Characterization of Ca\(^{2+}\)-ATPase Activity in *Streptomyces griseus*

By VINAY S. BANSAL, JITENDRA N. VERMA, A. MAHMOOD and GOPAL K. KHULLER

Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh-160012, India

(Received 2 November 1978; revised 6 February 1979)

Ca\(^{2+}\)-ATPase activity has been characterized in *Streptomyces griseus*. The enzyme has a pH optimum of 8.5 at 37 °C. Its Ca\(^{2+}\) requirement can be substituted by Cd\(^{2+}\), Zn\(^{2+}\) and Mn\(^{2+}\). Mg\(^{2+}\) inhibits the enzyme non-competitively.

INTRODUCTION

Adenosine triphosphatase (ATP phosphohydrolase, EC 3.6.1.3) activity requiring Ca\(^{2+}\) or Mg\(^{2+}\) has been reported in a large number of Gram-positive and Gram-negative bacteria (Abrams & Smith, 1974; Machtiger & Fox, 1973). Other microbial ATPases are stimulated by Na\(^+\) and/or K\(^+\) (Abrams et al., 1960; Hayashi & Uchida, 1965). There is ample evidence that bacterial ATPase activities are associated with the cell membrane structures and have a functional role in the transport of ions across the cell membrane. Recently, a very active Mg\(^{2+}\)-(Ca\(^{2+}\))-stimulated ATPase has been demonstrated in *Mycobacterium smegmatis* (Grover et al., 1978), but there have been no reports on ATPase systems in the Streptomycetaceae. The present communication describes the existence and partial characterization of a Ca\(^{2+}\)-ATPase in *Streptomyces griseus*.

METHODS

Organism, growth and preparation of cell-free extracts. *Streptomyces griseus* (127-2) was grown aerobically for 5 d at 27 °C as described by Talwar & Khuller (1977), then harvested by filtration, washed three times with chilled 0.85% (w/v) NaCl and dried between filter papers. The organisms were stored at −20 °C. Cell suspension (1 g wet wt per 3 ml) was ultrasonically disrupted in 0.05 M-Tris/HCl buffer (pH 7.4) for 10 min keeping the sample in ice. The homogenate was centrifuged at 800g for 10 min at 4 °C, the pellet was discarded and the supernatant was recentrifuged for 40 min at 20000g at 4 °C. This supernatant exhibited nearly 90% of the activity of the original enzyme preparation. It was stored at −20 °C.

Enzyme assay. ATPase activity was measured by determining the release of inorganic phosphate from ATP using a slightly modified version of the procedure of Evans (1969). The assay mixture contained (in 1 ml): Tris/HCl buffer (pH 8.5), 100 mM; ATP (Sigma), 4 mM; CaCl\(_2\), 4 mM; cell-free extract. After 15 min at 37 °C, the reaction was stopped by adding 1 ml of chilled 10% (w/v) trichloroacetic acid and the tubes were left in ice for 15 min. Samples were centrifuged at 3000g for 5 min and inorganic phosphate was determined in the supernatant according to Tausky & Shorr (1953). Protein was estimated by the method of Lowry et al. (1951). Enzyme activities are expressed as μmol inorganic phosphate (P\(_i\)) liberated per mg protein in 15 min under the standard assay conditions.

RESULTS AND DISCUSSION

The enzyme preparation obtained from *S. griseus* contained an active Ca\(^{2+}\)-activated ATPase [specific activity, 0.68 μmol P\(_i\) (mg protein\(^{-1}\)) (15 min\(^{-1}\))]. No inorganic phosphate was liberated in the absence of Ca\(^{2+}\). A linear relationship between enzyme activity and
substrate concentration was apparent up to 4 mM-ATP, but above 8 mM-ATP enzyme activity was severely depressed. The K_m for ATP, calculated from a double reciprocal plot, was 14.4 mM with a V_{max} of about 2.5 μmol Pi (mg protein)$^{-1}$ (15 min)$^{-1}$.

At room temperature, the enzyme activity was completely lost within 48 h. At -20°C the enzyme retained only 30% of the original activity over 4 d, whereas at 4°C about 50% of the original activity remained after 4 d. The enzyme preparations kept at 4°C and at -20°C had lost all activity within 10 d. The enzyme had a pH optimum of 8.5 which is slightly higher than the optimum pH reported for ATPase from other bacteria (Grover et al., 1978; Gross & Coles, 1968). Its optimum temperature under the conditions of assay was 40°C.

Effect of monovalent and divalent metal ions on ATPase activity

Preliminary experiments established that for maximum enzyme activity, the optimal ratio of Ca$^{2+}$ to ATP was 1:1. This was identical to that reported for the ATPase system in *Streptococcus faecalis* (Abrams et al., 1960; Abrams, 1965) though in *Bacillus megaterium* (Greenwalt et al., 1962) the optimal Mg$^{2+}$ to ATP ratio is 1:2. The enzyme from *S. griseus* exhibited 80 to 120% of its activity with Ca$^{2+}$ when Ca$^{2+}$ was replaced by Mn$^{2+}$, Zn$^{2+}$ or Cd$^{2+}$ at the same concentration. However, Ba$^{2+}$, Cu$^{2+}$, Ni$^{2+}$, Fe$^{2+}$ and Hg$^{2+}$ (each at 4 mM) strongly inhibited enzyme activity. Mg$^{2+}$, which normally stimulates ATPase activity (Greenwalt et al., 1962; Grover et al., 1978), strongly inhibited the ATPase of *S. griseus* both in the presence and absence of Ca$^{2+}$. Thus, the ATPase activity present in this micro-organism has a strict requirement for Ca$^{2+}$ indicating it to be a true Ca$^{2+}$-ATPase system and thus similar to those characterized in various other micro-organisms (Evans, 1969; Munoz et al., 1969).

The type of inhibition exerted by Mg$^{2+}$ on the Ca$^{2+}$-ATPase was shown by Dixon plots (Fig. 1) to be non-competitive, i.e. its site of interaction differs from that of Ca$^{2+}$. Similar results have been observed in *Escherichia coli* (Evans, 1969; Farris et al., 1972) and in *Aspergillus nidulans* (Selvam & Shammugasundram, 1974). The inhibition constant (K_i) for Mg$^{2+}$, calculated from Fig. 1, was 0.42 mM. This inhibition might be of some significance in the regulation of the cation transport across the cell membrane.

Na$^+$ and K$^+$ (up to 140 mM) had no effect on enzyme activity. However, Cu$^+$, Li$^+$, Ag$^+$ and NH$_4^+$ (each at 4 mM) were strongly inhibitory.

This investigation was supported in part by a grant from the Council of Scientific and Industrial Research, New Delhi, India.
REFERENCES

