SIGNIFICANCE OF ABSENT OR FAINT KIDNEY SIGN ON BONE SCAN

Wilfrido M. Sy, Devayani Patel, and Howard Faunce

Brooklyn-Cumberland Medical Center and Downstate Medical Center, State University of New York, Brooklyn, New York

Seven men, six suffering from widespread bone metastases of prostatic origin and one with urinary bladder carcinoma, demonstrated minimal or no discernible radioactivity in the kidneys and urinary bladder at the time of bone scanning using 99mTc-stannous polyphosphate. The mechanism behind this scan finding is thought to be rapid and enhanced uptake of the radiopharmaceutical by pathologic bone. The significance of the faint or absent kidney sign in bone scanning, particularly in cases where abnormally homogeneous and symmetric radioactivity exists, is discussed.

The major excretory route of 99mTc-stannous polyphosphate is the urinary tract, accounting for its intense image on most scans (1). Pathologic conditions of the kidney and bladder are often suspected when defective or asymmetric radioactivity is detected in these organs during bone scanning (2–4). This communication details our findings in seven patients with extensive bone metastases, who were not in significant renal failure and whose kidneys manifested faint or no radioactivity during bone scanning.

MATERIALS AND METHODS

Six men with extensive bone metastases secondary to prostatic malignancy and one with urinary bladder carcinoma are the subject of this report. Pertinent clinical and laboratory data are summarized in Table 1. Minified 5:1 total-body scans with anterior and posterior projections were performed on all seven patients using the Ohio-Nuclear 84 5-in. dual-headed scanner fitted with 24L low-energy collima-

<table>
<thead>
<tr>
<th>Patient (No.)</th>
<th>Age and sex</th>
<th>Clinical data</th>
<th>Diagnosis</th>
<th>BUN (mg%)</th>
<th>Creatinine (mg%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>64m</td>
<td>Hematuria and dysuria</td>
<td>Urinary bladder transitional cell carcinoma</td>
<td>29</td>
<td>0.9</td>
</tr>
<tr>
<td>2</td>
<td>81m</td>
<td>Hematuria and dysuria; prostatectomy 5 years ago</td>
<td>Undifferentiated carcinoma of prostate</td>
<td>27</td>
<td>2.4</td>
</tr>
<tr>
<td>3</td>
<td>50m</td>
<td>Urinary frequency; prostatectomy 3 years ago</td>
<td>Carcinoma of prostate</td>
<td>16</td>
<td>0.9</td>
</tr>
<tr>
<td>4</td>
<td>76m</td>
<td>Back pain; prostatectomy 4 years ago</td>
<td>Carcinoma of prostate</td>
<td>18</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>71m</td>
<td>Aplastic anemia and fever; prostatectomy 10 years ago</td>
<td>Bone biopsy consistent with prostate adenocarcinoma</td>
<td>18</td>
<td>1.2</td>
</tr>
<tr>
<td>6</td>
<td>71m</td>
<td>Nocturia; prostatectomy</td>
<td>Adenocarcinoma of prostate</td>
<td>16</td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td>79m</td>
<td>Generalized weakness; anemia; bone pain; no surgery</td>
<td>Prostate malignancy—based on widespread osteoblastic changes on x-ray, markedly elevated acid phosphatase, and a small hard prostate</td>
<td>22</td>
<td>0.8</td>
</tr>
</tbody>
</table>

TABLE 1. SUMMARY OF PERTINENT PATIENT DATA
result of enhanced extraction of the radiopharmaceutical by the bone secondary to the presence of very extensive metastases. In Patient No. 1, for instance, the initial bone scan delineated the left kidney well and the expected radioactivity in the bladder was present at a time when no significant bone involvement was present (Fig. 2). The right kidney was subsequently shown to be small and hydronephrotic on retrograde pyelography. However, a second scan obtained 5 months later when the patient's generalized bone pain had worsened revealed barely discernible radioactivity in the urinary tract; concurrently the radioactivity in bone appears to have been greatly increased (Fig. 3A and B). Avid extraction of 99mTc-stannous polyphosphate by the skeletal system with failure to outline the kidney and bladder has been described in patients receiving chronic renal dialysis and who manifested the generalized osseous changes of secondary hyperparathyroidism (5). However, none of our patients were in significant

FIG. 1. (A) Anterior and (B) posterior bone scan of Patient No. 5. Note heavy but homogeneous radioactivity in vertebrae, shoulders, and pelvis and absent kidney and bladder radioactivity.

FIG. 2. Left kidney and bladder radioactivity is present in initial bone scan of Patient No. 1. Right kidney is not delineated because of severe hydronephrosis verified on retrograde pyelography.

FIG. 3. (A) Left kidney is not delineated and minimal radioactivity is seen in bladder. (B) Concurrently widespread abnormal bone radioactivity is now observed (Patient No. 1).
renal failure or revealed signs of hyperparathyroidism.

Localized or heterogeneous asymmetry of radioactivity on bone scans is reason to suspect or diagnose the presence of osseous metastases. Conversely, symmetric homogeneous radioactivity in corresponding bones of the skeletal system is regarded as normal except in bilateral arthritic processes of major joints where increased symmetric activity may occur. Occasionally cases of disseminated metastatic disease have been reported as normal because of symmetric and uniform uptake in the skeletal system (6–8). Except for Patient No. 5, all of our patients fell within the pattern of intense asymmetric localization of skeletal radioactivity and were associated with extensive bone metastases.

In Patient No. 5, increased skeletal radioactivity in the shoulders, thoracic cage, vertebrae, and pelvis was symmetric and homogeneous in distribution, similar to the scan findings in a case of lymphosarcoma with generalized bone involvement reported by Frankel, et al (6). In their patient, however, the kidneys apparently were outlined. This difference between their patient and ours is not readily accounted for, but could possibly have been due to the more severe bone involvement in our patient as evidenced by a bone marrow packed with malignant cells on bone biopsy and also by the generalized lack of any bone marrow activity on the In-chloride scan. The skeletal radiographs of our patient also revealed extensive, diffuse sclerotic changes involving the vertebrae, ribs, shoulders, and pelvis. Thus absent or faint radioactivity in the kidneys on Tc-polyphosphate scan, especially in cases where the abnormal bone uptake is uniform and symmetric in distribution, may be an important indication of enhanced radiouptake by the bone compartment and hence suggestive of extensive bone abnormality.

The absent or faint kidney sign has also been observed in Paget’s disease with very extensive bone involvement (9), and possibly in other clinical conditions that cause abnormal avidity for the radiopharmaceutical by an expanded bone compartment. This abnormal and rapid extraction of the radiopharmaceutical may therefore allow only an insignificant amount of radioactivity to be extracted by the kidneys and visualized at the time of the scan.

ACKNOWLEDGMENT

The authors wish to thank David C. Westring for kindly reviewing the manuscript, Robert Bay for technical assistance, and M. Harris for secretarial help.

REFERENCES