
A Method for Design and Performance
Modeling of Client/Server Systems

Daniel A. MenasceÂ , Member, IEEE Computer Society, and

Hassan Gomaa, Member, IEEE Computer Society

AbstractÐDesigning complex distributed client/server applications that meet performance requirements may prove extremely difficult

in practice if software developers are not willing or do not have the time to help software performance analysts. This paper advocates

the need to integrate both design and performance modeling activities so that one can help the other. We present a method developed

and used by the authors in the design of a fairly large and complex client/server application. The method is based on a software

performance engineering language developed by one of the authors. Use cases were developed and mapped to a performance

modeling specification using the language. A compiler for the language generates an analytic performance model for the system.

Service demand parameters at servers, storage boxes, and networks are derived by the compiler from the system specification. A

detailed model of DBMS query optimizers allows the compiler to estimate the number of I/Os and CPU time for SQL statements. The

paper concludes with some results of the application that prompted the development of the method and language.

Index TermsÐSoftware performance engineering, performance models, client/server systems, queuing networks, database query

optimization, UML, CLISSPE.

æ

1 INTRODUCTION

AN increasing number of organizations are moving
mission-critical applications from mainframe environ-

ments to client/server (C/S) systems. Designing distributed
C/S applications that meet performance requirements is not
a trivial task for complex and distributed C/S systems.
There are often a large number of software and hardware
architectural choices to be made when designing a C/S
system. It is usually not clear what the impact on
performance is of the various choices. Examples of these
choices include the distribution of work between client and
server, use of three-tiered C/S architectures, distribution of
functions among servers, distribution of database tables
among servers, type of client and servers, and network
connectivity. Waiting until the application is ready to go
into production is not a viable option, since poor perfor-
mance may require major code redesign and rewrite. This is
usually very expensive in terms of development cost and
cost incurred by a delayed deployment of the new
application.

To ensure that the new application will meet the

performance requirements, software performance engineer-

ing (SPE) [11], [22], [27], [41] techniques have to be

employed during the software design and development

process. These techniques estimate the demands of the new

application and use performance models to predict the

performance of the new system.

This paper advocates the need to integrate both design
and performance modeling activities, so that one can help
the other. We describe an iterative approach for designing a
system and modeling its performance before it is imple-
mented. The goal is to analyze the design from a
performance perspective, to compare alternative designs,
and to compare the design executing on different system
configurations. To do this, it is necessary to model the
design at the level of granularity of message communica-
tion between client and server and model the application
functionality at the client and server side to capture the
application logic and pattern of access to the system
resources. In a relational database intensive C/S applica-
tion, it is necessary to explicitly model the relations used
and the access patterns to these relations by the application.

The design method described in this paper is an object-
oriented approach based on use cases, a structural view
using object models, and a dynamic view using object
collaboration diagrams and is based on the concepts of
Jacobson and Rumbaugh. When the project was carried out,
we used the earlier notations given in [15], [36]. For the
purposes of this paper, we have used the newer UML
notation [1], [14], [35], [10].

The performance modeling aspect of the method is based
on a language, called CLISSPE (Client/Server Software
Performance Evaluation) [22], that can be used by software
developers to specify use cases and by performance
analysts for software performance prediction. The need
for this method was prompted by the involvement of the
authors in the redesign and capacity planning of a very
large mission-critical application.

The CLISSPE language allows designers of C/S systems to
describe different kinds of objects such as servers, clients,
databases, relational database tables, transactions, and net-
works, as well as the relationship between them. Examples of

1066 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 11, NOVEMBER 2000

. D.A. MenasceÂ is with the Department of Computer Science, George Mason
University, Fairfax, VA 22030-4444. E-mail: menasce@cs.gmu.edu.

. H. Gomaa is with the Information and Software Engineering Department,
George Mason University, Fairfax, VA 22030-4444.
E-mail: hgomaa@gmu.edu.

Manuscript received 6 Apr. 1999; revised 7 Oct. 1999; accepted 15 Mar. 2000.
Recommended for acceptance by A. Cheng, P. Clements, and M. Woodside.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 111941.

0098-5589/00/$10.00 ß 2000 IEEE

relationships include mappings of servers and clients to
networks and mappings of database tables to servers. The
language also allows the designer to specify the actions
executed by each transaction. A CLISSPE specification
compiles into an analytic queuing network model for the
C/S system allowing for the capacity planning of the
application under development. Service demand parameters
at servers, storage boxes, and networks are derived by the
compiler from the system specification. A detailed model of
DBMS query optimizers allows the compiler to estimate the
number of I/Os and CPU time for SQL statements.

The rest of this paper is organized as follows: Section 2
presents a brief overview of SPE and the elements of the
CLISSPE language. Section 3 discusses the application that
motivated the development of the method presented here
and the design of the CLISSPE language. Section 4 provides
an overview of the method. Sections 5 through 12 provide
details of each step of the method. Section 13 provides the
analytic models used by the CLISSPE compiler to determine
service demands due to database accesses. Section 14
discusses the parameter gathering activity for the project
that motivated this study. A few results of this study are
discussed in Section 15. Section 16 presents a discussion of
our approach and elaborates on future work. Finally, some
concluding remarks are given in Section 17.

2 SPE AND CLISSPE

SPE requires that performance models be built and solved
to predict the performance of the new software system. In
the method described in this paper, we use queuing
network models to predict the performance of software
systems under development. These models require two
types of parameters: workload intensity (e.g., transaction
arrival rates) and service demands at the various resources
including server CPUs, I/O subsystems, LAN segments,
and WANs. While workload intensity parameters can be
usually obtained from the performance requirements of the
software under development, the same is not true for
service demands. Obtaining estimates of service demands
requires a thorough understanding of the applications
business rules as well as the design of the databases used
to support the application. Obtaining this knowledge may
prove to be extremely difficult in practice if software
developers are not willing or do not have the time to help
software performance analysts. This may be one of the
biggest challenges faced by software performance analysts
who need the collaboration of software developers to obtain
input parameters for their models.

In our case, the task of estimating service demands was
accomplished with the CLISSPE language [22]. CLISSPE has
three sections: a declaration section, a mapping section, and
a transaction specification section. The declaration section is
used to declare the following objects: clients and client
types, servers and server types, disks and disk types,
database management systems, database tables, networks
and network types, transactions, remote procedure calls
(RPCs), and numeric constants.

The mapping section is used to allocate clients to
networks, allocate servers to networks, assign transactions
to clients, specify network paths (from clients to servers

going through several networks), and assign database tables
to servers. Finally, the transaction specification section is
used to specify the logic of each of the major transactions.
This specification is oriented towards software performance
engineering. Therefore, loop specifications indicate the
average number of times a loop is executed, branch
statements indicate the probability that a certain path is
followed, and case statements indicate the probability each
option is executed. A complete description of the language
can be found in [23].

Several commercial tools such as SPE.ED, QASE,
SES/workbench, and others can be used for software
performance engineering. Some of these tools are based on
simulation while some use simulation and analytic
models. Most provide a graphical interface for specifying
hardware and software systems. We decided to develop
our own set of tools for the study at hand since 1) we
would have more control over the underlying models
used; for example, the CLISSPE system models DBMS
query optimizers at a considerable level of detail, 2) it
would not require us to go through the learning curve
associated with the adoption of new tools, and 3) we
wanted the software designers to use the CLISSPE
language to specify their use cases. CLISSPE can be used
by both software system designers and performance
engineers. One of the major deterrents for the widespread
use of SPE is that SPE is viewed by many as an activity
separate from software design and development and,
therefore, should be carried out by people with different
skills. With our language-oriented approach, we strove to
bridge the gap between these two camps. In fact, in the
project that prompted this study, all CLISSPE programs
were written by a system designer who is not an expert in
performance.

Significant activity in software performance engineering
has taken place recently. A recent workshop on software
and performance brought together the performance and
software communities and resulted in a very lively
interchange of ideas [40].

3 MOTIVATING APPLICATION

The application that prompted the development of the
method presented in this paper is a Recruitment and
Training System (RTS) of a major US Government agency.
The current system is being downsized from a mainframe-
based system to a C/S environment. Applicants go to
recruitment centers spread all over the country. There,
personnel specialists interview the applicants and try to
match the applicant skills with the agency's desired skills.
Accepted applicants are recruited and are assigned to one
or more training classes where they will acquire the skills
needed for the job.

The current application and databases reside on an aging
mainframe that is expensive to maintain. The current
application has a line-oriented user interface and is difficult
to maintain because many programs are more than 20 years
old and the application is written in many different
programming languages. Also, due to its centralized nature,
the current system does not scale well with the number of
users. The new environment, shown in Fig. 1, is composed

MENASC�E AND GOMAA: A METHOD FOR DESIGN AND PERFORMANCE MODELING OF CLIENT/SERVER SYSTEMS 1067

of several recruitment centers where several client work-
stations are interconnected through a 10-Mbps Ethernet
LAN. Each recruitment center may or may not have a local
application server and a local database server. Recruitment
centers are connected through a Wide Area Network
(WAN) to the headquarters LAN where one or more
application and database servers are located.

The current application is supported mainly by VSAM
files. The new C/S version is based on a database with close
to 200 tables supported by Oracle. Tuxedo is being used as a
Transaction Processing Monitor (TPM).

4 OVERVIEW AND APPROACH

4.1 Overview of UML

Object-oriented concepts are considered important in soft-
ware reuse and evolution because they address funda-
mental issues of adaptation and evolution. Object-oriented
methods are based on the concepts of information hiding,
classes, and inheritance. Information hiding [31], [30] can
lead to more self-contained and, hence, modifiable and
maintainable systems. Inheritance [35] provides an ap-
proach for adapting a class in a systematic way. With the
proliferation of notations and methods for the object-
oriented analysis and design of software systems, the
Unified Modeling Language (UML) is an attempt to provide
a standardized notation for describing object-oriented
models. However, for the UML notation to be effectively
used, it needs to be used in conjunction with an object-
oriented analysis and design method.

The Object Oriented Analysis and Modeling method
used in this project employed a combination of use cases
[15], object modeling [36], statecharts [12], [36], and event
sequence diagrams used by several methods [10], [14], [36].
The notation used is based on the Unified Modeling
Language (UML) [1], [10], [35]. In use case modeling, the
functional requirements of the system are defined in terms
of use cases and actors. Structural modeling provides a
static view of the information aspects of the system. Classes

are defined in terms of their attributes, as well as their

relationship with other classes. Behavioral modeling pro-

vides a dynamic view of the system. The use cases are

refined to show the interaction among the objects partici-

pating in each use case. Object collaboration diagrams and

sequence diagrams are developed to show how objects

collaborate with each other to execute the use case. The state

dependent aspects of the system are defined using

statecharts. In particular, each state dependent object is

defined in terms of its constituent statechart.

4.2 Approach

This section provides an overview of the iterative, inte-

grated, object-oriented method for the design and perfor-

mance analysis of Client/Server systems (see Fig. 2). The

steps of the method are briefly described below, with a

more detailed description given in the ensuing sections:

1. Define Use Case Model. The functional require-
ments of the system are specified in terms of use
cases. A use case [15] is a scenario describing the
interaction between the user (referred to as an actor)
and the system. The use cases are depicted on a use
case diagram.

2. Define Structural Model. The structural model [36]
provides an information modeling perspective on
the system. It defines the classes in the system, the
attributes of each class, the operations of each class,
and how the classes are related to each other. The
classes are depicted on a class diagram.

3. Define Behavioral Model. The use cases are
expanded to describe what objects participate in
each use case and the sequence of object interactions.
The objects participating in each use case are
depicted on an object collaboration diagram.

4. Map Structural model to relational database. The
classes in the structural model are mapped to
relations in a relational database.

1068 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 11, NOVEMBER 2000

Fig. 1. Client/Server configuration for RTS. Fig. 2. Integrated software architectural design and performance

analysis method.

5. Develop the Client/Server Software Architecture.
The C/S software architecture is designed. The goal
is to have a configurable message based design that
allows objects to be mapped to client or server
nodes.

6. Develop the Transaction Specification. The trans-
actions are specified in the CLISSPE language.

7. Define Software/Hardware Mapping. The C/S
software architecture is mapped to a specific system
configuration.

8. Performance Modeling and Assessment. The per-
formance model is based on queuing network
models [27]. A discussion on analytic models of
software systems is outside the scope of this paper.
Several methods such as Layered Queuing Models
[34], the Rendez-vouz method [43], and approxima-
tions to simultaneous resource possession [20], [25]
for Mean Value Analysis [33] can be used. Other
models of C/S systems can be found in [3], [32]. The
outputs of the performance model include response
times and throughputs for each type of request
submitted to the system. An analysis of the results of
the performance model reveals the possible bottle-
necks. If the C/S configuration does not meet the
performance objectives, architectural changes at the
hardware and/or software level have to take place.
These changes, guided by the outputs of the
performance model, may be applied to the C/S
software software architecture, the transaction spe-
cification, the software/hardware mapping, or pos-
sibly even the refined use cases. Successive iterations
ensure that the final design meets the performance
objectives.

5 STEP 1: USE CASE MODELING

The functional requirements of the system are specified in
terms of use cases. A use case is a scenario describing the
interaction between the user (referred to as an actor) and the
system. In the requirements phase, the use case considers
the system as a black box and describes the interactions
between the user and the system in a narrative form
consisting of user inputs and system responses. Use cases
may be structured using the Uses and Extends concepts to
maximize extensibility and reuse. This step follows Jacob-
son's use-case driven approach [14], [15].

Abstract use cases reflect functionality that is common to
more than one use case. Analysis of several use cases can
reveal common parts among these use cases. By separating
out this common functionality into an abstract use case, the
abstract use case and the objects that participate in it, can be
reused by several concrete (executable) use cases.

Consider an example of use cases from the training
system (see Fig. 3).

The actor is the personnel specialist who is the main user
of the training system. There are two types of people who
need to be trained, a new applicant or an existing employee.
For each type of trainee, a concrete use case is developed,
Check New Applicant and Check Existing Employee. Each
concrete use case uses several abstract use cases, allowing
some abstract use cases to be used by both types of user.

Consider the new applicant. The sequence of steps to

process a new applicant is:

. Check New Applicant Qualifications. Check that
the applicant has the minimum qualifications for
acceptance into a training course.

. Check Skills (new applicant and existing
employee). Checks the person's skills and, hence,
determine what new skills he/she is ready to be
trained for.

. Check Training Opportunities (new applicant and
existing employee). Check the availability of train-
ing courses for the skills the applicant is qualified to
pursue.

. Check Incentives. Check incentives available for
qualified new applicants.

. Check Job Location (new applicant and existing
employee). When training is complete, trainee has
choice of locations for available jobs.

. Confirm Training (new applicant and existing
employee). Person selects a training course and
receives a confirmation.

Of the six abstract use cases, two are specific to new

applicants, while four are also used to process existing

employees. The complete specification of the Check Skills

use case is given below:

Use Case: Check Skills

Summary: This use case checks the applicant's (new

applicant or existing employee) skills and, hence,

determines what new skills he/she is ready to be

trained for.

Actors: Personnel Specialist.

Precondition: Applicant's record exists.

Description: Personnel Specialist enters the applicant's

social security number. The system determines the skills

that the applicant possesses. It then determines what

new skills the applicant is allowed to train for by

MENASC�E AND GOMAA: A METHOD FOR DESIGN AND PERFORMANCE MODELING OF CLIENT/SERVER SYSTEMS 1069

Fig. 3. Training system use case diagram.

checking whether the applicant's skills match the
prerequisite skills of the new skill. The system displays
all skills the applicant is qualified to train for.

Alternatives: Applicant does not qualify for training for any
new skills.

Postcondition: List of skills displayed to Personnel
Specialist.

6 STEP 2: STRUCTURAL MODELING

The Structural Model (also known as the Object Model)
addresses the static structural aspects of a problem by
modeling classes in the real world [36]. A Structural Model
describes the static structure of the system being modeled,
which is considered less likely to change then the functions
of the system. The origins of the Structural Model are in
information modeling, in particular entity-relationship
modeling, as used in logical database design.

A Structural Model defines the classes in the system, the
attributes of the classes, the relationships between classes,
and the operations of each class. Three types of relation-
ships are possible: associations, composition/aggregation,
and generalization/specialization.

In the analysis phase, a conceptual structural model is
developed, which concentrates on the entity classes that
will eventually be mapped to a database. Entity classes are
persistent long-lasting classes that store information. An
entity object is typically accessed by many use cases. The
information maintained by an entity object persists over
access by several use cases.

As an example, consider the entity classes of the training
system (see Fig. 4), which shows entity classes, attributes,
associations, and association classes. The Structural Model
shows that an Applicant has one or more Skills.

An association class is a class that models an association
between classes. The association class ApplicantHasSkill
defines the specific Applicant Skill association. A Skill has 1
or more PrerequisiteSkills. Each Skill uses one or more

Courses to train for it. A Course is taught by one or more

Sections. The Applicant Section association is many-many

and, so, an association class Enrollment defines the specific

Section a given Applicant is enrolled in.

7 STEP 3: BEHAVIORAL MODELING

The behavioral model, also referred to as the dynamic

model, shows the dynamic aspects of the system. During

behavioral modeling, the following steps need to be

performed. For each use case developed during use case

modeling, the objects that participate in the use case are

determined as well as the sequence of message interactions

between the objects. State dependent objects are defined

using statecharts, although this feature was not used for this

study. The sequence of object interactions is depicted on an

object collaboration diagram. This form of object-oriented

behavioral modeling is different from user behavioral

modeling used to capture the frequency and characteristics

of user interactions with the system. Examples of the latter

type of models can be found in [13], [24].
Objects are structured using object structuring criteria

and depicted on the object collaboration diagrams using the

UML stereotype notation. In addition to entity objects,

objects may be categorized as interface objects or control

objects. It should be pointed out that the objects modeled

are application-level objects. Thus, a user interface object is

modeled as one object even though it may be an aggregate

object that contains several lower-level GUI objects.
For the training reservation system, an object collabora-

tion diagram (OCD) is developed for each use case. Two

object collaboration diagrams are shown for the Check

Skills and Check Training Opportunities use cases. In the

OCD for the Check Skills use case (see Fig. 5), there is a user

interface object, which is the interface to the actor, the

Personnel Specialist. The entity objects are instances of the

classes depicted on the class diagram. There is a coordinator

object at the server, the Skills Qualification Manager, which

1070 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 11, NOVEMBER 2000

Fig. 4. Structural model for training system. Fig. 5. Object collaboration diagram for check skills use case.

is the overall decision maker that provides the sequencing
for the other objects participating in the use case.

Each object collaboration diagram has an associated
message sequence description, which describes the se-
quence of messages. The message sequence description is a
refinement of the black box description given in Section 5.
For the Check Skills object collaboration diagram (see Fig. 5),
the message sequence description is given next:

S1: Personnel Specialist enters the applicant's social security
number and requests to check the applicant's skills.

S2: The Skills Qualification Manager receives the client
request and uses the social security number to retrieve
the applicant's data.

S3, S4: The Entity Applicant receives a Query request from
the Skills Qualification Manager and responds by
returning the applicant data.

S5, S6: The Skills Qualification Manager queries the
Applicant Has Skill association object to determine the
applicant's skills.

S7, S8: The Skills Qualification Manager queries the Skill
Prerequisite object to determine what new skills the
applicant is allowed to train for, by checking whether the
applicant's skills match the prerequisite skills of the new
skill.

S9: The Skills Qualification Manager returns a list of skills
that the applicant is qualified to train for.

S10: The Personnel Specialist Interface object displays all
skills the applicant is qualified to train for.
An object collaboration diagram for a subsequent use

case, Check Training Opportunities, is given in Fig 6.

8 STEP 4: RELATIONAL DB DESIGN

As an Oracle relational database is to be used for the RTS
system, the classes in the structural model are mapped to
relations in a relational database. In particular, each class is

mapped to a relation. Associations are mapped to either
foreign keys or association relations. Additional relations
may be needed if the classes are not normalized. For more
information on mapping classes to relations, refer to [36].

For the classes depicted in Fig. 4, the relations are as
follows, where an underlined attribute is a primary key:

Applicant (SSN, Name, StreetAddress, City, Zip, Phone,
EducationLevel)
Skill (SkillCode, SkillName, SkillDescription, SkillMinVal,
SkillMaxVal)
SkillPrerequisite (SkillCode, PrereqSkillCode)
Course (CourseNum, CourseName, NumHours, Descrip-
tion)
Section (CourseNum, SectionNum, StartDate, DayTime,
Location, NumSeats, MaxCap)
ApplicantHasSkill (SSN, SkillCode, SkillValue)
CourseDevelopsSkill (CourseNum, SkillCode)
Enrollment (CourseNum, SectionNum, SSN)

The database relations, the existence of indices and their

types, as well as information about column cardinality and

selectivity is given in the CLISSPE specification of the C/S

system. The specification in CLISSPE of tables Applicant

and Enrollment is given below.

! declaration of database table Applicant

table Applicant num_rows= 1000000 row_size=

120 dbms=Oracle

columns= (SSN, Name, StreetAddress,

City/200, Zip/99999, Phone,

EducationLevel/10)

index= (key= (SSN) key_size= 9 btree

clustered)

index= (key= (city) key_size= 20 btree)

index= (key= (zip) key_size= 5 btree);

! declaration of database table Enrollment

table Enrollment num_rows= 400000 row_size=

20 dbms= Oracle

columns= (CourseNum/1000,

SectionNum/10,SSN)

index= (key= (coursenum, SectionNum, SSN)

key_size= 18 btree clustered);

A table declaration specifies the average number of rows,
the row size in bytes, the DBMS used to access the table, the
DB table columns, and the indexes if any. Only columns
referenced in a CLISSPE program need to be declared in a
table declaration statement. The columns= parameter is
used to provide the list of columns of the table. After each
column name, an optional number following a / provides
the column cardinality defined as the number of different
values for the column present in the table. If the column
cardinality is not provided, it is assumed to be equal to the
number of rows in the table. The selectivity factor of a
column is computed as the inverse of the cardinality,
assuming that all values of each column are uniformly
distributed. For example, in table Applicant, there are
200 different values in the column City in the table's
1,000,000 rows. Zero or more indexes may be declared for
each table. An index key may be composed of the

MENASC�E AND GOMAA: A METHOD FOR DESIGN AND PERFORMANCE MODELING OF CLIENT/SERVER SYSTEMS 1071

Fig. 6. Object Collaboration Diagram for Check Training Opportunities

Use Case.

concatenation of one or more columns. The key size in bytes
is given by the parameter key_size=. The type of index,
hash or btree, has to be specified. The optional keyword
clustered indicates whether a b-tree index is clustered or not.
At most one clustered index may be declared per table. See
[29] for a good discussion on basic database concepts and
query optimization.

9 STEP 5: C/S SOFTWARE ARCHITECTURE

MAPPING SPECIFICATION

The client/server software architecture is designed. The

goal is to have a configurable message-based design that

allows objects to be mapped to client or server nodes. This

approach provides the flexibility of mapping the software

architecture to different C/S configurations including two-

tier or three-tier C/S configurations. In the two-tier

configuration, user interface and application functionality

is provided on the client nodes and the server node is a

database server. In the three-tier configuration, the client

nodes have the user interface functionality, while the

application functionality is supported on an application

server. The third tier is a database server, which can be

configured to be on the same node as the application server

or on a separate node. Furthermore, the database server

may be configured to reside on one node or be distributed

among multiple nodes. This flexible software architecture

provides a framework for experimenting with different

client/server system configurations, which can then be

analyzed from a performance perspective.
For the objects depicted in Figs. 5 and 6, in a two-tier

client/server configuration, all the objects would reside at

the client and the server is the database server. In a three-tier

client/server configuration, the user interface objects reside

at the client node while the coordinator and entity objects

reside at the application server node. The third tier is the

database server node. The actual mapping from the

client/server software architecture to a specific system

configuration is done in the Software/Hardware Mapping

step.

10 STEP 6: TRANSACTION SPECIFICATION

The transaction business logic is specified in the CLISSPE
language. The logic for the transaction is derived from the
sequence of interactions depicted on the object collaboration
diagram for a given use case and described in the message
sequence description. The transaction references the rela-
tions defined in Step 4 of the method. The transaction has a
client part and a server part to it as given by the Client/
Server Software Architecture Mapping.

The client part of the transaction corresponds to the user
interface object shown on the object collaboration diagram.
The server part of the transaction corresponds to the other
objects, namely the control and entity objects.

An example of the transaction specification for the Check
Skills transaction is given next, which determines the skills
that the applicant is qualified to train for. First is the

specification for the client, which issues a remote procedure
call to the application server.

transaction CheckSkills running_on client

! Actor enters applicant SSN

! check applicant skills

rpc check_skills to_server ApplicServer;

! Display skills applicant is qualified to

train for

end_transaction;

The application server follows the sequence of steps
described in the object collaboration diagram for Check
Skills (see Fig. 5). First the applicant relation is accessed and
then a join is performed on the ApplicantHasSkill and
SkillPrequisites relations. The value of the constant
#ProbabilityApplicantWithMinSkills gives the probability
that this branch is taken.

transaction CheckSkills running_on

server ApplicServer

! retrieve applicant's data

select from Applicant where SSN;

! if applicant exists check applicant skills

if #ProbabilityApplicantWithMinSkills

then! find all skills applicant qualifies

! to train for

selectfrom ApplicantHasSkill

where SSN

from SkillPrequisites

where PrereqSkillCode

joined_by

ApplicantHasSkill.SkillCode =

SkillPrequisites.

PrereqSkillCode;

end_if;

! Return skills applicant is qualified to train

for

end_transaction; ! CheckSkills

A second transaction is the CheckTraining, which also
has client and server modules. This transaction is executed
after the Check Skills.

transaction CheckTraining running_on client

! check training opportunities

! Actor enters skills applicant qualified

! to train for

rpc check_training to_server ApplicServer;

end_transaction;

The server loops for each skill and for the average
number of courses per skill, then determines the courses
required for this skill, loops on the average number of
sections that must be checked for the course before a course
is found. This corresponds to the OCD in Fig. 6.

transaction CheckTraining running_on

server ApplicServer

! Loop for training opportunities

loop #average_skill_count

!Determine courses required for this skill

loop #average_num_courses

1072 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 11, NOVEMBER 2000

select from CourseDevelopsSkill

where SkillCode;

! Check sections for this course

select from Section where CourseNum;

loop #avg_sections_count

! Check if section is available

end_loop;

if #ProbSectionAvailable

then !add to list of available opportunities

end_if;

end_loop;

end_loop;

end_transaction; ! CheckTraining;

The transactions shown above contain examples of

constants (e.g., #average_skill_count). Constants in

CLISSPE start with a ª#º character and are defined in the

declaration section.

11 STEP 7: SOFTWARE HARDWARE MAPPING

Given the desired client/server system configuration

scenarios, the client/server software architecture is mapped

to a specific system configuration that assigns software

components to physical elements such as processors and

network segments. The components of the system archi-

tecture are assigned performance characteristics (e.g., net-

work segment speeds, router latencies, I/O subsystem

bandwidth, processor speeds).
A few examples of how this type of mapping is specified

in CLISSPE are given in what follows: In the declaration

section of a CLISSPE C/S system specification, elements

such as servers, client groups, database management

systems, database tables, networks, and transaction types

are declared. In the mapping section of the language, these

elements are mapped to one another. For example, servers

and client groups are mapped to networks, database tables

are mapped to servers and disks within the servers, and

database tables are assigned to database management

systems.
Consider an example of a database server declaration and

its mapping to a network. The example shows that server

DBServer is declared as being of type IBM-RS-6000-M43P133

(this type has to be previously declared). The declaration of

the DB Server indicates that Oracle is the DBMS running on

it with a buffer size of 8,192 KBytes and configured to run on

two CPUs and two disks. A network type HQType is

defined as being a 100-Mbps Fast Ethernet. The Head-

quarters LAN, HQLan, is declared as being of this type.

! this goes in the declaration section

server DBServer type= IBM-RS-6000-M43P133

dbms= Oracle DB_BuffSize= 8192 num_CPUs= 2

disk dsk01 type= ServerDisk

disk dsk02 type= ServerDisk;

network_type HQType bandwidth= 100

type= Fast_Ethernet;

network HQLan type= HQType;

In the mapping section, the server DBserver is mapped

to the network HQLan and table Applicant to the server

DBServer. Sixty percent of the table Applicant is declared as

being stored on disk one at that server and the remaining

40 percent at disk two.

! this goes in the mapping section

server DBServer is_in network HQLan;

table Applicant is_in server DBServer

(dsk01: 0.6, dsk02: 0.4);

12 STEP 8-A: PERFORMANCE MODELING

The performance modeling step of the method is accom-

plished with the help of the CLISSPE system (see Fig. 7),

which is composed of a CLISSPE compiler and a Perfor-

mance Model Solver.
The CLISSPE compiler generates a multiclass open

queuing network (QN) model [27] that corresponds to the
specification given in CLISSPE. The QN model can be
formally described as Q � �R;W; ~�;D�whereR is the set of
resources in the QN model that correspond to the various
elements of the C/S system (e.g., processors, LAN seg-
ments, WANs, storage boxes), W is the set of workload
classes, ~� � ��1; � � � ; �j W j� is the vector of arrival rates of
transactions for each class, and D � �Di;r� is a j R j � j W j
matrix of service demands. The service demand Di;r for
workload class r at resource i is defined as the average total
service time spent by transactions of class r at resource i.

This does not include any queuing time. Queuing is

computed by the Performance Model Solver, which uses

well-known techniques for solving open multiclass

QN models with load dependent resources [27].
The next section describes how the service demands in

the matrix D are computed.

12.1 Computation of Service Demands

A statement s in the specification of a transaction associated

with class r in CLISSPE may contribute to the service

MENASC�E AND GOMAA: A METHOD FOR DESIGN AND PERFORMANCE MODELING OF CLIENT/SERVER SYSTEMS 1073

Fig 7. The CLISSPE system.

demand of various resources. For example, a select

statement includes CPU demands at the DB server, at the

storage box of the database server and at the various

networks that connect the application server that issues the

select statement and the database server. In general, we

can write that

Di;r �
X
s2Si;r

ns � ps �Ds
i;r; �1�

where

. Si;r is the set of all statements that contribute to the
service demand of transactions of class r at
resource i,

. ns is the average number of times that statement s is
executed,

. ps is the probability that statement s is executed, and

. Ds
i;r is the average service demand at resource i for

class r due a single execution of statement s.

Let us first describe how ns and ps are obtained. If a

statement s is not within any loop statement, then ns � 1.

The value of ns can be modified by the loop statement in

CLISSPE. This statement has the form loop < number >

< statement1 >; . . . ; < statementm >; end loop; w h e r e

<number> is the average number of times that the sequence

of m�m � 1� statements is executed. If a loop statement is

not nested within any other loop statement, then ns =

number for all statements s in the sequence of statements

within the loop. In general,

ns �
YKs

j�1

NLoopj; �2�

where Ks is the number of nested loops in which statement

s is part of and NLoopj is the average number of times loop

j is executed.
The probability ps that a statement s is executed can be

modified by three CLISSPE statements: the if-then, the
if-then-else, and the switch statements. The if then
statement is of the form if < prob > then < statement1 >

; . . . ;< statementm >; end if; ; where <prob> is a number
in the range �0; 1� that indicates the probability the
statements in the then clause are executed. If the if-then
statement is the outermost statement in the transaction,
then ps = <prob> for all statements s in the then

clause. In general, the probability ps that a statement s
in a then clause is executed can be written as
ps � < prob >� pifÿthen, where pifÿthen is the probability
that the if-then statement is executed.

The if-then-else statement is of the form

if <prob> then

< statementt1 >; :::; < statementtm > ;

else < statemente1 >; :::;< statementen > ;

end_if;.

The probability ps that a statement s in the then clause is
executed can be written as ps �< prob > � pifÿthenÿelse,
where pifÿthenÿelse is the probability that the if-then-

else statement is executed. The probability ps that a

statement s in the else clause is executed can be written as
ps � �1ÿ < prob >� � pifÿthenÿelse.

The switch statement is of the form

switch

case <prob1>:

<statement11>; ...; <statement1m>;

...;

case <probk>:

<statementk1>; ...; <statementkn>;

end_switch;}

where
Pk

j�1 probj � 1. Then, the probability that a state-
ment s in the jth case clause is executed is given by
probj � pswitch, where pswitch is the probability that the
switch statement is executed.

One of the major challenges in estimating the service
demands Ds

i;r, is when s is a database statement such as
select. The next section describes in detail the models
used by the CLISSPE compiler to estimate the number of
I/Os and the disk time and CPU times associated with
each database access.

13 STEP 8-B: DB MODELING

This section discusses how the CLISSPE compiler com-
putes the estimated CPU and I/O costs associated with
select statements. The performance of a database select
statement is a function of the number of I/Os generated
by the statement. The number of I/Os is a function of the
access plan (e.g., nested loop join, merge join, hybrid join)
chosen by the query optimizer of the DBMS to perform
the select, of the existence of indexes and type of access
method (e.g., b-tree, hashing) used in each table, the buffer
size and buffer management policies (e.g., LRU), and of
parameters such as page sizes, data and index page fill
factors, and others. For relevant previous work on access
plans, join processing, and query optimization see [2], [5],
[29], [37], [38], [42], [44], [45]. Some of these papers describe
the operation of access plans and others concentrate on
estimating the resulting size of joins between relations, for
various types of joins. We build on existing work and
present an integrated view that is aimed at computing the
total cost, including access to indices, of a given database
access.

13.1 Indexing

An index on a database table T is a table with two columns.
Each row is of the form (IndexKey, RowPointer), where an
IndexKey is either a value found in one or more rows of T
for a single column, or a concatenation of column values in
a specified order. A RowPointer (called rowid in Oracle, rid
in DB2, and tid in Ingres) uniquely identifies a row in T .
Rows are stored in specific slots within database pages.
Pages are stored within operating system files (more about
page formats will be given later).

All commercial DBMSs support indexes based on b-trees.
Some, like ORACLE [3], support other methods such as
hash clusters and index sequential access methods (isam).

Indexes may be clustered or unclustered. A clustered
index is one in which the rows are referenced in the index in
the same order as they are stored in the database. Only one

1074 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 11, NOVEMBER 2000

index may be clustered for each table. Thus, when rows
with a common index key value are clustered together and
one reads in the data page from disk containing one of the
rows with a given key value, other rows with the same key
value are likely to lie on the same data page. The CLISSPE
compiler assumes that if the index is nonclustered, rows
with the same key value require one I/O each, while for
clustered indexes, the number of I/Os is roughly equal to
the number of rows to be read divided by the number of
rows per page.

13.1.1 B-Tree Index

The format of a page of a b-tree index is [Header,
(KeyValue1;RowPointer1�; � � � ; �KeyValuek;RowPointerk�,
FreeSpace]. The height of a b-tree with fanout k and L
entries is given by

h � dlogk Le: �3�
The fanout kI for a b-tree index I can be computed as

kI � �P ÿ hi� � fi
ksI � rp

� �
; �4�

where

. P : size in bytes of an index page (the same as the size
of a data page).

. hi: size in bytes of the header field of an index page.

. fi: percentage of the useful space of an index page
that can be used to store keys and row pointers. In
an active b-tree, this value can be shown to be
71 percent on the average for nodes below the
root [29].

. ksI : size in bytes of a key for index I.

. rp: size in bytes of a row pointer.

In most cases of practical interest, the height of the b-tree
will be at most three. The root of the tree will always be in
memory. Depending on the number of indexes and buffer
size, it is quite likely that all level-two blocks will also be in
main memory. So, the number of I/Os to access a b-tree
index will be one in most cases.

Consider the function g�T; I�, shown in Fig. 8, that
returns the number of I/Os needed to reach a leaf node for a
b-tree structured index I on table T . The term NRowsT
represents the number of rows of table T .

13.1.2 Hash Index

In this case, rows are stored at a location pointed by a row
pointer determined by applying a hash function to the
index key. Hash primary indexes are available in INGRES
and ORACLE version 7. The average number of accesses to
a hash index for table T, nhT , is given by

nhT � 1

1ÿ �fd�nrpT ; �5�

where

. nrpT : number of rows of table T that fit in a database
page. This is computed in Subsection 13.2 and

. fd: percentage of the useful space of a page that can
be used to store rows and row directory entries.

The above result assumes that rehashing is done on the
same page. Only when the data page is full, rehashing is
done on another page. The derivation of (5) is beyond the
scope of this paper, but it is based on deriving the
probability distribution of the number of hash misses and
then computing the expected value of this distribution [29].

13.2 Data Pages

The format of a data page may vary slightly from DBMS to
DBMS. We assume the following format as an adequate
abstraction of a page layout: [Header, RowDirectory,
FreeSpace, RowN; � � � ;Row1].

The row directory is a table with as many entries as the
number of rows in the page. An entry in this directory
contains the byte offset of the row within the page. The slot
number of a row in a page is the number of its entry in the
row directory. To allow for row size expansion, the space on
a data page is not fully used. A fill factor, fd, is assumed that
indicates the percentage of the page's useful space used to
store rows. Thus, the number nrpT of rows in a page
containing rows for table T can be computed as

nrpT � �P ÿ hd� � fd
�rsT � rd�

� �
; �6�

where

. P : size in bytes of a data page,

. hd: size in bytes of the header field,

. rsT : size in bytes of a row of table T , and

. rd: size in bytes of an entry in the row directory.

Equation 6 assumes that a data page only stores rows of a
single table. The number of data pages, ndT , needed to store
all pages of table T is then given by

ndT � NRowsT
nrpT

� �
: �7�

13.3 Access Plans

In estimating the cost of an access plan, we assume that the
CPU cost is a linear function of the number of I/Os
generated by the access plan. Thus,

CCPU�AcessPlan� � a�NI=O�AccessPlan� � b; �8�
where NI=O�AccessPlan� is the number of I/Os incurred by
the access plan and a and b are constants to be determined

MENASC�E AND GOMAA: A METHOD FOR DESIGN AND PERFORMANCE MODELING OF CLIENT/SERVER SYSTEMS 1075

Fig. 8. Function g.

by benchmarking the database on a specific environment.

The constant b stands for a startup CPU cost and the

constant a represents the CPU cost per I/O.
The following types of access plans are considered in the

following subsections.

. Table space scan.

. Index scans:

- single table single index,
- single table multiple indexes,
- two table joins (nested loop, merge, and hybrid

joins), and
- more than two table joins.

13.3.1 Table Space Scan (TS)

The simplest access plan is a table scan (TS) which is a scan

of all rows of a table. This is the preferred method when the

number of data pages needed to store all rows of the table is

relatively small. In this case, the query optimizer ignores all

existing indexes and scans all the rows checking if they

match the specified predicates in the select statement. It is

also the only possible method when there are no indexes.
The number of I/Os, NI=O�TS�, for a table scan of table T

is given by the number of data pages needed to store the

table. Thus,

NIO�TS� � ndT � NRowsT
nrpT

� �
: �9�

The I/O cost CI=O, measured in time units for a table scan

on table T is given by

CT
I=O�TS� �

NRowsT
nrpT

� �
ÿ 1�

� �
� Sseq

IO � Srand
IO ; �10�

where

. Sseq
IO : time needed to do a sequential I/O. No seek is

needed and the rotational delay is assumed to be one
full rotation time. See [21] for a discussion of
computation of service times on magnetic disks.

. Srand
IO : time needed for a random I/O. It is the sum of

a seek time plus half of a rotation time plus the
transfer time.

DB2 is able to do sequential prefetch at a rate of 32 page

reads in sequence saving the rotational delay between

successive reads [29]. DB2 also implements list-prefetch,

where 32, nonnecessarily consecutive, data pages are

provided to the disk controller that will optimize access.

The following rule-of-thumb is used by the CLISSPE

compiler to establish a relationship between random

(Srand
IO), sequential-prefetch (Ssp

IO), and list-prefetch (Slp
IO)

disk service times per I/O.

Srand
IO � 10� Ssp

IO � 2:5� Slp
IO: �11�

So, for DB2, the formula for the cost of a table scan access

plan on table T is

CT
IO�TS� �

NRowsT
nrpT

� �
ÿ 1�

� �
� Ssp

IO � Srand
IO : �12�

The CLISSPE compiler assumes that random I/O is always

executed if three or fewer pages are read.

13.3.2 Indexed Scans

This section considers the cost of executing a select

statement when one or more indexes are available. The

discussion starts with the simplest case of a single table

select and then considers multiple table cases.

Single Table Select with a Single Matching Index (STSI).

Consider a select statement on table T with predicates on

columns C1; � � � ; Cm as given below

select from T where C1; � � � ; Cm;

with a single matching index defined as an index where the

indexing key is the concatenation of keys C1; � � � ; Ck for

1 � k � m. The number of rows filtered by the index, nrsT ,

is computed as

nrsT � NRowsT
Yk
i�1

s�Ci�; �13�

where s�C1�; � � � ; s�Ck� are the selectivity factors for columns

C1; � � � ; Ck. The selectivity factor for a given column is the

fraction of the total number of rows selected by the

predicate.
The access plan consists in following the B-tree index for

the concatenated key �C1; � � � ; Ck� using the proper key

values for the predicates in C1; � � � ; Ck until the leftmost leaf

with such a value is found. Then, the leaves of the b-tree are

traversed in sequence, following the leaf pointers, while

there are entries with the same key value. For each such

entry, the row pointed out by the row pointer is retrieved.

To compute the number of I/Os involved in executing such

select statement, the following definitions are in order:

. Iag: index on the aggregate key �C1; � � � ; Ck�.

. Function NLeaves (NKeys, I) that computes the
number of leaf nodes traversed to scan NKeys
consecutive keys in index I:

NLeaves�Nkeys; I� � Nkeys=kId e: �14�

So, the number of I/Os is given by the sum of:

. The number of I/Os needed to go from the root of
the B-tree down to the leaf page with the leftmost
entry for the appropriate key in the B-tree. This is
given by g�T; Iag�.

. The number of additional leaf nodes to be traversed
in the B-tree. To compute this, we assume that, on
the average, the first key of interest is in the middle
of the first leaf node found when descending from
the root to the leaves. The total number of entries in
leaf nodes with the required key value is equal to the
number, nrsT , of rows of table T that satisfy the
select statement. Of these entries, kIag

=2 entries are in
the first leaf and the remaining nrsT ÿ kIag

=2 are in
additional leaf nodes. Thus, the total number of
additional leaf nodes that contain relevant entries is
NLeaves �nrsT ÿ kIag

=2; Iag�.

1076 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 11, NOVEMBER 2000

. The number of data pages to be read. If the index is
not clustered, we assume that the number of data
pages is equal to the number of rows pointed by the
index for the given key value. If the index is
clustered, the number of data pages read is
dnrsT=nrpT e.

Then, the number NIO�STSI� of I/Os for a STSI access
plan can be written as

g�T; Iag� �NLeaves�nrsT ÿ kIag
=2; Iag� � nrsT �15�

for nonclustered indexes and as

g�T; Iag� �NLeaves�nrsT ÿ kIag
=2; Iag� � dnrsT=nrpT e �16�

for clustered indexes.
So, the cost CIO�STSI� of the single table select with

a single selectable index is given by CIO�STSI� �
gstsi�T; Iag; nrsT � where the function gstsi is given in
Fig. 9.

Single Table Select with Multiple Index Access (STMI). With
Multiple Index Access, the query optimizer of the DBMS
extracts a list of row pointers from each index. Then, these
lists are intersected (for AND predicates) and/or unioned
(for OR predicates). The resulting list corresponds to the list
of rows that should be retrieved. The row pointers from
each index are stored in main memory into a candidate list
that is sorted for later sort-merge with the other lists. Since
the row pointer lists are processed in memory, there is no
I/O cost associated with merging these lists. Since, row
pointers to data pages are available in sorted order before
the access is made, list prefetch is assumed when retrieving
the data pages resulting from the final list.

The purpose of each index is to decrease the number of
data pages to be retrieved. Indexes with a very large
selectivity factor are not very useful and are avoided by the
query optimizer. The query optimizer orders the indexes in
increasing order of selectivity factors. Indexes are used from
the beginning of the list to the end until the number of row
pointers in the list is less than the number of rows that
would be selected by the next index. For example, consider
a table with 10,000,000 rows, and four indexes I1, I2, I3, and
I4 with selectivity factors of 0.0001, 0.01, 0.02, and 0.5. The
first index generates a row pointer list of 1,000 elements.
The second index generates a list with 100,000 elements.
The list generated by the third index has 200,000 elements,
and finally the list generated by the fourth index has
5,000,000 elements. The intersection of the first two lists will
generate a list with 1,000 x 0.01 = 10 elements. At this point,

it is clearly more advantageous to read in the 10 rows and
screen them for the two remaining predicates than to scan
200,000 and 5,000,000 entries of index.

Consider the select statement

select from T where C1; � � � ; Ck; � � � ; Cm;

where C1; � � � ; Ck have indexes with selectivity factors of
s�C1�; � � � ; s�Ck�, respectively. We assume, without loss of
generality, that s�C1� < s�C2� < � � � < s�Ck�. Let L1; � � � ; Lk
denote the length of the row pointer lists generated by the
indexes on C1; � � � ; Ck, respectively. Thus,

Li � s�Ci� �NRowsT

for i � 1; � � � ; k.
The I/O cost for a STMI access plan is then given by

CT
IO�STMI� � gstmi�T � where the function gstmi, shown in

Fig. 10, computes the IO cost for a select statement with a
single table and multiple indexes.

The number of I/Os, NIO�STMI�, generated by a select
executed using STMI is given by the function nstmi given in
Fig. 11.

Multiple Table (Join) Select Statements. We consider first
two table selects before we discuss multiple table ones. A
join involving tables T1 and T2 is written in CLISSPE as

select from where C1
1 ; � � � ; C1

m

from where C2
1 ; � � � ; C2

n

joined_by T1:C
1
j � T2:C

2
k ;

where C1
j and C2

k are the joining columns and are not part of
the predicate lists C1

1 ; � � � ; C1
m and C2

1 ; � � � ; C2
n, respectively.

This section considers nested loop join, merge scan join,
and hybrid join access plans.

Nested Loop Joins. One of the two tables being joined is
called the outer table, the one from where rows are
retrieved first and the second is called the inner table. For

MENASC�E AND GOMAA: A METHOD FOR DESIGN AND PERFORMANCE MODELING OF CLIENT/SERVER SYSTEMS 1077

Fig. 9. Function gstsi.

Fig. 10. Function gstmi.

each qualified row in the outer table, all qualified and

joined rows of the inner table are retrieved. For now, let T1

be the outer table and T2 be the inner table. We discuss later,

in more detail, how the query optimizer decides which table

should be the outer table. The general procedure for

executing a join using the nest loop join method is:

1. If there are any indexes for C1
1 ; � � � ; C1

m, then use an
index-based access plan to determine a list L of row
pointers for all rows in T1 that satisfy the indexable
predicates. If there are no indexes, then the list L is
null.

2. All rows in L are retrieved and checked to see if they
qualify for remaining predicates in C1

1 ; � � � ; C1
m not

considered by the index. The retrieval of rows in this
case can be made using list prefetch since the row
pointers are known in advance. If the list L is null,
then a table scan is performed on T1 to determine all
rows that qualify for C1

1 ; � � � ; C1
m. Let the set of rows

of T1 obtained by this step be called the q-outer table
(for qualified outer table) denoted by Tq1 .

3. For each row in Tq1 find all rows in T2 that have a
value in the joining column C2

k matching the value in
the joining column of T1, C1

j . If T2 has an index for
C2
k , then an indexed access method can be used to

retrieve the rows in T2 with a fixed value for C2
k . If

there is no index in T2 for C2
k , then all rows of T2

have to be retrieved and checked to see if they
qualify for the joining column as well as for any
other predicates in C2

1 ; � � � ; C2
n.

Then, the total cost of a nested loop join with two tables

can be written as

CIO�NestedLoop� � CIO�T1��
NumberQualRowsT1 � CIO�T2�:

�17�

The number of rows NumberQualRowsT1 of T1 that are

qualified according to the predicates C1
1 ; � � � ; C1

m is given by

NumberQualRowsT1 � NRowsT1
�
Ym
i�1

s�C1
i �: �18�

Thus, we can write that

CIO�NestedLoop� � CIO�T1��

NRowsT1
�
Ym
i�1

s�C1
i �

 !
� CIO�T2�:

�19�
The costs CIO�T1� and CIO�T2� are computed as a basis of

the access plan used by the query optimizer to retrieve rows

of T1 and T2. These decisions are explained in what follows.
A nested loop join is more efficient if the joining column

for the inner table has an index on it and a small number of

rows from the outer table qualify for the join. The decisions

made by the query optimizer are summarized in Table 1.

The first two columns indicate whether or not there is an

index on the joining column for tables T1 and T2. The third

and fourth columns indicate whether there is an index on a

column other than the joining column. The fifth column

indicates the table that is selected as the outer table. Finally,

the last two columns indicate the access plans used to

retrieve rows from tables T1 and T2. The following notation

was used in Table 1:

. max j T j : table with the largest number of rows,

. Xo: single table select with a matching index on a
column other than the joining column,

. Xj: single table select with a matching index on the
joining column,

. min Xo: table with the smallest number of rows
selected through index Xo,

. min Xj: table with the smallest number of rows
selected through index Xj, and

. TS: table scan.

1078 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 11, NOVEMBER 2000

Fig. 11. Function nstmi.

TABLE 1
Query Optimizer Decision for Nested Loop Joins

If the inner table is small enough so that its index and

data pages fit into the buffer after the first time they are

referenced, then, the IO cost becomes zero when these

pages are retrieved after the first time.
Merge Join (MJ). Also known as merge scan join or sort

merge join, merge join scans tables T1 and T2 only once in

the order of their join columns. The general strategy for a

merge join can be summarized as follows:

1. Execute a select statement of the form select from

T1 where C
1
1 ; � � � ; C1

m and retrieve the resulting rows
sorted by the joining column C1

j into a temporary
table denoted by Tt1 . The number of rows, NRowsT t

1
,

of this temporary table is computed as

NRowsT t
1
� nrsT1

� NRowsT1
�
Ym
i�1

s�C1
i �: �20�

2. Execute a select statement of the form select from

T2 where C
2
1 ; � � � ; C2

n and retrieve the resulting rows
sorted by the joining column C2

k into a temporary
table denoted by Tt2 . The number of rows, NRowsT t

2
,

of this temporary table is computed as

NRowsT t
2
� nrsT2

� NRowsT2
�
Yn
i�1

s�C2
i �: �21�

3. Scan tables Tt1 and Tt2 once using a merge procedure
to find the rows in each table that have matching
joining column values. If the number of rows
NRowsT t

1
and NRowsTt

2
in tables Tt1 and Tt2 is small,

then the merge step is performed in memory and
there is no I/O cost associated. Otherwise, these
rows have to be read from disk. Random read is
assumed in this case.

Let us define the function

InMem�Bytes;BufferSize� � 1 Bytes � BufferSize
0 Bytes > BufferSize

�
�22�

to help in indicating which of the temporary tables are

stored in buffers for use in the merge step.
The total I/O cost CIO�MJ� of a merge join can then be

written as,

CIO�MJ� � CIO�select1� � CIO�select2� � CIO�sort1� �
CIO�sort2� � CIO�merge�;

�23�
where the cost of the selects on tables T1 and T2 depends on

the existence of indexes on the predicates indicated in the

select statement. These costs were already computed in the

previous subsections.
The merge cost CIO�merge� is computed as follows. Let

LTi�i � 1; 2� be the size in bytes of the temporary table Tti
computed as nrsTti � rsTi. Then,

CIO�merge� �Srand
IO ��1ÿ InMem�LT1; BS�� � LT1�
�1ÿ InMem�LT1 � LT2; BS�� � LT2�;

�24�

where BS is the buffer size, in bytes, of the DBMS. The
expression above assumes that the first temporary table has
priority over the second table in using the buffer.

The number of I/Os for executing a disk sort using
an M-way sort algorithm on D data pages is given by
2�D� dlogM De (see [29]). So, the sort cost of steps 1
and 2 are computed as follows: The number of data
pages D1 in temporary table Tt1 is

D1 �
NRowsTt

1

nrpT1

� �
: �25�

Let SB be the size in bytes of the buffer area used by the
DBMS for performing sorts and other auxiliary functions.
Then, to execute an M-way sort, we need M+1 pages in the
buffer. With a sort buffer of SB bytes, one can store bSB=Pc
pages. So, M � bSB=Pc ÿ 1. Finally,

CIO�sort1� � 2�D1 � dlogM D1e � Srand
IO : �26�

Using similar arguments we have that

D2 �
NRowsT t

2

nrpT2

� �
�27�

and

CIO�sort2� � 2�D2 � dlogM D2e � Srand
IO : �28�

Hybrid Join (HJ). This type of join is executed as follows:

1. As in merge join, execute a select statement of the
form select from T1 where C1

1 ; � � � ; C1
m and

retrieve the resulting rows sorted by the joining
column C1

j into a temporary table denoted by Tt1 . The
number of rows, NRowsT t

1
, of this temporary table is

given by (20).
2. Scan the temporary table Tt1 , in joining column order.

For each value of the joining column, perform an
index lookup in table T2 and retrieve the row
pointers for the rows in T2 that satisfy this lookup.
Let I2 be the index on table T2 for the joining column
C2
k . Another temporary table, Tt2 , is built containing

rows with the columns of Tt1 plus an additional
column for the row pointer of the qualifying table T2

rows. The number of rows, NRowsT t
2
, in table Tt2 is

given by NRowsTt
1
� s�C2

k� �NRows�T2�. The cost,
CIO�rid�, of retrieving the row pointers in this step is
given by (29). The term in square brackets indicates
the I/O cost incurred to do an index lookup for each
value of the joining column in the outer temporary
table. The number of rows in the temporary outer
table if one eliminates duplicate values in the joining
column is obtained by applying the selectivity factor
of the joining column to the outer temporary table.

CIO�rid� ��g�T2; IC2
k
� � Srand

IO �
�NLeaves�s�C2

k� �NRowsT2
; IC2

k
� ÿ 1��

Sseq
IO ��

NRowsTt
1
� s�C1

j �:
�29�

MENASC�E AND GOMAA: A METHOD FOR DESIGN AND PERFORMANCE MODELING OF CLIENT/SERVER SYSTEMS 1079

Following the same arguments presented in the Merge

Join section, the cost of performing step 1 for a hybrid join is

given by CIO�select1� � CIO�sort1�.
So, the cost CIO�HJ� of a hybrid join is given by

CIO�HJ� � CIO�select1� � CIO�sort1� � CIO�rid�: �30�
More than Two Table Joins. When more than two tables are

joined, the query optimizer has to decide the order in which

joins are performed. Given a specific order, tables are joined

pairwise, using the methods described in the previous

subsections, and the temporary table generated is joined

with the other tables. For example, in the three-table join

below, tables T1, T2, and T3 are joined. The query optimizer

may decide to join T1 and T2 to generate a temporary table

Tt which is then joined to T3, or join T2 and T3 first to

generate Tt which is then joined to T1.

select from T1 where C1
1 ; � � � ; C1

m

from T2 where C2
1 ; � � � ; C2

n

from T3 where C3
1 ; � � � ; C3

p

joined_by T1:C
1
j � T2:C

2
k;

T2:C
2
i � T3:C

3
k ;

In general, the number of possible join order alternatives

may be quite large and the computational effort of the

query optimizer may be nontrivial if one takes into account

all possible join methods that can be used for each join. The

approach taken by the CLISSPE compiler is to consider join

order alternatives only. If n tables are being joined, the

number of possible join orders is less than or equal to n!=2

and greater than or equal to nÿ 1. Thus, if a select

statement joins four tables, there are at most 12 alternatives

to consider. For five tables there are at most 60. The actual

number of alternative join orders depends on the joins

specified in the joined_by clause. CLISSPE, performs an

exhaustive search of all possible join orders since it is not

expected that CLISSPE programs will have select state-

ments that join more than five tables.
The CLISSPE compiler uses the following algorithm to

compute the cost, CIO�MTJ�, of a multitable join:

1. Build a list of join alternative (LJA) orders taking
into account the joins specified in the joined_by

clause.
2. For each element a � �T1; � � � ; Tn� in the list LJA,

compute the I/O cost CIO�a� of the alternative a as

CIO�a� � CIO�T1 � T2� � CIO��T1 � T2� � T3� �
� � � � CIO��T1 � � � �Tnÿ1� � Tn�;

�31�
where � stands for the join operator. The I/O cost
computed for each individual join is obtained by
selecting the join method (i.e., nested loop, merge
join, and hybrid join) that provides the minimal cost
for that join. From (31), it is clear that one needs to be
able to derive all the needed parameters for a table
resulting from a join so that one can compute the
cost of joining this table with the next one in the list.
This implies that one needs to compute the size
SJ�Ti; Tj� of a table resulting from the join of tables
Ti and Tj. The derivation of SJ�Ti; Tj� is given below
after the algorithm to compute the list LJA is
presented.

3. The cost CIO�MTJ� is computed as the minimum
cost among all costs CIO�a� for all elements in the list
LJA.

To present the algorithm to build the list LJA, some
definitions are in order. Let G � �V ;E� be a nondirected
join graph where the vertices are the tables of a select
statement. An edge e � �Ti; Tj� 2 E indicates that there is a
join between tables Ti and Tj. Fig. 12 shows an example of a
join graph for a select statement with the following joins:
T1 � T2, T2 � T3, and T2 � T4. The list LJA for the graph of
Fig. 12 is �T1; T2; T3; T4�, �T1; T2; T4; T3�, �T2; T3; T1; T4�,
�T2; T3; T4; T1�, �T2; T4; T1; T3�; and �T2; T4; T3; T1�. Note that
since Ti � Tj � Tj � Ti 8 i; j, all elements in the list LJA
that start with Ti; Tj are equivalent to elements that start
with Tj; Ti and, therefore, must not be duplicated. Let � �
�Ti1 ; � � � ; Tim � be a sequence of nodes in V and let the
operation � �� T indicate that node T is added at the
end of the sequence � resulting in the sequence
� � �Ti1 ; � � � ; Tim ; T �. Let Lj denote a set of node sequences
of length j. Let V� be the set of nodes included in the
sequence � and let E� be the set of edges in E that connect a
node in V� to a node in V ÿ V�.

The algorithm to build the list LJA for a graph G �
�V ;E� is given in Fig. 13. Let j V j� n. The algorithm of
Fig. 13 works by building sequences of length 2 up to n
tables. Sequences of length j are built out of sequences of
length �jÿ 1� by adding at the end of the sequence a node
not yet in the sequence but that is connected to any node in
the sequence. This means that the added node represents a
table that can be joined with the tables already represented
in the sequence.

The computation of the size SJ�Ti; Tj� of a table resulting
from the join of tables Ti and Tj on columns Ci and Cj is as
follows. Let m � 1=s�Ci� be the number of different values
in column Ci and n � 1=s�Cj� be the number of different
values in column Cj. Assume for the moment that m > n.
Let k � s�Cj� �NRowsTj be the number of rows of Tj that

1080 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 11, NOVEMBER 2000

Fig. 12. Example of a join graph.

have the same value in column Cj. Each row in table Ti will

not have any row with the value of Ci equal to the value of

Cj with probability P0 equal to

P0 �
mÿ 1
n

� �
m
n

� � � mÿ n
m

: �32�

Each row of table Ti will generate k rows in the result

relation with probability �1ÿ P0�. Thus, the average

number of rows generated in the result relation per row

of Ti is given by

k� �1ÿ P0� � k� n

m
�

s�Cj� �NRowsTj �
1=s�Cj�
1=s�Ci� �

NRowsTj � s�Ci�:

�33�

Then, SJ�Ti; Tj� can be computed as,

SJ�Ti; Tj� � NRowsTi �NRowsTj � s�Ci�: �34�
In general, relaxing the assumption that m > n, we can

write that

SJ�Ti; Tj� � NRowsTi �NRowsTj �min�s�Ci�; s�Cj��: �35�
If there are other predicates in the from clauses for tables

Ti and Tj, one has to multiply SJ�Ti; Tj� by the product of

the selectivity factor for all predicates involved.

13.3.3 Access Plan Selection in CLISSPE

The CLISSPE compiler selects the proper access plan to be

used in estimating the I/O and CPU costs of a select query

by computing the cost of all possible access plans and

selecting the one with the minimum cost. The type of DBMS

specified in the CLISSPE program may restrict the types of

access plans considered by the CLISSPE compiler and may

also restrict the types of disk I/Os to be used. For example,

since list prefetch is restricted to DB2, the CLISSPE compiler

replaces SlpIO by Srand
IO for all DBMSs other than DB2.

14 STEP 8-C: PERFORMANCE PARAMETER

GATHERING

In a performance specification, there are many performance
parameters that need to be estimated. At the design level,
when the application is not operational, these parameters
cannot be obtained by performance measurement. To
characterize the workload intensity, the expected frequency
of execution of each use case is estimated. In the case study
application (Section 5), it is the number of times a new
applicant is processed and the number of times an existing
employee is processed over some time period, e.g., per day.
For each use case, the number of transactions is estimated
(some transactions may be executed more than once per use
case). If the application is a reengineering of an existing
application, then the workload, based on use cases and
transactions per use case, can be measured. The existing
transaction load is then used as a baseline transaction load
indicated by an arrival rate multiplier of 1.0. Experiments
can be run with larger transaction loads by increasing the
arrival rate multiplier.

Other application-level parameters also need to be
estimated. The transaction specifications given in
Section 10 illustrate examples of such parameters, which
are used in CLISSPE branch and loop statements:
#ProbabilityApplicantWithMinSkills, #average_skill_count,
#average_num_courses, #avg_sections_count, and #Prob-
SectionAvailable. These parameter values can be deter-
mined from the legacy system if it collects such data. If
not, then, providing historical data is kept in the files or
database maintained by the legacy application, programs
can be written to analyze the records and determine the
parameters. If there is no computerized information
available, then interviews with key users are required.
Users can provide these estimates based on their first-
hand experience or by manual analysis of the paper files.
In the application we modeled, a combination of all the
above was used to determine the values of the para-
meters. In total, 65 constants and 35 probabilities needed
to be estimated. To estimate the size of the database,
estimates of row size were determined by adding the
estimated size of each attribute of the relation. Estimates
of table size were obtained by a combination of analysis of
the existing system and interviews with users. As the
legacy system used a file management system and the
client/server system was designed to use a relational
database, a direct comparison of the two systems was not
possible. The main performance challenge for the client/
server system was not the size of the database but the
expected high transaction rate.

15 STEP 8-D: PERFORMANCE ASSESSMENT

As an example of applying the technology, this section
describes the performance analysis of the Recruitment and
Training System of a major US Government Agency, in
which the current system is being downsized and re-
engineered from a mainframe to a client/server environ-
ment using a relational database. Some results of this
analysis were reported in [19].

MENASC�E AND GOMAA: A METHOD FOR DESIGN AND PERFORMANCE MODELING OF CLIENT/SERVER SYSTEMS 1081

Fig. 13. Algorithm to build LJA.

Several alternative client/server scenarios were modeled
and analyzed, eight of which are reported in this section.
They fall into three main categories: centralized (i.e., one
database server machine and one application server
machine), distributed (more than one database server
and/or application server machines), and combined (a
single machine supporting the database and application
servers). Scenario names are of two forms: mD(p)nA(q) or
Comb(p). In the former case, m is the number of database
servers, p the number of processors in each database server
machine, n is the number of application servers, and q the
number of processors in each machine supporting the
application server. In the Comb�p� notation, p indicates the
number of processors on the machine used to execute the
database and application servers. The suffix SC, if present
in the scenario name, indicates that the scenario uses partial
caching with Selective table full Caching. This means that
some of the tables are fully cached in main memory. For
example, the scenario 3D(2)2A(1)SC indicates that three
dual-processor machines are used as database servers and
two single-processor machines are used as application
servers. Also, full caching of selected entire tables is used.
All machines used as database servers were assumed to be
high-end UNIX servers. For the first four scenarios in
Table 2, the machines used as DB servers are 67 percent
slower than the ones in the last four scenarios. Except for
scenario 3D(2)2A(1)SC, which uses an NT server on a
Wintel platform, all other scenarios use a UNIX server to
support the application server. In all scenarios, the clients
used Wintel NT platforms.

The workload on the existing mainframe system was
measured and the transaction load on the new system was
estimated as described in Section 14. The transaction load
was run at arrival rate multipliers ranging from 1.0 to 2.5. A
rate multiplier of 1.0 corresponds to the peak transaction
load observed in the current system. The arrival rate
multipliers were used to verify how the new system would
react to a predicted load increase. With the help of the
CLISSPE system we were able to analyze the system
response time for the critical transactions. Table 2 shows
the average response times for the Check New Applicant
transaction for the different client/server configurations

and rate multipliers. The Check New Applicant transaction
is the most critical and also the most demanding transac-
tion, which used most of the use cases shown in Fig. 3:
Check New Applicant Qualifications, Check Skills, Check
Training Opportunities, Check Incentives, and Check Job
Location. The complexity of the transaction is considerably
higher than the examples given in the earlier sections of this
paper.

As can be seen in Table 2, the average response times for
scenarios 1D(2)1A(1), 1D(2)1A(1)SC, and 3D(2)1A(1) is
inadequate. The response times for the remaining five
scenarios are satisfactory at transaction arrival rate multi-
pliers of up to 2.5 times the current transaction load.

We now compare the scenario 3D(2)2A(1)SC with
scenarios 1D(4)1A(2)SC and 1D(3)1A(1)SC. The distributed
scenario 3D(2)2A(1)SC has three dual-processor database
server machines for a total of six processors. Response times
for this scenario are around 20 percent higher than for the
centralized scenarios 1D(4)1A(2)SC and 1D(3)1A(1)SC
which have a single database server machine with four
and three processors, respectively. This is mainly due to the
fact that the processors in the 3D(2)2A(1)SC scenario are
67 percent slower than those in the 1D(4)1A(2)SC and
1D(3)1A(1)SC ones.

The CLISSPE system also allows one to determine the
resources in which each transactions spends most of its
time. For the centralized and distributed configurations
3D(2)2A(1)SC, 1D(4)1A(2)SC, and 1D(3)1A(1)SC, the limit-
ing resource is the LAN that connects the Application
Server(s) to the Database Server(S). Approximately
43 percent of the average response time is spent in the
LAN in the two centralized scenarios and 36 percent in the
distributed scenario.

In the two combined scenarios, (Comb(6)SC and
Comb(4)SC), there is no LAN connecting the database and
application servers. These two scenarios provide the lower
average response time among all eight scenarios. This is due
to the elimination of the LAN which in the previous
scenarios is used every time the database is accessed. It
should be pointed out that this is a rather intensive database
application. The limiting resource in the combined scenar-
ios becomes the CPU at the combined server machine.
Transaction Check New Applicant spends around
52 percent of its average response time at the processors.
It should also be pointed out that significant caching is
assumed here. The servers were configured with sufficient
main memory to allow for the caching of the critical tables.
While caching reduces the amount of I/O, it does not
reduce the amount of processing associated with the
execution of database accesses.

The results for the combined scenarios are virtually
identical for rate multipliers of up to 2.5. This indicated that
there is adequate spare CPU capacity in the six-processor
configuration. Note that this application cannot benefit
from parallelism. Having more processors only reduces
waiting time for a processor but does not reduce processing
time. In fact, after modeling scenario Comb(6)SC with six
CPUs, we decided to model a less powerful configuration
scenario Comb(4)SC with four CPUs. This indicates that the
four-processor configuration is adequate. It can also be seen

1082 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 11, NOVEMBER 2000

TABLE 2
Average Response Time for Check New Applicant Transaction

that there is very little contention in the combined
configurations. The response time is almost flat in the range
of load multipliers going from 1.0 to 2.5.

Due to space constraints, we cannot elaborate on the
analysis of all major transactions and the various tradeoffs.
However, we give a brief idea of the major recommendations.
Two configurations were selected as being acceptable:
1D(3)1A(1)SC and Comb(4)SC. Both use high-end UNIX
servers for the database and application server machines.
The CPUs in each machine are of the faster type. The first
scenario provides a higher degree of reliability than the
second since it can be reconfigured as a combined scenario
with somewhat degraded performance if one machine goes
down.

In both cases, sufficient main memory was recom-
mended to cache critical database tables. One of the outputs
of the CLISSPE system is the number of I/Os executed by
each select statement as well as the average number of
times it is executed. This allowed for transaction redesign to
improve performance and for the determination of the
tables to be cached. In fact, the analysis revealed that,
without full caching of the most critical tables (over
100Mbytes in total), a satisfactory level of performance
could not be achieved with the configurations modeled.

The design and performance analysis carried out for the
RTS system was very thorough. It consisted of roughly
10,000 lines of CLISSPE code and provided application
programmers with detailed guidelines on how to imple-
ment the transactions. The analysis also provided a
specification of the system configuration to be procured
by the agency.

16 DISCUSSION AND FUTURE WORK

In the current version of the system, the mapping from the
object collaboration diagram (and its documentation in the
message sequence descriptions) to the CLISSPE transaction
specification is done by hand. Initially, the transaction
specification was specified in two procedures, one for the
client and one for the application server. The client
specification corresponds to the user interface object shown
in Figs. 5 and 6. However, the server objects, e.g., the
coordinator and entity objects shown in Figs. 5 and 6, are
mapped to the server procedure.

The CLISSPE specification of each transaction was
developed from the use case and object collaboration
diagram for the transaction. At the pseudocode level, the
logic of the transaction, in terms of the relations accessed
and processing required for each business rule, was
reviewed with the users and developers. Based on early
results of the performance analysis, the transactions with
the greatest resource demands were determined and
analyzed in more detail. Alternative algorithms were
considered involving a different order for executing the
business rules and, hence, a different access pattern to the
database relations. Each alternative algorithm was modeled
and compared with other candidate algorithms. Using this
approach, significant performance improvements were
obtained in key algorithms.

As we applied the initial version of CLISSPE to the real-
world Recruiting and Training System, it became apparent

that for long transactions, having one nonmodular server
procedure, resulted in lengthy procedures, which did not
exploit the benefits of the use case and object structuring
carried out in the OO analysis and design. To address this
problem, a macro capability with parameters was intro-
duced into CLISSPE, which allows a long transaction
specification to be decomposed into smaller macros, which
correspond to the objects and/or operations depicted in the
object collaboration diagrams. This meant that macros could
be reused in different transaction specifications just as
objects are reused in different use cases and object
collaborations.

In the future, we are planning to provide a closer link
between the UML model for use cases and object collabora-
tion diagrams and the CLISSPE specification. Thus, each
class would have a corresponding CLISSPE specification.
An object collaboration diagram for a transaction would be
mapped to a transaction specification by creating instances
of the classes and binding the instances into a transaction
specification. We are also investigating using a component
based model of a distributed software architecture [6], [18],
specified in an Architecture Description Language [17], [39],
with the specification of each component to include a
description of its performance characteristics.

Another issue is that in changing from one client/server
configuration to a different one, some amount of recoding
needs to be done. Although the main change is in the
mapping section of the specification, other changes are also
needed in the transaction specification, in particular where
it specifies which node the transaction executes on. With the
ADL approach outlined above, the configuration of the
application could be separated from the transaction
specifications, making it easier to specify and experiment
with different configurations.

17 CONCLUDING REMARKS

Software design and development in a C/S environment
offers a very large number of design alternatives to the
designer. These alternatives range from software architec-
tural issues to the choice of proper system configuration
and platforms to be used. Predicting the performance of a
system under development requires that service demands
be estimated for resources such as CPU, disks, and
networks.

For I/O intensive applications, a good estimate of the
CPU time of a transaction can be obtained as a function of
the number of I/Os. The challenge then is to estimate the
number of I/Os. Most SPE studies and packages require the
software performance engineer to provide these estimates
by analyzing the transaction logic. This may lead to quite
inaccurate estimates. In this paper, we modeled the work
performed by the query optimizer of the DBMS in order to
generate more accurate estimates on the number of I/Os for
different query types and different types of indices on the
tables being queried. The models we developed are based
on analytic formulas that capture the traversal of indices
and processing of various types of joins. In our studies, we
were able to see clearly the effects of changing database
configurations. For example, adding or removing indices

MENASC�E AND GOMAA: A METHOD FOR DESIGN AND PERFORMANCE MODELING OF CLIENT/SERVER SYSTEMS 1083

from critical relations had a major impact on the number

of I/Os.
Our understanding of the operation of the query

optimizer for commercial databases such as Oracle and

DB2 was limited to what is known in the published

literature. Proprietary aspects of the query optimizers were

not modeled. Therefore, discrepancies between the model

estimates and actual measurements may arise. However, in

SPE at the early stage of the system development, one is

interested in relative performance and not necessarily in

absolute performance values.
Our work shows that these early performance models,

which are developed before the system exists, have an

important role to play. These models may be used for

comparative studies of alternative hardware and software

architectures, even though they are not expected to be as

accurate as more detailed models that use measurements

from a real system. As the system is developed, it is possible

to refine the model by including measurements from the

real system.
SPE requires the collaboration of the software developers

who are usually too busy to get the system running on

schedule. Performance is usually an afterthought. This

paper presents a method that blends software design with

performance modeling. The method is based on the

CLISSPE language that can be used to specify use cases

and also as a basis for generating predictive performance

models and its parameters.
CLISSPE can be used by both software system designers

and performance engineers. One of the major deterrents for

the widespread use of SPE is that it is viewed by many as an

activity separate from software design and development,

and, therefore, should be carried out by people with

different skills. With our integrated method, we hope to

bridge the gap between these two camps.

ACKNOWLEDGMENTS

This work was partially supported by the US National

Science Foundation under grant CCR-9804113. The authors

would like to thank the anonymous reviewers for their

thoughtful suggestions which helped improve the quality of

the paper.

REFERENCES

[1] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling
Language User Guide. Reading, Mass.: Addison Wesley, 1999.

[2] S. Christodoulakis, ªEstimating Block Transfers and Join Sizes,º
Proc. ACM 1983 SIGMOD Conf., pp. 40-54, May, 1983.

[3] G. Franks and M. Woodside, ªPerformance of Multi-Level Client-
Server Systems with Parallel Service Operations,º Proc. First Int'l
Workshop Software and Performance, Oct. 1998.

[4] G. Franks, A. Hubbard, S. Majumdar, D. Petriu, J. Rolia, and
C.M. Woodside, ªA Toolset for Performance Engineering and
Software Design of Client-Server Systems,º Performance Evaluation
J., vol. 24, no. 1-2, pp. 117-135, Nov. 1995.

[5] D. Gardy and C. Puech, ªOn the Effect of Join Operations on
Relation Sizes,º ACM Transactions on Database Systems, vol. 14,
no. 4, pp. 574-603, Dec. 1989.

[6] H. Gomaa and G. Farrukh, ªComposition of Software Architec-
tures from Reusable Architecture Patterns,º Proc. IEEE Int'l
Workshop Software Architectures, Nov. 1998.

[7] H. Gomaa, ªUse Cases for Distributed Real-Time Software
Architectures,º J. Parallel and Distributed Computing Practices, June
1998.

[8] H. Gomaa and G. Farrukh, ªAutomated Configuration of
Distributed Applications from Reusable Software Architectures,º
Proc. IEEE Int'l Conf. Automated Software Engineering, Nov. 1997.

[9] H. Gomaa, D.A. MenasceÂ, and L. Kerschberg, ªA Software
Architectural Design Method for Large-Scale Distributed Data
Intensive Information Systems,º Journal of Distributed Systems
Engineering, vol. 3, pp. 162-172, 1996.

[10] H. Gomaa, Designing Concurrent, Distributed, and Real-Time
Applications with UML. Addison Wesley, 1993.

[11] A Grummitt, ªA Performance Engineer's View of System
Development and Trials,º Proc. 1991 Computer Measurement Group
Conf., pp. 455-463, Dec. 1991.

[12] D. Harel, ªOn Visual Formalisms,º Comm. ACM, vol. 31, no. 5,
pp. 514-530, May 1988.

[13] H. Hlavacs and G. Kotsis, ªModeling User Behavior: A Layered
Approach,º Proc. Seventh Int'l Symp. Modeling, Oct. 1999.

[14] G. Jacobson, G. Booch, J. Rumbaugh, The Unified Software
Development Process. Reading, Mass.: Addison Wesley, 1999.

[15] I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard, Object-
Oriented Software Engineering. Reading, Mass.: Addison Wesley,
1992.

[16] G. Koch and K. Loney, Oracle: The Complete Reference Electronic
Edition. Oracle Press, 1996.

[17] D.C. Luckham, J.J. Kenney, L.M. Augustin, J. Vera, D. Bryan, and
W. Mann, ªSpecification and Analysis of System Architecture
using Rapide,º IEEE Trans. Software Eng., vol. 21, no. 4, Apr. 1995.

[18] J. Magee, N. Dulay, and J. Kramer, ªRegis: A Constructive
Development Environment for Parallel and Distributed Pro-
grams,º J. Distributed Systems Eng., pp. 304-312, 1994.

[19] D.A. MenasceÂ and H. Gomaa, ªOn a Language Based Method for
Software Performance Engineering of Client/Server Systems,º
Proc. First Int'l Workshop Software and Performance, Oct. 1998.

[20] D.A. MenasceÂ and V.A.F. Almeida, ªPerformance of Client/Server
Systems,º Performance EvaluationÐOrigins and Directions,
G. Haring, C. Lindemann, and M. Reiser, eds. Springer-Verlag,
2000.

[21] D.A. MenasceÂ and V.A.F. Almeida, ªCapacity Planning for Web
Performance: Metrics, Methods, and Models.º Upper Saddle River,
N.J.: Prentice Hall, 1998.

[22] D.A. MenasceÂ, ªA Framework for Software Performance En-
gineering of Client/Server Systems,º Proc. 1997 Computer Measure-
ment Group Conf., Dec. 1997.

[23] D.A. MenasceÂ, ªCLISSPE: A Language for Client/Server Software
Performance Engineering,º technical report, Dept. of Computer
Science, George Mason Univ., Jan. 1997, http://www.cs.gmu.
edu/~menasce/clisspe.

[24] D.A. MenasceÂ, V. Almeida, R. Fonseca, and M.A. Mendes, ªA
Methodology for Workload Characterization of E-Commerce
Sites,º Proc. ACM Conf. Electronic Commerce, Nov. 1999

[25] D.A. MenasceÂ, O. Pentakalos, and Y. Yesha, ªAn Analytic Model
of Hierarchical Mass Storage Systems with Network-Attached
Storage Devices,º Proc. ACM Sigmetrics Conf., May 1996.

[26] D.A. MenasceÂ, H. Gomaa, and L. Kerschberg, ªA Performance-
Oriented Design Methodology for Large-Scale Distributed Data
Intensive Information Systems,º Proc. First IEEE Int'l Conf. Eng. of
Complex Computer Systems, Nov. 1995.

[27] D.A. MenasceÂ, V.A.F. Almeida, and L.W. Dowdy, Capacity
Planning and Performance Modeling: from Mainframes to Client-Server
Systems. Upper Saddle River, N.J.: Prentice Hall, 1994.

[28] J.E. Neilson, C.M. Woodside, D.C. Petriu, and S. Majumdar,
ªSoftware Bottlenecking in Client-Server Systems and Rendez-
vous Networks,º IEEE Trans. Software Eng., vol. 21, no. 9, pp. 776-
782, Sept. 1995.

[29] P. O'Neil, Database Principles, Programming, Performance. San
Francisco: Morgan Kauffman, 1994.

[30] D. Parnas, ªDesigning Software for Ease of Extension and
Contraction,º IEEE Trans. Software Eng., Mar. 1979.

[31] D. Parnas, ªOn the Criteria for Decomposing a System into
Modules,º Comm. ACM, Dec. 1972.

[32] S. Ramesh and H.G. Perros, ªA Multi-Layer Client-Server
Queuing Network Model with Synchronous and Asynchronous
Messages,º Proc. First Int'l Workshop Software and Performance, Oct.
1998.

1084 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 11, NOVEMBER 2000

[33] M. Reiser and S. Lavenberg, ªMean-Value Analysis of Closed
Multi-Chain Queuing Networks,º J. ACM, vol. 27, no. 2, 1980.

[34] J.A. Rolia and K.C. Sevcik, ªThe Method of Layers,º IEEE Trans.
Software Eng., vol. 21, no. 8, pp. 689-700, Aug. 1995.

[35] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling
Language Reference Manual. Reading, Mass.: Addison Wesley, 1999.

[36] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen,
Object-oriented Modeling and Design. Upper Saddle River, N.J.:
Prentice Hall, 1991.

[37] S. Salza and M. Terranova, ªEvaluating the Size of Queries on
Relational Databases with Non-Uniform Distribution and Sto-
chastic Dependence,º Proc. ACM SIGMOD Conf., pp. 8-14, June
1989.

[38] L. Shapiro, ªJoin Processing in Database Systems with Large Main
Memories,º ACM Trans. Database Systems, vol. 11, no. 3, pp. 239-
264, Sept. 1986.

[39] M. Shaw and D. Garlan, Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, 1996

[40] C. Smith, P. Clements, and M. Woodside, Proc. First Int'l Workshop
Software and Performance, Oct. 1998.

[41] C. Smith, Performance Engineering of Software Systems. Reading,
Mass.: Addison Wesley, 1990.

[42] A. Swami and K.B. Schiefer, ªEstimating Page Fetches for Index
Scans with Finite LRU Buffers,º Proc. ACM SIGMOD Conference,
pp. 173-184, 1994.

[43] C.M. Woodside, J.E. Neilson, D.C. Petriu, and S. Majumdar, ªThe
Stochastic Rendezvous Network Model for Performance of
Synchronous Client-Server-like Distributed Software,º IEEE Trans.
Computers, vol. 44, no. 1, Jan. 1995.

[44] S.B. Yao, ªOptimization of Query Evaluation Algorithms,º ACM
Trans. Database Systems, vol. 4, no. 2, pp. 133-155 Sept. 1979.

[45] C.T. Yu, ªDistributed Database Query Processing,º Query Proces-
sing in Database Systems, W. Kim, D. Reiner and D. Batory, eds.
Springer-Verlag, 1985.

[46] M. Woodside, C. Hrischuck, B. Selic, and S. Bayarov, ªA
Wideband Approach to Integrating Performance Prediction into
a Software Design Environment,º Proc. First Int'l Workshop
Software and Performance, Oct. 1998.

Daniel A. MenasceÂ received the PhD degree in
computer science from UCLA (1978), the MSc
degree in computer science, and the BSEE
degree both from the Pontifical Catholic Uni-
versity in Rio de Janeiro (PUC-RIO), Brazil
(1975 and 1974, respectively). He is a professor
of computer science at George Mason Univer-
sity, Fairfax, Virginia. He held visiting faculty
positions at UMIACS, University of Maryland at
College Park (1991-1992), and at the University

of Rome, Italy (1983). He was a full time faculty member of the
Department of Computer Science at PUC-RIO, Brazil, for 14 years,
where he was also chair of CS (1981-1983). MenasceÂ is an ACM Fellow
and a member of IFIP's Working Group 7.3. He has published more than
110 technical papers and was the chief author of five books, including
Scaling for E-Business: Technologies, Models, Performance, and
Capacity Planning, Capacity Planning for Web Performance: Metrics,
Models, and Methods, and Capacity Planning and Performance
Modeling: From Mainframes to Client-Server Systems, published by
Prentice Hall in 2000, 1998, and 1994, respectively. His research has
been funded by DARPA, NASA, NSF, Virginia's Center for Innovative
Technology, OPNET Technologies, Hughes Applied Information Sys-
tems, Brazilian Telecommunications Company, Brazilian Research
Council (CNPq), Brazilian Ministry of Science and Technology, and
IBM Brazil. MenasceÂ was the recipient of various prizes, teaching
awards, and best paper awards. MenasceÂ was general chair of ACM
Sigmetrics 1999 and program co-chair of the 2000 ACM Workshop on
Software Performance. His areas of interest include performance
modelling, web and e-commerce technologies, and software perfor-
mance engineering. He is a member of the IEEE Computer Society.

Hassan Gomaa received the BSc degree with
first class honors in electrical engineering from
University College, London University, and the
DIC and PhD degrees in computer science from
Imperial College of Science and Technology,
London University. He is a professor in the
Department of Information and Software Engi-
neering and associate director of the Center for
Information Systems Integration and Evolution
at George Mason University, Fairfax, Virginia.

He has more than 25 years experience in software engineering, both in
industry and academia, and has published more than 100 technical
papers. His book, Software Design Methods for Concurrent and Real-
Time Systems, was published by Addison Wesley as part of the SEI
Series on Software Engineering and had its fourth printing in 1999. His
new book entitled Designing Concurrent, Distributed, and Real-Time
Applications with UML, was also published by Addison Wesley in August
2000. His current research interests include object-oriented analysis and
design for concurrent, real-time, and distributed systems, software
architecture, domain analysis and design, software reuse, software
performance engineering, intelligent software agents, client/server
systems, software engineering environments, software prototyping,
and software process models. A recent paper he co-authored with
D.A. Menasce on the design of large-scale information intensive client/
server systems received an outstanding paper award at the IEEE
Internationall Conference on the Engineering of Complex Computer
Systems in November, 1995. He has served on the program committees
of several international conferences and was program co-chair of the
1997 IEEE International Conference on the Engineering of Complex
Computer Systems and was program co-chair of the 2000 ACM
Workshop on Software Performance. He is a member of the IEEE
Computer Society.

MENASC�E AND GOMAA: A METHOD FOR DESIGN AND PERFORMANCE MODELING OF CLIENT/SERVER SYSTEMS 1085

