D \) contains \(C_b(E) \), that
is, \(C_b(E) \subseteq D \). Second, \(D \) forms a sublattice of \(C(E) \). Last, among all sublattices that fulfill
the first two conditions, \(D \) is the smallest one. From Birkhoff’s Theorem, \(\mathcal{J}(D) \), the set of
join-irreducible elements of \(D \), completely characterizes \(D \). We call the partially ordered
set (or poset) induced on the elements of \(\mathcal{J}(D) \) by the relation \(\subseteq \) as the slice of \(\langle E, \rightarrow \rangle \)
with respect to \(b \). Each join-irreducible element gives rise to a meta-event. Alternatively,
the slice can also be represented by a directed graph drawn on the set of events \(E \) such that
its set of consistent cuts is given by \(D \). Such a graph can be obtained by simply forming a
strongly connected component out of each meta-event. Whereas the poset representation
of a slice—given by a partial order on the set of meta-events (e.g., Fig. 1(b))—is better
for presentation purposes, the graph representation—given by a directed graph on the set
of events (e.g., Fig. 2(d))—is more suited for slicing algorithms.
Example 3. Consider the lattice of consistent cuts depicted in Fig. 2(b). The consistent cuts that satisfy the predicate $x + y - z \leq 1$ have been shaded in the figure. Figure 2(c) depicts the smallest sublattice that contains these consistent cuts. The consistent cuts P and Q do not satisfy the predicate but have been included to complete the sublattice. The join-irreducible elements of the sublattice have been drawn with thick boundaries. There are, in total, seven join-irreducible elements, namely T, U, V, W, X, Y and Z. Figure 2(d) portrays the partial order induced on the set $J = \{T, U, V, W, X, Y, Z\}$. There is a one-to-one correspondence between the set of join-irreducible elements and the set of strongly connected components of the graph shown in Fig. 2(d). It can be verified that every consistent cut in the sublattice can be expressed as join of some subset of J and, furthermore, the join of every subset of J is a consistent cut of the sublattice. □

Every slice derived from the computation $\langle E, \rightarrow \rangle$ has the trivial consistent cuts (\emptyset and E) among its set of consistent cuts. A slice is empty if it has no non-trivial consistent cuts [13]. In the rest of the paper, unless otherwise stated, a consistent cut refers to a non-trivial consistent cut.

In our earlier papers, we give efficient algorithms for computing the slice for many classes of predicates [9, 13, 14, 16]. We also how to compose two slices efficiently [13], using which we devise an efficient algorithm for computing an “approximate” slice for a very broad class of predicates that are otherwise NP-complete to detect [13, 14].

4 The Two Problems

In this section, we study the relationship between the following two problems in distributed systems.

Containing Cut (CONTC) Given a directed graph G and a predicate b, is there a consistent cut of G that satisfies b?

Computing Slice (COMPS) Given a directed graph G and a predicate b, compute the slice of G with respect to b.

Two problems are said to be equivalent if given an algorithm A for solving one, we can derive an algorithm B for solving the other such that the time-complexity of B is within a polynomial factor of the time-complexity of A, and vice versa.

4.1 The Main Result: COMPS \cong CONTC

In this section, we prove that the problem of computing a succinct representation of all consistent cuts satisfying a predicate is equivalent the problem of determining whether there exists at least one consistent cut satisfying the predicate. From the definition of slice, clearly, it follows that the slice for a directed graph with respect to a predicate (not necessarily regular [9]) is non-empty if and only if the graph contains a consistent cut that satisfies the predicate. Formally,

$$\text{CONTC}(G, b) \equiv \text{slice}(G, b) \text{ is non-empty}$$

Therefore COMPS is at least as hard as CONTC. We now prove the converse. Consider a directed graph G and a predicate b. Now, G and slice(G, b) are directed graphs on identical
Input: (1) a directed graph G, (2) a predicate b, and (3) an algorithm to evaluate $\text{CONTC}(H, b)$ for an arbitrary directed graph H

Output: the slice of G with respect to b

1. $K := G$;
2. for every pair of events (e, f) do
3. if not($\text{CONTC}(\hat{G}[e, f], b)$) then
4. add an edge from e to f in K; // set K to $K[e, f]$
5. endif;
6. endfor;
7. output K;

Fig. 3. An algorithm to solve COMPS using an algorithm to solve CONTC.

sets of vertices. However, more pairs of vertices are “connected” in $\text{slice}(G, b)$ than in G. In the next lemma, we give a complete characterization of the pairs of vertices that are “connected” in $\text{slice}(G, b)$. Let $G[e, f]$ denote the directed graph obtained by adding an edge from e to f in G.

Lemma 1. There is a path from an event e to an event f in $\text{slice}(G, b)$ if and only if no consistent cut in $\mathcal{C}(G) \setminus \mathcal{C}(G[e, f])$ satisfies b.

Lemma 1 is useful provided it is possible to ascertain efficiently whether some consistent cut in $\mathcal{C}(G) \setminus \mathcal{C}(G[e, f])$ satisfies b. To that end, we show that the set $\mathcal{C}(G) \setminus \mathcal{C}(G[e, f])$ actually forms a sublattice and therefore can be captured faithfully using a directed graph. Let $\hat{G}[e, f]$ denote the directed graph obtained by adding an edge from f to \bot_1 and an edge from \top_1 to e. It suffices to show the following:

Lemma 2. $\mathcal{C}(\hat{G}[e, f]) \setminus \{\emptyset, E\} = \mathcal{C}(G) \setminus \mathcal{C}(G[e, f])$

An example illustrating the Lemma 1 and Lemma 2 can be found in Appendix C. Combining the two lemmas, we obtain the following:

Theorem 1. There is a path from an event e to an event f in $\text{slice}(G, b)$ if and only if no consistent cut in $\hat{G}[e, f]$ satisfies b, that is, $\text{CONTC}(\hat{G}[e, f], b)$ evaluates to false.

Figure 3 depicts the algorithm for solving COMPS using an algorithm that solves CONTC. The algorithm constructs a directed graph that is transitively closed.

Theorem 2. The time-complexity of the algorithm for solving COMPS in Fig. 3 is $O(|E|^2T)$, where E is the set of events and $O(T)$ is the worst-case time-complexity of solving CONTC.

In order to reduce the time-complexity of the algorithm, we construct a graph that is not transitively closed but whose set of consistent cuts is the same as that of the slice. Such a graph is called the skeletal representation of a slice [13]. For an event e, let $F_i(e)$ denote a vector of events; the i^{th} entry of the vector refers to the earliest event f on process p_i such that there is a path from e to f in the slice [13]. (We assume that every event has a path to itself.) We now construct a graph with the following edges. First, there is an
Input: (1) a directed graph G, (2) a predicate b, (3) a process p_x, and (4) an algorithm to evaluate $\text{CONT}(H, b)$ for an arbitrary directed graph H

Output: $F_b(e)$ for all events e on p_x

1. for each process p_i do
2. $f := \bot$; // compute $F_b(e)[i]$ for all events e on p_x
3. for each event e on p_x do
4. while $\text{CONT}(\hat{G}[e, f], b)$ do // visited in the order given by P
5. $f := \text{succ}(f)$; // advance to the next event on p_i
6. endwhile;
7. $F_b(e)[i] := f$;
8. endfor;
9. endfor;

Fig. 4. An algorithm to compute $F_b(e)$ for all events e on process p_x.

edge from an event to its successor, if it exists. Second, there is an edge from an event e to every event in $F_b(e)$. We show in [13] that the graph so obtained has the same set of consistent cuts as the slice. Further, it has only $O(n|E|)$ edges, where n is the number of processes. It is easy to verify that F_b is order-preserving which means that if $e \rightarrow f$ then $F_b(e)[i] \rightarrow F_b(f)[i]$ for each process p_i [13]. Consequently, it is possible to compute $F_b(e)[i]$ for all events e on a single process by scanning the computation once from left to right. The algorithm is presented in Fig. 4. The following theorem establishes that the time-complexity of the algorithm is $O(n|E|T)$.

Theorem 3. The time-complexity of the algorithm for computing $F_b(e)$ for all events e in Fig. 4 is $O(n|E|T)$, where n is the number of processes, E is the set of events and $O(T)$ is the worst-case time-complexity of solving CONT.

4.2 Applications of the Result

Predicate detection is an important problem in distributed systems. Efficient detection algorithms have been developed for several useful classes of predicates. Examples include stable predicates [2], observer-independent predicates [3], conjunctive predicates [8], linear predicates [8], relational predicates [4], and their complements such as co-stable predicates and co-linear predicates [15]. In our earlier papers, we give efficient algorithms for computing the slice for regular predicates [9], co-regular predicates [13], linear predicates and k-local predicates for constant k [14]. Using the result of this paper, it is now possible to compute the slice efficiently for many more classes of predicates including stable and co-stable predicates, observer independent predicates, co-linear predicates, and relational predicates. For instance, an observer independent predicate can be detected in $O(n|E|)$ time using the algorithm presented in [3]. This implies that its slice can be computed in $O(n^2|E|^2)$ time using the algorithm given in Sect. 4.1. It is possible that a faster and more efficient slicing algorithm exists for an observer-independent predicate, which perhaps exploits the specific properties of the class of observer-independent predicates. Our result is still useful because it gives a ready-made algorithm for computing the slice.
Example 4. Consider the computation shown in Fig. 5(a). Suppose we wish to know whether the computation contains a consistent cut that satisfies the predicate \((x_1 + x_2 + x_3 \leq 3) \land (x_1 \geq x_3 \geq 1)\). The first clause belongs to the class of relational predicates and therefore can be detected efficiently [4]. The slice of the computation with respect to \(x_1 + x_2 + x_3 \leq 3\) is shown in Fig. 5(b). The slice contains four consistent cuts whereas the computation contains twenty-one. Hence it is more efficient to look for the required consistent cut in the slice.

Since the problem of predicate detection is NP-complete in general [17, 8], the problem of computing the slice is also NP-complete. For such predicates, we can compute an approximate slice; an approximate slice may be bigger than the actual slice but much smaller than the computation itself. Using our algorithms for composing slices in [13] and the result of this paper, it is now possible to compute an approximate slice in polynomial-time for a predicate composed from “efficiently detectable” predicates using \(\land\) and \(\lor\) operators. An example of such a predicate is \((x_1 \lor x_2) \land (x_3 \lor x_4) \land \cdots \land (x_{n-1} \lor x_n)\), where \(x_i\) is a boolean variable on process \(p_i\). This is significant because our experimental results show that slicing can lead to an exponential improvement over existing techniques for predicate detection in terms of time and space [14].

5 An On-Line Algorithm for Computing the Slice

In this section, we present an on-line algorithm for computing the slice for a predicate for which the slice can indeed be computed efficiently in an off-line manner. Our on-line slicing algorithm is basically derived from the off-line algorithm for computing the slice described in Fig. 4. On generation of a new event in the system, our on-line algorithm updates the current slice to reflect the arrival of the new event.

Before discussing the algorithm, we state our assumptions and describe some notation. We assume that a newly arrived event is “enabled” in the sense that all events that happened before it have already arrived and been incorporated into the slice. This can be achieved by buffering the new event—in case it is not “enabled”—and processing it later when it becomes “enabled”. Whether an event is “enabled” can be determined efficiently by examining its Fidge/Mattern’s vector timestamp.

Initially, the computation consists of only the fictitious—initial and final—events. Let the \(k^{th}\) arriving event, \(k \geq 1\), be denoted by \(e^{(k)}\), and let \(G^{(k)}\) denote the resulting computation. Sometimes we represent the computation more explicitly using \(\langle E^{(k)}, \rightarrow \rangle\) whenever necessary, where \(E^{(k)}\) denote the set of events and \(\rightarrow\) denote the set of edges in \(G^{(k)}\).
Without loss of generality, assume that $G^{(k)}$ is a transitively closed graph and thus \rightarrow is a transitive relation. Note that \rightarrow on the set of non-fictitious events defines the Lamport’s happened-before relation. Clearly, every non-trivial consistent cut of $G^{(k-1)}$ is a consistent cut of $G^{(k)}$ as well. Furthermore, every consistent cut of $G^{(k)}$ that is not a consistent cut of $G^{(k-1)}$ contains $e^{(k)}$.

The on-line algorithm, whenever a new event arrives, computes the new slice by updating $F_b(e)$ for each event e. We use $F_b^{(k)}$ to refer to the value of F_b for the computation $G^{(k)}$. Now, in order to incorporate an event into the slice, we may have to recompute the entry $F_b(e)[i]$ for each event e and every process p_i. First, we show that the new value for an entry cannot move “backward” in the space-time diagram. Let p_{i_k} denote the process on which the event $e^{(k)}$ occurred. An event $e \in E^{(k-1)}$ is said to be a critical event if $F_b^{(k-1)}(e)[i_k] = \top_i$. Intuitively, no nonfinal event on p_{i_k} is reachable from e in $\text{slice}(G^{(k-1)}, b)$. This may change, however, on arrival of $e^{(k)}$ because $e^{(k)}$ is an event on p_{i_k}. Let critical(k) denote the set of all events in $E^{(k-1)}$ that are critical with respect to $e^{(k)}$. Formally,

Lemma 3. Given an event $e \in E^{(k-1)}$ and a process p_i,

\begin{align*}
(i \neq i_k) \lor (e \notin \text{critical}(k)) & \Rightarrow F_b^{(k-1)}(e)[i] \xrightarrow{p_i} F_b^{(k)}(e)[i] \quad (1) \\
(i = i_k) \land (e \in \text{critical}(k)) & \Rightarrow F_b^{(k)}(e)[i] \in \{e^{(k)}, \top_i\} \quad (2)
\end{align*}

Lemma 3 may greatly restrict the amount of work that needs to be done in order to recompute F_b. In particular, to determine the new value of $F_b(e)[i]$ for an event e and a process p_i, rather than starting the scan from \bot_i, we can instead start the scan from the old value of $F_b(e)[i]$. The next lemma specifies the conditions under which either $F_b(e)[i]$ will not change or can be determined cheaply.

Lemma 4. Given an event $e \in E^{(k-1)}$ and a process p_i,

\begin{align*}
(e \rightarrow e^{(k)}) \land \left((i \neq i_k) \lor (e \notin \text{critical}(k)) \right) & \Rightarrow F_b^{(k-1)}(e)[i] = F_b^{(k)}(e)[i] \quad (1) \\
(e \rightarrow e^{(k)}) \land \left((i = i_k) \land (e \in \text{critical}(k)) \right) & \Rightarrow F_b^{(k)}(e)[i] = e^{(k)} \quad (2)
\end{align*}

Lemma 4 implies that F_b needs to be (re)computed only for the following events in $E^{(k)}$. First, for the newly arrived event $e^{(k)}$. Second, for those events in $E^{(k-1)}$ that did not happen-before $e^{(k)}$. It turns out that F_b for the newly arrived event can be determined rather easily. Specifically,

Lemma 5. Given a process p_i,

\begin{align*}
i \neq i_k & \Rightarrow F_b^{(k)}(e^{(k)}[i] = F_b^{(k-1)}(\top_i)[i] \quad (1) \\
i = i_k & \Rightarrow F_b^{(k)}(e^{(k)}[i] = \min\{e^{(k)}, F_b^{(k-1)}(\top_i)[i]\} \quad (2)
\end{align*}

Figure 6 shows the algorithm to update the slice on arrival of a new event. We now analyze the time-complexity of the algorithm. For a set of events X, let X_i denote the
Input: (1) a computation $C^{(k)} = (E^{(k)}, \rightarrow)$, (2) a predicate $b,$
(3) for each event $e \in E^{(k-1)}$, $F_b(e)$ currently set to $F_b^{(k-1)}(e)$, and
(4) an algorithm to evaluate $\text{CONTC}(H, b)$ for an arbitrary directed graph H

Output: for each event $e \in E^{(k)}$, $F_b(e)$ now set to $F_b^{(k)}(e)$

\begin{verbatim}
1 $F_b(e^{(k)}) := F_b(T_{ik});$ // compute F_b for the new event
2 for each event e in $E^{(k)}$ do
3 if $F_b(e)[i_k] = \top_{ik}$ then $F_b(e)[i_k] := e^{(k)}$; endif; // is e a critical event?
4 for each process p_x do
5 for each process p_i do
6 let e be the earliest event on p_x such that $e \neq e^{(k)}$;
7 $f := F_b(\text{pred}(e))[i];$
8 $done := \text{false};$
9 while not($done$) do
10 $f := \max\{f, F_b(e)[i]\};$ // F_b is order-preserving and Lemma 3
11 while ($f \neq \top_{i}$) and $\text{CONTC}([e, f], b)$ do
12 $f := \text{succ}(f);$ // advance to the next event on p_i
13 endwhile;
14 $F_b(e)[i] := f;$
15 if $e = \top_x$ then $done := \text{true};$
16 else $e := \text{succ}(e);$ // advance to the next event on p_x
17 endif;
18 endwhile;
19 endfor;
20 endfor;
\end{verbatim}

Fig. 6. An on-line algorithm to update $F_b(e)$ for all events e on arrival of a new event.

subset of those events that occurred on process p_i. Note that for an event e in $E^{(k-1)}$, if $e^{(k)} \rightarrow e$ then $e \in \top$; otherwise, when e was incorporated into the slice, it was not “enabled” — a contradiction. As a result, events in $E^{(k-1)}$ that did not happen-before $e^{(k)}$ consists of either those events that are concurrent with $e^{(k)}$ or the final events. Now, let $C^{(k)}$ contain those events from $E^{(k)}$ that are concurrent with $e^{(k)}$. It can be verified that, given processes p_i and p_x, the number of times an instance of CONTC is invoked at line 11 is given by $O(|E^{(k)}_i| + |C^{(k)}_x|)$. This is because between two consecutive invocations of CONTC, either e or f advances to its next event. Further, whereas e, if different from \top_x, is constrained to be concurrent with $e^{(k)}$, there is no such constraint on f. Summing over all possible values for i and x, CONTC is invoked $O(n|E^{(k)}|)$ times. This gives us a time-complexity of $O(n|E^{(k)}|)$ for updating the slice, which is same as that of computing the slice from scratch. (Note that the earliest event on a process that did not happen-before $e^{(k)}$—at line 6—can be determined in $O(1)$ time using the Fidge/Mattern’s vector timestamp.)

In order to reduce the time complexity further, we proceed as follows. Suppose, at line 11, $\text{CONTC}([e, f], b)$ evaluates to true and $f \rightarrow e^{(k)}$. It can be shown that $\text{CONTC}([e, g], b)$ will also evaluate to true for all events g such that $g \rightarrow e^{(k)}$. Formally,
Lemma 6. Consider an event $e \in E^{(k-1)}$ and a process p_i. Further, let f be an event on p_i with $f \rightarrow e^{(k)}$ such that $F_b^{(k-1)}(e)[i] \Rightarrow f$. Then,

$$(\text{CONTC}(\hat{G}^{(k)}[e,f],b) \text{ evaluates to true}) \land (g \rightarrow e^{(k)}) \Rightarrow \text{CONTC}(\hat{G}^{(k)}[e,g],b) \text{ evaluates to true}$$

Therefore, when the condition of the while loop at line 11 evaluates to true and $f \rightarrow e^{(k)}$, rather than advancing f to succ(f), we can advance f directly to the earliest event on p_i that did not happen-before $e^{(k)}$. This reduces the number of times an instance of CONTC is evaluated to $O(|C|^{(k)} + |C|^{(k)} + 1)$. The modification is described in Fig. 7.

Now, summing over all possible values for i and x, when $e^{(k)}$ arrives, CONTC needs to be invoked $O(n|C|^{(k)} + n^2)$ times to update the slice. Next, summing over the arrival of $|E|$ events, the total number of times CONTC is invoked is given by $O(n|C| + n^2|E|)$, where C is the set of concurrent pairs of events in the computation. Assuming that the time-complexity of solving CONTC increases with the number of events, the overall time-complexity is given by $O(n|C|[T + n^2|E|])$, where $O(T)$ is the worst-case time-complexity of solving CONTC for a computation consisting of $|E|$ events. Note that the time-complexity of executing lines 1-3, over $|E|$ events, is given by $O(|E|^2)$, which can be ignored assuming that $T = \Omega(|E|)$. Finally, the amortized time-complexity for updating the slice once—on arrival of an event—is given by $O(n(c + n)T)$, where $c = |C|/|E|$ denotes the average concurrency in the computation. Formally,

Theorem 4. The time-complexity of the algorithm to update the slice on arrival of a new event, described in Fig. 6 and Fig. 7, amortized over $|E|$ events, is $O(n(c + n)T)$, where n is the number of processes, c is the average concurrency in the computation and $O(T)$ is the worst-case time-complexity of solving CONTC for a computation consisting of $|E|$ events.

In case c is low, say $O(n)$, the on-line algorithm has an amortized time-complexity of $O(n^2T)$. In this case, therefore, rather than computing the slice from scratch whenever an event arrives, it is much faster to update it using the incremental algorithm. The (on-line) algorithm in this section only assumes that the predicate can be detected efficiently; no other assumption is made about the structure of the predicate. For a special class of predicates, however, namely regular predicates [9], we have developed a much faster $O(n^2)$ amortized time-complexity algorithm to compute the slice in an on-line manner.

6 Conclusion

In this paper, we show the equivalence of two important problems in distributed systems, namely predicate detection and computation slicing. We also give an efficient algorithm to compute the slice for a large class of predicate in an incremental manner.
References

A Skeletal Representation of a Slice

In general, there can be multiple directed graphs with the same set of consistent cuts. Therefore more than one graph may constitute a valid representation of the given slice. The following lemma states that all such graphs are in fact related.

Lemma A-1 ([13]). Consider directed graphs G and H on the same set of vertices. Then,

\[\mathcal{P}(G) \subseteq \mathcal{P}(H) \iff \mathcal{C}(G) \supseteq \mathcal{C}(H) \]

which in turn implies that:

Lemma A-2 ([13]). Consider directed graphs G and H on the same set of vertices. Then,

\[\mathcal{P}(G) = \mathcal{P}(H) \iff \mathcal{C}(G) = \mathcal{C}(H) \]

In other words, two directed graphs G and H, on identical sets of vertices, are cut-equivalent (that is, $\mathcal{C}(G) = \mathcal{C}(H)$) if and only if they are path-equivalent (that is, $\mathcal{P}(G) = \mathcal{P}(H)$). We consider a special directed graph to capture a slice, called the skeletal representation of a slice [13]. Let $F_b(e)$ be a vector of events, where the i^{th} entry in the vector denotes the earliest event on process p_i reachable from e in the slice. The skeletal representation of a slice has the following edges:

1. for each event $e \notin \top$, there is an edge from e to $\text{succ}(e)$, and
2. for each event e and process p_i, there is an edge from e to $F_b(e)[i]$.

An advantage of the skeletal representation is that it has $O(|E|)$ vertices and only $O(n|E|)$ edges, where n is the number of processes and E is the set of events, and hence generally leads to more efficient algorithms involving slices.
B Omitted Proofs

Proof (for Lemma 1). We have,

there is a path from e to f in $\text{slice}(G, b)$
\[\equiv \{ \text{definition of } \text{slice}(G, b) \} \]

(there is a path from e to f in $\text{slice}(G, b)$) $\land \left(\mathcal{C}(\text{slice}(G, b)) \subseteq \mathcal{C}(G) \right) \]
\[\equiv \{ \text{from Lemma A-1, } \mathcal{C}(\text{slice}(G, b)) \subseteq \mathcal{C}(G) \equiv \mathcal{P}(G) \subseteq \mathcal{P}(\text{slice}(G, b)) \} \]

(there is a path from e to f in $\text{slice}(G, b)$) $\land \left(\mathcal{P}(G) \subseteq \mathcal{P}(\text{slice}(G, b)) \right) \]
\[\equiv \{ \text{definition of } G[e, f] \} \]
\[\mathcal{P}(G[e, f]) \subseteq \mathcal{P}(\text{slice}(G, b)) \]
\[\equiv \{ \text{from Lemma A-1 } \} \]
\[\mathcal{C}(\text{slice}(G, b)) \subseteq \mathcal{C}(G[e, f]) \]
\[\equiv \{ \mathcal{C}(\text{slice}(G, b)) \text{ contains all consistent cuts of } \mathcal{C}(G) \text{ satisfying } b \} \]

no consistent cut in $\mathcal{C}(G) \setminus \mathcal{C}(G[e, f])$ satisfies b

This establishes the lemma. \hfill \square

Proof (for Lemma 2). Consider a non-trivial consistent cut C in $\mathcal{C}(G)$. It suffices to show that $C \in \mathcal{C}(\hat{G}[e, f]) \equiv C \notin \mathcal{C}(G[e, f])$.

(\Rightarrow) We need to prove that $C \in \mathcal{C}(\hat{G}[e, f]) \Rightarrow C \notin \mathcal{C}(G[e, f])$. Intuitively, it means that $G[e, f]$ and $\hat{G}[e, f]$ do not have any common non-trivial consistent cut. Equivalently, $\mathcal{C}(G[e, f]) \cap \mathcal{C}(\hat{G}[e, f]) = \{\emptyset, E\}$. We have,

$C \in \mathcal{C}(\hat{G}[e, f])$
\[\Rightarrow \{ \text{definition of } \hat{G}[e, f] \} \]
\[(f \in C) \land (e \notin C) \]
\[\Rightarrow \{ \text{definition of } G[e, f] \} \]
\[C \notin \mathcal{C}(G[e, f]) \]

(\Leftarrow) We need to prove that $C \notin \mathcal{C}(G[e, f]) \Rightarrow C \in \mathcal{C}(\hat{G}[e, f])$. Intuitively, it means that every non-trivial consistent cut of G is either a consistent cut of $G[e, f]$ or a consistent cut of $\hat{G}[e, f]$. Equivalently, $\mathcal{C}(G[e, f]) \cup \mathcal{C}(\hat{G}[e, f]) = \mathcal{C}(G)$. The proof consists of two steps. In the first step, we show that if C is not a consistent cut of $G[e, f]$, then it is the case that $e \notin C$ and $f \in C$. Assume that $C \notin \mathcal{C}(G[e, f])$. Therefore there exist events u and v such
that there is a path from u to v in $G[e, f]$, $u \not\in C$ and $v \in C$. Since C is a consistent cut of G, there is no path from u to v in G. That is, $(u, v) \in \mathcal{P}(G[e, f])$ but $(u, v) \not\in \mathcal{P}(G)$. Thus every path from u to v in $G[e, f]$ contains the edge (e, f)—possibly more than once. This implies that $(u, e) \in \mathcal{P}(G)$ and $(f, v) \in \mathcal{P}(G)$. Since $(u, e) \in \mathcal{P}(G)$ and $u \not\in C$, $e \not\in C$. Similarly, since $(f, v) \in \mathcal{P}(G)$ and $v \in C$, $f \in C$. Therefore $e \not\in C$ and $f \in C$.

In the second step, we show that if C is not a consistent cut of $G[e, f]$, then it is the case that $(e \in C) \lor (f \not\in C)$. Assume that $C \not\in C(G[e, f])$. Hence there exist events x and y such that there is a path from x to y in $G[e, f]$, $x \not\in C$ and $y \in C$. Since C is a consistent cut of G, there is no path from x to y in G. That is, $(x, y) \in \mathcal{P}(G[e, f])$ but $(x, y) \not\in \mathcal{P}(G)$. Thus every path from x to y in $G[e, f]$ involves the edge (f, \bot_1) or the edge (\top_1, e) or both. Consider any path from x to y in $G[e, f]$. In case the first edge to appear in the path—out of the two edges—is (f, \bot_1), there is a path from x to f in G which implies that $f \not\in C$. Also, if the last edge to appear in the path—out of the two edges—is (\top_1, e), then there is path from e to y in G which implies that $e \in C$. If neither of the case holds, then the first edge to appear in the path is (\top_1, e) and the last edge to appear in the path is (f, \bot_1). It can be verified that, in this case, there is a path from e to f in G implying that $f \in C \Rightarrow e \in C$, or, equivalently, $(e \in C) \lor (f \not\in C)$. In any case, $(e \in C) \lor (f \not\in C)$ holds—a logical negation of what we obtained in the first step.

Combining the two steps, it can be inferred that it cannot be the case that C is neither a consistent cut of $G[e, f]$ nor a consistent cut of $G[e, f]$. This establishes the lemma. □

Proof (for Theorem 2). The initialization at line 1 requires $O(|E|^2)$ time, where E is the set of events, because G has $|E|$ vertices and therefore $O(|E|^2)$ edges. The for loop at line 2 executes $|E|^2$ times. Each iteration of the for loop requires solving an instance of CONTC. The construction of the particular instance of CONTC involves adding two edges to G, and therefore can be done in $O(1)$ time. Depending on the result of the if statement at line 3, an edge may be required to be added to K at line 4, which can be done in $O(1)$ time. At the end of the iteration, the two edges that were added to G have to be deleted. The deletion can be accomplished in $O(1)$ time by maintaining pointers to the two edges if using adjacency list representation. The overall time-complexity of the for loop is $O(|E|^2T)$, which is also the time-complexity of the algorithm. □

Proof (for Theorem 3). Note that the while loop at line 4 terminates in at most $|E_i| + |E_x|$ iterations, where E_i and E_x denote the set of events on processes p_i and p_x, respectively. This is because between two consecutive iterations of the while loop, either e or f advances to its next event. Also, the directed graph $\widehat{G}[e, f]$ when $f = \top_i$ has an edge from the final event \top_i to the initial event \bot_1 implying that $\widehat{G}[e, \top_i]$ has no non-trivial consistent cut. Therefore CONTC($\widehat{G}[e, f], b$) when $f = \top_i$ will, trivially, evaluate to false. This gives a time-complexity of $O((|E_i| + |E_x|)T)$ for the inner for loop at line 3. Hence, summing over
all possible values for \(i \), the time-complexity of the outer for loop at line 1 is \(O(|E| + n|E_x|)T) \). This implies that the overall time-complexity of computing \(F_b(e) \) for all events \(e \) on all processes is \(O(n|E|T) \). \(\square \)

Proof (for Lemma 3). First, consider an event \(f \in E^{(k-1)} \) on process \(p_i \). We have,

\[
\begin{align*}
f & \xrightarrow{p} F_b^{(k-1)}(e)[i] \\
& \equiv \{ F_b^{(k-1)}(e)[i] \text{ is the earliest event on } p_i \text{ reachable from } e \text{ in } \text{slice}(G^{(k-1)}, b) \} \\
& (e, f) \notin \mathcal{P}(\text{slice}(G^{(k-1)}, b)) \\
& \equiv \{ f \in E^{(k-1)} \text{ and using Theorem 1} \} \\
& (\exists C : C \text{ is a consistent cut of } \hat{G}^{(k-1)}[e, f] : C \text{ satisfies } b) \\
& \equiv \{ \text{ definition of } \hat{G}^{(k-1)}[e, f] \} \\
& (\exists C : C \text{ is a consistent cut of } G^{(k-1)} : (f \in C) \land (e \notin C) \land (C \text{ satisfies } b)) \\
& \Rightarrow \{ \text{ every non-trivial consistent cut of } G^{(k-1)} \text{ is a consistent cut of } G^{(k)} \} \\
& (\exists C : C \text{ is a consistent cut of } G^{(k)} : (f \in C) \land (e \notin C) \land (C \text{ satisfies } b)) \\
& \equiv \{ \text{ definition of } \hat{G}^{(k)}[e, f] \} \\
& (\exists C : C \text{ is a consistent cut of } \hat{G}^{(k)}[e, f] : C \text{ satisfies } b) \\
& \equiv \{ \text{ using Theorem 1} \} \\
& (e, f) \notin \mathcal{P}(\text{slice}(G^{(k)}, b)) \\
& \equiv \{ F_b^{(k)}(e)[i] \text{ is the earliest event on } p_i \text{ reachable from } e \text{ in } \text{slice}(G^{(k)}, b) \} \\
& f \xrightarrow{p} F_b^{(k)}(e)[i]
\end{align*}
\]

In other words, whenever \(f \in E^{(k-1)} \), \(f \xrightarrow{p} F_b^{(k-1)}(e)[i] \) implies that \(f \xrightarrow{p} F_b^{(k)}(e)[i] \). Now, we prove the two implications.

1. Consider an event \(f \in E^{(k)} \) on process \(p_i \). Suppose \(f \xrightarrow{p} F_b^{(k-1)}(e)[i] \). In case \(i \) is different from \(i_k \), \(f \) is different from \(e^{(k)} \) and therefore \(f \in E^{(k-1)} \). On the other hand, if \(e \notin \text{critical}(k) \), then \(F_b^{(k-1)}(e)[i] \xrightarrow{p} e^{(k)} \) and therefore \(f \in E^{(k-1)} \). In either case, \(f \in E^{(k-1)} \). Using the above result, \(f \xrightarrow{p} F_b^{(k)}(e)[i] \). In other words, whenever \(f \in E^{(k)} \), \(f \xrightarrow{p} F_b^{(k-1)}(e)[i] \) implies that \(f \xrightarrow{p} F_b^{(k)}(e)[i] \). This, in turn, means that \(F_b^{(k-1)}(e)[i] \xrightarrow{p} F_b^{(k)}(e)[i] \).

2. Consider an event \(f \in E^{(k)} \) on process \(p_i \), where \(i = i_k \). Suppose \(f \xrightarrow{p} e^{(k)} \). Clearly, \(f \in E^{(k-1)} \). Further, in case \(e \) is a critical event, \(f \xrightarrow{p} F_b^{(k-1)}(e)[i] \). Using the above result, \(f \xrightarrow{p} F_b^{(k)}(e)[i] \). In other words, whenever \(f \in E^{(k)} \), \(f \xrightarrow{p} e^{(k)} \) implies that \(f \xrightarrow{p} F_b^{(k)}(e)[i] \). This, in turn, means that \(e^{(k)} \xrightarrow{p} F_b^{(k)}(e)[i] \). \(\square \)
Proof (for Lemma 4). (1) From Lemma 3, \(F^{(k-1)}_b(e)[i] \xrightarrow{p_i} F^{(k)}_b(e)[i] \). Assume, on the contrary, that \(F^{(k-1)}_b(e)[i] \xrightarrow{p} F^{(k)}_b(e)[i] \). For convenience, let \(f = F^{(k-1)}_b(e)[i] \). We have,

\[
\begin{align*}
f &\xrightarrow{p} F^{(k)}_b(e)[i] \\
\equiv &\{ F^{(k)}_b(e)[i] \text{ is the earliest event on } p_i \text{ reachable from } e \text{ in } \text{slice}(G^{(k)}, b) \} \\
&\{ (e, f) \notin \mathcal{P}(\text{slice}(G^{(k)}, b)) \} \\
\equiv &\{ \text{ using Theorem 1 } \} \\
&\{ \exists C : C \text{ is a consistent cut of } \hat{G}^{(k)}[e, f] : C \text{ satisfies } b \} \\
\equiv &\{ \text{ definition of } \hat{G}^{(k)}[e, f] \} \\
&\{ \exists C : C \text{ is a consistent cut of } G^{(k)} : (f \in C) \land (e \notin C) \land (C \text{ satisfies } b) \} \\
\Rightarrow &\{ e \rightarrow e^{(k)} \} \\
&\{ \exists C : C \text{ is a consistent cut of } G^{(k)} : (f \in C) \land (e \notin C) \land (C \text{ satisfies } b) \land (e^{(k)} \notin C) \} \\
\equiv &\{ \text{ a consistent cut of } G^{(k)} \text{ that does not contain } e^{(k)} \text{ is a consistent cut of } G^{(k-1)} \} \\
&\{ \exists C : C \text{ is a consistent cut of } G^{(k-1)} : (f \in C) \land (e \notin C) \land (C \text{ satisfies } b) \land (e^{(k)} \notin C) \} \\
\equiv &\{ e^{(k)} \text{ is not an event in } G^{(k-1)} \} \\
&\{ \exists C : C \text{ is a consistent cut of } G^{(k-1)} : (f \in C) \land (e \notin C) \land (C \text{ satisfies } b) \} \\
\equiv &\{ \text{ definition of } \hat{G}^{(k-1)}[e, f] \} \\
&\{ \exists C : C \text{ is a consistent cut of } \hat{G}^{(k-1)}[e, f] : C \text{ satisfies } b \} \\
\equiv &\{ \text{ using Theorem 1 } \} \\
&\{ (e, f) \notin \mathcal{P}(\text{slice}(G^{(k-1)}, b)) \} \\
\Rightarrow &\{ f \text{ is } F^{(k-1)}_b(e)[i] \} \\
a \text{ contradiction}
\end{align*}
\]

Therefore \(F^{(k-1)}_b(e)[i] = F^{(k)}_b(e)[i] \).

(2) Note that \(\mathcal{C}(\text{slice}(G^{(k)}, b)) \subseteq \mathcal{C}(G^{(k)}) \). In case \(e \rightarrow e^{(k)} \), there is a path from \(e \) to \(e^{(k)} \) in \(G^{(k)} \). Thus, from Lemma A-1, there is a path from \(e \) to \(e^{(k)} \) in \(\text{slice}(G^{(k)}, b) \) as well. Consequently, \(F^{(k)}_b(e)[i] \xrightarrow{p_i} e^{(k)} \). From Lemma 3, \(F^{(k)}_b(e)[i] \) is either \(e^{(k)} \) or \(\top_i \). This, in turn, implies that \(F^{(k)}_b(e)[i] \) is \(e^{(k)} \). \(\square \)

Proof (for Lemma 5). Consider an event \(f \in E^{(k)} \) with \(f \neq e^{(k)} \). We have,
\[\exists C : C \text{ is a consistent cut of } \tilde{G}^{(k)}[e^{(k)}, f] : C \text{ satisfies } b \]
\[\equiv \{ \text{ definition of } \tilde{G}^{(k)}[e^{(k)}, f] \} \]
\[\exists C : C \text{ is a consistent cut of } G^{(k)} : (f \in C) \land (e^{(k)} \notin C) \land (C \text{ satisfies } b) \]
\[\equiv \{ \text{ a consistent cut of } G^{(k)} \text{ that does not contain } e^{(k)} \text{ is a consistent cut of } G^{(k-1)} \} \]
\[\exists C : C \text{ is a consistent cut of } G^{(k-1)} : (f \in C) \land (e^{(k)} \notin C) \land (C \text{ satisfies } b) \]
\[\equiv \{ \epsilon^{(k)} \text{ is not an event in } G^{(k-1)} \} \]
\[\exists C : C \text{ is a consistent cut of } G^{(k-1)} : (f \in C) \land (C \text{ satisfies } b) \]
\[\equiv \{ \text{ definition of } \tilde{G}^{(k-1)}[\top_{ik}, f] \} \]
\[\exists C : C \text{ is a consistent cut of } \tilde{G}^{(k-1)}[\top_{ik}, f] : C \text{ satisfies } b \]

(1) Clearly, using the above result and Theorem 1, \(F^{(k)}_b(e^{(k)}) = F^{(k-1)}_b(\top_{ik})[i] \).

(2) In case \(F^{(k-1)}_b(\top_{ik})[i] \) is different from \(\top_{ik} \), using the above result and Theorem 1, \(F^{(k)}_b(e^{(k)}) = F^{(k-1)}_b(\top_{ik})[i] \). On the other hand, if \(F^{(k-1)}_b(\top_{ik})[i] = \top_{ik} \), then \(\text{CONTC}(\tilde{G}^{(k)}[e^{(k)}, e^{(k)}], b) \) evaluates to false and therefore \(F^{(k)}_b(e^{(k)})[i] = e^{(k)} \).

\[\Box \]

Proof (for Lemma 6). Since \(f \not\leadsto e^{(k)}, f \in E^{(k-1)} \). Further, \(F^{(k-1)}_b(e)[i] \not\leadsto f \). From Theorem 1, \(\text{CONTC}(\tilde{G}^{(k-1)}[e, f], b) \) evaluates to false. Equivalently, there is no consistent cut of \(\tilde{G}^{(k-1)}[e, f] \) that satisfies \(b \). However, \(\text{CONTC}(\tilde{G}^{(k)}[e, f], b) \) evaluates to true. This implies that there exists a consistent cut of \(\tilde{G}^{(k)}[e, f] \), say \(C \), that satisfies \(b \). In other words, \(C \) is a consistent cut of \(G^{(k)} \), \(f \in C \), \(e \notin C \) and \(C \) satisfies \(b \). Clearly, \(e^{(k)} \in C \); otherwise, \(C \) is a consistent cut of \(\tilde{G}^{(k-1)}[e, f] \) that satisfies \(b \) — a contradiction. Since \(g \not\rightarrow e^{(k)} \), \(C \) also contains \(g \). Therefore \(\text{CONTC}(\tilde{G}^{(k)}[e, g], b) \) also evaluates to true.

\[\Box \]
Example 5. Consider the directed graph G shown in Fig. 8(a). In the graph, e_1 and f_1 are the initial events, whereas e_4 and f_4 are the final events. Figure 8(b) depicts $\text{slice}(G, b)$, where b is the predicate “all channels are empty”. The slice is obtained by adding the edge from f_3 to e_2 because, for all channels to be empty, send and receive events of the same message have to be executed atomically. The set of non-trivial consistent cuts of G are shown in Fig. 8(c). The cuts for which all channels are empty have been shaded. Now, consider directed graphs $G[e_3, e_2]$ and $\hat{G}[e_3, e_2]$ shown in Fig. 9(a) and Fig. 9(c), respectively. Their sets of consistent cuts (excluding trivial consistent cuts) are shown in Fig. 9(b) and Fig. 9(d), respectively. As expected, the two sets satisfy Lemma 2. Also, since there is no path from e_3 to e_2 in $\text{slice}(G, b)$, $\hat{G}[e_3, e_2]$ contains a consistent cut that satisfies b. Figure 10 illustrates the case when the edge (f_3, e_3) is such that $\text{slice}(G, b)$ contains a path from f_3 to e_3. \square
Fig. 9. (a) The directed graph $G[e_3, e_2]$, where there is no path from e_3 to e_2 in $\text{slice}(G, b)$, (b) the set of non-trivial consistent cuts of $G[e_3, e_2]$, (c) the directed graph $\hat{G}[e_3, e_2]$, and (d) the set of non-trivial consistent cuts of $\hat{G}[e_3, e_2]$.

Fig. 10. (a) The directed graph $G[f_3, e_3]$, where there is a path from f_3 to e_3 in $\text{slice}(G, b)$, (b) the set of non-trivial consistent cuts of $G[f_3, e_3]$, (c) the directed graph $\hat{G}[f_3, e_3]$, and (d) the set of non-trivial consistent cuts of $\hat{G}[f_3, e_3]$.

24